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Categorical Abstract Algebraic Logic:
Truth-Equational π-Institutions

George Voutsadakis

Abstract Finitely algebraizable deductive systems were introducedby Blok
and Pigozzi to capture the essential properties of those deductive systems that
are very tightly connected to quasivarieties of universal algebras. They include
the equivalential logics of Czelakowski. Based on Blok and Pigozzi’s work,
Herrmann defined algebraizable deductive systems. These are the equivalential
deductive systems that are also truth-equational, in the sense that the truth pred-
icate of the class of their reduced matrix models is explicitly definable by some
set of unary equations. Raftery undertook the task of characterizing the property
of truth-equationality for arbitrary deductive systems. In this paper, following
Raftery, we extend the notion of truth-equationality for logics formalized asπ-
institutions and abstract several of the results that hold for deductive systems in
this more general categorical context.

1 Introduction

A deductive systemS = 〈L ,⊢S 〉 consists of a logical languageL = 〈Λ,ρ〉, i.e., a
set of connectivesΛ, each of finite arity given by the arity functionρ : Λ → ω , and a
structural consequence relation⊢S ⊆ P(FmL (V))×FmL (V) on the set of formu-
las FmL (V), formed using the connectives inL and variables in a fixed denumer-
able setV in the ordinary recursive way. AnL -matrixA= 〈A,F〉 is a pair consisting
of anL -algebraA = 〈A,L A〉 together with a subsetF ⊆ A of its carrierA. TheL -
matrixA is called amatrix model ofS or anS -matrix if F is anS -filter, i.e., it is
closed under all derivable rules ofS meaning that, for allΦ∪{φ} ⊆ FmL (V), such
thatΦ ⊢S φ , and every homomorphismh : FmL (V)→ A from the absolutely free
L -algebra to the underlying algebraA of A,

h(Φ)⊆ F implies h(φ) ∈ F.
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The collection of allS -filters onA is denoted by FiS A. Notice that, taking into
account structurality, theS -filters on the formula algebra correspond exactly to the
theoriesof the deductive systemS , i.e., the sets of formulas that are closed under
the entailment⊢S . Given anL -matrix A = 〈A,F〉, there always exists a largest
congruence onA that is compatible withF. Compatibilityof a congruencẽΩ with F
means that, for alla,b∈ A, if 〈a,b〉 ∈ Ω̃ anda∈ F , thenb∈ F, or, equivalently, that
F is a union ofΩ̃-equivalence classes. This largest congruence is called the Leibniz
congruence of Fand denoted byΩA(F) or Ω(A) [6]. When Ω refers to matrices
on the formula algebra, the subscript referring to the formula algebraFmL (V) is
usually omitted. On the other hand, the largest congruence on A that is compatible
with all S -filters onA includingF , which also always exists, is termed theSuszko
congruence onA and is denoted bỹΩA(F) [18]. Let S = 〈L ,⊢S 〉 be a deductive
system andA= 〈A,F〉 anL -matrix. The matrixA will be said to beLeibniz reduced
if ΩA(F) is the identity relation onA. It is calledSuszko reducedif Ω̃A(F) is the
identity relation onA. The collection of allS -matrices is denoted byModS , the
collection of all Leibniz reducedS -matrices byMod∗S and the collection of all
Suszko reducedS -matrices byModSu

S .
The Leibniz operator, seen as a functionΩ : ThS → Con(FmL (V)) from the

collection of theories ofS to the collection of allL -congruences on the formula
algebra, is the function that assigns to every theoryT of S its Leibniz congruence
Ω(T). Properties of this operator have played a crucial role in classifying deductive
systems into an algebraic hierarchy reflecting the nature oftheir algebraic character.
This classification process, along with studies relating tothe algebraic counterparts
of deductive systems, constitutes the heart of the field ofabstract algebraic logic
[12, 14, 4, 6, 22, 16, 24].

In their seminal “Memoirs" monograph [6], Blok and Pigozzi definedalgebraiz-
able deductive systems. The definition pertained to finitary deductive systems.
Roughly speaking, a finitary deductive system is called algebraizable if there exist
finitary interpretations between its consequence relationand the equational conse-
quence relation associated with a class of algebras, that are inverse of one another
in a precise technical sense. Hermann [36, 38] extended this definition to possibly
infinitary deductive systems by allowing also infinitary interpretations. Hermann’s
notion became known asalgebraizability, whereas the original notion of Blok and
Pigozzi is now known asfinite algebraizability. Czelakowski, in another important
work in the field of abstract algebraic logic, had previouslystudied equivalential
logics [12, 14]. These were defined by Prucnal and Wronski [42] and are, again
roughly speaking, those logics for which there exists a translation from the equa-
tional consequence of a class of algebras into their own consequence relation. One
of the adages put forward by Hermann in his Ph.D. dissertation [34] was that

Algebraizability = Truth-Equationality+ Equivalentiality.

In fact, truth-equationality is the property that fills-in the interpretation from the
consequence relation of the deductive system under consideration into the equational
consequence of a class of algebras in order to establish algebraizability starting from
equivalentiality. Until 2006, this property had only been studied in the context of
protoalgebraic logics, the wider class of logics considered amenable to algebraic
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methods and techniques [6, 24]. Raftery, however, studied in [44] the property of
truth-equationality in the more general context of arbitrary deductive systems.

LetS = 〈L ,⊢S 〉 be a deductive system. According to Raftery [44], the filters of
the Leibniz reduced matrices inMod∗S areequationally definableif there exists a
setτ of formal unary equationsδ (x)≈ ε(x), such that, for allA= 〈A,F〉 ∈Mod∗S ,
and alla∈ A,

a∈ F iff δ A(a) = εA(a), for all δ ≈ ε ∈ τ .

The Leibniz operator of a deductive system is said to becompletely order-reflecting
if, for every algebraA of the same similarity type asS and every collection of
S -filtersF ∪{G} onA,

⋂

F∈F

ΩA(F)⊆ ΩA(G) implies
⋂

F ⊆ G.

Furthermore, it is said to becompletely order-reflecting on theoriesif the same con-
dition holds for arbitrary collections of theories ofS . In one of the main theorems
of [44], Raftery shows that a deductive system is truth-equational iff its Leibniz op-
erator is completely order-reflecting and, moreover, that this happens iff the Leibniz
operator is completely order-reflecting on theories.

Finally, in the same work, Raftery proves that a deductive system is truth equa-
tional iff its Suszko operator isglobally injective, i.e., injective on the filters of every
algebra of the similarity type ofS . This result is accompanied by two negative, but,
nevertheless, important results: First, that injectivityof the Suszko operator on the
theories ofS does not imply the truth-equationality ofS in general and, second,
that the global injectivity of the Leibniz operator is not sufficient for truth equational-
ity either. In fact, in Examples 2 and 3 of [44], Raftery showcases a deductive system
that has a globally injective Leibniz operator, but not onlyis it not truth equational,
but does not even possess an algebraic semantics (see [8]), a property much weaker
than truth equationality.

It is this study of Raftery that has led to the present work, where an attempt is
made to lift the study of truth-equational deductive systems into the more general
context of logics formalized asπ-institutions. But an exposition of the main concepts
introduced in the paper and an overview of the main results has to be postponed until
the next section.

The paper is organized as follows. As mentioned above, in Section 2, the basic
concepts on which the development of the theory is based are introduced and an
overview of the main results is provided. In Section3 we remind the reader of the
definitions of the Leibniz and Suszko operators and revisit and prove several results
concerning those operators that will prove useful in subsequent sections. We also
take the opportunity to introduce some additional necessary notation. In Section4,
we define the key notion of truth being equationally definableby a set of equations
for a givenπ-institutionI . We provide characterizations based on the classes of
Leibniz reduced and Suszko reduced matrix system models of theπ-institution and
their properties. Criteria that can be used to test for the equational definability of
truth are detailed in Section5. In the final section, Section6, all previous notions
are put together under the unifying central notion of a truth-equationalπ-institution.
Besides a chain of implications that connects various previous statements concern-
ing properties of a givenπ-institution and the definability of truth, we also establish
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a condition - unfortunately, rather restrictive - under which all the previously intro-
duced notions turn out to be equivalent. Even though this condition allows room for
all π-institutions arising from deductive systems and, thus, the result encompasses
the corresponding theorem, Theorem 28, of Raftery [44], the condition may be too
strong for arbitraryπ-institutions. Refining, or perhaps relaxing, this condition will
be left as a goal for future work.

2 Preliminaries and Overview

In this section we present the basic notions that will allow us to study some of the
results of Raftery [44] in the context of logical systems formalized asπ-institutions.
The concept of aπ-institution [20] (see also [30, 32]) constitutes the basic structure
that allows the formalization of logical systems that are more general than those that
can be formalized using the deductive systems of universal abstract algebraic logic
(see, e.g., [48, 46]). Introducing the basic notation and some of the basic related
concepts will also allow us to give an overview of the contents of the paper and
recount their relation with the original results of [44], that inspired their development.
For the basic categorical concepts and notation that will beused in this section and
the remainder of the paper, the reader is encouraged to consult any of the standard
references [2, 10, 40] in general category theory.

A π-institution I = 〈Sign,SEN,C〉 is a triple consisting of an arbitrary cat-
egory Sign, a set-valued functor SEN :Sign → Set (in this context, sometimes
termed asentence functor) and a collectionC = {CΣ}Σ∈|Sign| of closure operators
CΣ : P(SEN(Σ)) → P(SEN(Σ)), Σ ∈ |Sign|, such that, for allΣ1,Σ2 ∈ |Sign| and
all f ∈ Sign(Σ1,Σ2),

SEN( f )(CΣ1(Φ))⊆CΣ2(SEN( f )(Φ)). (1)

(The mapCΣ : P(SEN(Σ))→ P(SEN(Σ)) is aclosure operator if it satisfies, for
all Φ ⊆ Ψ ⊆ SEN(Σ),

• Φ ⊆CΣ(Φ); (Reflexivity)
• CΣ(Φ)⊆CΣ(Ψ) (Monotonicity)
• CΣ(CΣ(Φ)) =CΣ(Φ). (Idempotency)

MoreoverC is termed aclosure system onSEN if, in addition, Condition (1) holds.)
The structure of aπ-institution abstracts that of a deductive system, which is

used as the underlying structure supporting the concept of alogical system in uni-
versal abstract algebraic logic. Categorical abstract algebraic logic aspires to ab-
stract the methods and results of the universal treatment toa wider class of logical
systems and, as a result, broaden their applicability. To achieve this goal, it uses
π-institutions as the underlying supporting structures representing logical systems,
becauseπ-institutions can readily accommodate logical systems with multiple sig-
natures and quantifiers which are more difficult to deal with using deductive systems
(see, e.g., the appendix in [6] and relevant discussions in both [46] and [48]).

To abstract the concept of an algebraic signature (or logical language) from the
level of deductive systems to the level ofπ-institutions, we consider the notion
of the category of natural transformations on a given functor. Let Sign be a cat-
egory and SEN :Sign → Set a functor. Theclone of all natural transforma-
tions on SEN is defined to be the locally small category with collection of objects
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{SENα : α an ordinal} and collection of morphismsτ : SENα →SENβ β -sequences
of natural transformationsτi : SENα → SEN. Composition

SENα SENβ✲〈τi : i < β 〉
SENγ✲〈σ j : j < γ〉

is defined by

〈σ j : j < γ〉 ◦ 〈τi : i < β 〉= 〈σ j (〈τi : i < β 〉) : j < γ〉.

