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Preliminaries Basics

Subsection 1

Basics
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Preliminaries Basics

Set Theory

A set is a collection of objects.
The symbols ∩,∪,∈ denote, as usual, the intersection and union

operations and the membership relation.
Based on the Axiom of Comprehension, one can use the notation

B = {a ∈ A : . . . (conditions on a) . . .}

for subsets of a given set A satisfying the listed conditions.
The order or cardinality of a set A is denoted by |A|. If A is a finite
set, the order of A is simply the number of elements of A.
B ⊆ A means that B is a subset of A and B ⊂ A (or, for emphasis,
B ( A) means that B is a proper subset of A.
To show that B ⊆ A, it must be shown that every element of B is
also an element of A.
The Cartesian product of two sets A and B is the collection
A× B = {(a, b) : a ∈ A, b ∈ B}, of ordered pairs of elements from A

and B .
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Preliminaries Basics

Notation for Common Sets of Numbers

(1) Z = {0,±1,±2,±3, . . .} denotes the integers.

(2) Q = { a
b
: a, b ∈ Z, b 6= 0} denotes the rational numbers (or

rationals).

(3) R = {all decimal expansions ±d1d2 . . . dn.a1a2a3 . . .} denotes the
real numbers (or reals).

(4) C = {a + bi : a, b ∈ R, i2 = −1} denotes the complex numbers.

(5) Z+,Q+ and R+ will denote the positive (nonzero) elements in Z, Q
and R, respectively.
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Preliminaries Basics

Functions, Domains and Codomains

We use the notation f : A → B or A
f
→ B to denote a function, or a

map, f from A to B .

The value of f at a is denoted f (a).

The set A is called the domain of f and B is called the codomain of
f .

The notation f : a 7→ b, a
f
7→ b, or a 7→ b, if f is understood, indicates

that f (a) = b, i.e., the function is being specified on elements.

If the function f is not specified on elements, it is important in general
to check that f is well defined, i.e., is unambiguously determined.

Example: If the set A is the union of two subsets A1 and A2, then one
can try to specify a function from A to the set {0, 1} by declaring
that f is to map everything in A1 to 0 and is to map everything in A2

to 1. This unambiguously defines f unless A1 and A2 have elements
in common. Checking that this f is well defined, therefore, amounts
to checking that A1 and A2 have empty intersection.
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Preliminaries Basics

Image, Pre-Image and Fibers

Let f : A → B be a function.

The set f (A) = {b ∈ B : b = f (a), for some a ∈ A} is a subset of B,
called the range or image of f (or the image of A under f ).
For each subset C of B the set f −1(C ) = {a ∈ A : f (a) ∈ C},
consisting of the elements of A mapping into C under f , is called the
preimage or inverse image of C under f .

For each b ∈ B , the preimage of {b} under
f is called the fiber of f over b.
f −1 is not in general a function. The
fibers of f generally contain many ele-
ments, since there may be many elements
of A mapping to the element b.
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Preliminaries Basics

Composition, Injectivity and Surjectivity

If f : A → B and g : B → C , then the composite map g ◦ f : A → C

is defined by (g ◦ f )(a) = g(f (a)).

Let f : A → B .
(1) f is injective or is an injection if a1 6= a2 implies f (a1) 6= f (a2).
(2) f is surjective or is a surjection if, for all b ∈ B, there is some a ∈ A,

such that f (a) = b, i.e., the image of f is all of B.
Since a function always maps onto its range (by definition) it is
necessary to specify the codomain B in order for the question of
surjectivity to be meaningful.

(3) f is bijective or is a bijection if it is both injective and surjective.
If such a bijection f exists from A to B, we say A and B are in
bijective correspondence.

(4) f has a left inverse if there is a function g : B → A, such that
g ◦ f : A → A is the identity map on A, i.e., (g ◦ f )(a) = a, for all
a ∈ A.

