Abstract Algebra I

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 341

(1) Preliminaries

- Basics
- Properties of the Integers
- $\mathbb{Z} / n \mathbb{Z}$: The Integers Modulo n

Subsection 1

Basics

Set Theory

- A set is a collection of objects.
- The symbols \cap, \cup, \in denote, as usual, the intersection and union operations and the membership relation.
- Based on the Axiom of Comprehension, one can use the notation

$$
B=\{a \in A: \ldots(\text { conditions on } a) \ldots\}
$$

for subsets of a given set A satisfying the listed conditions.

- The order or cardinality of a set A is denoted by $|A|$. If A is a finite set, the order of A is simply the number of elements of A.
- $B \subseteq A$ means that B is a subset of A and $B \subset A$ (or, for emphasis, $B \subsetneq A$) means that B is a proper subset of A.
To show that $B \subseteq A$, it must be shown that every element of B is also an element of A.
- The Cartesian product of two sets A and B is the collection $A \times B=\{(a, b): a \in A, b \in B\}$, of ordered pairs of elements from A and B.

Notation for Common Sets of Numbers

(1) $\mathbb{Z}=\{0, \pm 1, \pm 2, \pm 3, \ldots\}$ denotes the integers.
(2) $\mathbb{Q}=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\right\}$ denotes the rational numbers (or rationals).
(3) $\mathbb{R}=\left\{\right.$ all decimal expansions $\left.\pm d_{1} d_{2} \ldots d_{n} \cdot a_{1} a_{2} a_{3} \ldots\right\}$ denotes the real numbers (or reals).
(4) $\mathbb{C}=\left\{a+b i: a, b \in \mathbb{R}, i^{2}=-1\right\}$ denotes the complex numbers.
(5) $\mathbb{Z}^{+}, \mathbb{Q}^{+}$and \mathbb{R}^{+}will denote the positive (nonzero) elements in \mathbb{Z}, \mathbb{Q} and \mathbb{R}, respectively.

Functions, Domains and Codomains

- We use the notation $f: A \rightarrow B$ or $A \xrightarrow{f} B$ to denote a function, or a map, f from A to B.
- The value of f at a is denoted $f(a)$.
- The set A is called the domain of f and B is called the codomain of f.
- The notation $f: a \mapsto b, a \stackrel{f}{\mapsto} b$, or $a \mapsto b$, if f is understood, indicates that $f(a)=b$, i.e., the function is being specified on elements.
- If the function f is not specified on elements, it is important in general to check that f is well defined, i.e., is unambiguously determined.
Example: If the set A is the union of two subsets A_{1} and A_{2}, then one can try to specify a function from A to the set $\{0,1\}$ by declaring that f is to map everything in A_{1} to 0 and is to map everything in A_{2} to 1 . This unambiguously defines f unless A_{1} and A_{2} have elements in common. Checking that this f is well defined, therefore, amounts to checking that A_{1} and A_{2} have empty intersection.

Image, Pre-Image and Fibers

- Let $f: A \rightarrow B$ be a function.
- The set $f(A)=\{b \in B: b=f(a)$, for some $a \in A\}$ is a subset of B, called the range or image of f (or the image of A under f).
- For each subset C of B the set $f^{-1}(C)=\{a \in A: f(a) \in C\}$, consisting of the elements of A mapping into C under f, is called the preimage or inverse image of C under f.
- For each $b \in B$, the preimage of $\{b\}$ under f is called the fiber of f over b.
f^{-1} is not in general a function. The fibers of f generally contain many elements, since there may be many elements of A mapping to the element b.

Composition, Injectivity and Surjectivity

- If $f: A \rightarrow B$ and $g: B \rightarrow C$, then the composite map $g \circ f: A \rightarrow C$ is defined by

$$
(g \circ f)(a)=g(f(a))
$$

- Let $f: A \rightarrow B$.
(1) f is injective or is an injection if $a_{1} \neq a_{2}$ implies $f\left(a_{1}\right) \neq f\left(a_{2}\right)$.
(2) f is surjective or is a surjection if, for all $b \in B$, there is some $a \in A$, such that $f(a)=b$, i.e., the image of f is all of B.
Since a function always maps onto its range (by definition) it is necessary to specify the codomain B in order for the question of surjectivity to be meaningful.
(3) f is bijective or is a bijection if it is both injective and surjective. If such a bijection f exists from A to B, we say A and B are in bijective correspondence.
(4) f has a left inverse if there is a function $g: B \rightarrow A$, such that $g \circ f: A \rightarrow A$ is the identity map on A, i.e., $(g \circ f)(a)=a$, for all $a \in A$.
(5) f has a right inverse if there is a function $h: B \rightarrow A$, such that $f \circ h: B \rightarrow B$ is the identity map on B.

