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Categorical Abstract Algebraic Logic:
Truth-Equational 1-Institutions

George Voutsadakis

Abstract  Finitely algebraizable deductive systems were introduzgdlok
and Pigozzi to capture the essential properties of thoseaotigd systems that
are very tightly connected to quasivarieties of universgelaras. They include
the equivalential logics of Czelakowski. Based on Blok amgo®zi’'s work,
Herrmann defined algebraizable deductive systems. Theséaequivalential
deductive systems that are also truth-equational, in theesthat the truth pred-
icate of the class of their reduced matrix models is expjiciefinable by some
set of unary equations. Raftery undertook the task of cleniaing the property
of truth-equationality for arbitrary deductive systems. this paper, following
Raftery, we extend the notion of truth-equationality fogits formalized asr-
institutions and abstract several of the results that hmidiéductive systems in
this more general categorical context.

1 Introduction

A deductive systen’ = (7, |- o) consists of a logical languag€ = (A, p), i.e., a
set of connectived, each of finite arity given by the arity functign: A — w, and a
structural consequence relationr C Z(Fmg(V)) x Fmg (V) on the set of formu-
las Fmy (V), formed using the connectives.if and variables in a fixed denumer-
able seV in the ordinary recursive way. A&’-matrix2( = (A, F) is a pair consisting
of an.Z-algebraA = (A, _Z*) together with a subs& C A of its carrierA. The.Z-
matrix 2l is called amatrix model of or an.-matrixif F is an.”-filter, i.e., it is
closed under all derivable rules of meaning that, for akPU { ¢} C Fmg¢(V), such
that® + o @, and every homomorphism: Fm« (V) — A from the absolutely free
Z-algebra to the underlying algebfaof 2,

h(®) CF implies h(p) e F.
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The collection of all.”-filters onA is denoted by FA. Notice that, taking into
account structurality, the”-filters on the formula algebra correspond exactly to the
theoriesof the deductive systeny’, i.e., the sets of formulas that are closed under
the entailment-». Given an.Z-matrix 2l = (A,F), there always exists a largest
congruence oA that is compatible witlr. Compatibilityof a congruencé with F
means that, for alh,b € A, if (a,b) € Q anda e F, thenb € F, or, equivalently, that

F is a union ofﬁ-equivalence classes. This largest congruence is caléddeibniz
congruence of Fand denoted b2, (F) or Q(2() [6]. When Q refers to matrices
on the formula algebra, the subscript referring to the fdenalgebraFm (V) is
usually omitted. On the other hand, the largest congruence that is compatible
with all .7filters onA includingF, which also always exists, is termed tBaszko
congruence o and is denoted b (F) [18]. Let.&” = (Z,F ) be a deductive
system an@l = (A, F) an.Z-matrix. The matr>@ will be said to bd_eibniz reduced

if Qa(F) is the identity relation om\. It is called Suszko reduceifl Qa(F) is the
identity relation onA. The collection of all”-matrices is denoted bylod., the
collection of all Leibniz reduced”-matrices byMod*.# and the collection of all
Suszko reduced”-matrices byModS".s.

The Leibniz operatoy seen as a functiof : Th.” — Con(Fm«(V)) from the
collection of theories of” to the collection of allZ-congruences on the formula
algebra, is the function that assigns to every théonf .~ its Leibniz congruence
Q(T). Properties of this operator have played a crucial roleassifying deductive
systems into an algebraic hierarchy reflecting the natutlkeesf algebraic character.
This classification process, along with studies relatintheoalgebraic counterparts
of deductive systems, constitutes the heart of the fieldbsftract algebraic logic
[12, 14, 4,6, 22, 16, 24).

In their seminal “Memoirs" monograpé], Blok and Pigozzi definedlgebraiz-
able deductive systemsThe definition pertained to finitary deductive systems.
Roughly speaking, a finitary deductive system is calledlaigizable if there exist
finitary interpretations between its consequence reladimh the equational conse-
quence relation associated with a class of algebras, tedheerse of one another
in a precise technical sense. Herma8#, [38] extended this definition to possibly
infinitary deductive systems by allowing also infinitarydargretations. Hermann'’s
notion became known aagebraizability whereas the original notion of Blok and
Pigozzi is now known afinite algebraizability Czelakowski, in another important
work in the field of abstract algebraic logic, had previousiydied equivalential
logics [12, 14]. These were defined by Prucnal and Wrongkl][and are, again
roughly speaking, those logics for which there exists adlaion from the equa-
tional consequence of a class of algebras into their ownemprence relation. One
of the adages put forward by Hermann in his Ph.D. dissert§84] was that

Algebraizability = Truth-Equationality+ Equivalentiality

In fact, truth-equationality is the property that fills-ihet interpretation from the
consequence relation of the deductive system under coasinieinto the equational
consequence of a class of algebras in order to establishralgability starting from

equivalentiality. Until 2006, this property had only bedndied in the context of
protoalgebraic logics, the wider class of logics consideamenable to algebraic
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methods and techniques§, [24]. Raftery, however, studied imfl] the property of
truth-equationality in the more general context of arbjtrdeductive systems.

Let.” = (£, &) be adeductive system. According to Raftef][ the filters of
the Leibniz reduced matrices Mod*.# areequationally definablé there exists a
sett of formal unary equationd(x) = £(x), such that, for altl = (A, F) € Mod*.,
and allae€ A,

acF iff d*(a)=¢(a), foralld~eecrT.

The Leibniz operator of a deductive system is said tadrapletely order-reflecting
if, for every algebraA of the same similarity type as” and every collection of
7 filters.Z U{G} onA,

(] Qa(F) CQa(G) implies (.7 CG.

Fes

Furthermore, it is said to bompletely order-reflecting on theorigshe same con-
dition holds for arbitrary collections of theories of. In one of the main theorems
of [44], Raftery shows that a deductive system is truth-equatiffrits Leibniz op-
erator is completely order-reflecting and, moreover, thigthiappens iff the Leibniz
operator is completely order-reflecting on theories.

Finally, in the same work, Raftery proves that a deductisesy is truth equa-
tional iff its Suszko operator iglobally injective i.e., injective on the filters of every
algebra of the similarity type of”. This resultis accompanied by two negative, but,
nevertheless, important results: First, that injectiafythe Suszko operator on the
theories of.¥ does not imply the truth-equationality of in general and, second,
that the global injectivity of the Leibniz operator is noffetient for truth equational-
ity either. In fact, in Examples 2 and 3 ¢f4], Raftery showcases a deductive system
that has a globally injective Leibniz operator, but not oislyt not truth equational,
but does not even possess an algebraic semantics3{3e& jproperty much weaker
than truth equationality.

It is this study of Raftery that has led to the present workesghan attempt is
made to lift the study of truth-equational deductive systénto the more general
context of logics formalized ag-institutions. But an exposition of the main concepts
introduced in the paper and an overview of the main resuliddbe postponed until
the next section.

The paper is organized as follows. As mentioned above, itid&3e2, the basic
concepts on which the development of the theory is basednéneduced and an
overview of the main results is provided. In Sect®mwe remind the reader of the
definitions of the Leibniz and Suszko operators and revisitfarove several results
concerning those operators that will prove useful in subsatjsections. We also
take the opportunity to introduce some additional necgssatation. In Sectior,
we define the key notion of truth being equationally definddyle set of equations
for a givenrr-institution .#. We provide characterizations based on the classes of
Leibniz reduced and Suszko reduced matrix system modekeaf-tnstitution and
their properties. Criteria that can be used to test for theatignal definability of
truth are detailed in Sectiof In the final section, Sectio®, all previous notions
are put together under the unifying central notion of a trequationalt-institution.
Besides a chain of implications that connects various pres/statements concern-
ing properties of a givem-institution and the definability of truth, we also establis
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a condition - unfortunately, rather restrictive - under gbhall the previously intro-
duced notions turn out to be equivalent. Even though thiglitiom allows room for
all r-institutions arising from deductive systems and, thus,résult encompasses
the corresponding theorem, Theorem 28, of Raftdd],[the condition may be too
strong for arbitraryrr-institutions. Refining, or perhaps relaxing, this coraitivill
be left as a goal for future work.

2 Preliminaries and Overview

In this section we present the basic notions that will allextai study some of the
results of Raftery44] in the context of logical systems formalized msnstitutions.
The concept of ar-institution [20] (see also 30, 32]) constitutes the basic structure
that allows the formalization of logical systems that are@mgeneral than those that
can be formalized using the deductive systems of univelssitact algebraic logic
(see, e.g.,48, 46])). Introducing the basic notation and some of the basicdedla
concepts will also allow us to give an overview of the condeott the paper and
recounttheir relation with the original results d#], that inspired their development.
For the basic categorical concepts and notation that wilises in this section and
the remainder of the paper, the reader is encouraged to Itamguof the standard
referencesd, 10, 40] in general category theory.