(5) f has a right inverse if there is a function h : B → A, such that
f ◦ h : B → B is the identity map on B.
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Preliminaries Basics

Injectivity/Surjectivity and Left/Right Inverses

Proposition

Let f : A → B .
(1) The map f is injective if and only if f has a left inverse.

(2) The map f is surjective if and only if f has a right inverse.

(3) The map f is a bijection if and only if there exists g : B → A such
that f ◦ g is the identity map on B and g ◦ f is the identity map on A.

(1) (⇒): Suppose f is injective. Then, for every b in the range of f ,
there exists a unique ab ∈ A, such that f (ab) = b. Define g : B → A

by g(b) = ab, if b in the range of A, and g(b) arbitrary, otherwise.
Then, for all a ∈ A, g(f (a)) = a, i.e., g is a left inverse of f .

(⇐): Suppose that f has a left inverse g : B → A. Then, if a1 6= a2
are in A, we have g(f (a1)) 6= g(f (a2)), whence, f (a1) 6= f (a2). So f

is injective.
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Preliminaries Basics

Injectivity/Surjectivity and Left/Right Inverses (Cont’d)

(2) (⇒): Suppose f is surjective. Then, for every b ∈ B , there exists
a ∈ A, such that f (a) = b. For each b ∈ B , pick such an ab ∈ A and
define h : B → A by h(b) = ab, for all b ∈ B . Then, for all a ∈ A,
(f ◦ h)(b) = f (h(b)) = f (ab) = b, i.e., h is a right inverse of f .

(⇐): Suppose that f has a right inverse h : B → A. Then, if b ∈ B ,
we have h(b) ∈ A, and f (h(b)) = (f ◦ h)(b) = b. So f is surjective.

(3) f is a bijection iff it is an injection and a surjection iff f has a left
inverse g and a right inverse h. In the latter case, for all b ∈ B ,
g(b) = g((f ◦ h)(b)) = (g ◦ f )(h(b)) = h(b), i.e., g = h.
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Preliminaries Basics

Equipotency and Bijectivity

Proposition

Let f : A → B . If A and B are finite sets with the same number of
elements (i.e., |A| = |B |), then f : A → B is bijective if and only if f is
injective if and only if f is surjective.

It suffices to show that, if A and B are finite sets, such that
|A| = |B |, then f : A → B is injective if and only if it is surjective.

If f is injective, then |A| = |f (A)|. If f is not surjective, then
|f (A)| < |B|. Therefore, |A| = |f (A)| < |B|, which contradicts the fact
that |A| = |B|. Thus, f must be surjective.
If f is surjective, then |f (A)| = |B|. If f is not injective, then
|A| > |f (A)|. Thus, |A| > |f (A)| = |B|, which contradicts |A| = |B|.
Therefore, f must be injective.
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Preliminaries Basics

Permutations, Restrictions and Extensions

If f : A → B is a bijection, the map g , which is both a left and right
inverse of f , is necessarily unique and is called the 2-sided inverse

(or simply the inverse) of f .

A permutation of a set A is simply a bijection from A to itself.

If A ⊆ B and f : B → C , we denote the restriction of f to A by f |A
When the domain we are considering is understood we may denote
f |A again simply as f even though these are formally different
functions (their domains are different).

If A ⊆ B and g : A → C and there is a function f : B → C such that
f |A = g , we shall say f is an extension of g to B (such a map f

need not exist nor be unique).
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Preliminaries Basics

Equivalence Relations and Partitions

Let A be a nonempty set.
(1) A binary relation on A is a subset R of A× A and we write a ∼ b if

(a, b) ∈ R .
(2) The relation ∼ on A is said to be:

(a) reflexive if a ∼ a, for all a ∈ A;
(b) symmetric if a ∼ b implies b ∼ a, for all a, b ∈ A;
(c) transitive if a ∼ b and b ∼ c imply a ∼ c, for all a, b, c ∈ A.

A relation is an equivalence relation if it is reflexive, symmetric and
transitive.