Injectivity/Surjectivity and Left/Right Inverses

Proposition

Let $f: A \rightarrow B$.
(1) The map f is injective if and only if f has a left inverse.
(2) The map f is surjective if and only if f has a right inverse.
(3) The map f is a bijection if and only if there exists $g: B \rightarrow A$ such that $f \circ g$ is the identity map on B and $g \circ f$ is the identity map on A.
$(1)(\Rightarrow)$: Suppose f is injective. Then, for every b in the range of f, there exists a unique $a_{b} \in A$, such that $f\left(a_{b}\right)=b$. Define $g: B \rightarrow A$ by $g(b)=a_{b}$, if b in the range of A, and $g(b)$ arbitrary, otherwise. Then, for all $a \in A, g(f(a))=a$, i.e., g is a left inverse of f. (\Leftarrow) : Suppose that f has a left inverse $g: B \rightarrow A$. Then, if $a_{1} \neq a_{2}$ are in A, we have $g\left(f\left(a_{1}\right)\right) \neq g\left(f\left(a_{2}\right)\right)$, whence, $f\left(a_{1}\right) \neq f\left(a_{2}\right)$. So f is injective.

Injectivity/Surjectivity and Left/Right Inverses (Cont'd)

(2) (\Rightarrow) : Suppose f is surjective. Then, for every $b \in B$, there exists $a \in A$, such that $f(a)=b$. For each $b \in B$, pick such an $a_{b} \in A$ and define $h: B \rightarrow A$ by $h(b)=a_{b}$, for all $b \in B$. Then, for all $a \in A$, $(f \circ h)(b)=f(h(b))=f\left(a_{b}\right)=b$, i.e., h is a right inverse of f. (\Leftarrow) : Suppose that f has a right inverse $h: B \rightarrow A$. Then, if $b \in B$, we have $h(b) \in A$, and $f(h(b))=(f \circ h)(b)=b$. So f is surjective.
(3) f is a bijection iff it is an injection and a surjection iff f has a left inverse g and a right inverse h. In the latter case, for all $b \in B$, $g(b)=g((f \circ h)(b))=(g \circ f)(h(b))=h(b)$, i.e., $g=h$.

Equipotency and Bijectivity

Proposition

Let $f: A \rightarrow B$. If A and B are finite sets with the same number of elements (i.e., $|A|=|B|$), then $f: A \rightarrow B$ is bijective if and only if f is injective if and only if f is surjective.

- It suffices to show that, if A and B are finite sets, such that $|A|=|B|$, then $f: A \rightarrow B$ is injective if and only if it is surjective.
- If f is injective, then $|A|=|f(A)|$. If f is not surjective, then $|f(A)|<|B|$. Therefore, $|A|=|f(A)|<|B|$, which contradicts the fact that $|A|=|B|$. Thus, f must be surjective.
- If f is surjective, then $|f(A)|=|B|$. If f is not injective, then $|A|>|f(A)|$. Thus, $|A|>|f(A)|=|B|$, which contradicts $|A|=|B|$. Therefore, f must be injective.

Permutations, Restrictions and Extensions

- If $f: A \rightarrow B$ is a bijection, the map g, which is both a left and right inverse of f, is necessarily unique and is called the 2 -sided inverse (or simply the inverse) of f.
A permutation of a set A is simply a bijection from A to itself.
- If $A \subseteq B$ and $f: B \rightarrow C$, we denote the restriction of f to A by $\left.f\right|_{A}$ When the domain we are considering is understood we may denote $\left.f\right|_{A}$ again simply as f even though these are formally different functions (their domains are different).
- If $A \subseteq B$ and $g: A \rightarrow C$ and there is a function $f: B \rightarrow C$ such that $\left.f\right|_{A}=g$, we shall say f is an extension of g to B (such a map f need not exist nor be unique).