A subcategoryN of this category containingall objects of the form SENk for
k < ω , and all projection morphismspk,i : SENk → SEN, i < k,k < ω , with
pk,i

Σ : SEN(Σ)k → SEN(Σ) given by

pk,i
Σ (~φ ) = φi , for all ~φ ∈ SEN(Σ)k,

and such that, for every family{τi : SENk → SEN :i < l} of natural transformations
in N, the sequence〈τi : i < l〉 : SENk →SENl is also inN, is referred to as acategory
of natural transformations on SEN.

Since categories of natural transformations on set-valuedfunctors are used to ab-
stract algebraic signatures (more precisely, clones of algebraic operations generated
by specific fundamental operations), the notion of a translation between functors,
that will be used in lieu of algebraic homomorphisms, will naturally be assumed to
respect those categories. LetSign be a category, SEN :Sign→ Seta functor andN
a category of natural transformations on SEN. Consider two categoriesSign′,Sign′′

and functors SEN′ : Sign′ → Setand SEN′′ : Sign′′ → Set, with N′ andN′′ categories
of natural transformations on SEN′ and SEN′′, respectively. Assume, moreover, that
there exists surjective functorsF ′ : N → N′ andF ′′ : N → N′′, that preserve projec-
tions. In this caseN′ andN′′ will be said to besimilar and the natural transformations
F ′(σ),F ′′(σ) in N′,N′′, respectively, that correspond toσ in N, will be denoted by
σ ′ andσ ′′.

Let, again,Sign,Sign′ be categories and SEN :Sign→ Set, SEN′ : Sign′ → Set
be functors, withN,N′ categories of natural transformations on SEN,SEN′, re-
spectively. A pair〈F,α〉 will be said to be an(N,N′)-epimorphic translation if
F : Sign→ Sign′ is a functor andα : SEN→ SEN′ ◦F is a natural transformation,
such that, for allσ : SENn → SEN inN, all Σ ∈ |Sign| and all~φ ∈ SEN(Σ)n,

αΣ(σΣ(~φ )) = σ ′
F(Σ)(α

n
Σ(~φ)).

Given a functor SEN :Sign → Set, with a categoryN of natural transforma-
tions on SEN, anN-algebraic systemA ′ = 〈SEN′,〈F,α〉〉 consists of a functor
SEN′ : Sign′ → Set, with N′ a category of natural transformations on SEN′, together
with an (N,N′)-epimorphic translation〈F,α〉 : SEN→ SEN′. N-algebraic systems
have appeared many times before in the theory of categoricalabstract algebraic logic
in various contexts, sometimes under disguises, and have helped in creating, e.g.,
a model theory ofπ-institutions in [50] and a theory for institutional logics based
on the Tarski operator [52], paralleling the theory on sentential logics of Font and
Jansana [22].

Let I = 〈Sign,SEN,C〉 be aπ-institution, with N a category of natural trans-
formations on SEN. Given anN-algebraic systemA ′, as before, there exists a
minimal closure systemCA ′

on SEN′, such that〈F,α〉 : I → 〈Sign′,SEN′,CA ′
〉
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is an(N,N′)-logical morphism, i.e., such that〈F,α〉 : SEN→ SEN′ is an(N,N′)-
epimorphic translation and, moreover, for allΣ ∈ |Sign| and allΦ∪{φ} ⊆ SEN(Σ),

φ ∈CΣ(Φ) implies αΣ(φ) ∈CA ′

F(Σ)(αΣ(Φ)). (2)

The existence of such a closure system follows from the fact that the system
C⊤ = {C⊤

Σ }Σ∈|Sign′|, which is defined, for allΣ ∈ |Sign′| by

C⊤
Σ (Φ) =

{
/0, if Φ = /0
SEN′(Σ), if Φ 6= /0

satisfies Condition (2) and that, given any collection of closure systems{Ci : i ∈ I}
on SEN′, the signature-wise intersectionC′ =

⋂
i∈I C

i is also a closure system. The
collection of the theory families of this minimal systemCA ′

on SEN′ generated
by A ′ has been considered before in the literature of categoricalabstract algebraic

logic (see, e.g., [56]) and has been denoted by ThFam〈F,α〉
I

(SEN′). Moreover, the
π-institution I A ′

:= 〈Sign′,SEN′,CA ′
〉 has been termed the〈F,α〉-min (N,N′)-

model ofI onSEN′ [50]. An N-matrix systemA′ = 〈A ′,T ′〉= 〈〈SEN′,〈F,α〉〉,T ′〉
is a pair consisting of anN′-algebraic systemA ′ = 〈SEN′,〈F,α〉〉 together with an
axiom systemT ′ = {T ′

Σ}Σ∈|Sign′| on SEN′ (i.e., a collection of subsetsT ′
Σ ⊆ SEN′(Σ),

Σ ∈ |Sign′|). An N-matrix system model〈A ′,T ′〉 = 〈〈SEN′,〈F,α〉〉,T ′〉 of I is

anN-matrix system, such thatT ′ ∈ ThFam〈F,α〉
I

(SEN′).
Before continuing our exploration of the basic notions, we pose to give an alter-

native view of theN-matrix system models, which is new (to our knowledge) and
proves very useful in checking that an axiom familyT ′ = {T ′

Σ}Σ∈|Sign′| on SEN′ is in

fact a theory family ofCA ′
, for someN-algebraic systemA ′ = 〈SEN′,〈F,α〉〉. For a

givenN-matrix systemA′ = 〈A ′,T ′〉, defineCA′
= {CA′

Σ }Σ∈|Sign|, by letting, for all

Σ ∈ |Sign|, CA′

Σ : P(SEN(Σ))→ P(SEN(Σ)) be given, for allΦ∪{φ} ⊆ SEN(Σ),
by φ ∈CA′

Σ (Φ) iff

αΣ′(SEN( f )(Φ)) ⊆ T ′
Σ′ implies αΣ′(SEN( f )(φ)) ∈ T ′

Σ′ ,

for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′). It is not difficult, perhaps only a bit
tedious, to prove thatCA′

, thus defined, is a closure system on SEN and, therefore,
I A′

:= 〈Sign,SEN,CA′
〉 is aπ-institution.

Proposition 1 Let I = 〈Sign,SEN,C〉 be aπ-institution, with N a category of
natural transformations onSEN, A ′ = 〈SEN′,〈F,α〉〉 an N-algebraic system and
T ′ = {T ′

Σ}Σ∈|Sign′| an axiom family ofSEN′.

T ′ ∈ ThFam〈F,α〉
I

(SEN′) iff C ≤C〈A ′,T ′〉.

Proof:
Assume, first, thatT ′ ∈ThFam〈F,α〉

I
(SEN′). LetΣ∈ |Sign| andΦ∪{φ}⊆SEN(Σ),

such thatφ ∈ CΣ(Φ). Thus, sinceI A ′
is an (N,N′)-model of I , we get that

αΣ(φ) ∈ CA ′

F(Σ)(αΣ(Φ)). Hence, by structurality and the fact thatα is a natural

transformation, for allΣ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′),

αΣ′(SEN( f )(φ)) ∈CA ′

F(Σ′)(αΣ′(SEN( f )(Φ))).
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Therefore, sinceT ′ ∈ ThFam〈F,α〉
I

(SEN′), for all Σ ∈ |Sign| and all f ∈ Sign(Σ,Σ′),

αΣ′(SEN( f )(Φ)) ⊆ T ′
F(Σ′) implies αΣ′(SEN( f )(φ)) ∈ T ′

F(Σ′).

This proves thatφ ∈C〈A ′,T ′〉
Σ (Φ), i.e., thatC≤C〈A ′,T ′〉.

Conversely, define the collectionC′ = {C′
Σ}Σ∈|Sign′| by letting, for allΣ ∈ |Sign′|,

C′
Σ : P(SEN′(Σ))→P(SEN′(Σ)) given, for allΦ∪{φ} ⊆ SEN′(Σ), by φ ∈C′

Σ(Φ)
iff, for all Σ′ ∈ |Sign′| and all f ∈ Sign′(Σ,Σ′),

SEN′( f )(Φ) ⊆ T ′
Σ′ implies SEN′( f )(φ) ∈ T ′

Σ′ ,

for all axiom familiesT ′ = {T ′
Σ}Σ∈|Sign′| on SEN′, such thatC ≤ C〈A ′,T ′〉. It is not

difficult to show thatC′ is a closure system on SEN′ and thatI ′ = 〈Sign′,SEN′,C′〉

is an(N,N′)-model ofI . Thus, by the minimality ofCA ′
, we get thatCA ′

≤ C′.
This shows that every theory familyT ′ of C′ must also be a theory family ofCA ′

.
Since, by construction, all axiom familiesT ′ on SEN′, such thatC ≤ C〈A ′,T ′〉, are
theory families ofC′, this establishes the right-to-left implication in the conclusion.
�

TheN′-Leibniz operator ΩN′
of anN-algebraic systemA ′ = 〈SEN′, 〈F,α〉〉 as-

sociates with every theory familyT ′ ∈ ThFam〈F,α〉
I

(SEN′) the largestN′-congruence
systemΩN′

(T ′) that is compatible withT ′. Similarly, the N′-Suszko operator
Ω̃N′

associates to every theory familyT ′ of the closure systemCA ′
on SEN′ the

largest N′-congruence system̃ΩN′
(T ′) on SEN′, that is compatible with every

theory family T ′′ ∈ ThFam〈F,α〉
I

(SEN′), such thatT ′ ≤ T ′′. The N-matrix sys-
tem A = 〈〈SEN′,〈F,α〉〉,T ′〉 is N′-Leibniz reduced if ΩN′

(T ′) = ∆SEN′ and it is
N′-Suszko reducedif Ω̃N′

(T ′) = ∆SEN′ .
A π-institutionI = 〈Sign,SEN,C〉, with N a category of natural transformations

on SEN, is said to besyntactically N-truth-equational if there exists a collection
τ of N-equations, i.e., pairs of unary natural transformationsδ ,ε : SEN→ SEN in
N, such that, for every reducedN-matrix system modelA′ = 〈A ′,T ′〉 of I , with
A ′ = 〈SEN′,〈F,α〉〉 anN-algebraic system, with〈F,α〉 : SEN→ SEN′ surjective,
all Σ ∈ |Sign| and allφ ∈ SEN(Σ),

αΣ(φ) ∈ T ′
F(Σ) iff δ ′

F(Σ)(αΣ(φ)) = ε ′F(Σ)(αΣ(φ)), for all δ ≈ ε ∈ τ .

On the other hand,I is said to be (semantically) N-truth-equational if the N-
Leibniz operatorΩN is completely order-reflecting, i.e., for all collections of theory
familiesT i ∈ ThFam(I ), i ∈ I , and all theory familiesT ∈ ThFam(I ),

⋂

i∈I

ΩN(T i)≤ ΩN(T) implies
⋂

i∈I

T i ≤ T.