(3) If ∼ defines an equivalence relation on A, then the equivalence class

of a ∈ A is defined to be {x ∈ A : x ∼ a}. Elements of the equivalence
class of a are said to be equivalent to a. If C is an equivalence class,
any element of C is called a representative of the class C .

(4) A partition of A is any collection {Ai : i ∈ I} of nonempty subsets of
A (I some indexing set) such that:
(a) A =

⋃
i∈I

Ai ;
(b) Ai ∩ Aj = ∅, for all i , j ∈ I , with i 6= j ,

i.e., A is the disjoint union of the sets in the partition.
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Preliminaries Basics

Equivalence of Equivalence Relations and Partitions

Proposition

Let A be a nonempty set.

(1) If ∼ defines an equivalence relation on A then the set of equivalence
classes of ∼ form a partition of A.

(2) If {Ai : i ∈ I} is a partition of A, then there is an equivalence relation
∼ on A, defined, for all a, b ∈ A, by

a ∼ b iff a, b ∈ Ai , for some i ∈ I ,

whose equivalence classes are precisely the sets Ai , i ∈ I .

(1) For each a ∈ A, a ∼ a by reflexivity. So a ∈ [a] := {x ∈ A : x ∼ a}.
Thus, [a] 6= ∅.
We show that, if [a] 6= [b], then [a] ∩ [b] = ∅. Suppose, by
contraposition, that x ∈ [a] ∩ [b]. Then x ∼ a and x ∼ b. By
commutativity, a ∼ x and x ∼ b. By transitivity, a ∼ b.
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Preliminaries Basics

Equivalence Relations and Partitions (Cont’d)

Now consider y ∈ [a]. Then y ∼ a. By transitivity, y ∼ b, i.e.,
y ∈ [b]. This proves [a] ⊆ [b]. By symmetry, [b] ⊆ [a]. Thus,
[a] = [b].
If a ∈ A, then a ∈ [a]. Hence, A =

⋃
a∈A[a].

(2) We show that ∼ as defined in Part (2) is an equivalence relation:

(a) a is in the same part of the partition with itself. So a ∼ a.
(b) Suppose a ∼ b. Then a, b ∈ Ai , for some i . Thus, b, a ∈ Ai . This

shows that b ∼ a.
(c) Suppose that a ∼ b and b ∼ c . Then, for some i , a, b ∈ Ai and for

some j , b, c ∈ Aj . But then b ∈ Ai ∩ Aj and we know that Ai ∩ Aj = ∅
unless i = j . Thus, i = j and a, c ∈ Ai . This yields a ∼ c .
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Preliminaries Basics

Proving an Equation by Induction

Proposition

Let n be a positive integer. Then 20 + 21 + · · · + 2n−1 = 2n − 1.

We prove this by induction on n.

For n = 1, 20 = 21 − 1 holds.
Suppose the result is true for n = k , i.e., assume
20 + 21 + · · ·+ 2k−1 = 2k − 1.
We must show that the equation is true for n = k + 1, i.e., that
20 + 21 + · · ·+ 2k−1 + 2k = 2k+1 − 1.

20 + 21 + · · ·+ 2k−1 + 2k = 2k − 1 + 2k

= 2 · 2k − 1
= 2k+1 − 1.

Thus, the proposition is true for all positive integers.
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Preliminaries Basics

Proving an Inequality by Induction

Proposition

Let n be a natural number. Then 100 + 101 + · · ·+ 10n < 10n+1.

We prove this by induction on n.

For n = 0, 100 < 101 holds.
Suppose the result is true for n = k , i.e., assume
100 + 101 + · · ·+ 10k < 10k+1.
We must show that the equation is true for n = k + 1, i.e., that
100 + 101 + · · ·+ 10k + 10k+1 < 10k+2.

100 + 101 + · · ·+ 10k + 10k+1 < 10k+1 + 10k+1

= 2 · 10k+1

< 10 · 10k+1

= 10k+2.