Equivalence Relations and Partitions

- Let A be a nonempty set.
(1) A binary relation on A is a subset R of $A \times A$ and we write $a \sim b$ if $(a, b) \in R$.
(2) The relation \sim on A is said to be:
(a) reflexive if $a \sim a$, for all $a \in A$;
(b) symmetric if $a \sim b$ implies $b \sim a$, for all $a, b \in A$;
(c) transitive if $a \sim b$ and $b \sim c$ imply $a \sim c$, for all $a, b, c \in A$.

A relation is an equivalence relation if it is reflexive, symmetric and transitive.
(3) If \sim defines an equivalence relation on A, then the equivalence class of $a \in A$ is defined to be $\{x \in A: x \sim a\}$. Elements of the equivalence class of a are said to be equivalent to a. If C is an equivalence class, any element of C is called a representative of the class C.
(4) A partition of A is any collection $\left\{A_{i}: i \in I\right\}$ of nonempty subsets of A (I some indexing set) such that:
(a) $A=\bigcup_{i \in I} A_{i}$;
(b) $A_{i} \cap A_{j}=\emptyset$, for all $i, j \in I$, with $i \neq j$,
i.e., A is the disjoint union of the sets in the partition.

Equivalence of Equivalence Relations and Partitions

Proposition

Let A be a nonempty set.
(1) If \sim defines an equivalence relation on A then the set of equivalence classes of \sim form a partition of A.
(2) If $\left\{A_{i}: i \in I\right\}$ is a partition of A, then there is an equivalence relation \sim on A, defined, for all $a, b \in A$, by

$$
a \sim b \text { iff } a, b \in A_{i}, \text { for some } i \in I
$$

whose equivalence classes are precisely the sets $A_{i}, i \in I$.
(1) For each $a \in A, a \sim a$ by reflexivity. So $a \in[a]:=\{x \in A: x \sim a\}$.

Thus, $[a] \neq \emptyset$.
We show that, if $[a] \neq[b]$, then $[a] \cap[b]=\emptyset$. Suppose, by contraposition, that $x \in[a] \cap[b]$. Then $x \sim a$ and $x \sim b$. By commutativity, $a \sim x$ and $x \sim b$. By transitivity, $a \sim b$.

Equivalence Relations and Partitions (Cont'd)

Now consider $y \in[a]$. Then $y \sim a$. By transitivity, $y \sim b$, i.e., $y \in[b]$. This proves $[a] \subseteq[b]$. By symmetry, $[b] \subseteq[a]$. Thus, $[a]=[b]$.
If $a \in A$, then $a \in[a]$. Hence, $A=\bigcup_{a \in A}[a]$.
(2) We show that \sim as defined in Part (2) is an equivalence relation:
(a) a is in the same part of the partition with itself. So $a \sim a$.
(b) Suppose $a \sim b$. Then $a, b \in A_{i}$, for some i. Thus, $b, a \in A_{i}$. This shows that $b \sim a$.
(c) Suppose that $a \sim b$ and $b \sim c$. Then, for some $i, a, b \in A_{i}$ and for some $j, b, c \in A_{j}$. But then $b \in A_{i} \cap A_{j}$ and we know that $A_{i} \cap A_{j}=\emptyset$ unless $i=j$. Thus, $i=j$ and $a, c \in A_{i}$. This yields $a \sim c$.

Proving an Equation by Induction

Proposition

Let n be a positive integer. Then $2^{0}+2^{1}+\cdots+2^{n-1}=2^{n}-1$.

- We prove this by induction on n.
- For $n=1,2^{0}=2^{1}-1$ holds.
- Suppose the result is true for $n=k$, i.e., assume $2^{0}+2^{1}+\cdots+2^{k-1}=2^{k}-1$.
We must show that the equation is true for $n=k+1$, i.e., that $2^{0}+2^{1}+\cdots+2^{k-1}+2^{k}=2^{k+1}-1$.

$$
\begin{aligned}
2^{0}+2^{1}+\cdots+2^{k-1}+2^{k} & =2^{k}-1+2^{k} \\
& =2 \cdot 2^{k}-1 \\
& =2^{k+1}-1
\end{aligned}
$$

Thus, the proposition is true for all positive integers.