A stronger condition than semantic truth-equationality requires that the Leibniz oper-

ator be completely order-reflecting on ThFam〈F,α〉
I

(SEN′), for everyN-algebraic sys-
temA ′ = 〈SEN′,〈F,α〉〉, with 〈F,α〉 : SEN→SEN′ a surjective(N,N′)-epimorphic
translation. This condition turns out to be equivalent to the requirement that the
Suszko operator be injective on the lattice of all filters on every N-algebraic sys-
temA ′ = 〈SEN′,〈F,α〉〉, with 〈F,α〉 : SEN→SEN′ a surjective(N,N′)-epimorphic
translation. It will be shown that syntacticN-truth-equationality implies this latter
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condition which, in turn, implies semanticN-truth-equationality. Moreover, a suf-
ficient condition will be established under which all three conditions turn out to be
equivalent. When this condition is applied to the setting ofsentential logics, it yields
as a corollary one of the main theorems obtained by Raftery in[44].

3 Leibniz and Suszko Operators

In this section we recall the definitions and several facts concerning the categorical
Leibniz and Suszko operators. The categorical Leibniz operator was defined first
in [54, 58] with the goal of introducing the classes of prealgebraic and protoalge-
braicπ-institutions. Its introduction followed the work of Blok and Pigozzi [6] that
introduced the Leibniz operator for the first time to characterize algebraizable log-
ics. The categorical Suszko operator was introduced in [60], taking after the work
of Czelakowski [18], who introduced the Suszko operator with the goal of lifting
some of the methods of abstract algebraic logic that are applicable to the class of
protoalgebraic deductive systems to arbitrary logics.

Let I = 〈Sign,SEN,C〉 be aπ-institution, withN a category of natural transfor-
mations on SEN. Let alsoT = {TΣ}Σ∈|Sign| be a theory family of SEN. TheLeibniz
N-congruence systemΩN(T) of T is the largestN-congruence system on SEN that
is compatible with the theory familyT. Proposition 2.3 of [58] characterizes Leibniz
congruence systems as follows:

Proposition 2 SupposeI = 〈Sign,SEN,C〉 is a π-institution, N a cate-
gory of natural transformations onSEN and T = {TΣ}Σ∈|Sign| a theory fam-
ily of I . Then, for all Σ ∈ |Sign|,φ ,ψ ∈ SEN(Σ), 〈φ ,ψ〉 ∈ ΩN

Σ (T) iff, for all
Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),σ : SENk → SEN in N and~χ ∈ SEN(Σ′)k,

σΣ′(SEN( f )(φ),~χ) ∈ TΣ′ iff σΣ′(SEN( f )(ψ),~χ) ∈ TΣ′ . (3)

Note that in Equivalence (3), we have followed a common convention in categor-
ical abstract algebraic logic by which the condition in (3) is a shorthand for the more
cumbersome condition: for allΣ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),σ : SENk → SEN in N,
~χ ∈ SEN(Σ′)k and alli < k,

σΣ′(χ0, . . . ,χi−1,SEN( f )(φ),χi+1, . . . ,χk−1) ∈ TΣ′ iff
σΣ′(χ0, . . . ,χi−1,SEN( f )(ψ),χi+1, . . . ,χk−1) ∈ TΣ′ .

Thus, even though there appears to be a mismatch in the declared arity of the natural
transformationσ and the number of arguments used, this is only apparent, since one
of the components of the vector~χ employed, when this notation is used, is omitted.
This notational convention will be followed throughout thepaper, possibly without
being mentioned explicitly.

We say that aπ-institution I = 〈Sign,SEN,C〉 has no theoremsif, for all
Σ ∈ |Sign|, ThmΣ(I ) :=CΣ( /0) = /0.

Lemma 3 LetI = 〈Sign,SEN,C〉 be aπ-institution, with N a category of natural
transformations onSEN, such thatSEN(Σ) 6= /0, for someΣ ∈ |Sign|. If I has no
theorems, then the N-Leibniz operator is not injective onThFam(I ).

Proof:
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Under the hypotheses of the lemma, the collections Thm= { /0}Σ∈|Sign| and
SEN= {SEN(Σ)}Σ∈|Sign| are two different theory families ofI and, by Proposition
2, we have

ΩN
Σ (Thm) = SEN(Σ)2 = ΩN

Σ (SEN),

whenceΩN(Thm) = ΩN(SEN) andΩN is not injective. �

Recall from [58] (see, also, [64]) that, given twoπ-institutionsI = 〈Sign,SEN,C〉
and I ′ = 〈Sign′,SEN′,C′〉, an (N,N′)-logical morphism (also known as an
(N,N′)-epimorphic semi-interpretation)〈F,α〉 : I 〉−I ′, and a theory family
T ′ ∈ ThFam(I ′), the theory familyα−1(T ′) of I is defined by setting

α−1(T ′) = {α−1
Σ (T ′

F(Σ))}Σ∈|Sign|.

Lemma 5.4 of [58] shows that, roughly speaking, the Leibniz operator commutes
with inverse surjective logical morphisms.

Lemma 4 Let I = 〈Sign,SEN,C〉 be a π-institution, N a category of natural
transformations onSEN andI ′ = 〈Sign′,SEN′,C′〉 an (N,N′)-model ofI via a
surjective(N,N′)-logical morphism〈F,α〉 : I 〉−I ′. Then, for every theory family
T ′ of I ′ and everyΣ ∈ |Sign|, ΩN

Σ (α
−1(T ′)) = α−1

Σ (ΩN′

F(Σ)(T
′)).

Sometimes, the relation in the conclusion of Lemma4 is denoted by

ΩN(α−1(T ′)) = α−1(ΩN′
(T ′)).

One important class ofπ-institutions from the point of view of categorical ab-
stract algebraic logic is the class of (semantically) N-protoalgebraicπ-institutions
[58]. These are theπ-institutions that have Leibniz operators that are monotonic on
the lattice of all their theory families. For a long time it had been suggested that the
class of protoalgebraic deductive systems is the widest class reasonably amenable
to treatment by universal algebraic methods and techniques[6, 24]. More recently,
however, as more natural examples of non-protoalgebraic logics have been discov-
ered, there has been some effort to expand the methods of abstract algebraic logic
to be able to handle non-protoalgebraic deductive systems.Czelakowski [18] (see
also [16] and [22]) has suggested that the viable alternative to the Leibniz opera-
tor that may need to be considered in the study of non-protoalgebraic logics is the
Suszko operator. Given aπ-institutionI = 〈Sign,SEN,C〉, with a categoryN of
natural transformations on SEN, theN-Suszko operator̃ΩN associates with every
theory familyT of I the signature-wise intersection of all Leibniz congruencesys-
tems of all theory families that containT. It is easy to see that forN-protoalgebraic
π-institutions theN-Leibniz operator and theN-Suszko operator coincide. TheN-
Suszko operator, however, is monotone on the theory families of aπ-institution even
when theπ-institution is notN-protoalgebraic. Along the lines of switching from the
Leibniz to the Suszko operator for the study of arbitrary deductive systems, one may
consider the class of Suszko-reducedI -matrix systemsMSu(I ) (corresponding to
the class ModSu

S of all Suszko reduced matrices of a deductive systemS ) instead
of the classM∗(I ) (corresponding to Mod∗S ) of Leibniz-reduced ones.

To provide more details, recall from Section 6 of [58] (see also [60]) that given
a π-institution I = 〈Sign,SEN,C〉, with N a category of natural transformations
on SEN, and a theory familyT = {TΣ}Σ∈|Sign| of I , the family of binary rela-

tionsΩ̃N(T) = {Ω̃N
Σ (T)}Σ∈|Sign| defined by letting, for allΣ∈ |Sign|,φ ,ψ ∈SEN(Σ),
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〈φ ,ψ〉 ∈ Ω̃N
Σ (T) iff

CΣ′(TΣ′ ∪{σΣ′(SEN( f )(φ),~χ)}) =CΣ′(TΣ′ ∪{σΣ′(SEN( f )(ψ),~χ)}), (4)

for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),σ : SENk →SEN inN and~χ ∈ SEN(Σ′)k, defines
anN-congruence system on SEN that is compatible with the theoryfamily T, called
theSuszkoN-congruence system ofT.

Proposition 6.3 of [58] asserts that theN-Suszko operator, unlike theN-Leibniz
operator, and similarly with the deductive system framework, is always monotone on
theory families of aπ-institution.

Proposition 5 Let I = 〈Sign,SEN,C〉 be aπ-institution, with N a category of
natural transformations onSEN. ThenΩ̃N(T1) ≤ Ω̃N(T2), for all theory families
T1,T2 of I , such that T1 ≤ T2.

Finally, Theorem 6.4 of [58] characterizes the Suszko operator as follows:

Theorem 6 LetI = 〈Sign,SEN,C〉 be aπ-institution, with N a category of nat-
ural transformations onSEN. Suppose that, for every theory family T ofI , ON(T)
is an N-congruence system onSEN, such that, for allΣ ∈ |Sign|,φ ,ψ ∈ SEN(Σ),

〈φ ,ψ〉 ∈ O
N
Σ (T) implies CΣ(TΣ ∪{φ}) =CΣ(TΣ ∪{ψ}). (5)

ThenON(T)≤ Ω̃N(T), for all theory families T ofI .

Recall from Section 3 of [58] the definition of the least theory family of aπ-
institution I = 〈Sign,SEN,C〉 containing a given theory familyT ∈ ThFam(I )

and a givenφ ∈ SEN(Σ). It is denoted byT [〈Σ,φ〉] = {T [〈Σ,φ〉]
Σ′ }Σ′∈|Sign| and defined,

for all Σ′ ∈ |Sign|, by

T [〈Σ,φ〉]
Σ′ =

{
TΣ′ , if Σ′ 6= Σ
CΣ(TΣ ∪{φ}), if Σ′ = Σ

Recall, also, the notation Thm= {ThmΣ}Σ∈|Sign| for the theorem system ofI , i.e.,
ThmΣ =CΣ( /0), for all Σ ∈ |Sign|. Finally, recall the related notion of the least the-
ory systemT〈Σ,φ〉 of I generated by a given theory systemT of I and a given
φ ∈ SEN(Σ) (see Lemma 3.1 of [58]).

The following proposition, which we perceive as an analog ofProposition 8 of
[44] in the present context, establishes conditions under which, roughly speaking,
the substitution instancesτΣ(φ) of a set ofN-equationsτ by a givenΣ-sentence
φ belong to theΣ-componentΩ̃N

Σ (Thm[〈Σ,φ〉]) of the Suszko congruence system
Ω̃N(Thm[〈Σ,φ〉]) of the theory family Thm[〈Σ,φ〉] generated by the givenΣ-sentence
φ .