A r-institution .# = (Sign,SEN,C) is a triple consisting of an arbitrary cat-
egory Sign, a set-valued functor SENSign — Set (in this context, sometimes
termed asentence functo} and a collectiorC = {Cs }s¢sign Of closure operators
Cs: #Z(SENZ)) — Z(SENZ)), Z € |Sign|, such that, for alk;,2, € |Sign| and
all f € Sign(z1,2y),

SEN(f)(C5, (®)) € Cs, (SEN(F)(®)). 1)

(The mapCs : Z(SENX)) — Z(SENZ)) is aclosure operatorif it satisfies, for
all® CWC SEN3Z),

e PCCs(d); (Reflexivity)
e Cs(d) CCs(W) (Monotonicity)
e Cs;(Cs(®)) =Cs(P). (Idempotency)

MoreoverC is termed alosure system orSEN if, in addition, ConditionX) holds.)

The structure of ar-institution abstracts that of a deductive system, which is
used as the underlying structure supporting the conceptagjieal system in uni-
versal abstract algebraic logic. Categorical abstractatgjc logic aspires to ab-
stract the methods and results of the universal treatmemtimler class of logical
systems and, as a result, broaden their applicability. Toese this goal, it uses
m-institutions as the underlying supporting structuregesenting logical systems,
becauseart-institutions can readily accommodate logical systemé witltiple sig-
natures and quantifiers which are more difficult to deal witing deductive systems
(see, e.g., the appendix ii][and relevant discussions in botg and [48)).

To abstract the concept of an algebraic signature (or Ibtaoguage) from the
level of deductive systems to the level gfinstitutions, we consider the notion
of the category of natural transformations on a given functeet Sign be a cat-
egory and SEN Sign — Set a functor. Theclone of all natural transforma-
tions on SEN is defined to be the locally small category with collettid objects
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{SEN" : a an ordina} and collection of morphisms: SEN" — SEN? B-sequences
of natural transformations : SEN" — SEN. Composition

(ti:i<B) (gji<y)

SENP —————— SEN/

SEN*

is defined by
(ojrj<yo(nii<B)=(oj((ti:i<B)):j<y).
A subcategoryN of this category containingll objects of the form SENfor

k < w, and all projection morphism@*' : SEN® — SENi < k.k < w, with
p¥' : SEN(Z)k — SEN(Z) given by

pEl(@) =@, forall @eSENZ)K

and such that, for every familjr; : SEN€ — SEN :i < |} of natural transformations
in N, the sequencé; ;i <1): SEN¢— SEN is also inN, is referred to as eategory
of natural transformations on SEN

Since categories of natural transformations on set-vdiurectors are used to ab-
stract algebraic signatures (more precisely, clones @taltjic operations generated
by specific fundamental operations), the notion of a trdimslabetween functors,
that will be used in lieu of algebraic homomorphisms, wilturally be assumed to
respect those categories. lgn be a category, SENSign — Seta functor and\

a category of natural transformations on SEN. Consider &tegoriesSigr’, Sign”
and functors SEN Sign’ — Setand SEN : Sign’ — Set, with N’ andN” categories
of natural transformations on SEbInd SEN, respectively. Assume, moreover, that
there exists surjective functoks : N — N’ andF” : N — N”, that preserve projec-
tions. In this cas®&’ andN” will be said to besimilar and the natural transformations
F'(0),F”(o) in N',N”, respectively, that correspond ¢oin N, will be denoted by
o’ anda”.

Let, again,Sign, Sigrn’ be categories and SENSign — Set, SEN : Sign’ — Set
be functors, withN,N’ categories of natural transformations on SEEN, re-
spectively. A pair(F,a) will be said to be an(N,N’)-epimorphic translation if
F : Sign— Sign is a functor andx : SEN— SEN o F is a natural transformation,
such that, for allb : SEN' — SEN inN, all = € |Sign| and allgp € SEN(Z)",

as(03(9) = Ué(z)(ag(@)-

Given a functor SEN Sign — Set, with a categoryN of natural transforma-
tions on SEN, arN-algebraic system«’ = (SEN, (F,a)) consists of a functor
SEN : Sign’ — Set, with N’ a category of natural transformations on SENgether
with an (N, N’)-epimorphic translatiodF, a) : SEN— SEN. N-algebraic systems
have appeared many times before in the theory of categaifistiact algebraic logic
in various contexts, sometimes under disguises, and hdpede creating, e.g.,
a model theory oft-institutions in pQ] and a theory for institutional logics based
on the Tarski operatoibp], paralleling the theory on sentential logics of Font and
JansanaZg?].

Let .# = (Sign,SEN,C) be arrinstitution, withN a category of natural trans-
formations on SEN. Given aN-algebraic systemz’, as before, there exists a
minimal closure syster®“’ on SEN, such that(F,a) : .# — (Sign/,SEN,C”")
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is an(N,N’)-logical morphism, i.e., such thdF,a) : SEN— SEN is an(N,N’)-
epimorphic translation and, moreover, foralE |Sign| and alld U {¢} C SEN(Y),

@eCs(®) implies az(g) € G (as(®)). )

The existence of such a closure system follows from the faat the system
C" = {C; }5¢sign|» Which is defined, for alE € |Sigrf| by

0 if o= 0
Cz (®) = { SEN(Z), if®+£0

satisfies Condition) and that, given any collection of closure systef@s: i€ |}
on SEN, the signature-wise intersecti@ = ., C' is also a closure system. The
collection of the theory families of this minimal syste(ﬂ*ff on SEN generated
by <7’ has been considered before in the literature of categalusttact algebraic
logic (see, e.g.,96]) and has been denoted by ThF%r‘H(SEN). Moreover, the
m-institution .7 := (Sign’, SEN,C“") has been termed th@, a)-min (N,N’)-
model of # on SEN [50]. An N-matrix system®l’ = (&', T') = ((SEN, (F,a)),T’)
is a pair consisting of aN’-algebraic system?’ = (SEN, (F,a)) together with an
axiom systenT’ = {T{} s igr| ON SEN (i.e., a collection of subsefy C SEN(Z),

3 € |Sigr[). An N-matrix system model(«’, T’) = ((SEN, (F,a)),T’) of .7 is
anN-matrix system, such that' € ThFan{;’O’)(SEN).

Before continuing our exploration of the basic notions, weeto give an alter-
native view of theN-matrix system models, which is new (to our knowledge) and
proves very useful in checking that an axiom famiify= {T{} s sjq ON SENisin
fact a theory family o£<’, for someN-algebraic systemy’ = (SEN, (F, a)). For a
givenN-matrix system’ = (7, T’), defineC® = {C'}s¢sign, bY letting, for all
s e |Sign], C¥ : Z(SEN(Z)) — Z(SENZ)) be given, for alld U { ¢} € SEN(Z),
by ¢ € C¥ (o) iff

oz (SEN(f)(®)) C Ty, implies ay (SEN(F)(¢)) € T,

for all ¥’ € |Sign| and all f € Sign(Z,%’). It is not difficult, perhaps only a bit
tedious, to prove that®', thus defined, is a closure system on SEN and, therefore,
7% = (Sign, SEN.CY) is arr-institution.

Proposition 1 Let .7 = (Sign, SENC) be arr-institution, with N a category of
natural transformations oi8EN, &7’ = (SEN, (F, a)) an N-algebraic system and
T’ = {T5}5¢/sign| @n axiom family oBEN.

T’ € ThFam, ¥ (SEN) iff € <cl"T).

Proof:

Assume, first, that’ € ThFanfE’a>(SEN). LetZ € |Sign anddU{ ¢} C SENZ),
such thatg € Cs(®). Thus, sinces is an (N,N’)-model of .#, we get that
os (@) € Céf(/a(az(qb)). Hence, by structurality and the fact thatis a natural
transformation, for alt’ € |Sign| and allf € Sign(Z,’),

as (SEN(F)(¢)) € CEz) (s (SEN(F)())).
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Therefore, sinc@’ € ThFani';"’)(SEN), forall Z € |Sign| and allf € Sign(Z, ),
as (SEN(F)(®)) C T¢ 5y implies a5 (SEN()(¢)) € T (5.