Proving an Inequality by Induction

Proposition

Let n be a natural number. Then $10^{0}+10^{1}+\cdots+10^{n}<10^{n+1}$.

- We prove this by induction on n.
- For $n=0,10^{0}<10^{1}$ holds.
- Suppose the result is true for $n=k$, i.e., assume

$$
10^{0}+10^{1}+\cdots+10^{k}<10^{k+1} .
$$

We must show that the equation is true for $n=k+1$, i.e., that $10^{0}+10^{1}+\cdots+10^{k}+10^{k+1}<10^{k+2}$.

$$
\begin{aligned}
10^{0}+10^{1}+\cdots+10^{k}+10^{k+1} & <10^{k+1}+10^{k+1} \\
& =2 \cdot 10^{k+1} \\
& <10 \cdot 10^{k+1} \\
& =10^{k+2}
\end{aligned}
$$

Thus, the proposition is true for all positive integers.

Proving a Divisibility Relation by Induction

Proposition

Let n be a natural number. Then $4^{n}-1$ is divisible by 3 .

- We prove this by induction on n.
- For $n=0,4^{0}-1$ is divisible by 3 .
- Suppose the result is true for $n=k$, i.e., $3 \mid\left(4^{k}-1\right)$. This means that $4^{k}-1=3 a$ for some integer a.
We must show that the statement is true for $n=k+1$, i.e., that $3 \mid\left(4^{k+1}-1\right)$.

$$
\begin{aligned}
4^{k+1}-1 & =4 \cdot 4^{k}-1 \\
& =4\left(4^{k}-1\right)+3 \\
& =4 \cdot 3 a+3 \\
& =3(4 a+1) .
\end{aligned}
$$

Thus, the proposition is true for all natural numbers.

Subsection 2

Properties of the Integers

Well-Ordering and Divisibility

- We use the following properties of the integers \mathbb{Z} :
(1) Well Ordering of \mathbb{Z}^{+}: If A is any non empty subset of \mathbb{Z}^{+}, there is some element $m \in A$ such that $m \leq a$, for all $a \in A$, called a minimal element of A.
(2) If $a, b \in \mathbb{Z}$, with $a \neq 0$, we say a divides b if there is an element $c \in \mathbb{Z}$, such that $b=a c$. In this case we write $a \mid b$. If a does not divide b we write $a \nmid b$.
(3) If $a, b \in \mathbb{Z}-\{0\}$, there is a unique positive integer d, called the greatest common divisor of a and b or g.c.d. of a and b, satisfying:
(a) $d \mid a$ and $d \mid b$, i.e., d is a common divisor of a and b;
(b) if $e \mid a$ and $e \mid b$, then $e \mid d$, i.e., d is the greatest such divisor.

The g.c.d. of a and b will be denoted by (a, b). If $(a, b)=1$, we say that a and b are relatively prime.
(4) If $a, b \in \mathbb{Z}-\{0\}$, there is a unique positive integer ℓ, called the least common multiple of a and b or l.c.m. of a and b, satisfying:
(a) $a \mid \ell$ and $b \mid \ell$, i.e., ℓ is a common multiple of a and b;
(b) if $a \mid m$ and $b \mid m$, then $\ell \mid m$, i.e., ℓ is the least such multiple.

The connection between d and ℓ is given by $d \ell=a b$.

The Division and the Euclidean Algorithms

- We continue with properties of the integers:
(5) The Division Algorithm: If $a, b \in \mathbb{Z}-\{0\}$, then there exist unique $q, r \in \mathbb{Z}$, such that

$$
a=q b+r \quad \text { and } \quad 0 \leq r<|b|,
$$

where q is the quotient and r the remainder. This is the usual "long division" familiar from elementary arithmetic.
(6) The Euclidean Algorithm is an important procedure which produces a greatest common divisor of two integers a and b by iterating the Division Algorithm: If $a, b \in \mathbb{Z}-\{0\}$, then we obtain a sequence of quotients and remainders:

$$
\begin{array}{ll}
a=q_{0} b+r_{0} & \vdots \\
b=q_{1} r_{0}+r_{1} & r_{n-2}=q_{n} r_{n-1}+r_{n} \\
r_{0}=q_{2} r_{1}+r_{2} & r_{n-1}=q_{n+1} r_{n}
\end{array}
$$

where r_{n} is the last nonzero remainder. Such an r_{n} exists since $|b|>\left|r_{0}\right|>\left|r_{1}\right|>\cdots>\left|r_{n}\right|$ is a decreasing sequence of strictly positive integers if the remainders are nonzero and such a sequence cannot continue indefinitely. Then r_{n} is the g.c.d. (a, b) of a and b.