Proposition 7 Let I = 〈Sign,SEN,C〉 be aπ-institution, with N a category of
natural transformations onSEN. Let, also,τ be a collection of pairs〈δ ,ε〉 of natural
transformationsδ ,ε : SEN→SENin N. Then, for allΣ∈ |Sign| and allφ ∈SEN(Σ),
the following statements are equivalent:

1. For everyσ : SENk → SEN in N, all Σ′ ∈ |Sign|, all f ∈ Sign(Σ,Σ′) and all
~χ ∈ SEN(Σ′)k,

CΣ′(Thm[〈Σ,φ〉]
Σ′ ,σΣ′(SEN( f )(δΣ(φ)),~χ)) =

CΣ′(Thm[〈Σ,φ〉]
Σ′ ,σΣ′(SEN( f )(εΣ(φ)),~χ)),
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for all 〈δ ,ε〉 ∈ τ.
2. τΣ(φ)⊆ Ω̃N

Σ (T), for all T ∈ ThFam(I ), such thatφ ∈ TΣ.
3. τΣ(φ)⊆ Ω̃N

Σ (Thm[〈Σ,φ〉]).

Proof:

(1)↔(3) This equivalence follows directly from the definition ofthe SuszkoN-
congruence system corresponding to Thm[〈Σ,φ〉] (see Equation (4)).

(2)↔(3) The left-to-right implication follows easily by replacing T by Thm[〈Σ,φ〉] and

observing thatφ ∈ Thm[〈Σ,φ〉]
Σ . The converse follows by noting that, for every

T ∈ ThFam(I ), if φ ∈ TΣ, then Thm[〈Σ,φ〉] ≤ T and taking into account the
monotonicity ofΩ̃N on ThFam(I ). �

Let I = 〈Sign,SEN,C〉 be aπ-institution, with N a category of natural trans-
formations on SEN,τ an N-translation, i.e., a set of pairsδ ≈ ε of unary natural
transformationsδ ,ε : SEN→ SEN in N, andF = {〈SENi ,〈F i ,α i〉〉 : i ∈ I} a col-
lection of N-algebraic systems. Recall from [62] the definition of the closure sys-
tem CF on SEN2 generated by the classF. Moreover, recall that ifF is a class
of τ-algebraic models ofI , it is called aτ-algebraic semantics ofI if, for all
Σ ∈ |Sign|,Φ∪{φ} ⊆ SEN(Σ),

φ ∈CΣ(Φ) iff τΣ(φ)⊆CF
Σ (τΣ(Φ)),

The following necessary condition for the existence of an algebraic semantics for
a π-institution is proven in Corollary 8.3 of [62].

Corollary 8 Let I = 〈Sign,SEN,C〉 be a π-institution, with N a category of
natural transformations onSEN, having aτ-algebraic semanticsF, whereτ is an
N-translation. Then, for all T∈ ThFam(I ), all Σ ∈ |Sign| and all φ ∈ SEN(Σ),
such thatSEN( f )(φ) ∈ TΣ′ , for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′), we have that
τΣ(φ) ⊆ ΩN

Σ (T).

Let I = 〈Sign,SEN,C〉 be aπ-institution, with N a category of natural trans-
formations on SEN. Let SEN′ : Sign′ → Set be a functor, withN′ a category of
natural transformations on SEN′, and 〈F,α〉 : SEN→ SEN′ a surjective(N,N′)-
epimorphic translation. Let us denote byI 〈F,α〉 = 〈Sign′,SEN′,C〈F,α〉〉 the〈F,α〉-

min (N,N′)-model ofI on SEN′ and set ThFam(I 〈F,α〉) = ThFam〈F,α〉
I

(SEN′), the
collection of all theory families ofI 〈F,α〉. Proposition1 of Section2 dealt with this
π-institution and its theory families. We say that theLeibniz or theSuszko oper-
ator of I is globally injective if the Leibniz or the Suszko operator, respectively,
is injective on ThFam(I 〈F,α〉), for every surjective(N,N′)-epimorphic translation
〈F,α〉 : SEN→ SEN′.

The following theorem forms an analog of Czelakowski’s Theorem 7.8 of [18]
(see also Theorem 10 of [44]), that provides a characterization of the global injectiv-
ity of the Suszko operator of a deductive system.

Theorem 9 (Czelakowski) Let I = 〈Sign,SEN,C〉 be aπ-institution, with N a
category of natural transformations onSEN. The following conditions are equiva-
lent:

(i) The N-Suszko operator ofI is globally injective;
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(ii) For every surjective(N,N′)-epimorphic translation〈F,α〉 : SEN→SEN′ and
every theory family T∈ ThFam(I 〈F,α〉),

SEN SEN′✲〈F,α〉
SEN′/Ω̃N′

(T)✲〈ISign′ ,π Ω̃N′
(T)〉

the least theory family ofI 〈F,πΩ̃N′
(T)

F α〉 is T/Ω̃N′
(T).

Proof:
Assume, first, that theN-Suszko operator ofI is globally injective and letT ′ be

the least theory family in ThFam(I 〈F,πΩ̃N′
(T)

F α〉). We will show thatT ′ = T/Ω̃N′
(T).

SinceΩ̃N′
(T) is compatible withT andT ∈ ThFam(I 〈F,α〉), T/Ω̃N′

(T) is a theory

family of I 〈F,πΩ̃N′
(T)

F α〉, whence, by the postulated minimality ofT ′, T ′ ≤T/Ω̃N′
(T).

Now, taking into account the monotonicity of̃ΩN′Ω̃N′
(T)

, we get the following chain
of inclusions:

∆SEN′Ω̃
N′

(T)
≤ Ω̃N′Ω̃N′

(T)
(T ′)

≤ Ω̃N′Ω̃N′
(T)
(T/Ω̃N′

(T))

= ∆SEN′Ω̃
N′

(T)
.

Therefore,Ω̃N′Ω̃N′
(T)
(T ′) = Ω̃N′Ω̃N′

(T)
(T/Ω̃N′

(T)) and, hence, by injectivity, we ob-
tain T ′ = T/Ω̃N′

(T).
Assume, conversely, that〈F,α〉 : SEN→ SEN′ is a surjective(N,N′)-epimorphic

translation andT,T ′ ∈ ThFam(I 〈F,α〉), such thatΩ̃N′
(T) = Ω̃N′

(T ′). Con-

sider the two functors SEN′Ω̃
N′
(T) and SEN′Ω̃

N′
(T ′). By the hypothesis, the

two theory familiesT/Ω̃N′
(T) and T ′/Ω̃N′

(T ′) are the least theory families on

SEN′Ω̃N′
(T) and SEN′Ω̃

N′
(T ′), respectively. But, sincẽΩN′

(T) = Ω̃N′
(T ′), these two

functors coincide, as do the corresponding canonical projections, implying that
T/Ω̃N′

(T) = T ′/Ω̃N′
(T ′). Again, taking into account that̃ΩN′

(T) = Ω̃N′
(T ′), we

get thatT = T ′. �

We say thatthe Leibniz operator of a π-institution I = 〈Sign, SEN,C〉, with
N a category of natural transformations on SEN,is globally completely order re-
flecting if, for every surjective(N,N′)-epimorphic translation〈F,α〉 : SEN→ SEN′

and allT ∪{T ′} ⊆ ThFam(I 〈F,α〉),
⋂

T∈T

ΩN′
(T)≤ ΩN′

(T ′) implies
⋂

T∈T

T ≤ T ′.

In the following proposition an alternative characterization of global complete
order reflexivity is provided, involving both the Leibniz and the Suszko operator of a
π-institutionI . This abstracts Condition (5), following Theorem 10 of [44], which
is applicable for sentential logics.

Proposition 10 Let I = 〈Sign,SEN,C〉 be a π-institution, with N a category
of natural transformations onSEN. The Leibniz operator ofI is globally com-
pletely order reflecting iff, for every surjective(N,N′)-epimorphic translation and
all T,T ′ ∈ ThFam(I 〈F,α〉),

Ω̃N′
(T)≤ ΩN′

(T ′) implies T≤ T ′.
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Proof:
Assume, first, that the Leibniz operator is globally completely order reflecting

and that, for some surjective(N,N′)-epimorphic translation〈F,α〉 : SEN→ SEN′,
T,T ′ ∈ ThFam(I 〈F,α〉) are such that̃ΩN′

(T)≤ ΩN′
(T ′). Then, we have

⋂

T≤T ′′

ΩN′
(T ′′) = Ω̃N′

(T)≤ ΩN′
(T ′).

So, by the hypothesis, we get that
⋂

T≤T ′′ T ′′ ≤ T ′, whenceT ≤ T ′.
Assume, conversely, that, for every surjective(N,N′)-epimorphic translation

〈F,α〉 : SEN→ SEN′, and allT,T ′ ∈ ThFam(I 〈F,α〉),

Ω̃N′
(T)≤ ΩN′

(T ′) implies T ≤ T ′.

LetT ∪{T ′}⊆ ThFam(I 〈F,α〉), such that
⋂

T∈T ΩN′
(T)≤ΩN′

(T ′). Then, we have
⋂

⋂
T ≤T ′′

ΩN′
(T ′′)≤

⋂

T∈T

ΩN′
(T)≤ ΩN′

(T ′),

i.e.,Ω̃N′
(
⋂

T )≤ ΩN′
(T ′). Therefore, by the hypothesis,

⋂
T ≤ T ′. �

The following proposition establishes that the complete order reflexivity of the
Leibniz operator of aπ-institutionI implies the order reflexivity of both the Leibniz
and the Suszko operators ofI . Since every order reflecting function between order
sets is also injective, Proposition11 implies that when the Leibniz operator of a
π-institution is completely order reflecting, then both the Leibniz and the Suszko
operators are injective.

Proposition 11 Let I = 〈Sign,SEN,C〉 be a π-institution, with N a category
of natural transformations onSEN. If the Leibniz operator ofI is globally
completely order reflecting and〈F,α〉 : SEN → SEN′ is a surjective(N,N′)-
epimorphic translation, then, for all T,T ′ ∈ ThFam(I 〈F,α〉), if ΩN′

(T) ≤ ΩN′
(T ′)

or Ω̃N′
(T)≤ Ω̃N′

(T ′), then T≤ T ′.

Proof:
If ΩN′

(T) ≤ ΩN′
(T ′), then, we havẽΩN′

(T) ≤ ΩN′
(T ′), whence, by the hypoth-

esis and Proposition10, T ≤ T ′. If, on the other hand,̃ΩN′
(T) ≤ Ω̃N′

(T ′), then
Ω̃N′

(T)≤ Ω̃N′
(T ′)≤ ΩN′

(T ′), whenceT ≤ T ′. �

Corollary 12 Let I = 〈Sign,SEN,C〉 be a π-institution, with N a category of
natural transformations onSEN. If the N-Leibniz operator ofI is globally com-
pletely order reflecting then, for every surjective(N,N′)-epimorphic translation
〈F,α〉 : SEN→ SEN′, bothΩN′

andΩ̃N′
are injective onThFam(I 〈F,α〉).

Finally, we close this section by establishing a converse ofCorollary 12 to the
effect that the global injectivity of the Suszko operator implies the global complete
order reflexivity of the Leibniz operator of a givenπ-institution. This is an analog in
the categorical framework of Theorem 11 of [44].