Thus, the proposition is true for all positive integers.
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Preliminaries Basics

Proving a Divisibility Relation by Induction

Proposition

Let n be a natural number. Then 4n − 1 is divisible by 3.

We prove this by induction on n.

For n = 0, 40 − 1 is divisible by 3.
Suppose the result is true for n = k , i.e., 3 | (4k − 1). This means that
4k − 1 = 3a for some integer a.
We must show that the statement is true for n = k + 1, i.e., that
3 | (4k+1 − 1).

4k+1 − 1 = 4 · 4k − 1
= 4(4k − 1) + 3
= 4 · 3a+ 3
= 3(4a+ 1).

Thus, the proposition is true for all natural numbers.
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Subsection 2

Properties of the Integers
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Preliminaries Properties of the Integers

Well-Ordering and Divisibility

We use the following properties of the integers Z:
(1) Well Ordering of Z+: If A is any non empty subset of Z+, there is

some element m ∈ A such that m ≤ a, for all a ∈ A, called a minimal

element of A.
(2) If a, b ∈ Z, with a 6= 0, we say a divides b if there is an element

c ∈ Z, such that b = ac . In this case we write a | b. If a does not
divide b we write a ∤ b.

(3) If a, b ∈ Z− {0}, there is a unique positive integer d , called the
greatest common divisor of a and b or g.c.d. of a and b, satisfying:
(a) d | a and d | b, i.e., d is a common divisor of a and b;
(b) if e | a and e | b, then e | d , i.e., d is the greatest such divisor.

The g.c.d. of a and b will be denoted by (a, b).
If (a, b) = 1, we say that a and b are relatively prime.

(4) If a, b ∈ Z− {0}, there is a unique positive integer ℓ, called the least
common multiple of a and b or l.c.m. of a and b, satisfying:
(a) a | ℓ and b | ℓ, i.e., ℓ is a common multiple of a and b;
(b) if a | m and b | m, then ℓ | m, i.e., ℓ is the least such multiple.

The connection between d and ℓ is given by dℓ = ab.
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Preliminaries Properties of the Integers

The Division and the Euclidean Algorithms

We continue with properties of the integers:
(5) The Division Algorithm: If a, b ∈ Z− {0}, then there exist unique

q, r ∈ Z, such that
a = qb + r and 0 ≤ r < |b|,

where q is the quotient and r the remainder. This is the usual “long
division” familiar from elementary arithmetic.

(6) The Euclidean Algorithm is an important procedure which produces
a greatest common divisor of two integers a and b by iterating the
Division Algorithm: If a, b ∈ Z− {0}, then we obtain a sequence of
quotients and remainders:

a = q0b + r0
...

b = q1r0 + r1 rn−2 = qnrn−1 + rn
r0 = q2r1 + r2 rn−1 = qn+1rn,

where rn is the last nonzero remainder. Such an rn exists since
|b| > |r0| > |r1| > · · · > |rn| is a decreasing sequence of strictly positive
integers if the remainders are nonzero and such a sequence cannot
continue indefinitely. Then rn is the g.c.d. (a, b) of a and b.
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Preliminaries Properties of the Integers

Applying the Euclidean Algorithm

Suppose a = 57970 and b = 10353. Applying the Euclidean
Algorithm we obtain:

57970 = (5)10353 + 6205
10353 = (1)6205 + 4148
6205 = (1)4148 + 2057
4148 = (2)2057 + 34
2057 = (60)34 + 17

34 = (2)17 + 0.

which shows that
(57970, 10353) = 17.
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Preliminaries Properties of the Integers

The GCD as a Z-Linear Combination

We continue with properties of the integers:
(7) One consequence of the Euclidean Algorithm is the following:

If a, b ∈ Z−{0}, then there exist x , y ∈ Z, such that (a, b) = ax + by ,
i.e., the g.c.d. of a and b is a Z-linear combination of a and b.
This follows by recursively writing the element rn in the Euclidean
Algorithm in terms of the previous remainders: Use the last equation to
solve for rn = rn−2 − qnrn−1 in terms of the remainders rn−1 and rn−2.
Then use the preceding equation to write rn in terms of the remainders
rn−2 and rn−3, etc., eventually writing rn in terms of a and b.