Applying the Euclidean Algorithm

- Suppose $a=57970$ and $b=10353$. Applying the Euclidean Algorithm we obtain:

$$
\begin{aligned}
57970 & =(5) 10353+6205 \\
10353 & =(1) 6205+4148 \\
6205 & =(1) 4148+2057 \\
4148 & =(2) 2057+34 \\
2057 & =(60) 34+17 \\
34 & =(2) 17+0 .
\end{aligned}
$$

which shows that

$$
(57970,10353)=17 .
$$

The GCD as a \mathbb{Z}-Linear Combination

- We continue with properties of the integers:
(7) One consequence of the Euclidean Algorithm is the following: If $a, b \in \mathbb{Z}-\{0\}$, then there exist $x, y \in \mathbb{Z}$, such that $(a, b)=a x+b y$, i.e., the g.c.d. of a and b is a \mathbb{Z}-linear combination of a and b.

This follows by recursively writing the element r_{n} in the Euclidean
Algorithm in terms of the previous remainders: Use the last equation to solve for $r_{n}=r_{n-2}-q_{n} r_{n-1}$ in terms of the remainders r_{n-1} and r_{n-2}.
Then use the preceding equation to write r_{n} in terms of the remainders r_{n-2} and r_{n-3}, etc., eventually writing r_{n} in terms of a and b.
Example: Suppose $a=28$ and $b=6$. The Euclidean algorithm gives:

$$
28=(4) 6+4, \quad 6=(1) 4+2, \quad 4=(2) 2+0 .
$$

Thus, we find:

$$
\begin{aligned}
2 & =6-(1) 4 \\
& =6-(1)(28-(4) 6) \\
& =6-28+(4) 6 \\
& =-28+5 \cdot 6 .
\end{aligned}
$$

Primes and the Fundamental Theorem of Arithmetic

- We continue with properties of the integers:
(8) An element p of \mathbb{Z}^{+}is called a prime if $p>1$ and the only positive divisors of p are 1 and p.
An integer $n>1$ which is not prime is called composite.
An important property of primes is that, if p is a prime and $p \mid a b$, for some $a, b \in \mathbb{Z}$, then $p \mid a$ or $p \mid b$.
(9) The Fundamental Theorem of Arithmetic: If $n \in \mathbb{Z}, n>1$, then n can be factored uniquely into the product of primes, i.e., there are distinct primes $p_{1}, p_{2}, \ldots, p_{s}$ and positive integers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$, such that

$$
n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}
$$

This factorization is unique in the sense that, if $q_{1}, q_{2}, \ldots, q_{t}$ are any distinct primes and $\beta_{1}, \beta_{2}, \ldots, \beta_{t}$ positive integers such that $n=q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{t}^{\beta_{t}}$, then $s=t$ and, if we arrange the two sets of primes in increasing order, then $q_{i}=p_{i}$ and $\alpha_{i}=\beta_{i}$, for all $1 \leq i \leq s$.

Using the Fundamental Theorem to Find GCDs and LCMs

- Suppose the positive integers a and b are expressed as products of prime powers:

$$
a=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}} \quad \text { and } \quad b=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{s}^{\beta_{s}}
$$

where $p_{1}, p_{2}, \ldots, p_{s}$ are distinct and the exponents are ≥ 0 (the exponents here are allowed to be 0 so that the products are taken over the same set of primes - the exponent will be 0 if that prime is not actually a divisor). Then the greatest common divisor of a and b is

$$
(a, b)=p_{1}^{\min \left\{\alpha_{1}, \beta_{1}\right\}} p_{2}^{\min \left\{\alpha_{2}, \beta_{2}\right\}} \cdots p_{s}^{\min \left\{\alpha_{s}, \beta_{s}\right\}}
$$

The least common multiple is obtained by taking the maximum of the α_{i} and β_{i} instead of the minimum.
Example: If $a=57970=2 \cdot 5 \cdot 11 \cdot 17 \cdot 31$ and $b=10353=3 \cdot 7 \cdot 17 \cdot 29$, we get greatest common divisor 17 .