This proves thap € L7 (), i.e., thatC < C("-T",

Conversely, define the collecti@® = {Cs }5.sigy| by letting, for allZ € [Sigr|,
C{: Z(SEN(Z)) — Z(SEN(Z)) given, for all® U {¢p} C SEN(Z), by ¢ € C{(P)
iff, for all &’ € |Sign/| and allf € Sign'(Z,%'),

SEN(f)(®) CT), implies SEN(f)(¢) € Ty,

for all axiom familiesT’ = {T{}5¢|sigy| ON SEN, such thaC < C“"T). It is not
difficult to show thatC’ is a closure system on SE&nd that#’ = (Sign', SEN,C’)
is an(N,N’)-model of.#. Thus, by the minimality o€%’, we get thaC*’ < C'.
This shows that every theory familly of C’ must also be a theory family &“".
Since, by construction, all axiom familié& on SEN, such thaC < C’"T) are

theory families ofC/, this establishes the right-to-left implication in the chrsion.
O

TheN’-Leibniz operator QV' of anN-algebraic system?’ = (SEN, (F,a)) as-
sociates with every theory familly € ThFarrf;m(SEN) the largesiN’-congruence
systemQN'(T') that is compatible withT’. Similarly, the N’-Suszko operator
QV' associates to every theory family of the closure syster8“’ on SEN the
largestN’-congruence systerﬁN/(T’) on SEN, that is compatible with every
theory family T” € ThFarﬁ;"’)(SEN), such thatT’ < T”. The N-matrix sys-
tem A = ((SEN, (F,a)), T’} is N'-Leibniz reduced if QV (T’) = ASEN and it is
N’-Suszko reducedf QN (T') = ASEN,

A rrinstitution.# = (Sign, SEN,C), with N a category of natural transformations
on SEN, is said to beyntactically N-truth-equational if there exists a collection
T of N-equations, i.e., pairs of unary natural transformatiérs: SEN— SEN in
N, such that, for every reducéd-matrix system modell’ = (&', T') of .#, with
o' = (SEN, (F,a)) anN-algebraic system, withF, a) : SEN— SEN surjective,
all < € |Sign| and allp € SEN(Z),

as (@) € Tez) it & 5)(as(9) = &5 (az(9)), forall o~ eeT.

On the other hand,# is said to be gemantically) N-truth-equational if the N-
Leibniz operatoQN iscompletely order-reflecting, i.e., for all collections of theory
familiesT' € ThFam(.#),i € |, and all theory familie¥ € ThFan{.#),

AQNT) <QN(T) implies OT'<T.

icl icl
A stronger condition than semantic truth-equationalityuiees that the Leibniz oper-
ator be completely order-reflecting on ThF%r‘H (SEN), for everyN-algebraic sys-
tem.«”’ = (SEN, (F,a)), with (F,a) : SEN— SEN a surjectivelN,N’)-epimorphic
translation. This condition turns out to be equivalent te tequirement that the
Suszko operator be injective on the lattice of all filters @rrg N-algebraic sys-
tem.”’ = (SEN, (F, a)), with (F,a) : SEN— SEN a surjectivelN,N’)-epimorphic
translation. It will be shown that syntacti¢-truth-equationality implies this latter
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condition which, in turn, implies semanti¢-truth-equationality. Moreover, a suf-
ficient condition will be established under which all thremnditions turn out to be
equivalent. When this condition is applied to the settingasitential logics, it yields
as a corollary one of the main theorems obtained by Raftefg4h

3 Leibniz and Suszko Operators

In this section we recall the definitions and several facteceoning the categorical
Leibniz and Suszko operators. The categorical Leibniz atpemwas defined first
in [54, 58] with the goal of introducing the classes of prealgebraid protoalge-
braic rr-institutions. Its introduction followed the work of Blokd Pigozzi p] that
introduced the Leibniz operator for the first time to chagaze algebraizable log-
ics. The categorical Suszko operator was introduce®@h faking after the work
of Czelakowski 18], who introduced the Suszko operator with the goal of Igtin
some of the methods of abstract algebraic logic that areicgtyé to the class of
protoalgebraic deductive systems to arbitrary logics.

Let .# = (Sign, SEN,C) be arrinstitution, withN a category of natural transfor-
mations on SEN. Let als® = {Ts }5¢sign b€ a theory family of SEN. Theeibniz
N-congruence systenN(T) of T is the largesN-congruence system on SEN that
is compatible with the theory family. Proposition 2.3 of38] characterizes Leibniz
congruence systems as follows:

Proposition 2 Suppose.# = (Sign,SENC) is a rrinstitution, N a cate-
gory of natural transformations of8EN and T = {Ts}s¢(sign @ theory fam-
ily of .#. Then, for all = € [Sign|, @,y € SENZ), (@,¢) € QY(T) iff, for all
' ¢ |Sign|, f € Sign(Z,¥’), 0 : SENC — SENin N and € SEN(Z')¥,

05 (SEN(f) (@), X) € Ty iff  os/(SEN(T)(¢),X) € Tsr. (3)

Note that in Equivalenced], we have followed a common convention in categor-
ical abstract algebraic logic by which the condition®)is a shorthand for the more
cumbersome condition: for all' € |Sign|, f € Sign(Z,3’),0 : SEN€ — SEN inN,

X € SEN(Z ) and alli <k,

O (X07 cee 7Xi*178El\Kf)(q))7Xi+lv s 7kal) € TZ/ iff
Os/ (XOa cee 7Xifla SEN(f)(w)1XI+17 .o an*l) € TZ/'

Thus, even though there appears to be a mismatch in the ée@ldty of the natural
transformatioro and the number of arguments used, this is only appareng sine

of the components of the vectgremployed, when this notation is used, is omitted.
This notational convention will be followed throughout thaper, possibly without
being mentioned explicitly.

We say that arr-institution .# = (Sign,SEN,C) has no theoremsif, for all
Z € |Sign|, Thms(.#) :=Cs(0) = 0.

Lemma 3 Let.# = (Sign, SEN,C) be arrinstitution, with N a category of natural
transformations or8EN, such thatSEN(Z) #£ 0, for someX € [Sign|. If .# has no
theorems, then the N-Leibniz operator is not injectivalofram(.7).

Proof:
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Under the hypotheses of the lemma, the collections FafD}scsigy and
SEN= {SEN(Z)}s¢/sign are two different theory families of and, by Proposition
2, we have

QY (Thm) = SEN(2)? = QY(SEN),
whenceQN (Thm) = QN(SEN) andQN is not injective. O

Recall from B8] (see, also,§4]) that, given tworr-institutions.# = (Sign, SEN,C)
and .#’ = (Sign,SEN,C’), an (N,N’)-logical morphism (also known as an
(N,N")-epimorphic semi-interpretationjF,a) : .#).#’, and a theory family
T’ € ThFan(.#"), the theory familya ~(T’) of .# is defined by setting

a H(T) = {afl(TF/(Z))}ZG\Sign\-
Lemma 5.4 of $8] shows that, roughly speaking, the Leibniz operator conasut
with inverse surjective logical morphisms.

Lemma 4 Let .# = (Sign,SENC) be ar-institution, N a category of natural
transformations orSEN and .#’ = (Sign, SEN,C’) an (N,N’)-model of.# via a
surjective(N,N’)-logical morphism(F, a) : .#)-.#". Then, for every theory family
T’ of #" and event € [Sign|, QY (a~1(T")) = agl(QQ'(a (T).

Sometimes, the relation in the conclusion of Lenvria denoted by

QM@ (1)) =a M@V (T).

One important class of-institutions from the point of view of categorical ab-
stract algebraic logic is the class skfnantically) N-protoalgebraic rr-institutions
[58]. These are ther-institutions that have Leibniz operators that are moniaton
the lattice of all their theory families. For a long time itthbeen suggested that the
class of protoalgebraic deductive systems is the widessai@asonably amenable
to treatment by universal algebraic methods and techniffij&sf]. More recently,
however, as more natural examples of non-protoalgebrgicddave been discov-
ered, there has been some effort to expand the methods o&ethsigebraic logic
to be able to handle non-protoalgebraic deductive systé&uslakowski L8] (see
also [L6] and [22]) has suggested that the viable alternative to the Leibpera
tor that may need to be considered in the study of non-prgétadic logics is the
Suszko operator. Given =institution.# = (Sign,SEN C), with a categoryN of
natural transformations on SEN, ttheSuszko operatofzN associates with every
theory familyT of .# the signature-wise intersection of all Leibniz congruesys
tems of all theory families that contain It is easy to see that fov-protoalgebraic
m-institutions theN-Leibniz operator and thBl-Suszko operator coincide. Tin
Suszko operator, however, is monotone on the theory fagwfi@r-institution even
when therr-institution is notN-protoalgebraic. Along the lines of switching from the
Leibniz to the Suszko operator for the study of arbitraryuddive systems, one may
consider the class of Suszko-reducgematrix systema/15!(.#) (corresponding to
the class Mot of all Suszko reduced matrices of a deductive systéjrinstead
of the clasgvi*(.#) (corresponding to Mcd) of Leibniz-reduced ones.

To provide more details, recall from Section 6 68] (see also §Q]) that given
a r-institution .# = (Sign, SEN C), with N a category of natural transformations
on SEN, and a theory familf’ = {Ts}s¢(sign Of -#, the family of binary rela-

tionsQN(T) = {QY(T)}s¢/sign defined by letting, for alE € |Sign|, @, ¢ € SEN(),
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(@.g) € QY (T) iff
Cs (Ty U{0s (SEN(F)(9),X)}) = Cs (Tx U{ox (SENCF)(¢), X)}),  (4)

forall 3’ € |Sign|, f € Sign(Z,%’), 0 : SEN¢ — SENinN andy € SEN(Z')K, defines
anN-congruence system on SEN that is compatible with the thieomyly T, called
the SuszkoN-congruence system of .

Proposition 6.3 of$8] asserts that thél-Suszko operator, unlike tHe-Leibniz
operator, and similarly with the deductive system framdwisralways monotone on
theory families of a-institution.

