Abstract Algebra I

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 341

George Voutsadakis (LSSU)

- Basics
- Properties of the Integers
- $\mathbb{Z}/n\mathbb{Z}$: The Integers Modulo *n*

Subsection 1

Basics

Set Theory

- A set is a collection of objects.
- The symbols ∩, ∪, ∈ denote, as usual, the intersection and union operations and the membership relation.
- Based on the Axiom of Comprehension, one can use the notation

 $B = \{a \in A : \dots \text{ (conditions on } a) \dots \}$

for subsets of a given set A satisfying the listed conditions.

- The order or cardinality of a set A is denoted by |A|. If A is a finite set, the order of A is simply the number of elements of A.
- B ⊆ A means that B is a subset of A and B ⊂ A (or, for emphasis, B ⊊ A) means that B is a proper subset of A.
 To show that B ⊆ A, it must be shown that every element of B is also an element of A.

 The Cartesian product of two sets A and B is the collection A × B = {(a, b) : a ∈ A, b ∈ B}, of ordered pairs of elements from A and B.

Notation for Common Sets of Numbers

- (1) $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, ...\}$ denotes the **integers**.
- (2) $\mathbb{Q} = \{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\}$ denotes the **rational numbers** (or rationals).
- (3) $\mathbb{R} = \{ all decimal expansions \pm d_1 d_2 \dots d_n a_1 a_2 a_3 \dots \}$ denotes the real numbers (or reals).
- (4) $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}, i^2 = -1\}$ denotes the **complex numbers**.
- (5) $\mathbb{Z}^+, \mathbb{Q}^+$ and \mathbb{R}^+ will denote the positive (nonzero) elements in \mathbb{Z}, \mathbb{Q} and \mathbb{R} , respectively.

Functions, Domains and Codomains

- We use the notation $f: A \to B$ or $A \xrightarrow{f} B$ to denote a **function**. or a **map**, f from A to B.
- The value of f at a is denoted f(a).
- The set A is called the domain of f and B is called the codomain of f.
- The notation $f: a \mapsto b, a \stackrel{f}{\mapsto} b$, or $a \mapsto b$, if f is understood, indicates that f(a) = b, i.e., the function is being specified on elements.
- If the function f is not specified on elements, it is important in general to check that f is **well defined**, i.e., is unambiguously determined. Example: If the set A is the union of two subsets A_1 and A_2 , then one can try to specify a function from A to the set $\{0,1\}$ by declaring that f is to map everything in A_1 to 0 and is to map everything in A_2 to 1. This unambiguously defines f unless A_1 and A_2 have elements in common. Checking that this f is well defined, therefore, amounts to checking that A_1 and A_2 have empty intersection.

Image, Pre-Image and Fibers

• Let $f: A \to B$ be a function.

- The set $f(A) = \{b \in B : b = f(a), \text{ for some } a \in A\}$ is a subset of B, called the range or image of f (or the image of A under f).
- For each subset C of B the set $f^{-1}(C) = \{a \in A : f(a) \in C\}$, consisting of the elements of A mapping into C under f, is called the preimage or inverse image of C under f.
- For each $b \in B$, the preimage of $\{b\}$ under f is called the **fiber of** f **over** b. f^{-1} is not in general a function. The fibers of f generally contain many elements, since there may be many elements of A mapping to the element b.

Composition, Injectivity and Surjectivity

- If $f: A \to B$ and $g: B \to C$, then the composite map $g \circ f: A \to C$ is defined by $(g \circ f)(a) = g(f(a)).$
- Let $f : A \to B$.
 - (1) f is **injective** or is an **injection** if $a_1 \neq a_2$ implies $f(a_1) \neq f(a_2)$.
 - (2) f is surjective or is a surjection if, for all $b \in B$, there is some $a \in A$, such that f(a) = b, i.e., the image of f is all of B. Since a function always maps onto its range (by definition) it is necessary to specify the codomain B in order for the question of surjectivity to be meaningful.
 - (3) f is **bijective** or is a **bijection** if it is both injective and surjective. If such a bijection f exists from A to B, we say A and B are in bijective correspondence.
 - (4) f has a **left inverse** if there is a function $g: B \to A$, such that $g \circ f : A \to A$ is the identity map on A, i.e., $(g \circ f)(a) = a$, for all $a \in A$.
 - (5) f has a **right inverse** if there is a function $h: B \to A$, such that $f \circ h : B \to B$ is the identity map on B.