Theorem 13 Let I = 〈Sign,SEN,C〉 be a π-institution, with N a category of
natural transformations onSEN. The Suszko operator ofI is globally injective iff
the Leibniz operator is globally completely order reflecting.
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Proof:
If the Leibniz operator ofI is globally completely order reflecting, then, by

Corollary12, the Suszko operator ofI is globally injective.
Suppose, conversely, that the Suszko operator ofI is globally injective, i.e.,

that, for every surjective(N,N′)-epimorphic translation〈F,α〉 : SEN→ SEN′ and
all T,T ′ ∈ ThFam(I 〈F,α〉), Ω̃N′

(T) = Ω̃N′
(T ′) implies thatT = T ′. To show that

the Leibniz operator is globally completely order reflecting, we use Proposition
10. Consider a surjective(N,N′)-epimorphic translation〈F,α〉 : SEN→ SEN′ and
T,T ′ ∈ ThFam(I 〈F,α〉), such that̃ΩN′

(T)≤ ΩN′
(T ′). Then, for allΣ ∈ |Sign′|, the

mapφ/Ω̃N′

Σ (T)
πΣ7→ φ/ΩN′

Σ (T ′) defines a surjective translation

〈ISign′ ,π〉 : SEN′Ω̃N′
(T) → SEN′ΩN′

(T ′).

Moreover, by the defining property of the LeibnizN′-congruence systemΩN′
(T ′)

of T ′ and the hypothesis, we obtain thatΩ̃N′
(T) is compatible withT ′, whence

the notationT ′/Ω̃N′
(T) may be unambiguously used for the collection{φ/Ω̃N′

Σ (T) :
φ ∈ T ′

Σ}Σ∈|Sign′|.

Since, obviously,T ′/ΩN′
(T ′) ∈ ThFam(I 〈F,πΩN′

(T′)
F α〉),

SEN SEN′✲〈F,α〉
SEN′/ΩN′

(T ′)✲
〈ISign′ ,πΩN′

(T′)〉

we get thatπ−1(T ′/ΩN′
(T ′)) = T ′/Ω̃N′

(T) ∈ ThFam(I 〈F,πΩ̃N′
(T)

F α〉). But, by
Theorem9, T/Ω̃N′

(T) is the least theory family of the displayed collection. There-
fore T/Ω̃N′

(T) ≤ T ′/Ω̃N′
(T). Thus, if φ ∈ TΣ, there existsφ ′ ∈ T ′

Σ, such that
〈φ ,φ ′〉 ∈ Ω̃N′

Σ (T), whence, by the asserted compatibility ofΩ̃N′
(T) with T ′, we get

thatφ ∈ T ′
Σ. Thus,TΣ ⊆ T ′

Σ. Since this holds for allΣ ∈ |Sign′|, we get thatT ≤ T ′.
�

4 Definability of Truth

Let I = 〈Sign,SEN,C〉 be a π-institution, with N a category of natural trans-
formations on SEN. We remind the reader that anN-matrix system (model)
〈〈SEN′,〈F,α〉〉, T〉 of I consists of a functor SEN′ : Sign′ → Set, with N′ a cate-
gory of natural transformations on SEN′, a surjective(N,N′)-epimorphic translation
〈F,α〉 : SEN→ SEN′, and a theory familyT ∈ ThFam(I 〈F,α〉). LetM be a class of
N-matrix systems ofI . We say thattruth is implicitly definable in M if, whenever
〈〈SEN′,〈F,α〉〉,T〉, 〈〈SEN′,〈F,α〉〉,T ′〉 ∈ M, thenT = T ′. On the other hand, we
say thattruth is equationally definable in M if there exists anN-translationτ, i.e.,
a collection of pairs〈δ ,ε〉 of natural transformationsδ ,ε : SEN→ SEN inN, such
that, for all〈〈SEN′,〈F,α〉〉,T〉 ∈M, all Σ ∈ |Sign′| and allφ ∈ SEN′(Σ),

(∀ f ∈ Sign′(Σ,Σ′))(SEN′( f )(φ) ∈ TΣ′) iff
δ ′

Σ(φ) = ε ′Σ(φ), for all 〈δ ,ε〉 ∈ τ.

In this case, it will be said thatτ defines truth in M.
Recall that anN-matrix system〈〈SEN′,〈F,α〉〉,T〉 of I is Leibniz reduced if

ΩN′
(T) =∆SEN′ and Suszko reduced if̃ΩN′

(T) =∆SEN′ . LetMSu(I ) denote the col-
lection of all Suszko reducedN-matrix systems ofI andM∗(I ) the collection of all
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Leibniz reducedN-matrix systems ofI . Similarly,LMSu(I ) will denote the collec-
tion of all Suszko reducedN-matrix systems ofI of the form〈〈SEN,〈ISign, ι〉〉,T〉,
andLM∗(I ) the collection of all Leibniz reducedN-matrix systems ofI of the
form 〈〈SEN,〈ISign, ι〉〉,T〉. Note that〈ISign, ι〉 : SEN→ SEN denotes the identity
(N,N)-epimorphic translation from SEN to SEN. (TheL here stands forLinden-
baum.)

It is true in general thatM∗(I )⊆MSu(I ), as the following lemma asserts.

Lemma 14 Let I = 〈Sign,SEN,C〉 be aπ-institution, with N a category of nat-
ural transformations onSEN. ThenM∗(I )⊆MSu(I ).

Proof:
Let 〈F,α〉 : SEN→ SEN′ be a surjective(N,N′)-epimorphic translation and

T ∈ ThFam(I 〈F,α〉), so that〈〈SEN′,〈F,α〉〉,T〉 ∈M∗(I ). We have that̃ΩN′
(T)≤

ΩN′
(T) = ∆SEN′ . Therefore,〈〈SEN′,〈F,α〉〉,T〉 ∈MSu(I ). �

The following proposition characterizes implicit definability of truth in the classes
M∗(I ) andMSu(I ) in terms of the global injectivity of the Leibniz and the Suszko
operator ofI , respectively. It abstracts Proposition 17 of [44].

Proposition 15 Let I = 〈Sign,SEN,C〉 be aπ-institution, with N a category of
natural transformations onSEN.

(i) Truth is implicitly definable inMSu(I ) iff the Suszko operator ofI is glo-
bally injective.

(ii) Truth is implicitly definable inM∗(I ) iff the Leibniz operator ofI is glo-
bally injective.

Proof:
We only prove (i), since (ii) may be proven similarly.
Suppose, first, that the Suszko operator ofI is globally injective and let

〈〈SEN′,〈F,α〉〉,T〉,〈〈SEN′,〈F,α〉〉,T ′〉 ∈ MSu(I ). Then, we haveΩ̃N′
(T) =

Ω̃N′
(T ′) = ∆SEN′ , whence, by the injectivity of the Suszko operator,T = T ′. Hence,

truth is implicitly definable in the classMSu(I ).
Suppose, conversely, that truth is implicitly definable inMSu(I ) and let

T,T ′ ∈ ThFam(I 〈F,α〉), for some surjective(N,N′)-epimorphic translation〈F,α〉 :
SEN→ SEN′, such that̃ΩN′

(T) = Ω̃N′
(T ′). The twoN-matrix systems

〈〈SEN′/Ω̃N′
(T),〈F,π Ω̃N′

(T)
F α〉〉,T/Ω̃N′

(T)〉 and

〈〈SEN′/Ω̃N′
(T ′),〈F,π Ω̃N′

(T ′)
F α〉〉,T ′/Ω̃N′

(T ′)〉

are inMSu(I ), in which, by hypothesis, truth is implicitly definable. Thus,T = T ′,
which proves that̃ΩN′

is injective. �

SinceM∗(I )⊆MSu(I ), it is clearly the case that global injectivity of the Suszko
operator ofI implies the global injectivity of the Leibniz operator ofI , as is also
the case for sentential logics (Proposition 18 of [44]).

Proposition 16 Let I = 〈Sign,SEN,C〉 be aπ-institution, with N a category of
natural transformations onSEN, andτ an N-translation.

(i) τ defines truth inM∗(I ) iff it defines truth inMSu(I ).
(ii) If τ defines truth inLM∗(I ), then it also defines truth inLMSu(I ).
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Proof:
(i) Since M∗(I ) ⊆ MSu(I ), if τ defines truth inMSu(I ), then it does so

also in M∗(I ). Suppose, conversely, thatτ defines truth inM∗(I ).
Let 〈F,α〉 : SEN → SEN′ be a surjective(N,N′)-epimorphic transla-
tion and T ∈ ThFam(I 〈F,α〉), such thatΩ̃N′

(T) = ∆SEN′ , i.e., such that
〈〈SEN′,〈F,α〉〉,T〉 ∈ MSu(I ). Then we have, for allΣ,Σ′ ∈ |Sign′|,
f ∈ Sign′(Σ,Σ′) and allφ ∈ SEN′(Σ),

SEN′( f )(φ) ∈ TΣ′

iff SEN′( f )(φ) ∈ T ′
Σ′ , all T ≤ T ′

iff SEN′( f )(φ)/ΩN′

Σ′ (T ′) ∈ T ′
Σ′/ΩN′

Σ′ (T ′), all T ≤ T ′

iff SEN′ΩN′
(T ′)( f )(φ/ΩN′

Σ (T ′)) ∈ T ′
Σ′/ΩN′

Σ′ (T ′), all T ≤ T ′

iff δ ′ΩN′
(T ′)

Σ (φ/ΩN′

Σ (T ′)) = ε ′Ω
N′
(T′)

Σ (φ/ΩN′

Σ (T ′)),
for all T ≤ T ′,δ ≈ ε ∈ τ

iff δ ′
Σ(φ)/ΩN′

Σ (T ′) = ε ′Σ(φ)/ΩN′

Σ (T ′), all T ≤ T ′,δ ≈ ε ∈ τ
iff 〈δ ′

Σ(φ),ε ′Σ(φ)〉 ∈ ΩN′

Σ (T ′), all T ≤ T ′,δ ≈ ε ∈ τ
iff 〈δ ′

Σ(φ),ε ′Σ(φ)〉 ∈ Ω̃N′

Σ (T), all δ ≈ ε ∈ τ
iff δ ′

Σ(φ) = ε ′Σ(φ), all δ ≈ ε ∈ τ.

Therefore,τ defines truth inMSu(I ).
(ii) This part may proven similarly.

�

Let SEN :Sign→ Set be a functor, withN a category of natural transforma-
tions on SEN, andτ an N-translation. Consider, also, a functor SEN′, with N′

a category of natural transformations on SEN′, and an(N,N′)-epimorphic transla-
tion 〈F,α〉 : SEN→ SEN′. Denote byTτ the axiom system on SEN′ given, for all
Σ ∈ |Sign′|, by

Tτ
Σ = {φ ∈ SEN′(Σ) : δ ′

Σ(φ) = ε ′Σ(φ) for all δ ≈ ε ∈ τ},

where byδ ′ andε ′ are denoted the natural transformations on SEN′ corresponding
to δ andε, respectively, via the(N,N′)-epimorphic property. The axiom systemTτ
corresponds in this context to the subset

Fτ
A = {a∈ A : δ A

i (a) = εA
i (a), i < n}

of the carrierA of an algebraA, defined via a translationτ = {δi(p)≈ εi(p) : i < n}
in [8] (see page 161, right before Theorem 2.3).

In the following lemma it is shown that the closure systemCA induced by the
N-matrix systemA = 〈〈SEN′,〈F,α〉〉,Tτ 〉 on SEN is interpreted via the equa-
tions τ into the closure systemCA on SEN2 induced by theN-algebraic system
A =〈SEN′,〈F,α〉〉. This will allow the formulation of an analog of Proposition20
of [44], which was first proved as Theorem 2.3 of [8]. In the categorical level, this
revisits a result first proven in [62].