Example: Suppose a = 28 and b = 6. The Euclidean algorithm gives:

28 = (4)6 + 4, 6 = (1)4 + 2, 4 = (2)2 + 0.

Thus, we find: 2 = 6− (1)4
= 6− (1)(28 − (4)6)
= 6− 28 + (4)6
= − 28 + 5 · 6.
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Preliminaries Properties of the Integers

Primes and the Fundamental Theorem of Arithmetic

We continue with properties of the integers:

(8) An element p of Z+ is called a prime if p > 1 and the only positive
divisors of p are 1 and p.
An integer n > 1 which is not prime is called composite.
An important property of primes is that, if p is a prime and p | ab, for
some a, b ∈ Z, then p | a or p | b.

(9) The Fundamental Theorem of Arithmetic: If n ∈ Z, n > 1, then n

can be factored uniquely into the product of primes, i.e., there are
distinct primes p1, p2, . . . , ps and positive integers α1, α2, . . . , αs , such
that

n = pα1
1 pα2

2 · · · pαs
s .

This factorization is unique in the sense that, if q1, q2, . . . , qt are any
distinct primes and β1, β2, . . . , βt positive integers such that
n = q

β1

1 q
β2

2 · · · qβt

t , then s = t and, if we arrange the two sets of primes
in increasing order, then qi = pi and αi = βi , for all 1 ≤ i ≤ s.
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Using the Fundamental Theorem to Find GCDs and LCMs

Suppose the positive integers a and b are expressed as products of
prime powers:

a = pα1
1 pα2

2 · · · pαs
s and b = p

β1
1 p

β2
2 · · · pβs

s ,

where p1, p2, . . . , ps are distinct and the exponents are ≥ 0 (the
exponents here are allowed to be 0 so that the products are taken over
the same set of primes - the exponent will be 0 if that prime is not
actually a divisor). Then the greatest common divisor of a and b is

(a, b) = p
min {α1,β1}
1 p

min {α2,β2}
2 · · · p

min {αs ,βs}
s .

The least common multiple is obtained by taking the maximum of
the αi and βi instead of the minimum.

Example: If a = 57970 = 2 · 5 · 11 · 17 · 31 and
b = 10353 = 3 · 7 · 17 · 29, we get greatest common divisor 17.
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The Euler ϕ-Function

One more property of the integers:
(10) The Euler ϕ-function is defined as follows: For n ∈ Z+, let ϕ(n) be

the number of positive integers a ≤ n with a relatively prime to n, i.e.,
(a, n) = 1.

Example: ϕ(12) = 4, since 1, 5, 7 and 11 are the only positive
integers less than or equal to 12 which have no factors in common
with 12. Similarly, ϕ(1) = 1, ϕ(2) = 1, ϕ(3) = 2, ϕ(4) = 2,
ϕ(5) = 4, ϕ(6) = 2.

For primes p, ϕ(p) = p − 1.
For all a ≥ 1, we have the formula ϕ(pa) = pa − pa−1 = pa−1(p − 1).
The function ϕ is multiplicative, in the sense that ϕ(ab) = ϕ(a)ϕ(b)
if (a, b) = 1 (it is important that a and b be relatively prime).
Multiplicativity, together with the formula above, gives a general
formula for the values of ϕ:
If n = pα1

1 pα2
2 · · · pαs

s , then ϕ(n) = ϕ(pα1
1 )ϕ(pα2

2 ) · · ·ϕ(pαs
s ) =

pα1−1
1 (p1 − 1)pα2−1

2 (p2 − 1) · · · pαs−1
s (ps − 1).