Injectivity/Surjectivity and Left/Right Inverses

Proposition

Let $f : A \to B$.

- (1) The map f is injective if and only if f has a left inverse.
- The map f is surjective if and only if f has a right inverse. (2)
- The map f is a bijection if and only if there exists $g: B \to A$ such that $f \circ g$ is the identity map on B and $g \circ f$ is the identity map on A.

(1) (\Rightarrow): Suppose f is injective. Then, for every b in the range of f, there exists a unique $a_b \in A$, such that $f(a_b) = b$. Define $g: B \to A$ by $g(b) = a_b$, if b in the range of A, and g(b) arbitrary, otherwise. Then, for all $a \in A$, g(f(a)) = a, i.e., g is a left inverse of f. (\Leftarrow): Suppose that f has a left inverse g : $B \to A$. Then, if $a_1 \neq a_2$ are in A, we have $g(f(a_1)) \neq g(f(a_2))$, whence, $f(a_1) \neq f(a_2)$. So f is injective.

Injectivity/Surjectivity and Left/Right Inverses (Cont'd)

- (2) (⇒): Suppose f is surjective. Then, for every b∈ B, there exists a ∈ A, such that f(a) = b. For each b∈ B, pick such an ab ∈ A and define h : B → A by h(b) = ab, for all b∈ B. Then, for all a ∈ A, (f ∘ h)(b) = f(h(b)) = f(ab) = b, i.e., h is a right inverse of f.
 (⇐): Suppose that f has a right inverse h : B → A. Then, if b ∈ B, we have h(b) ∈ A, and f(h(b)) = (f ∘ h)(b) = b. So f is surjective.
- (3) f is a bijection iff it is an injection and a surjection iff f has a left inverse g and a right inverse h. In the latter case, for all b ∈ B, g(b) = g((f ∘ h)(b)) = (g ∘ f)(h(b)) = h(b), i.e., g = h.

Equipotency and Bijectivity

Proposition

Let $f : A \rightarrow B$. If A and B are finite sets with the same number of elements (i.e., |A| = |B|), then $f : A \to B$ is bijective if and only if f is injective if and only if f is surjective.

- It suffices to show that, if A and B are finite sets, such that |A| = |B|, then $f : A \to B$ is injective if and only if it is surjective.
 - If f is injective, then |A| = |f(A)|. If f is not surjective, then |f(A)| < |B|. Therefore, |A| = |f(A)| < |B|, which contradicts the fact that |A| = |B|. Thus, f must be surjective.
 - If f is surjective, then |f(A)| = |B|. If f is not injective, then |A| > |f(A)|. Thus, |A| > |f(A)| = |B|, which contradicts |A| = |B|. Therefore, f must be injective.

Permutations, Restrictions and Extensions

If f : A → B is a bijection, the map g, which is both a left and right inverse of f, is necessarily unique and is called the 2-sided inverse (or simply the inverse) of f.

A permutation of a set A is simply a bijection from A to itself.

- If A ⊆ B and f : B → C, we denote the restriction of f to A by f|_A.
 When the domain we are considering is understood we may denote f|_A again simply as f even though these are formally different functions (their domains are different).
- If A ⊆ B and g : A → C and there is a function f : B → C such that f|_A = g, we shall say f is an extension of g to B (such a map f need not exist nor be unique).

Equivalence Relations and Partitions

- Let A be a nonempty set.
 - (1) A binary relation on A is a subset R of $A \times A$ and we write $a \sim b$ if $(a, b) \in R$.
 - (2) The relation \sim on A is said to be:
 - (a) reflexive if $a \sim a$, for all $a \in A$;
 - (b) symmetric if $a \sim b$ implies $b \sim a$, for all $a, b \in A$;
 - (c) transitive if $a \sim b$ and $b \sim c$ imply $a \sim c$, for all $a, b, c \in A$.

A relation is an equivalence relation if it is reflexive, symmetric and transitive.