Lemma 17 Let I = 〈Sign,SEN,C〉 be aπ-institution, with N a category of nat-
ural transformations onSEN, A = 〈SEN′,〈F,α〉〉 an N-algebraic system forSEN,
andτ an N-translation. SetA = 〈〈SEN′,〈F,α〉〉,Tτ 〉. Then, for allΣ ∈ |Sign| and
all Φ∪{φ} ⊆ SEN(Σ),

φ ∈CA
Σ (Φ) iff τΣ(φ) ⊆CA

Σ (τΣ(Φ)).
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Proof:
For allΣ ∈ |Sign| and allΦ∪{φ} ⊆ SEN(Σ), we have

φ ∈CA
Σ (Φ)

iff (∀ f )(αΣ′ (SEN( f )(Φ)) ⊆ Tτ
Σ′ ⇒ αΣ′(SEN( f )(φ)) ∈ Tτ

Σ′ )

iff (∀ f )(τ ′
F(Σ′)(αΣ′(SEN( f )(Φ))) ⊆ ∆SEN′

F(Σ′)
⇒

τ ′F(Σ′)(αΣ′(SEN( f )(φ))) ⊆ ∆SEN′
F(Σ′))

iff (∀ f )(αΣ′ (τΣ′(SEN( f )(Φ))) ⊆ ∆SEN′
F(Σ′) ⇒

αΣ′(τΣ′(SEN( f )(φ))) ⊆ ∆SEN′
F(Σ′))

iff (∀ f )(αΣ′ (SEN( f )(τΣ(Φ))) ⊆ ∆SEN′
F(Σ′) ⇒

αΣ′(SEN( f )(τΣ(φ))) ⊆ ∆SEN′
F(Σ′)

)

iff τΣ(φ)⊆CA
Σ (τΣ(Φ)).

In this proof(∀ f ) stands as an abbreviation for the quantifications(∀Σ′ ∈ |Sign|)
(∀ f ∈ Sign(Σ,Σ′)). �

Theorems18and19, that follow, are direct consequences of Lemma17. The first
asserts that aτ-algebraic model of a givenπ-institutionI gives rise through the use
of Tτ to a matrix model ofI . The second concludes that, more generally, the same
process allows the generation of a matrix semantics of a given π-institution from a
τ-algebraic semantics along similar lines.

Theorem 18 Let I = 〈Sign,SEN,C〉 be a π-institution, with N a category of
natural transformations onSEN, A = 〈SEN′,〈F,α〉〉 an N-algebraic system for
SEN, and τ an N-translation. ThenA is a τ-algebraic model ofI if and only
if A= 〈〈SEN′,〈F,α〉〉,Tτ 〉 is an N-matrix system model ofI .

Theorem 19 SupposeI = 〈Sign,SEN,C〉 is a π-institution, with N a category
of natural transformations onSEN, F = {〈SENi ,〈F i ,α i〉〉 : i ∈ I} a collection of
N-algebraic systems forSEN, andτ an N-translation. ThenF is a τ-algebraic se-
mantics forI if and only ifM = {〈〈SENi ,〈F i ,α i〉〉, (T i)τ 〉 : i ∈ I} is an N-matrix
system semantics forI .

Theorem19 has the following corollary, which is the promised analog ofPropo-
sition 20 of [44].

Corollary 20 SupposeI = 〈Sign,SEN,C〉 is aπ-institution, with N a category of
natural transformations onSEN. A class of N-algebraic systems is an N-algebraic
semantics forI iff it is the class of all N-algebraic reducts of some N-matrix system
semantics forI , in which truth is equationally definable.

Proof:
In fact, by Theorem19, F = {〈SENi ,〈F i ,α i〉〉 : i ∈ I} is anN-algebraic system

semantics iffM= {〈〈SENi ,〈F i ,α i〉〉,(T i)τ 〉 : i ∈ I} is anN-matrix system semantics
for I and in the latter truth is clearly equationally definable viaτ. �

Given aπ-institution I = 〈Sign,SEN,C〉, with N a category of natural trans-
formations on SEN, let us adopt the notationLASu(I ), LA∗(I ) andA∗(I ) to de-
note the classes ofN-algebraic system reducts ofN-matrix systems in the classes
LMSu(I ), LM∗(I ) andM∗(I ), respectively. Then, Theorem19yields the follow-
ing
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Corollary 21 Let I = 〈Sign,SEN,C〉 be a π-institution, with N a category
of natural transformations on N, andτ an N-translation. Ifτ defines truth in
LMSu(I ), LM∗(I ) or M∗(I ), thenLASu(I ), LA∗(I ) or A∗(I ), respectively, is
a τ-algebraic system semantics forI .

Raftery shows, using Example 1 on page 116 of [44], that the following hold for
a deductive systemS :

(i) Equational definability of truth inLModSu
S does not imply the equational,

or even the implicit, definability of truth inLMod∗S ;
(ii) Alg∗S being aτ-algebraic semantics forS does not necessarily imply thatτ

defines truth inMod∗S , nor even that truth is implicit definable inMod∗S ;
(iii) The injectivity of the Suszko operator on the theoriesof a deductive system

does not imply existence of theorems.

Taking into account the fact that all deductive systems in the sense of [44] pro-
vide examples ofπ-institutions over a trivial category of signatures, Raftery’s
conclusions hold also forπ-institutions. More precisely, given aπ-institution
I = 〈Sign,SEN,C〉, with N a category of natural transformations on SEN, and an
N-translationτ,

• the definability of truth in the classLMSu(I ) does not imply the equational
or, even implicit definability of truth inLM∗(I );

• A∗(I ) being aτ-algebraic system semantics forS does not necessarily im-
ply thatτ defines truth inM∗(I ), nor even that truth is implicit definable in
M∗(I );

• The injectivity of the Suszko operator on the theory families of I does
not imply existence of theorems inI , i.e., that ThmΣ(I ) 6= /0, for some
Σ ∈ |Sign|.

5 Testing for Equational Definability

Let I = 〈Sign,SEN,C〉 be aπ-institution, withN a category of natural transforma-
tions on SEN, and〈F,α〉 : SEN→ SEN′ a surjective(N,N′)-epimorphic translation.
DefineM∗

〈F,α〉(I ) as the subclass ofM∗(I ) consisting of all Leibniz reducedN-
matrix systems ofI of the form

〈〈SEN′/ΩN′
(T),〈F,πΩN′

(T)
F α〉〉,T/ΩN′

(T)〉,

where, of course,T ∈ThFam(I 〈F,α〉). In particular, using this notation, we have that
LM∗(I ) = M∗

〈ISign,ι〉
(I ) andM∗(I ) is the union of allM∗

〈F,α〉(I ), where〈F,α〉

ranges over all surjective(N,N′)-epimorphic translations. By the compatibility of
ΩN′

(T) with T, we get the following proposition paralleling in the present context
Proposition 22 of [44].

Proposition 22 SupposeI = 〈Sign,SEN,C〉 is a π-institution, with N a cate-
gory of natural transformations onSEN, 〈F,α〉 : SEN→ SEN′ a surjective(N,N′)-
epimorphic translation andτ an N-translation. Thenτ defines truth inM∗

〈F,α〉(I )

iff, for all T ∈ ThFam(I 〈F,α〉), all Σ ∈ |Sign| and allφ ∈ SEN(Σ),

(∀ f ∈ Sign(Σ,Σ′))(αΣ′ (SEN( f )(φ)) ∈ TF(Σ′)) iff
τ ′F(Σ)(αΣ(φ)) ⊆ ΩN′

F(Σ)(T).
(6)
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Thus,τ defines truth inM∗(I ) iff Equivalence(6) holds for every surjective(N,N′)-
epimorphic translation〈F,α〉 : SEN→ SEN′.

Proof:
Suppose, first, thatτ defines truth inM∗

〈F,α〉 and letΣ ∈ |Sign| andφ ∈ SEN(Σ).
We have thatτ ′

F(Σ)(αΣ(φ))⊆ ΩN′

F(Σ)(T) iff, for all δ ≈ ε ∈ τ ,

δ ′
F(Σ)(αΣ(φ))/ΩN′

F(Σ)(T) = ε ′F(Σ)(αΣ(φ))/ΩN′

F(Σ)(T).

But, clearly,〈〈SEN′ΩN′
(T),〈F,πΩN′

(T)
F α〉〉,T/ΩN′

(T)〉 ∈M∗
〈F,α〉(I ), whence, by hy-

pothesis, the latter condition is equivalent to

SEN′ΩN′
(T)( f ′)(αΣ(φ)/ΩN′

F(Σ)(T)) ∈ TΣ′′/ΩN′

Σ′′(T),

for all f ′ ∈ Sign′(F(Σ),Σ′′). This means that, for allf ′ ∈ Sign′(F(Σ),Σ′′), we
have that SEN′( f ′)(αΣ(φ))/ΩN′

Σ′′(T) ∈ TΣ′′/ΩN′

Σ′′(T). By compatibility of the

N′-Leibniz congruence systemΩN′
(T) with T, this condition is equivalent to

SEN′( f ′)(αΣ(φ)) ∈ TΣ′′ , for all f ′ ∈ Sign′(F(Σ),Σ′′). By surjectivity of 〈F,α〉
and the fact that〈F,α〉 is a translation (whenceα is a natural transformation),
we finally get the equivalence of the last condition with, forall f ∈ Sign(Σ,Σ′),
αΣ′(SEN′( f )(φ)) ∈ TF(Σ′). This chain of equivalences proves that Condition (6)
holds

Suppose, conversely, that Equivalence (6) holds and let 〈〈SEN′/ΩN′
(T),

〈F,πΩN′
(T)

F α〉〉,T/ΩN′
(T)〉 ∈ M∗

〈F,α〉(I ). Suppose, for all f ′ ∈ Sign′(F(Σ),

Σ′′), we have that SEN′Ω
N′
(T)( f ′)(αΣ(φ)/ΩN′

F(Σ)(T)) ∈ TΣ′′/ΩN′

Σ′′(T). This is

equivalent to the condition that, for allΣ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′),
SEN′(F( f ))(αΣ(φ))/ΩN′

F(Σ′)(T) ∈ TF(Σ′)/ΩN′

F(Σ′)(T). By compatibility of ΩN′
(T)

with T, the latter condition is equivalent to SEN′(F( f ))(αΣ(φ)) ∈ TF(Σ′), for all
f ∈ Sign(Σ,Σ′). Now Equivalence (6) may be applied to get thatτ ′

F(Σ)(αΣ(φ)) ⊆
ΩN′

F(Σ)(T), which is equivalent to

δ ′ΩN′
(T)

F(Σ) (αΣ(φ)/ΩN′

F(Σ)(T)) = ε ′Ω
N′
(T)

F(Σ) (αΣ(φ)/ΩN′

F(Σ)(T)).