Example: ϕ(12) = ϕ(22)ϕ(3) = 21(2− 1)30(3− 1) = 4.
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Subsection 3

Z/nZ: The Integers Modulo n
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Preliminaries Z/nZ: The Integers Modulo n

Congruence Modulo n

Let n be a fixed positive integer. Define a relation on Z by a ∼ b if
and only if n | (b − a).

Clearly a ∼ a. So ∼ is reflexive.
a ∼ b implies b ∼ a for any integers a and b, so ∼ is symmetric.
If a ∼ b and b ∼ c , then n divides a− b and n divides b − c , so n also
divides their sum, i.e., n divides (a− b) + (b − c) = a− c , so a ∼ c

and the relation is transitive.
Hence, ∼ is an equivalence relation.

Write a ≡ b (mod n) and say a is congruent to b mod n if a ∼ b.
For k ∈ Z, we shall denote the equivalence class of a by a. It is called
the congruence class or residue class of a mod n and consists of
the integers which differ from a by an integral multiple of n, i.e.,
a = {a + kn : k ∈ Z} = {a, a ± n, a± 2n, a ± 3n, . . .}.
There are n distinct equivalence classes mod n, namely 0, 1, 2, . . . ,
n − 1 determined by the possible remainders after division by n.
The set of equivalence classes under this equivalence relation will be
denoted by Z/nZ and called the integers modulo n.
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Preliminaries Z/nZ: The Integers Modulo n

Addition and Multiplication Modulo n

For different n’s the equivalence relation and equivalence classes are
different. So before using the bar notation, care is needed to fix n.

The process of finding the equivalence class mod n of some integer a
is often referred to as reducing a mod n.

In Z/nZ, one can define an addition and a multiplication: For
a, b ∈ Z/nZ, define their sum and product by

a + b = a + b and a · b = a · b.

That is, to compute the sum or the product of a and b in Z/nZ:
take representatives a in a and b in b;
add or multiply the integers a and b as usual in Z;
take the equivalence class containing the result.

For this process to be valid we must show that the operations are well
defined, i.e., do not depend on the choice of representatives taken for
the elements a and b of Z/nZ.
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Preliminaries Z/nZ: The Integers Modulo n

Example of Modular Arithmetic

Let us fix n = 12 and consider Z/12Z, which consists of the twelve
residue classes 0, 1, 2, . . . , 11, determined by the twelve possible
remainders of an integer after division by 12.

The elements in the residue class 5 are the integers which leave a
remainder of 5 when divided by 12. Any such integer, such as
5, 17, 29, . . . or −7,−19, . . ., can serve as a representative for 5.

Z/12Z consists of the twelve elements above (each of which consists
of an infinite number of usual integers).

Suppose now that a = 5 and b = 8. The most obvious representatives
for a and b are the integers 5 and 8, respectively. But 17 and −28 are
also representatives of a and b, respectively.

5 + 8 = 13 = 1, since 13 and 1 lie in the same class modulo n = 12.
5 + 8 = 17− 28 = −11 = 1.

The result does not depend on the choice of representatives.
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Preliminaries Z/nZ: The Integers Modulo n

Modular Addition and Multiplication are Well-Defined

Theorem

The operations of addition and multiplication on Z/nZ are well defined,
i.e., they do not depend on the choices of representatives for the classes
involved. More precisely, if a1, a2 ∈ Z and b1, b2 ∈ Z, with a1 = b1 and
a2 = b2, then a1 + a2 = b1 + b2 and a1a2 = b1b2, i.e., if a1 ≡ b1 (mod n)
and a2 ≡ b2 (mod n), then a1 + a2 ≡ b1 + b2 (mod n) and a1a2 ≡ b1b2
(mod n).