- (3) If \sim defines an equivalence relation on A, then the equivalence class of $a \in A$ is defined to be $\{x \in A : x \sim a\}$. Elements of the equivalence class of a are said to be **equivalent** to a. If C is an equivalence class, any element of C is called a **representative** of the class C.
- (4) A **partition** of A is any collection $\{A_i : i \in I\}$ of nonempty subsets of A (I some indexing set) such that:
 - (a) $A = \bigcup_{i \in I} A_i$;
 - (b) $A_i \cap A_i = \emptyset$, for all $i, j \in I$, with $i \neq j$,

i.e., A is the disjoint union of the sets in the partition.

Equivalence of Equivalence Relations and Partitions

Proposition

Let A be a nonempty set.

- (1) If \sim defines an equivalence relation on A then the set of equivalence classes of \sim form a partition of A.
- (2) If $\{A_i : i \in I\}$ is a partition of A, then there is an equivalence relation \sim on A, defined, for all $a, b \in A$, by

$$a \sim b$$
 iff $a, b \in A_i$, for some $i \in I$,

whose equivalence classes are precisely the sets A_i , $i \in I$.

(1) For each a ∈ A, a ~ a by reflexivity. So a ∈ [a] := {x ∈ A : x ~ a}. Thus, [a] ≠ Ø.
We show that, if [a] ≠ [b], then [a] ∩ [b] = Ø. Suppose, by contraposition, that x ∈ [a] ∩ [b]. Then x ~ a and x ~ b. By commutativity, a ~ x and x ~ b. By transitivity, a ~ b.

Equivalence Relations and Partitions (Cont'd)

Now consider $y \in [a]$. Then $y \sim a$. By transitivity, $y \sim b$, i.e., $y \in [b]$. This proves $[a] \subseteq [b]$. By symmetry, $[b] \subseteq [a]$. Thus, [a] = [b].If $a \in A$, then $a \in [a]$. Hence, $A = \bigcup_{a \in A} [a]$.

(2) We show that \sim as defined in Part (2) is an equivalence relation:

- (a) a is in the same part of the partition with itself. So $a \sim a$.
- (b) Suppose $a \sim b$. Then $a, b \in A_i$, for some *i*. Thus, $b, a \in A_i$. This shows that $b \sim a$.
- (c) Suppose that $a \sim b$ and $b \sim c$. Then, for some *i*, $a, b \in A_i$ and for some *j*, *b*, *c* \in *A_i*. But then *b* \in *A_i* \cap *A_i* and we know that *A_i* \cap *A_i* = \emptyset unless i = j. Thus, i = j and $a, c \in A_i$. This yields $a \sim c$.

Proving an Equation by Induction

Proposition

Let *n* be a positive integer. Then $2^0 + 2^1 + \cdots + 2^{n-1} = 2^n - 1$.

- We prove this by induction on n.
 - For n = 1, $2^0 = 2^1 1$ holds.
 - Suppose the result is true for n = k, i.e., assume $2^0 + 2^1 + \dots + 2^{k-1} = 2^k - 1$. We must show that the equation is true for n = k + 1, i.e., that $2^{0} + 2^{1} + \dots + 2^{k-1} + 2^{k} = 2^{k+1} - 1$

$$2^{0} + 2^{1} + \dots + 2^{k-1} + 2^{k} = 2^{k} - 1 + 2^{k}$$

= $2 \cdot 2^{k} - 1$
= $2^{k+1} - 1$.

Thus, the proposition is true for all positive integers.

Proving an Inequality by Induction

Proposition

Let *n* be a natural number. Then $10^0 + 10^1 + \cdots + 10^n < 10^{n+1}$.

- We prove this by induction on *n*.
 - For n = 0, $10^0 < 10^1$ holds.
 - Suppose the result is true for n = k, i.e., assume $10^0 + 10^1 + \dots + 10^k < 10^{k+1}$.

We must show that the equation is true for n = k + 1, i.e., that $10^{0} + 10^{1} + \dots + 10^{k} + 10^{k+1} < 10^{k+2}$

$$\begin{array}{rcl} 10^{0} + 10^{1} + \dots + 10^{k} + 10^{k+1} & < & 10^{k+1} + 10^{k+1} \\ & = & 2 \cdot 10^{k+1} \\ & < & 10 \cdot 10^{k+1} \\ & = & 10^{k+2}. \end{array}$$

Thus, the proposition is true for all positive integers.