Proposition 5 Let .7 = (Sign, SENC) be arr-institution, with N a category of
natural transformations ofSEN ThenQN(T1) < QN(T?), for all theory families
T, T20f.#,suchthat < T2.

Finally, Theorem 6.4 ofg8] characterizes the Suszko operator as follows:

Theorem 6 Let.# = (Sign,SEN C) be arr-institution, with N a category of nat-
ural transformations ofSEN Suppose that, for every theory family T.6t oN(T)
is an N-congruence system 8&EN such that, for all € [Sign|, ¢, ¢ € SENZ),

(@) € 63(T) implies G(TsU{@}) =Cs(TsU{y}). (5)
ThenoN(T) < QN(T), for all theory families T of7.

Recall from Section 3 ofj8g] the definition of the least theory family of &
institution .# = (Sign, SEN C) containing a given theory familf € ThFan{.#)
and a givenp € SEN(Z). It is denoted byT[(&®) = {Tz[fz"””}z/e‘Sign‘ and defined,
forall ¥’ € |Sign|, by

Tl _ { Ty, if 3 #%
b4 Cz(TzU{p}), if¥ =%
Recall, also, the notation The {Thms }s¢sijgn for the theorem system of, i.e.,
Thms = Cs(0), for all £ € |Sign|. Finally, recall the related notion of the least the-
ory systemT >%) of .# generated by a given theory systdhof .# and a given
@ € SENZ) (see Lemma 3.1 of5g]).

The following proposition, which we perceive as an analogafposition 8 of
[44] in the present context, establishes conditions under hwhimughly speaking,
the substitution instances: (@) of a set ofN-equationst by a givenZ-sentence
@ belong to theZ-componentQY (Thml*#]) of the Suszko congruence system
QN(Thm®@1) of the theory family Thri>?! generated by the giveh-sentence
Q.

Proposition 7 Let .7 = (Sign, SENC) be arr-institution, with N a category of
natural transformations oS8EN Let, also,T be a collection of pairgd, €) of natural
transformation®, € : SEN— SENin N. Then, for alk € |Sign| and allp € SENZ),
the following statements are equivalent:
1. For everyo : SENC — SENin N, all &’ € |Sign|, all f € Sign(Z,’) and all
X € SEN(Z)K,

Csr (ThmZ?), 05/ (SEN(F) (35(9). X)) =
Cor (ThmZ ¥, 03, (SEN(F) (e5(9)). X)),
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2. 15(p) C QN(T), for all T € ThFan{.#), such thatp € Ts.
3. 15() C QN (Thml®@ll),
Proof:

(1)<>(3) This equivalence follows directly from the definition tie SuszkoN-
congruence system corresponding to TR (see Equationd)).

(2)++(3) The left-to-right implication follows easily by replag T by Thm># and
observing thatp € Thm[éz’@]. The converse follows by noting that, for every
T e ThFan(.#), if @ € Ts, then Thmi>®] < T and taking into account the
monotonicity ofQN on ThFan{.#). O

Let .# = (Sign,SEN,C) be arrinstitution, withN a category of natural trans-
formations on SENy an N-translation, i.e., a set of pai&~ ¢ of unary natural
transformations, £ : SEN— SEN inN, and§ = {(SEN,(F',a")) :i €1} a col-
lection of N-algebraic systems. Recall fror6d] the definition of the closure sys-
tem C% on SEN generated by the claggs Moreover, recall that if§ is a class
of r-algebraic models of7, it is called ar-algebraic semantics of.7 if, for all
Z € |Sign,,PU{¢@} C SENZ),

PeCs(P) iff T5(p) CCE(Ts(P)),

The following necessary condition for the existence of g@ehtaic semantics for
a rr-institution is proven in Corollary 8.3 obp].

Corollary 8 Let .# = (Sign,SENC) be a rrinstitution, with N a category of
natural transformations oiSEN, having at-algebraic semantic§, wherer is an
N-translation. Then, for all Te ThFan(.#), all Z € |Sign| and all ¢ € SENZ),
such thatSEN(f)(¢g) € Ty, for all ¥’ € |Sign| and all f € Sign(Z,%’), we have that

Tx() S QR(T).

Let .# = (Sign,SEN,C) be arrinstitution, withN a category of natural trans-
formations on SEN. Let SEN Sign' — Setbe a functor, withN’ a category of
natural transformations on SENand (F,a) : SEN— SEN a surjective(N,N’)-
epimorphic translation. Let us denote b~ = (Sign, SEN,CF?)) the (F, a)-
min (N,N’)-model of.# on SEN and set ThFains (Fa)) = ThFam}® (SEN), the
collection of all theory families of# (%), Propositiorl of Section2 dealt with this
m-institution and its theory families. We say that theibniz or the Suszko oper-
ator of .7 is globally injective if the Leibniz or the Suszko operator, respectively,
is injective on ThFarf7 (7)), for every surjectiveN,N’)-epimorphic translation
(F,a) : SEN— SEN.

The following theorem forms an analog of Czelakowski's Titee@o 7.8 of [L8]
(see also Theorem 10 of4]), that provides a characterization of the global injectiv
ity of the Suszko operator of a deductive system.

Theorem 9 (Czelakowski) Let .# = (Sign, SENC) be arrinstitution, with N a
category of natural transformations EN The following conditions are equiva-
lent:

(i) The N-Suszko operator of is globally injective;
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(i) Forevery surjectivéN,N’)-epimorphic translatiodF, a) : SEN— SEN and
every theory family & ThFan(.# (Fa)),

(F.a) @ (M)

I sigr
SEN SEN 58

SEN/QN(T)
. Fr May oo+ /SN
the least theory family o (% is T/QN(T).
Proof:
Assume, first, that thal-Suszko operator of is globally injective and IeT’ be

NNI ~
the least theory family in ThFaf 7% "'@)). e will show thafl” = T /QN (T).
SinceQN'(T) is compatible withT andT e ThFan{.7 (F.@)), T/QN'(T) is a theory

> o
family of sF% Ta) whence, by the postulated minimality®f, T/ < T/QN (T).

~oN
Now, taking into account the monotonicity N

of inclusions:

, we get the following chain

sene M ~noN 1) o,
A < 0 (T')

~oN ~np
< Qv r/av(m)
ASENY ()

™ ~naN M

~oN
Therefore QN (Th=Q
tain T/ = T/QV(T).
Assume, conversely, théE, a) : SEN— SEN is a surjectivg N, N")-epimorphic
translation andT,T’ € ThFan(.#(F@)), such thatQV'(T) = QV'(T’). Con-

sider the two functors SER' (™ and SEN?'(T). By the hypothesis, the
two theory familiesT/QN (T) and T//QN'(T') are the least theory families on
SEN®" (M) and SEN?" (™), respectively. But, sinc®V (T) = OV (T"), these two
functors coincide, as do the corresponding canonical ptiojes, implying that
T/QN(T) =T//QN (T). Again, taking into account th@V' (T) = QN'(T”), we
getthatlT =T'. O
We say thathe Leibniz operator of a r-institution .# = (Sign, SEN C), with
N a category of natural transformations on SENglobally completely order re-
flecting if, for every surjectivglN,N’)-epimorphic translatioF, o) : SEN— SEN
and all.7 U{T’} C ThFan(.# (F@),
N V(T <a¥(T) implies () T<T.
TeT TeT
In the following proposition an alternative characteri@atof global complete
order reflexivity is provided, involving both the Leibnizéthe Suszko operator of a

m-institution.#. This abstracts Condition (5), following Theorem 10 44, which
is applicable for sentential logics.

(T/QV(T)) and, hence, by injectivity, we ob-

Proposition 10 Let .# = (Sign,SENC) be amr-institution, with N a category
of natural transformations oiSEN The Leibniz operator of# is globally com-
pletely order reflecting iff, for every surjecti@&,N’)-epimorphic translation and
all T,T' € ThFan(.# (F9)),

V()< QV(T') implies T<T'
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Proof:

Assume, first, that the Leibniz operator is globally comglierder reflecting
and that, for some surjectivéN,N’)-epimorphic translatioqF, a) : SEN— SEN,
T,T' € ThFan(.# (%)) are such tha®V' (T) < QV'(T'). Then, we have

N o) =a¥(m<a¥(m).
T<T"
So, by the hypothesis, we get tfa¢ 1+ T” < T', whenceT <T'.
Assume, conversely, that, for every surjecti{h¢, N’)-epimorphic translation
(F,a) : SEN— SEN, and allT, T’ € ThFan{.# (F.@),

V(M) <QV(T') implies T<T.
Let. 7 U{T’} C ThFan{.# F2)), such thaf};. > QY (T) < QN (T’). Then, we have

N avaH< N ava<a¥),
NI<T" TeT

i.e., QN (N.7) < QN (T’). Therefore, by the hypothes{§.7 < T'. O

The following proposition establishes that the complet@eoreflexivity of the
Leibniz operator of ar-institution.# implies the order reflexivity of both the Leibniz
and the Suszko operators.gf. Since every order reflecting function between order
sets is also injective, Propositidil implies that when the Leibniz operator of a
m-institution is completely order reflecting, then both theiliniz and the Suszko
operators are injective.