Suppose a1 = b1 (mod n), i.e., a1 − b1 is divisible by n. Then
a1 = b1 + sn, for some integer s. Similarly, a2 ≡ b2 (mod n) means
a2 = b2 + tn, for some integer t. Then a1 + a2 = (b1 + b2)+ (s + t)n,
so that a1 + a2 ≡ b1 + b2 (mod n), which shows that the sum of the
residue classes is independent of the representatives chosen.

Similarly, a1a2 = (b1 + sn)(b2 + tn) = b1b2 + (b1t + b2s + stn)n,
showing that a1a2 ≡ b1b2 (mod n). Thus, the product of the residue
classes is also independent of the representatives chosen.
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Suppressing the Class Notation

The notion of adding equivalence classes is familiar in the context of
adding rational numbers: Each rational number a

b
is really a class of

expressions: a
b
= 2a

2b = −3a
−3b etc. and we often change representatives

(for instance, take common denominators) in order to add two
fractions. E.g., 1

2 +
1
3 is computed by taking instead the equivalent

representatives 3
6 for 1

2 and 2
6 for 1

3 to obtain 1
2 + 1

3 = 3
6 + 2

6 = 5
6 .

The notion of modular arithmetic is also familiar: to find the hour of
day after adding or subtracting some number of hours we reduce mod
12 and find the least residue.

It is convenient to think of the equivalence classes of some equivalence
relation as elements which can be manipulated rather than as sets.

Thus, we frequently denote the elements of Z/nZ simply by {0, 1,
. . . , n − 1} where addition and multiplication are reduced mod n.
Nevertheless, the elements of Z/nZ are not integers, but rather
collections of usual integers, and the arithmetic is quite different. For
example, 5 + 8 6= 1 in Z as it is in Z/12Z.
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Application of Modular Arithmetic

We apply arithmetic in Z/nZ to compute the last two digits in the
number 21000.

First observe that the last two digits give the remainder of 21000 after
we divide by 100, so we are interested in the residue class mod 100
containing 21000. We compute:

210 = 1024 ≡ 24 (mod 100),
220 = (210)2 = 242 = 576 ≡ 76 (mod 100),
240 = (220)2 = 762 = 5776 ≡ 76 (mod 100),
280 ≡ 2160 ≡ 2320 ≡ 2640 ≡ 76 (mod 100).

Finally, 21000 = 26402320240 ≡ 76 · 76 · 76 ≡ 76 (mod 100).

So the final two digits of 21000 are 76.
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Multiplicative Inverses in Z/nZ

An important subset of Z/nZ consists of the collection of residue
classes which have a multiplicative inverse in Z/nZ:

(Z/nZ)× = {a ∈ Z/nZ : there exists c ∈ Z/nZ, with a · c = 1}.

(Z/nZ)× is also the collection of residue classes whose representatives
are relatively prime to n, which proves the following proposition:

Proposition

(Z/nZ)× = {a ∈ Z/nZ : (a, n) = 1}.

Note, if any representative of a is relatively prime to n, then all
representatives are relatively prime to n, so that the set on the right
in the proposition is well defined.

Example: For n = 9 we obtain (Z/9Z)× = {1, 2, 4, 5, 7, 8} from the
proposition. The multiplicative inverses of these are {1, 5, 7, 2, 4, 8},
respectively.
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Computing Multiplicative Inverses in Z/nZ

If a is an integer relatively prime to n, then the Euclidean Algorithm
produces integers x and y , satisfying ax + ny = 1. Hence ax ≡ 1
(mod n), so that x is the multiplicative inverse of a in Z/nZ. This
gives an efficient method for computing multiplicative inverses in
Z/nZ.

Example: Suppose n = 60 and a = 17. Applying the Euclidean
Algorithm we obtain

60 = (3)17 + 9, 17 = (1)9 + 8, 9 = (1)8 + 1.

So a and n are relatively prime. Moreover,
1 = 9−8 = 9−(17−9) = 2·9−17 = 2(60−3·17)−17 = 2·60−7·17.
Hence −7 = 53 is the multiplicative inverse of 17 in Z/60Z.
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