This concludes the proof thatτ defines truth inM∗
〈F,α〉(I ). �

Our next goal is to establish a lemma to the effect that definability of truth has
some preservation properties when it comes to composing epimorphic translations.
To pave the way for Lemma24, which is an analog of Lemma 23 of [44], we have
to first prove a technical lemma, Lemma23, to the effect, roughly speaking, that
pushing a theory family forward through such a morphism alsoresults in a valid
theory family and to establish a correspondence between theLeibniz congruence
systems of these two theory families.

Lemma 23 Let I = 〈Sign,SEN,C〉 be a π-institution, with N a category of
natural transformations onSEN, 〈F,α〉 : SEN→ SEN′ be a surjective(N,N′)-
epimorphic translation and T∈ ThFam(I 〈F,α〉). Let, also,〈G,β 〉 : SEN′ → SEN′′

be a surjective(N′,N′′)-epimorphic translation, with G an isomorphism, such that
Ker(〈G,β 〉) is compatible with T. Then
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(i) β (T) := {βΣ(TΣ)}Σ∈|Sign′| ∈ ThFam(I 〈GF,βF α〉) and

(ii) βF(Σ)(ΩN′

F(Σ)(T)) = ΩN′′

G(F(Σ))(β (T)), for all Σ ∈ |Sign|.

Proof:

(i) Suppose thatΣ ∈ |Sign| andΦ∪{φ}⊆ SEN(Σ), such thatφ ∈CΣ(Φ). Since,
by hypothesis,T ∈ ThFam(I 〈F,α〉), we get, taking into account Proposition
1, that, for all f ∈ Sign(Σ,Σ′),

αΣ′(SEN( f )(Φ)) ⊆ TF(Σ′) implies αΣ′(SEN( f )(φ)) ∈ TF(Σ′). (7)

Thus, ifβF(Σ′)(αΣ′(SEN( f )(Φ))) ⊆ βF(Σ′)(TF(Σ′)), we get, by the postulated
compatibility of Ker(〈G,β 〉) with T, thatαΣ′(SEN( f )(Φ))⊆ TF(Σ′), whence,
by (7), αΣ′(SEN( f )(φ)) ∈ TF(Σ′) and, therefore,

βF(Σ′)(αΣ′(SEN( f )(φ))) ∈ βF(Σ′)(TF(Σ′)).

This, again using Proposition1, shows thatβ (T) ∈ ThFam(I 〈GF,β α〉).
(ii) Let us show thatΩN′

F(Σ)(T) = β−1
F(Σ)(Ω

N′′

G(F(Σ))(β (T))), for all Σ ∈ |Sign|.

For all φ ,ψ ∈ SEN′(F(Σ)), 〈φ ,ψ〉 ∈ β−1
F(Σ)(Ω

N′′

G(F(Σ))(β (T))) iff 〈βF(Σ)(φ),
βF(Σ)(ψ)〉 ∈ ΩN′′

G(F(Σ))(β (T)), which is equivalent to, for allf ∈ Sign(Σ,Σ′),

σ in N, ~χ ′′ ∈ SEN′′(G(F(Σ′))),

σ ′′
G(F(Σ′))(SEN′′(G(F( f )))(βF(Σ)(φ)), ~χ ′′) ∈ βF(Σ′)(TF(Σ′))

iff σ ′′
G(F(Σ′))(SEN′′(G(F( f )))(βF(Σ)(ψ)), ~χ ′′) ∈ βF(Σ′)(TF(Σ′)).

Equivalently, for all f ∈ Sign(Σ,Σ′), σ in N, ~χ ′ ∈ SEN′(F(Σ′)),

σ ′′
G(F(Σ′))(βF(Σ′)(SEN′(F( f ))(φ)),βF (Σ′)(~χ ′)) ∈ βF(Σ′)(TF(Σ′))

iff σ ′′
G(F(Σ′))(βF(Σ′)(SEN′(F( f ))(ψ)),βF (Σ′)(~χ ′)) ∈ βF(Σ′)(TF(Σ′)).

This holds, iff, for all f ∈ Sign(Σ,Σ′), σ in N, ~χ ′ ∈ SEN′(F(Σ′)),

βF(Σ′)(σ ′
F(Σ′)(SEN′(F( f ))(φ)), ~χ ′) ∈ βF(Σ′)(TF(Σ′))

iff βF(Σ′)(σ ′
F(Σ′)(SEN′(F( f ))(ψ)), ~χ ′) ∈ βF(Σ′)(TF(Σ′)),

which, taking into account the postulated compatibility ofKer(〈G,β 〉) with
T, is, in turn, equivalent to, for allf ∈ Sign(Σ,Σ′), σ in N, ~χ ′ ∈ SEN′(F(Σ′))

σ ′
F(Σ′)(SEN′(F( f ))(φ)), ~χ ′) ∈ TF(Σ′)

iff σ ′
F(Σ′)(SEN′(F( f ))(ψ)), ~χ ′) ∈ TF(Σ′),

i.e., to〈φ ,ψ〉 ∈ ΩN′

F(Σ)(T). �

In the next lemma we study the effect of applying surjective translations in both
the forward and the backward directions to the definability of truth. It turns out that
the definability of truth is always preserved in the forward direction, but that one has
to impose the additional conditions introduced in Lemma23 to ensure preservation
of definability when applying an epimorphic translation in the backward direction.
These two results are expressed in Parts 1 and 2 of the following lemma, respectively.
The lemma forms an analog of Lemma 23 of [44] in the categorical framework.
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Lemma 24 LetI = 〈Sign,SEN,C〉 be aπ-institution, with N a category of natu-
ral transformations onSEN. Let, also,〈F,α〉 : SEN→ SEN′ be a surjective(N,N′)-
epimorphic translation and〈G,β 〉 : SEN′ → SEN′′ a surjective(N′,N′′)-epimorphic
translation.

(1) If an N-translationτ defines truth inM∗
〈F,α〉(I ), then it also defines truth in

M∗
〈GF,βF α〉(I ).

(2) Conversely, if an N-translationτ defines truth inM∗
〈GF,βF α〉(I ), G is

an isomorphism andKer(〈G,β 〉) is compatible with all theory families
T ∈ ThFam(I 〈F,α〉), thenτ also defines truth inM∗

〈F,α〉(I ).

Proof:
Assume that, for allT ∈ ThFam(I 〈F,α〉), all Σ ∈ |Sign| and all φ ∈ SEN(Σ),

αΣ′(SEN( f )(φ)) ∈ TF(Σ′), for all f ∈ Sign(Σ,Σ′), if and only if τ ′F(Σ)(αΣ(φ)) ⊆
ΩN′

F(Σ)(T). Let T ′ ∈ ThFam(I 〈GF,βF α〉), Σ ∈ |Sign| andφ ∈ SEN(Σ). Then

(∀ f ∈ Sign(Σ,Σ′))(βF(Σ′)(αΣ′(SEN( f )(φ))) ∈ T ′
G(F(Σ′)))

iff (∀ f ∈ Sign(Σ,Σ′))(αΣ′ (SEN( f )(φ)) ∈ β−1
F(Σ′)(T

′
G(F(Σ′))))

iff τ ′
F(Σ)(αΣ(φ))⊆ ΩN′

F(Σ)(β
−1(T ′))

iff τ ′
F(Σ)(αΣ(φ))⊆ β−1

F(Σ)(Ω
N′′

G(F(Σ))(T
′))

iff βF(Σ)(τ ′F(Σ)(αΣ(φ))) ⊆ ΩN′′

G(F(Σ))(T
′)

iff τ ′′
G(F(Σ))(βF(Σ)(αΣ(φ))) ⊆ ΩN′′

G(F(Σ))(T
′).

Thus,τ also defines truth inM∗
〈GF,βF α〉(I ).

Assume, conversely, that, for allT ′ ∈ ThFam(I 〈GF,βF α〉), all Σ ∈ |Sign| and
all φ ∈ SEN(Σ), βF(Σ′)(αΣ′(SEN( f )(φ))) ∈ T ′

G(F(Σ′)), for all f ∈ Sign(Σ,Σ′), if

and only if τ ′′G(F(Σ))(βF(Σ)(αΣ(φ))) ⊆ ΩN′′

G(F(Σ))(T
′), that G is an isomorphism and

that Ker(〈G,β 〉) is compatible with everyT ∈ ThFam(I 〈F,α〉). Recall that, if
T ∈ ThFam(I 〈F,α〉), then, by Lemma23, β (T) ∈ ThFam(I 〈GF,βF α〉). Hence, for
all Σ ∈ |Sign| and allφ ∈ SEN(Σ), we have

(∀ f ∈ Sign(Σ,Σ′))(αΣ′(SEN( f )(φ)) ∈ TF(Σ′))
iff (∀ f ∈ Sign(Σ,Σ′))(βF(Σ′)(αΣ′(SEN( f )(φ))) ∈ βF(Σ′)(TF(Σ′)))

iff τ ′′G(F(Σ))(βF(Σ)(αΣ(φ))) ⊆ ΩN′

G(F(Σ))(β (T))
iff βF(Σ)(τ ′

F(Σ)(αΣ(φ))) ⊆ βF(Σ)(ΩN′

F(Σ)(T))

iff τ ′F(Σ)(αΣ(φ)) ⊆ ΩN′

F(Σ)(T).

In the last chain of equivalences we have used both Part 2 of Lemma23and the com-
patibility of Ker(〈G,β 〉) with T ∈ ThFam(I 〈F,α〉). The chain shows thatτ defines
truth onM∗

〈F,α〉(I ). �

The following result asserts that definability of truth for the class of Leibniz re-
duced matrix system models of aπ-institution is equivalent to definability of truth
for the subclass of Leibniz reduced Lindenbaum matrix system models ofI . More-
over, this property is characterized by another condition concerning definability of
truth in Leibniz reduced matrix system models on subclassesof the algebraic reducts
of Leibniz reduced matrix system models that form appropriate algebraic semantics.
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Theorem 25 Let I = 〈Sign,SEN,C〉 be a π-institution, with N a category of
natural transformations onSEN, andτ an N-translation. Then, the following are
equivalent:

(i) τ defines truth inM∗(I );
(ii) τ defines truth inLM∗(I );
(iii) LA∗(I ) is a τ-algebraic system semantics forI and, for every subclassK

of N-algebraic systems inA∗(I ), that is aτ-algebraic system semantics for
I , τ defines truth in

⋃
〈SEN′,〈F,α〉〉∈KM

∗
〈F,α〉(I ).

Proof:
(i)→(ii) SinceLM∗(I )⊆M∗(I ), this implication is trivial.

(ii)→(iii) Since τ defines truth inLM∗(I ), by Corollary21, the classLA∗(I ) is aτ-
algebraic system semantics forI . Hence, there exists at least one subclass
of A∗(I ) that is aτ-algebraic system semantics forI . Let K be such a
subclass. Consider anN-algebraic system〈SEN′,〈F,α〉〉 ∈K. Sinceτ defines
truth in LM∗(I ) and 〈F,α〉 is surjective, by Lemma24, Part (1),τ also
defines truth inM∗

〈F,α〉(I ).