Proposition 11 Let .# = (Sign,SENC) be ar-institution, with N a category
of natural transformations orSEN. If the Leibniz operator of# is globally
completely order reflecting andF,a) : SEN — SEN is a surjective (N,N’)-
epimorphic translation, then, for all " € ThFan(.# (7)), if QV'(T) < QV'(T")
or ON'(T) < QN'(T/), then T< T'.

Proof:

If QV'(T) < QV'(T’), then, we hav&@\'(T) < QN (T’), whence, by the hypoth-
esis and Propositioi0, T < T'. If, on the other handQ"'(T) < QV'(T”), then
oV (T) < QN (T') < QV(T’), whenceT < T'. 0

Corollary 12 Let .# = (Sign,SEN.C) be arr-institution, with N a category of
natural transformations oiSEN If the N-Leibniz operator of# is globally com-
pletely order reflecting then, for every surjectiyi,N’)-epimorphic translation
(F,a) : SEN— SEN, bothQV andQV' are injective orThFan{(.7 (F-2)),

Finally, we close this section by establishing a convers€arllary 12 to the
effect that the global injectivity of the Suszko operatoplies the global complete
order reflexivity of the Leibniz operator of a givenrinstitution. This is an analog in
the categorical framework of Theorem 11 &4.

Theorem 13 Let .# = (Sign,SEN,C) be a rr-institution, with N a category of
natural transformations oSEN The Suszko operator of is globally injective iff
the Leibniz operator is globally completely order reflegtin
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Proof:

If the Leibniz operator of# is globally completely order reflecting, then, by
Corollary12, the Suszko operator of is globally injective.

Suppose, conversely, that the Suszko operataros globally injective, i.e.,
that, for every surjectivéN, N')-epimorphic translatioF, o) : SEN — SEN and
all T, T € ThFan(.7F@), QN(T) = QN (T’) implies thatT = T’. To show that
the Leibniz operator is globally completely order reflegtinve use Proposition
10. Consider a surjectivéN,N’)-epimorphic translatiofF, a) : SEN— SEN and
T,T' € ThFan(.# (F.®), such thaQN' (T) < QV'(T'). Then, for alls  |Sigr], the
mapg/QY (T) 55 @/QY (T') defines a surjective translation

(Isigrt, T SENOY (M _, sN@Y(T).

Moreover, by the defining property of the Leibri¢-congruence systerﬁN' (T")
of T’ and the hypothesis, we obtain that’ (T) is compatible withT’, whence
the notationT’/QN'(T) may be unambiguously used for the collect{apyﬁgl (T):
@ € Ts }scisigr|-

N/ (1
Since, obviouslyT’ /QN (T') e ThFa\rr(f(Fa"vEz i )0'>),
F.a lsigrr> 1 (™) /
sen—F 0, gy s / SEN/QN(T')
we get thatrr X(T//QN (7)) = T//QN (T) € ThFan{.s % "'a)). But, by
Theorerpg, T/QN' (T)is the least theory family of the displayed collection. Tdrer
fore T/QN'(T) < T//QV(T). Thus, if @ € Ts, there existsy/ € T{, such that
(p,¢) € QY (T), whence, by the asserted compatibility®¥ (T) with T’, we get
thatg € T{. Thus,Tz C T{. Since this holds for alt € |Sigr|, we get thafl < T'.
O

4 Definability of Truth

Let .# = (Sign,SEN,C) be a rr-institution, with N a category of natural trans-
formations on SEN. We remind the reader that Miymatrix system (model)
((SEN,(F,a)), T) of .# consists of a functor SEN Sign' — Set, with N’ a cate-
gory of natural transformations on SEM surjective(N, N’)-epimorphic translation
(F,a) : SEN— SEN, and a theory familyl € ThFan{.#(%%)). LetM be a class of
N-matrix systems of#. We say thatruth is implicitly definable in M if, whenever
((SEN,(F,a)),T), ((SEN,(F,a)),T’) € M, thenT =T’. On the other hand, we
say thatruth is equationally definable in M if there exists amN-translationt, i.e.,

a collection of pairg9d, ¢) of natural transformationg, € : SEN— SEN inN, such
that, for all ((SEN, (F,a)),T) € M, all Z € |Sigr/| and allp € SEN (%),

(Vf € Sign'(Z,%))(SEN(f)(p) € Tyr) iff
O (@) = & (@), forall (5,¢€) e 1.
In this case, it will be said thatdefines truth in M.
Recall that arN-matrix system((SEN, (F,a)),T) of .# is Leibniz reduced if

QV'(T) = ASEN and Suszko reducedd™ (T) = ASEN | LetMSY(.#) denote the col-
lection of all Suszko reducdd-matrix systems of# andM*(.#) the collection of all
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Leibniz reducedN-matrix systems of#. Similarly, Ll\/IS“(f) will denote the collec-
tion of all Suszko reduced-matrix systems of# of the form((SEN, (Isign, 1)), T),
andLM*(.#) the collection of all Leibniz reduceN-matrix systems of# of the
form ((SEN, (Isign, 1)), T). Note that(lsign, 1) : SEN— SEN denotes the identity
(N,N)-epimorphic translation from SEN to SEN. (Thehere stands fotinden-
baum.)

Itis true in general thatl*(.#) C MSY(.#), as the following lemma asserts.

Lemma 14 Let.# = (Sign,SEN C) be arrinstitution, with N a category of nat-
ural transformations oiSEN. ThenM*(.#) C MSY(.#).

Proof:

Let (F,a) : SEN — SEN be a surjective(N,N’)-epimorphic translation and
T € ThFan(.# 7)), so that((SEN., (F,a)),T) € M*(.#). We have thaQ" (T) <
QN'(T) = ASEN. Therefore((SEN, (F,a)),T) € MSY(.7). -

The following proposition characterizes implicit definiégiof truth in the classes
M*(#) andMSY(.#) in terms of the global injectivity of the Leibniz and the Skisz
operator of.#, respectively. It abstracts Proposition 17 &4

Proposition 15 Let.# = (Sign,SENC) be ar-institution, with N a category of
natural transformations oSEN
(i) Truth is implicitly definable inVISY(.#) iff the Suszko operator of is glo-
bally injective.
(i) Truth is implicitly definable inlVi*(.#) iff the Leibniz operator of# is glo-
bally injective.

Proof:

We only prove (i), since (ii) may be proven similarly.

Suppose, first, that the Suszko operator. 6fis globally injective and let
((SEN, (F,a)), T),((SEN, (F,a)),T") € MSY(.#). Then, we haveQV (T) =
QN (T') = ASEN whence, by the injectivity of the Suszko operafor= T’. Hence,
truth is implicitly definable in the cladglSY(.#).

Suppose, conversely, that truth is implicitly definable MPY(.#) and let
T,T’ € ThFan{.7 (@), for some surjectivéN,N’)-epimorphic translatiorF, a) :
SEN— SEN, such thaQN' (T )fﬁ'\'/( ’) The twoN-matrix systems

((SEN/QV'(T), (F, n? T/QN (T)) and
<<SEN/QN (F, né’ 0, T/ QN (T")
are inMSY(.#), in which, by hypotheS|s, truth is implicitly definable. THT =T/,
which proves tha@V is injective. O

SinceM*(.#) C MSY(.#), itis clearly the case that global injectivity of the Suszko
operator of.# implies the global injectivity of the Leibniz operator of, as is also
the case for sentential logics (Proposition 1844]].

Proposition 16 Let.# = (Sign,SEN,C) be ar-institution, with N a category of
natural transformations oSEN, andt an N-translation.

(i) T defines truth invi*(.#) iff it defines truth inMSY(_#7).

(i) If T defines truth i.M*(.#), then it also defines truth ibMSY(.7).
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Proof:

(i) Since M*(.#) C MSY(.#), if T defines truth inMSY(_#), then it does so
also in M*(.#). Suppose, conversely, that defines truth inM*(.%).
Let (F,a) : SEN — SEN be a surjective(N,N’)-epimorphic transla-
tion and T € ThFan(.#(F@)), such thatQV' (T) = ASEN i.e., such that
((SEN,(F,a)),T) € MSY.#). Then we have, for all,3’' € |Sign]|,
f € Sign'(Z,%’) and allp € SEN(Z),

SEN(f)(¢p) € Ty
iff SEN'(f)(@) T4, allT<T’
iff SEN'(f)(g)/QY (T’) € TL/QN(T), all T < T/
iff SEN/QN( D(f)(@/QN (T ))eTz’//QZ,( NalT<T

it o Mg/l (1) = 2 ™) (/e (1),
foral T<T' . 0~ecT

iff  &L(p)/ QN (T") = 5 /Y (T),alT<T' d~eerT

iff  (8L(),&4(0)) € Qg( NalT<T' d~eer

iff  (55(9),&:(9)) € QQ( ), ald~eet

iff o5(p)=¢5(p), alld~eert.