The Euler φ-Function

- One more property of the integers:
(10) The Euler φ-function is defined as follows: For $n \in \mathbb{Z}^{+}$, let $\varphi(n)$ be the number of positive integers $a \leq n$ with a relatively prime to n, i.e., $(a, n)=1$.
Example: $\varphi(12)=4$, since $1,5,7$ and 11 are the only positive integers less than or equal to 12 which have no factors in common with 12. Similarly, $\varphi(1)=1, \varphi(2)=1, \varphi(3)=2, \varphi(4)=2$, $\varphi(5)=4, \varphi(6)=2$.
- For primes $p, \varphi(p)=p-1$.
- For all $a \geq 1$, we have the formula $\varphi\left(p^{a}\right)=p^{a}-p^{a-1}=p^{a-1}(p-1)$.
- The function φ is multiplicative, in the sense that $\varphi(a b)=\varphi(a) \varphi(b)$ if $(a, b)=1$ (it is important that a and b be relatively prime).
- Multiplicativity, together with the formula above, gives a general formula for the values of φ :

$$
\begin{aligned}
& \text { If } n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}, \text { then } \varphi(n)=\varphi\left(p_{1}^{\alpha_{1}}\right) \varphi\left(p_{2}^{\alpha_{2}}\right) \cdots \varphi\left(p_{s}^{\alpha_{s}}\right)= \\
& p_{1}^{\alpha_{1}-1}\left(p_{1}-1\right) p_{2}^{\alpha_{2}-1}\left(p_{2}-1\right) \cdots p_{s}^{\alpha_{s}-1}\left(p_{s}-1\right) .
\end{aligned}
$$

Example: $\varphi(12)=\varphi\left(2^{2}\right) \varphi(3)=2^{1}(2-1) 3^{0}(3-1)=4$.

Subsection 3

$\mathbb{Z} / n \mathbb{Z}$: The Integers Modulo n

Congruence Modulo n

- Let n be a fixed positive integer. Define a relation on \mathbb{Z} by $a \sim b$ if and only if $n \mid(b-a)$.
- Clearly $a \sim a$. So \sim is reflexive.
- $a \sim b$ implies $b \sim a$ for any integers a and b, so \sim is symmetric.
- If $a \sim b$ and $b \sim c$, then n divides $a-b$ and n divides $b-c$, so n also divides their sum, i.e., n divides $(a-b)+(b-c)=a-c$, so $a \sim c$ and the relation is transitive.
Hence, \sim is an equivalence relation.
- Write $a \equiv b(\bmod n)$ and say a is congruent to $b \bmod n$ if $a \sim b$.
- For $k \in \mathbb{Z}$, we shall denote the equivalence class of a by \bar{a}. It is called the congruence class or residue class of a mod n and consists of the integers which differ from a by an integral multiple of n, i.e., $a=\{a+k n: k \in \mathbb{Z}\}=\{a, a \pm n, a \pm 2 n, a \pm 3 n, \ldots\}$.
- There are n distinct equivalence classes mod n, namely $\overline{0}, \overline{1}, \overline{2}, \ldots$, $\overline{n-1}$ determined by the possible remainders after division by n.
- The set of equivalence classes under this equivalence relation will be denoted by $\mathbb{Z} / n \mathbb{Z}$ and called the integers modulo n.

Addition and Multiplication Modulo n

- For different n 's the equivalence relation and equivalence classes are different. So before using the bar notation, care is needed to fix n.
- The process of finding the equivalence class mod n of some integer a is often referred to as reducing a mod n.
- In $\mathbb{Z} / n \mathbb{Z}$, one can define an addition and a multiplication: For $\bar{a}, \bar{b} \in \mathbb{Z} / n \mathbb{Z}$, define their sum and product by

$$
\bar{a}+\bar{b}=\overline{a+b} \quad \text { and } \quad \bar{a} \cdot \bar{b}=\overline{a \cdot b}
$$

That is, to compute the sum or the product of \bar{a} and \bar{b} in $\mathbb{Z} / n \mathbb{Z}$:

- take representatives a in \bar{a} and b in \bar{b};
- add or multiply the integers a and b as usual in \mathbb{Z};
- take the equivalence class containing the result.
- For this process to be valid we must show that the operations are well defined, i.e., do not depend on the choice of representatives taken for the elements \bar{a} and \bar{b} of $\mathbb{Z} / n \mathbb{Z}$.