(iii)→(i) The hypothesis implies thatτ defines truth inLM∗(I ). Let〈F,α〉 : SEN→SEN′

be a surjective(N,N′)-epimorphic translation. Consider the kernelN-
congruence system̃Ω := Ker(〈F,α〉) on SEN together with the associated

natural projection(N,NΩ̃)-epimorphic translation〈ISign,π Ω̃〉 : SEN→SEN/Ω̃
(see [64]). Then, there exists an(NΩ̃,N′)-epimorphic translation〈F,α∗〉 :
SEN/Ω̃ → SEN′ that makes the following triangle commute:

SEN/Ω̃ SEN′✲
〈F,α∗〉

SEN

〈ISign,π Ω̃〉
�

�
�

�✠

〈F,α〉
❅
❅
❅
❅❘

By hypothesis,τ defines truth inM∗

〈ISign,πΩ̃〉
(I ). Since〈F,α∗〉 is surjective,

by Lemma24, τ also defines truth inM∗
〈F,α〉(I ). Thus,τ defines truth in

M∗(I ) =
⋃

〈F,α〉M
∗
〈F,α〉(I ).

�

Proposition16and Theorem25have the following consequence.

Corollary 26 LetI = 〈Sign,SEN,C〉 be aπ-institution, with N a category of nat-
ural transformations onSEN, andτ an N-translation. Ifτ defines truth inLM∗(I ),
then each ofLA∗(I ),A∗(I ) andASu(I ) is a τ-algebraic system semantics forI .

6 Truth-Equational π-Institutions

A π-institutionI = 〈Sign,SEN,C〉, with N a category of natural transformations on
SEN, will be calledN-truth-equational if truth is equationally definable by anN-
translation in the classLM∗(I ). Any N-translationτ that defines truth inLM∗(I )
is said towitnesstheN-truth equationality ofI .

By Proposition16, if I is N-truth equational, then truth is also equationally de-
finable inMSu(I ) and, hence, also inM∗(I ) andLMSu(I ). In contrast, Raftery
shows in Example 1 of [44] that, for a deductive systemS , equational definability of
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truth inLModSu
S does not imply equational definability of truth in any of the other

matrix semantics forS . His result carries over to the context ofπ-institutions to
the effect that equational definability of truth inLMSu(I ) does not entail equational
definability of truth in any of the other matrix system model classes.

Theorem 27 of [44] asserts the truth-equationality of a deductive systemS whose
Leibniz operator is completely order reflecting on the lattice of theories ofS . We at-
tempt to provide a generalization of this result in the categorical level. Unfortunately,
we are forced to impose a rather stringent condition on theπ-institution under con-
sideration in order to establish such an analog. We show thatit holds for what we
call N-Suszko termπ-institutions, a subclass of the class of termπ-institutions con-
sidered in [46]. It is conjectured that this result does not hold in generalfor arbitrary
π-institutions.

Recall from [46] (see, also, [28, 26, 66] for generalizations) that, given a category
Signand a sentence functor SEN :Sign→ Set, SEN is said to beterm if there exists
V ∈ |Sign| andv∈ SEN(V), such that

• for all Σ ∈ |Sign| and allφ ∈ SEN(Σ), there existsf〈Σ,φ〉 : V → Σ, such that
SEN( f〈Σ,φ〉)(v) = φ , and

• for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′), f ◦ f〈Σ,φ〉 = f〈Σ′,SEN( f )(φ)〉, for all
φ ∈ SEN(Σ).

The pair 〈V,v〉 is called a source signature-variable pair. A π-institution
I = 〈Sign,SEN,C〉, with SEN a term sentence functor is called aterm π-
institution .

Assume, next thatI = 〈Sign,SEN,C〉 is a termπ-institution, withN a category

of natural transformations on SEN. LetZ = Thm[〈V,v〉] = {Thm[〈V,v〉]
Σ }Σ∈|Sign|, with

Thm[〈V,v〉]
Σ =

{
CV(v), if Σ =V
CΣ( /0), if Σ 6=V

.

Consider the SuszkoN-congruence system̃ΩN(Z) and defineτ : SEN→ SEN2, by
setting, for allΣ ∈ |Sign| and allφ ∈ SEN(Σ),

τΣ(φ) = SEN2( f〈Σ,φ〉)(Ω̃N
V (Z)). (8)

It is not difficult to see thatτ : SEN→ SEN2 is a natural transformation. We have,
for all Σ,Σ′ ∈ |Sign|, all f ∈ Sign(Σ,Σ′) and allφ ∈ SEN(Σ),

SEN(Σ′) SEN2(Σ′)✲
τΣ′

SEN(Σ) SEN2(Σ)✲τΣ

❄

SEN( f )

❄

SEN2( f )

SEN2( f )(τΣ(φ)) = SEN2( f )(SEN2( f〈Σ,φ〉)
2(Ω̃N

V (Z)))
= SEN2( f〈Σ′ ,SEN( f )(φ)〉)(Ω̃N

V (Z))
= τΣ′(SEN( f )(φ)).

Therefore, there exists a set of pairs〈δ ,ε〉 of natural transformationsδ i ,ε i :
SEN→ SEN, i ∈ I , such thatτ = {〈δ i ,ε i〉 : i ∈ I}. The natural transformations



24 G. Voutsadakis

δ i ,ε i : SEN→ SEN may not necessarily be inN. Nor is it necessarily the case that,
for all Σ,Σ′ ∈ |Sign|, all φ ∈ SEN(Σ) and all f ∈ Sign(Σ,Σ′),

Ω̃N
Σ′(Thm〈Σ,φ〉) = SEN2( f〈Σ′,SEN( f )(φ)〉)(Ω̃N

V (Z)),

where Thm〈Σ,φ〉 denotes the theory system ofI generated by〈Σ,φ〉 as in Section 3
of [58]. If these two conditions hold for theπ-institutionI = 〈Sign,SEN,C〉, for
some source signature-variable pair〈V,v〉, we callI anN-Suszko termπ-institution
(with respect to the source signature-variable pair〈V,v〉). In other words, a termπ-
institutionI = 〈Sign,SEN,C〉, with a source signature-variable pair〈V,v〉 and with
N a category of natural transformations on SEN, isN-Suszko term with respect to
〈V,v〉 if, for all Σ ∈ |Sign| and allφ ∈ SEN(Σ),

1. the natural transformationτ , defined, starting from〈V,v〉, by

τΣ(φ) = SEN2( f〈Σ,φ〉)(Ω̃N
V (Z))

consists of a set of pairs of unary natural transformations in N; and
2. Ω̃N

Σ′(Thm〈Σ,φ〉) = SEN2( f〈Σ′ ,SEN( f )(φ)〉)(Ω̃N
V (Z)) = τΣ′(SEN( f )(φ)), for all

Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′).

ForN-Suszko termπ-institutions, we are able to prove the following theorem, which
is an analog of one of the main theorems, Theorem 27, of [44]. It provides a key in-
gredient in the characterization of the property of truth equationality of anN-Suszko
termπ-institution in terms of the complete order reflexivity of the Leibniz operator
on the theory families of theπ-institution.

Theorem 27 Let Sign be a category,SEN :Sign→ Seta term sentence functor,
with source signature-variable pair〈V,v〉, and N a category of natural transforma-
tions onSEN. If I = 〈Sign,SEN,C〉 is N-Suszko term with respect to〈V,v〉 and the
N-Leibniz operator ofI is completely order reflecting onThFam(I ), thenI is
N-truth-equational.

Proof:
For allΣ ∈ |Sign| and allφ ∈ SEN(Σ), let, as before,

τΣ(φ) = SEN2( f〈Σ,φ〉)(Ω̃N
V (Z)),

whereZ = Thm[〈V,v〉]. SinceI is N-Suszko term with respect to〈V,v〉, τ is anN-
translation. It suffices to show thatτ defines truth inLM∗(I ). By Proposition22, it
suffices to show that, for allT ∈ ThFam(I ), all Σ ∈ |Sign| and allφ ∈ SEN(Σ),

(∀ f ∈ Sign(Σ,Σ′))(SEN( f )(φ) ∈ TΣ′) iff τΣ(φ)⊆ ΩN
Σ (T).

For the implication from left-to-right, we have, for allΣ ∈ |Sign| and allφ ∈SEN(Σ),
such that SEN( f )(φ) ∈ TΣ′ , for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′),

τΣ(φ) = SEN2( f〈Σ,φ〉)(Ω̃N
V (Z))

= Ω̃N
Σ (Thm〈Σ,φ〉) (sinceI is N-Suszko term)

⊆ Ω̃N
Σ (T) (by the monotonicity of theN-Suszko operator)

⊆ ΩN
Σ (T).
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For the reverse implication, assume thatT ∈ThFam(I ), Σ∈ |Sign| andφ ∈SEN(Σ),
such thatτΣ(φ) ⊆ ΩN

Σ (T). Then, for allΣ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′), we have

Ω̃N
Σ′(Thm〈Σ,φ〉) = τΣ′(SEN( f )(φ)) (sinceI is N-Suszko term)

= SEN2( f )(τΣ(φ))
⊆ SEN2( f )(ΩN

Σ (T))
⊆ ΩN

Σ′(T).

Since this holds for allΣ′ ∈ |Sign|, we have that̃ΩN(Thm〈Σ,φ〉) ≤ ΩN(T). Thus,
by the complete order reflexivity of theN-Leibniz operator ofI , we get that
Thm〈Σ,φ〉 ≤ T, and, therefore, SEN( f )(φ) ∈ TΣ′ , for all Σ′ ∈ |Sign| and all
f ∈ Sign(Σ,Σ′), as was to be shown. �

Theorem 28 LetI = 〈Sign,SEN,C〉 be aπ-institution and N a category of nat-
ural transformations onSEN. Consider the following conditions:

(i) I is N-truth-equational;
(ii) Truth is N-equationally definable inMSu(I );
(iii) The N-Suszko operator ofI is globally injective;
(iv) For every surjective(N,N′)-epimorphic translation〈F,α〉 : SEN→ SEN′

and every theory family T∈ ThFam(I 〈F,α〉), the least theory family of

I 〈F,πΩ̃N′
(T)

F α〉 is T/Ω̃N′
(T);

(v) The N-Leibniz operator ofI is globally completely order reflecting;
(vi) The N-Leibniz operator ofI is completely order reflecting on the collection

ThFam(I );

We have, in general, that(i)↔ (ii)→ (iii )↔ (iv)↔ (v)→ (vi). Moreover, ifI is
N-Suszko term, then all six conditions are equivalent.

Proof:
We have that (i)↔(ii) holds by Theorem25 and Proposition16. The implication

(ii)→(iii) follows from Proposition15. The equivalence (iii)↔(iv) is the content of
Theorem9, whereas the equivalence (iii)↔(v) is the content of Theorem13. The
implication (v)→(vi) is trivial. Theorem27gives the implication (vi)→(i) under the
additional hypothesis thatI is N-Suszko term. �

It is worth noting that Raftery in Example 2 of [44] furnishes a finitary deductive
system with an elementary class of Leibniz-reduced matrix models, having an alge-
braic semantics with respect to a finite translation, whose Leibniz operator is globally
injective, but which is not truth-equational. Thus, globalinjectivity of the Leibniz
operator together with possessing an algebraic semantics does not guarantee truth-
equationality. Moreover, in Example 3 of [44], it is shown that global injectivity
of the Leibniz operator does not entail the existence of an algebraic semantics even
for deductive systems that are finitary and possess an elementary class of Leibniz-
reduced matrix models.
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