Therefore defines truth ifViSY(.#).
(i) This part may proven similarly. 0
Let SEN :Sign — Setbe a functor, withN a category of natural transforma-
tions on SEN, and an N-translation. Consider, also, a functor SEMith N’
a category of natural transformations on SE&hd an(N,N’)-epimorphic transla-
tion (F,a) : SEN— SEN. Denote byT ! the axiom system on SENjiven, for all
% € |Sigr|, by

Ty ={@eSEN(Z): d4(p) = &k(p) forall  ~ s € 1},
where byd’ ande’ are denoted the natural transformations on S&Mresponding

to & ande, respectively, via théN, N’)-epimorphic property. The axiom systefd
corresponds in this context to the subset

FA ={acA: (@) =& (a).i<n}
of the carrierA of an algebr&\, defined via a translation= {&(p) = &(p) : i < n}
in [8] (see page 161, right before Theorem 2.3).

In the following lemma it is shown that the closure systé induced by the
N-matrix system2 = ((SEN, (F,a)),TT) on SEN is interpreted via the equa-
tions T into the closure syster@” on SEN induced by theN-algebraic system
o/ =(SEN, (F,a)). This will allow the formulation of an analog of Propositia0

of [44], which was first proved as Theorem 2.3 8F.[ In the categorical level, this
revisits a result first proven ir6p).

Lemma 17 Let.# = (Sign,SEN C) be arr-institution, with N a category of nat-
ural transformations oiSEN, .7 = (SEN, (F,a)) an N-algebraic system f@EN,
and 1 an N-translation. Se?l = ((SEN, (F,a)),TT). Then, for allZ € |Sign| and
all dU{p} C SENY),

peCH(®) iff Ts(p) CCF (15(D)).
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Proof:
For allX € |Sign| and all® U {@} C SENX), we have

peC3(®)
iff  (Vf)(as (SEN(F)(®)) C T = a5/ (SEN(f)(9)) € TS)

it (VF)(Tk ) (ax (SENCF)(®)) € 435 =

Th o (0 (SEN(H) () € AZF)

it (¥F)(az (T (SEN(F)(®))) C AFR) =

(T3 (SEN(F)(9))) € AZEN)

(1) (g (SENC)(15(0))) C A8, =

a (SENF)(1z(@)) € ASH)
it 75() CCZ (T5(®)).
In this proof (Vf) stands as an abbreviation for the quantificatioris’ € |Sign|)
(Vf € Sign(Z,%)). O

Theoremdal8and19, that follow, are direct consequences of LemtidaThe first
asserts that a-algebraic model of a giverr-institution.# gives rise through the use
of TT to a matrix model of#. The second concludes that, more generally, the same
process allows the generation of a matrix semantics of angivimstitution from a
T-algebraic semantics along similar lines.

Theorem 18 Let .# = (Sign,SEN,C) be a r-institution, with N a category of
natural transformations or8EN, ¥ = (SEN, (F,a)) an N-algebraic system for
SEN, and t an N-translation. Then is a t-algebraic model of# if and only
if 20 = ((SEN, (F,a)),TT) is an N-matrix system model of.

Theorem 19 Suppose# = (Sign,SENC) is a rr-institution, with N a category
of natural transformations oiSEN, F = {(SEN, (Fi,a")) :i € I} a collection of
N-algebraic systems f8EN, andt an N-translation. Therf is a T-algebraic se-
mantics for.# if and only ifM = {((SEN, (F',a')), (THT) :i € 1} is an N-matrix
system semantics fof.

Theoreml9 has the following corollary, which is the promised analodgoépo-
sition 20 of @4].

Corollary 20 Supposes = (Sign, SEN C) is arr-institution, with N a category of
natural transformations oiSEN A class of N-algebraic systems is an N-algebraic
semantics for/ iff it is the class of all N-algebraic reducts of some N-magsystem
semantics forZ, in which truth is equationally definable.

Proof:

In fact, by Theorent9, F = {(SEN,(F',a')) : i € I} is anN-algebraic system
semantics ifM = {((SEN, (F',a')), (THT) :i € I } is anN-matrix system semantics
for .# and in the latter truth is clearly equationally definable mia O

Given arrinstitution .# = (Sign, SEN C), with N a category of natural trans-
formations on SEN, let us adopt the notatioh®(.7), LA*(.#) andA*(.#) to de-

note the classes di-algebraic system reducts bi-matrix systems in the classes
LMSY(.7), LM*(.#) andM*(.#), respectively. Then, Theoreh® yields the follow-

ing
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Corollary 21 Let .# = (Sign,SENC) be a rrinstitution, with N a category
of natural transformations on N, and an N-translation. Ift defines truth in
LMSY(.#), LM*(.#) or M*(.#), thenLASY(.#), LA*(.#) or A*(.#), respectively, is
a r-algebraic system semantics faf.

Raftery shows, using Example 1 on page 1164d,[that the following hold for
a deductive systeny’:

() Equational definability of truth i.ModS".% does not imply the equational,
or even the implicit, definability of truth ihMod*.7;
(i) Alg*.” being ar-algebraic semantics fa¥’ does not necessarily imply that
defines truth ifMMod*.#, nor even that truth is implicit definable Mod*.;
(iii) The injectivity of the Suszko operator on the theor@édsa deductive system
does not imply existence of theorems.

Taking into account the fact that all deductive systems & gbnse of44] pro-
vide examples ofrr-institutions over a trivial category of signatures, Raft®
conclusions hold also forr-institutions. More precisely, given a@-institution

% = (Sign,SEN,C), with N a category of natural transformations on SEN, and an
N-translationr,

¢ the definability of truth in the clasisl\/lsu(f) does not imply the equational
or, even implicit definability of truth i M* (.#);

e A*(.¥) being ar-algebraic system semantics fof does not necessarily im-
ply thatt defines truth invi*(.#), nor even that truth is implicit definable in
M*(.7);

e The injectivity of the Suszko operator on the theory famsil@f .# does
not imply existence of theorems isf, i.e., that Thm(.#) # 0, for some
> € |Sign|.

5 Testing for Equational Definability

Let.# = (Sign, SEN,C) be arrinstitution, withN a category of natural transforma-
tions on SEN, andF, a) : SEN— SEN a surjectivgN,N)-epimorphic translation.
Define M?Fm(f) as the subclass df*(.#) consisting of all Leibniz reducel-
matrix systems of# of the form

(SEN/N (T, (F, 7€ Dary), T /0N (1)),

where, of coursél € ThFan{.# (%)), In particular, using this notation, we have that
LM*(7) = M?‘ISigm(f) andM*(.#) is the union of aIIMZ*Fm(f), where(F, a)
ranges over all surjectiveN,N’)-epimorphic translations. By the compatibility of
oV (T) with T, we get the following proposition paralleling in the preseantext

Proposition 22 of44].

Proposition 22 Supposes = (Sign,SEN,C) is a rr-institution, with N a cate-
gory of natural transformations o8EN, (F,a) : SEN— SEN a surjective(N,N’)-
epimorphic translation and an N-translation. Therr defines truth iri\/IZ*Fm(f)

iff, for all T € ThFan{.# (F9), all = € [Sign| and all p € SEN(Z),
(Vf € Sign(Z,2")) (a5 (SEN(F)(@)) € Te(z))  iff , ©)
T;:(z)(aZ((p)) C Q%) (T).
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Thus,t defines truth ilM*(.#) iff Equivalence6) holds for every surjectiveN, N’)-
epimorphic translation{F, o) : SEN— SEN.

Proof:
Suppose, first, that defines truth inMi ;. and letz € |Sign| andg € SENY).

We have that}. ; (as()) € Qs (T) iff, forall s~ e e 1,
& s )(az(fp )/ Q) (T) = & (5 (az(9)) / Q5 (T).

But, clearly,(( SENQN ,(F, nf W, T/QN(T)) e Mie oy (), whence, by hy-
pothesis, the latter condmon is equalent to '

SEN®" () (1) (az (9)/QN 5, (T)) € T /QN(T),

for all f' € Sign'(F ( ) Z”) This means that, for alf’ € Sign'(F(X),%"), we
have that SENf’)( ))/Qz,,( ) € Tzu/Qz,,( ). By compatibility of the
N’-Leibniz congruence syster@N (T) with T, this condition is equivalent to
SEN(f')(as(@)) € Tsn, for all f' € Sign'(F(Z),Z”). By surjectivity of (F,a)
and the fact thatF,a) is a translation (whence is a natural transformation),
we finally get the equivalence of the last condition with, & f € Sign(Z,%’),
a5 (SEN(f)(¢)) € Te(z). This chain of equivalences proves that Conditiéh (
holds

Suppose conversely, that Equivalend® holds and let ((SEN/QN(T),

(F, n,? N, T/QN(T)) Migq (7). Suppose, for allf’ e Sigr/(F(Z),

), we have that SEN“'W)(f’)(az((p)/QQ’(z)(T)) € T /QN(T).  This is
equivalent to the condition that, for all’ € |Sign and all f € Sign(Z,%’),
SEN(F(f))(az(9)/QN5)(T) € Tez)/QF(5(T). By compatibility onN’( T)
with T, the latter condition is equivalent to SER(f))(as(@)) € TF , for all
f € Sign(Z,%’). Now Equivalence&) may be applied to get tth(: as(9))

QY 5 (T), which is equivalent to

oV (T ' oN'(T '
Sz (s(@)/ QN5 (T) = 75 (as(9) / QN5 (T)).