Example of Modular Arithmetic

- Let us fix $n=12$ and consider $\mathbb{Z} / 12 \mathbb{Z}$, which consists of the twelve residue classes $\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{11}$, determined by the twelve possible remainders of an integer after division by 12 .
- The elements in the residue class $\overline{5}$ are the integers which leave a remainder of 5 when divided by 12 . Any such integer, such as $5,17,29, \ldots$ or $-7,-19, \ldots$, can serve as a representative for $\overline{5}$.
- $\mathbb{Z} / 12 \mathbb{Z}$ consists of the twelve elements above (each of which consists of an infinite number of usual integers).
- Suppose now that $\bar{a}=\overline{5}$ and $\bar{b}=\overline{8}$. The most obvious representatives for \bar{a} and \bar{b} are the integers 5 and 8 , respectively. But 17 and -28 are also representatives of \bar{a} and \bar{b}, respectively.
- $\overline{5}+\overline{8}=\overline{13}=\overline{1}$, since 13 and 1 lie in the same class modulo $n=12$.
- $\overline{5}+\overline{8}=\overline{17-28}=\overline{-11}=\overline{1}$.

The result does not depend on the choice of representatives.

Modular Addition and Multiplication are Well-Defined

Theorem

The operations of addition and multiplication on $\mathbb{Z} / n \mathbb{Z}$ are well defined, i.e., they do not depend on the choices of representatives for the classes involved. More precisely, if $a_{1}, a_{2} \in \mathbb{Z}$ and $b_{1}, b_{2} \in \mathbb{Z}$, with $\overline{a_{1}}=\overline{b_{1}}$ and $\overline{a_{2}}=\overline{b_{2}}$, then $\overline{a_{1}+a_{2}}=\overline{b_{1}+b_{2}}$ and $\overline{a_{1} a_{2}}=\overline{b_{1} b_{2}}$, i.e., if $a_{1} \equiv b_{1}(\bmod n)$ and $a_{2} \equiv b_{2}(\bmod n)$, then $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod n)$ and $a_{1} a_{2} \equiv b_{1} b_{2}$ $(\bmod n)$.

- Suppose $a_{1}=b_{1}(\bmod n)$, i.e., $a_{1}-b_{1}$ is divisible by n. Then $a_{1}=b_{1}+s n$, for some integer s. Similarly, $a_{2} \equiv b_{2}(\bmod n)$ means $a_{2}=b_{2}+t n$, for some integer t. Then $a_{1}+a_{2}=\left(b_{1}+b_{2}\right)+(s+t) n$, so that $a_{1}+a_{2} \equiv b_{1}+b_{2}(\bmod n)$, which shows that the sum of the residue classes is independent of the representatives chosen.
Similarly, $a_{1} a_{2}=\left(b_{1}+s n\right)\left(b_{2}+t n\right)=b_{1} b_{2}+\left(b_{1} t+b_{2} s+s t n\right) n$, showing that $a_{1} a_{2} \equiv b_{1} b_{2}(\bmod n)$. Thus, the product of the residue classes is also independent of the representatives chosen.

Suppressing the Class Notation

- The notion of adding equivalence classes is familiar in the context of adding rational numbers: Each rational number $\frac{a}{b}$ is really a class of expressions: $\frac{a}{b}=\frac{2 a}{2 b}=\frac{-3 a}{-3 b}$ etc. and we often change representatives (for instance, take common denominators) in order to add two fractions. E.g., $\frac{1}{2}+\frac{1}{3}$ is computed by taking instead the equivalent representatives $\frac{3}{6}$ for $\frac{1}{2}$ and $\frac{2}{6}$ for $\frac{1}{3}$ to obtain $\frac{1}{2}+\frac{1}{3}=\frac{3}{6}+\frac{2}{6}=\frac{5}{6}$.
- The notion of modular arithmetic is also familiar: to find the hour of day after adding or subtracting some number of hours we reduce mod 12 and find the least residue.
- It is convenient to think of the equivalence classes of some equivalence relation as elements which can be manipulated rather than as sets.
- Thus, we frequently denote the elements of $\mathbb{Z} / n \mathbb{Z}$ simply by $\{0,1$, $\ldots, n-1\}$ where addition and multiplication are reduced mod n. Nevertheless, the elements of $\mathbb{Z} / n \mathbb{Z}$ are not integers, but rather collections of usual integers, and the arithmetic is quite different. For example, $5+8 \neq 1$ in \mathbb{Z} as it is in $\mathbb{Z} / 12 \mathbb{Z}$.