This concludes the proof thatdefines truth ir1\/ITF’a>(ﬂ). O

Our next goal is to establish a lemma to the effect that deflibabf truth has
some preservation properties when it comes to composimgagphic translations.
To pave the way for Lemma24, which is an analog of Lemma 23 044], we have
to first prove a technical lemma, Lemr28, to the effect, roughly speaking, that
pushing a theory family forward through such a morphism aésults in a valid
theory family and to establish a correspondence betweehédfmiz congruence
systems of these two theory families.

Lemma 23 Let .# = (Sign,SENC) be a rrinstitution, with N a category of
natural transformations orS8EN, (F,a) : SEN — SEN be a surjective(N,N’)-
epimorphic translation and & ThFam(.# (F9)). Let, also,(G,8) : SEN — SEN’

be a surjectivg N, N")-epimorphic translation, with G an isomorphism, such that
Ker((G,8)) is compatible with T. Then
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() B(T):={Bs(Ts)}se/sign| € ThFan(.# (CFF-a)) and
(i) Br(s)(QF(5)(T)) = Qg (5, (B(T)), for all = & [Sign].
Proof:
(i) Suppose thaX € |Sign| and®U{¢} C SENX), such thatp € Cs(®). Since,
by hypothesisT € ThFan(ﬂ<F*">), we get, taking into account Proposition
1, that, for allf € Sign(Z, %),
az/(SEN(f)(CD)) - TF(ZI) |mp||eS az/(SE'\Kf)(q))) S TF(Z’)' (7)

Thus, if B sy (as (SEN(F)(®))) € Br(sr)(Te(s7)), We get, by the postulated
compatibility of Ker((G, 3)) with T, thatas (SEN(f)(®)) C Tg (51, whence,
by (7), az/ (SEN(f)(¢)) € Tg(s) and, therefore,

Br sy (o (SEN(T)(9))) € Br s (TF(Z’))-
This, again using Propositidh shows thaB(T) € ThFan(.# (6FAa)),

(i) Let us show thatQN; (T) = Bg 5 (A x), (B(T))), for all = & |Sign.
For all ¢,y € SEN(F ( ), (@, 0) € BF H Q) (B(T))) i (Be(5) (@),
Brizx) (@) € QgZF(Z»(B(T)) which is equwalent to, for alf € Sign(Z,%’),
oinN, x” € SEN'(G(F(Z'))),

O-é(;:(z/))(SEN/(G(F(f)))( Z)(q)))v ”) ABF ) (TF Z’))
iff 0G5 (SEN'(G(F (1)) (Brz) (W), X") € Brz) (Tr(z))-

Equivalently, for allf € Sign(Z,%’), o in N, x’ € SEN(F ('),

O e (21 (Br () (SEN (F(1))(9)). Br ) (X)) € Br () (Te)
iff 05k 1)) (Br(z) (SEN(F())(W)), Br (1) (X)) € Br(zr) (Tr(z))-

This holds, iff, for allf € Sign(=,%'), g in N, x’ € SEN(F (),

Br (1) (OF 51, (SEN(F(1))(9)), x') EPF(Z/)(TF(Z’))
it Be(z) (OF 5 (SEN(F () (¥)). X") € Br(zr) (Tr(1))

which, taking into account the postulated compatibilitykefr((G, 3)) with
T,is, inturn, equivalent to, for all € Sign(=,5’), g in N, x’ € SEN(F(Z'))

Ot (s (SEN(F (1))(9)),X') € Tz }
it Otz (SEN(F(D)(¥).X') € Tr e,

i.e., to(o,y) e QQEZ)(T)- H

In the next lemma we study the effect of applying surjectiemslations in both
the forward and the backward directions to the definabilityrath. It turns out that
the definability of truth is always preserved in the forwairgction, but that one has
to impose the additional conditions introduced in Lem284d0 ensure preservation
of definability when applying an epimorphic translation lire tbackward direction.
These two results are expressed in Parts 1 and 2 of the folideimma, respectively.
The lemma forms an analog of Lemma 23 &4 in the categorical framework.
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Lemma 24 Let.# = (Sign, SEN,C) be arr-institution, with N a category of natu-
ral transformations or8EN Let, also,(F, a) : SEN— SEN be a surjectivéN, N’)-
epimorphic translation andG, ) : SEN — SEN’ a surjective(N’, N”)-epimorphic
translation.
(1) If an N-translationt defines truth iri\/lz*Fm(f), then it also defines truth in
Micr pea) (7):
(2) Conversely, if an N-translatiorr defines truth in M?Gﬁﬁpm(j)’ G is
an isomorphism ander((G,3)) is compatible with all theory families
T € ThFan(.# 7)), thent also defines truth i7 , (7).

Proof:
Assume that, for alll € ThFan{.#(%%)), all = < |Sign| and aIIqo € SEN?Z),
as (SEN(f)(¢)) € Tg(s, for all f € Sign(Z,2’), if and only if TF( (as(@)) C

QQ’(Z) (T). LetT’ € ThFan{.# (CFFFa)) 5 ¢ |Sign| andp € SEN(Z). Then

(Vf € Sign(Z,2')) (Be () (o (SENCT) () € Tg )

iff  (Vf € Sign(Z,2"))(ax (SEN(f)(¢)) GBF ) (TaEE))
iff (z)( (@) € E"( B~ ( )

iff T;:(z)( () CB Elz ( (=) (TI))

it Br(s)(Tes) (a2(9))) € Qg s (T7)

1 T my (Brio (02(@) '{ (T

Thus, 1 also defines truth IM(GF,B,:O{) (7).

Assume, conversely, that, for all' € ThFan{f (GRBFa))  all T < |Sign| and
all @ € SENZ), Brs7)(as (SEN(T)())) € T’( , for all f € Sign(Z,%’), if
and only if rg(F(z))(Bp(z)(Gz(qo))) - Qg/(/F(Z))( N, thatG is an isomorphism and
that Ker((G,B)) is compatible with everyT € ThFam(.# %)), Recall that, if

T € ThFan{.# (7)), then, by Lemm&3, B(T) € ThFan{.# (CFFa)). Hence, for
all Z € |Sign| and allp € SEN(Z), we have

(Vf € Sign(Z, %)) (as (SEN(f)(9)) € Te(z))
it (Vf € Sign(Z,2")) (Br(z)(as (SEN(T)(9)) € Br(z) (Tr(z1)))
iff TGFZ)(BF )(as(@ )))CQN( y(B(T))
it B (Tr5) (a2(9))) € Br(s (QN/H( )
iff Tes (az( ))CQN( ) (T).

In the last chain of equivalences we have used both Part 2rnfma®23 and the com-
patibility of Ker((G,B)) with T € ThFan{.# (%), The chain shows that defines

truth onl\/lz‘Fm(f). O

The following result asserts that definability of truth foetclass of Leibniz re-
duced matrix system models ofrainstitution is equivalent to definability of truth
for the subclass of Leibniz reduced Lindenbaum matrix systedels of.#. More-
over, this property is characterized by another conditiemcerning definability of
truth in Leibniz reduced matrix system models on subclagké algebraic reducts
of Leibniz reduced matrix system models that form apprde@égebraic semantics.
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Theorem 25 Let .# = (Sign,SEN,C) be a r-institution, with N a category of
natural transformations oSEN, and 7 an N-translation. Then, the following are
equivalent:
(i) 1 defines truth invi*(.¥);
(i) T defines truth ilkM*(.#);
(i) LA*(#) is at-algebraic system semantics fof and, for every subclad$
of N-algebraic systems i*(.#), that is at-algebraic system semantics for
, T defines truth inJ sen (r.a)) ek I\/I’<‘F’a>(f).

Proof:

(()—(ii) SinceLM*(.#) C M*(.#), this implication is trivial.

(i) —(iii) Since 1 defines truth iLM*(.#), by Corollary21, the clasd A*(.#) is at1-
algebraic system semantics fof. Hence, there exists at least one subclass
of A*(.#) that is at-algebraic system semantics fof. Let K be such a
subclass. Consider &ralgebraic systenSEN, (F, a)) € K. Sincer defines
truth in LM*(.#) and (F,a) is surjective, by Lemm&4, Part (1),7 also
defines truth iri\/lz‘Fm(f).

(iii) —(i) The hypothesisimplies thatdefines truthinM*(.#). Let(F, a) : SEN— SEN
be a surjective(N,N’)-epimorphic translation. Consider the kerrié
congruence syster® := Ker((F,a)) on SEN together with the associated
natural projectioriN, N®)-epimorphic translatiofi sign, 71%) : SEN— SEN/Q
(see B4]). Then, there exists afN®, N’)-epimorphic translatiorfF, a*) :
SEN/EZ — SEN that makes the following triangle commute:

SEN
(Isign, HV &m
SEN/Q Fab SEN
By hypothesisr defines truth ir1\/|’<‘I n§>(ﬂ). Since(F, a*) is surjective,
Sign»
by Lemma24, 1 also defines truth ier‘Fm(f). Thus, 1 defines truth in
M* () = U(F,a) MTF,(})((])' O

Propositionl6 and Theoren25 have the following consequence.