Application of Modular Arithmetic

- We apply arithmetic in $\mathbb{Z} / n \mathbb{Z}$ to compute the last two digits in the number 2^{1000}.
First observe that the last two digits give the remainder of 2^{1000} after we divide by 100 , so we are interested in the residue class mod 100 containing 2^{1000}. We compute:

$$
\begin{aligned}
& 2^{10}=1024 \equiv 24 \quad(\bmod 100) \\
& 2^{20}=\left(2^{10}\right)^{2}=24^{2}=576 \equiv 76 \quad(\bmod 100) \\
& 2^{40}=\left(2^{20}\right)^{2}=76^{2}=5776 \equiv 76 \quad(\bmod 100) \\
& 2^{80} \equiv 2^{160} \equiv 2^{320} \equiv 2^{640} \equiv 76 \quad(\bmod 100)
\end{aligned}
$$

Finally, $2^{1000}=2^{640} 2^{320} 2^{40} \equiv 76 \cdot 76 \cdot 76 \equiv 76(\bmod 100)$.
So the final two digits of 2^{1000} are 76 .

Multiplicative Inverses in $\mathbb{Z} / n \mathbb{Z}$

- An important subset of $\mathbb{Z} / n \mathbb{Z}$ consists of the collection of residue classes which have a multiplicative inverse in $\mathbb{Z} / n \mathbb{Z}$:

$$
(\mathbb{Z} / n \mathbb{Z})^{\times}=\{\bar{a} \in \mathbb{Z} / n \mathbb{Z}: \text { there exists } \bar{c} \in \mathbb{Z} / n \mathbb{Z} \text {, with } \bar{a} \cdot \bar{c}=\overline{1}\} .
$$

- $(\mathbb{Z} / n \mathbb{Z})^{\times}$is also the collection of residue classes whose representatives are relatively prime to n, which proves the following proposition:

Proposition

$(\mathbb{Z} / n \mathbb{Z})^{\times}=\{\bar{a} \in \mathbb{Z} / n \mathbb{Z}:(a, n)=1\}$.

- Note, if any representative of \bar{a} is relatively prime to n, then all representatives are relatively prime to n, so that the set on the right in the proposition is well defined.
Example: For $n=9$ we obtain $(\mathbb{Z} / 9 \mathbb{Z})^{\times}=\{\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}\}$ from the proposition. The multiplicative inverses of these are $\{\overline{1}, \overline{5}, \overline{7}, \overline{2}, \overline{4}, \overline{8}\}$, respectively.

Computing Multiplicative Inverses in $\mathbb{Z} / n \mathbb{Z}$

- If a is an integer relatively prime to n, then the Euclidean Algorithm produces integers x and y, satisfying $a x+n y=1$. Hence $a x \equiv 1$ $(\bmod n)$, so that \bar{x} is the multiplicative inverse of \bar{a} in $\mathbb{Z} / n \mathbb{Z}$. This gives an efficient method for computing multiplicative inverses in $\mathbb{Z} / n \mathbb{Z}$.
Example: Suppose $n=60$ and $a=17$. Applying the Euclidean Algorithm we obtain

$$
60=(3) 17+9, \quad 17=(1) 9+8, \quad 9=(1) 8+1 .
$$

So a and n are relatively prime. Moreover, $1=9-8=9-(17-9)=2 \cdot 9-17=2(60-3 \cdot 17)-17=2 \cdot 60-7 \cdot 17$. Hence $\overline{-7}=\overline{53}$ is the multiplicative inverse of $\overline{17}$ in $\mathbb{Z} / 60 \mathbb{Z}$.