Corollary 26 Let.# = (Sign, SEN C) be arr-institution, with N a category of nat-
ural transformations oiSEN, andt an N-translation. Ift defines truth ilLM* (%),
then each of A*(.#),A*(.#) andASY(.#) is a T-algebraic system semantics fof.

6 Truth-Equational 7-Institutions

A rrinstitution.# = (Sign, SEN,C), with N a category of natural transformations on
SEN, will be calledN-truth-equational if truth is equationally definable by ax-
translation in the classM*(.#). Any N-translationt that defines truth iM*(.#)
is said towitnessthe N-truth equationality of#.

By Propositionl6, if .# is N-truth equational, then truth is also equationally de-
finable inMSY(.#) and, hence, also iM*(.#) andLMSY(.#). In contrast, Raftery
shows in Example 1 o#4] that, for a deductive systerw’, equational definability of
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truth in LModS".% does not imply equational definability of truth in any of thaer
matrix semantics for””. His result carries over to the context mfinstitutions to
the effect that equational definability of truthliMS"(.#) does not entail equational
definability of truth in any of the other matrix system modelsses.

Theorem 27 of44] asserts the truth-equationality of a deductive systéwhose
Leibniz operator is completely order reflecting on the ¢&ttof theories of”. We at-
tempt to provide a generalization of this result in the cati@gl level. Unfortunately,
we are forced to impose a rather stringent condition orrtestitution under con-
sideration in order to establish such an analog. We showitthalds for what we
call N-Suszko ternmr-institutions, a subclass of the class of temnstitutions con-
sidered in f6]. It is conjectured that this result does not hold in gentmahrbitrary
m-institutions.

Recall from B6] (see, also,28, 26, 66] for generalizations) that, given a category
Signand a sentence functor SESign— Set, SEN is said to béerm if there exists
V € |Sign| andv € SENV), such that

o forall = € [Sign| and allp € SEN(Z), there existd 5 ) : V — Z, such that
SEN(f(5 ) (V) = ¢, and
e for all ¥’ € [Sign| and all f € Sign(Z,%’), fo fiz 5 = Tz sencf)(g))» for all
@< SENZ).
The pair (V,v) is called asource signature-variable pair A rmr-institution
4 = (Sign,SENC), with SEN a term sentence functor is calledteam -
institution .
Assume, next that” = (Sign,SENC) is a termrr-institution WithN a category

of natural transformations on SEN. L&t= Thm{ {Thmz }ZG‘Sign‘, with

Cv(v), ifE=V
Thm** {cz(o), if 5 AV

Consider the Suszkid-congruence systeﬁN(Z) and definer : SEN— SEN?, by
setting, for allZ € |Sign| and allp € SENY),

T3(9) = SEN'(fi5)) (O (2)). (8)

It is not difficult to see that : SEN— SEI\I2 is a natural transformation. We have,
forall Z,%’ € |Sign|, all f € Sign(Z,%’) and allp € SEN(Z),

s

SENZ) SEN(Z)
SEN(f)

SENY) — SEN/(Z)

SEN?(f)

SEN(f)(SEN’(fi54))2(Q0 (2)))
SEN(fi senr)( )>)(Q\'>‘( )
= Tz/(SEN(f)( ).
Therefore, there exists a set of paif§,e) of natural transformations', &' :
SEN— SEN, i € I, such thatt = {(d',¢') : i € I}. The natural transformations

SEN(f)(12(9))
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&', &' : SEN— SEN may not necessarily be b Nor is it necessarily the case that,
forall Z,%’ € |Sign|, all € SENZ) and allf € Sign(Z,%’),

QY (Thm®?) = SEN*(f15 sencr)(9))) (QV (2)),

where Thm™?) denotes the theory system.af generated byZ, @) as in Section 3
of [58]. If these two conditions hold for tha-institution .# = (Sign, SEN,C), for
some source signature-variable p&rv), we call.# anN-Suszko termm-institution
(with respect to the source signature-variable P&iv)). In other words, a terrm-
institution.# = (Sign, SEN C), with a source signature-variable p&it v) and with
N a category of natural transformations on SEN\#Suszko term with respect to
(V,v) if, for all £ € |Sign| and allgp € SEN(Z),

1. the natural transformatian defined, starting froniv,v), by

T3(¢) = SEN'(fi5. ) (QV(2))

consists of a set of pairs of unary natural transformatinmé iand
2. QN (Thm®9)) = SEN(fir sent) () (A (2)) = T (SEN(T)(g)), for all
¥’ € |Sign| and allf € Sign(Z,%’).

For N-Suszko terntr-institutions, we are able to prove the following theorerhjai
is an analog of one of the main theorems, Theorem 274f |t provides a key in-
gredient in the characterization of the property of truthapnality of anN-Suszko
term r-institution in terms of the complete order reflexivity oktheibniz operator
on the theory families of tha-institution.

Theorem 27 Let Signbe a categorySEN :Sign — Seta term sentence functor,
with source signature-variable pail/,v), and N a category of natural transforma-
tions onSEN If .# = (Sign, SEN,C) is N-Suszko term with respect(d,v) and the
N-Leibniz operator of# is completely order reflecting ofhFan{.#), then.7 is
N-truth-equational.

Proof:
For allX € |Sign| and allp € SENY), let, as before,

T3(9) = SEN'(fi5)) (QV(2)),

whereZ = Thm™V). Since.# is N-Suszko term with respect {¥,v), T is anN-
translation. It suffices to show thatdefines truth iLM*(.#). By Propositior22, it
suffices to show that, for all € ThFan{.#), all = € |Sign| and allp € SEN(Z),

(Vf € Sign(=,¥'))(SEN(f)(@) € Tyr) iff  Tx(¢) C QN(T).

For the implication from left-to-right, we have, for alle |Sign| and allp € SENY),
such that SENf)(@) € Ty, for all ' € |Sign| and allf € Sign(Z,%’),

5(¢) SEN(f(5 ¢))(QV(2))

Q’\'(Thm<Z ‘P>) (since.# is N-Suszko term)
(T) (by the monotonicity of thé&-Suszko operator)

NN

Qﬁ



CAAL: Truth-Equationality 25

For the reverse implication, assume thiat ThFam(.#), Z € |Sign| andg € SEN(X),
such thatrs(¢) € QY(T). Then, for allZ’ € |Sign| and allf € Sign(Z,%’), we have

QY (Thm®®)) Ty (SEN(f)(@)) (since.# is N-Suszko term)
SEN(f)(15(9))

SEN?(f)(QY(T))

QR (T).

Since this holds for alE’ € |Sign|, we have thaQN(Thm®>#) < QN(T). Thus,
by the complete order reflexivity of thH-Leibniz operator of.#, we get that
ThmZ? < T, and, therefore, SEN)(¢) € Ty, for all ¥ € |Sign and all
f € Sign(Z,Y’), as was to be shown. O

NN

Theorem 28 Let.# = (Sign,SEN C) be arr-institution and N a category of nat-
ural transformations ofSEN Consider the following conditions:
(i) .# is N-truth-equational,
(ii) Truth is N-equationally definable ikSY(.#);
(iii) The N-Suszko operator of is globally injective;
(iv) For every surjectivelN,N’)-epimorphic translation(F,a) : SEN — SEN
and every theory family & ThFan{.# F.9)), the least theory family of

s E Da) i /N (T);
(v) The N-Leibniz operator of is globally completely order reflecting;
(vi) The N-Leibniz operator o is completely order reflecting on the collection
ThFan(.7);
We have, in general, that) < (ii) — (iii ) + (iv) « (v) — (vi). Moreover, if.7 is
N-Suszko term, then all six conditions are equivalent.

Proof:

We have that (- (ii) holds by Theoren?5 and Propositiori6. The implication
(i) —(iii) follows from Propositionl5. The equivalence (i (iv) is the content of
Theorem9, whereas the equivalence (ii)(v) is the content of Theorerh3. The
implication (v)—(vi) is trivial. Theorem27 gives the implication (vi}>(i) under the
additional hypothesis thaf is N-Suszko term. O

It is worth noting that Raftery in Example 2 o44] furnishes a finitary deductive
system with an elementary class of Leibniz-reduced matogefs, having an alge-
braic semantics with respect to a finite translation, whasbiz operator is globally
injective, but which is not truth-equational. Thus, globaéctivity of the Leibniz
operator together with possessing an algebraic semart&s bt guarantee truth-
equationality. Moreover, in Example 3 044, it is shown that global injectivity
of the Leibniz operator does not entail the existence of gatahic semantics even
for deductive systems that are finitary and possess an etargeriass of Leibniz-
reduced matrix models.
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