Proving a Divisibility Relation by Induction

Proposition

Let *n* be a natural number. Then $4^n - 1$ is divisible by 3.

- We prove this by induction on *n*.
 - For n = 0, $4^0 1$ is divisible by 3.
 - Suppose the result is true for n = k, i.e., $3 \mid (4^k 1)$. This means that $4^k - 1 = 3a$ for some integer a. We must show that the statement is true for n = k + 1, i.e., that $3 \mid (4^{k+1} - 1).$ $4^{k+1} - 1 = 4 \cdot 4^k - 1$

$$= 4(4^{k} - 1) + 3$$

= 4 \cdot 3a + 3
= 3(4a + 1).

Thus, the proposition is true for all natural numbers.

Subsection 2

Properties of the Integers

Well-Ordering and Divisibility

- We use the following properties of the integers \mathbb{Z} :
 - Well Ordering of Z⁺: If A is any non empty subset of Z⁺, there is some element m ∈ A such that m ≤ a, for all a ∈ A, called a minimal element of A.
 - (2) If a, b ∈ Z, with a ≠ 0, we say a divides b if there is an element c ∈ Z, such that b = ac. In this case we write a | b. If a does not divide b we write a ∤ b.
 - (3) If a, b ∈ Z − {0}, there is a unique positive integer d, called the greatest common divisor of a and b or g.c.d. of a and b, satisfying:
 - (a) $d \mid a$ and $d \mid b$, i.e., d is a common divisor of a and b;
 - (b) if $e \mid a$ and $e \mid b$, then $e \mid d$, i.e., d is the greatest such divisor.

The g.c.d. of a and b will be denoted by (a, b).

If (a, b) = 1, we say that a and b are relatively prime.

- (4) If a, b ∈ Z − {0}, there is a unique positive integer l, called the least common multiple of a and b or l.c.m. of a and b, satisfying:
 - (a) $a \mid \ell$ and $b \mid \ell$, i.e., ℓ is a common multiple of a and b;
 - (b) if $a \mid m$ and $b \mid m$, then $\ell \mid m$, i.e., ℓ is the least such multiple.

The connection between d and ℓ is given by $d\ell = ab$.

The Division and the Euclidean Algorithms

- We continue with properties of the integers:
 - (5) **The Division Algorithm**: If $a, b \in \mathbb{Z} \{0\}$, then there exist unique $q, r \in \mathbb{Z}$, such that

a = qb + r and $0 \le r < |b|$,

where q is the **quotient** and r the **remainder**. This is the usual "long division" familiar from elementary arithmetic.

(6) The Euclidean Algorithm is an important procedure which produces a greatest common divisor of two integers a and b by iterating the Division Algorithm: If a, b ∈ Z − {0}, then we obtain a sequence of quotients and remainders:

$$\begin{array}{ll} a = q_0 b + r_0 & \vdots \\ b = q_1 r_0 + r_1 & r_{n-2} = q_n r_{n-1} + r_n \\ r_0 = q_2 r_1 + r_2 & r_{n-1} = q_{n+1} r_n, \end{array}$$

where r_n is the last nonzero remainder. Such an r_n exists since $|b| > |r_0| > |r_1| > \cdots > |r_n|$ is a decreasing sequence of strictly positive integers if the remainders are nonzero and such a sequence cannot continue indefinitely. Then r_n is the g.c.d. (a, b) of a and b.

Applying the Euclidean Algorithm

• Suppose a = 57970 and b = 10353. Applying the Euclidean Algorithm we obtain:

57970	=	(5)10353 + 6205
10353	=	(1)6205 + 4148
6205	=	(1)4148 + 2057
4148	=	(2)2057 + 34
2057	=	(60)34 + 17
34	=	(2)17 + 0.

which shows that

(57970, 10353) = 17.

The GCD as a \mathbb{Z} -Linear Combination

• We continue with properties of the integers:

2

(7) One consequence of the Euclidean Algorithm is the following: If a, b ∈ Z - {0}, then there exist x, y ∈ Z, such that (a, b) = ax + by, i.e., the g.c.d. of a and b is a Z-linear combination of a and b. This follows by recursively writing the element r_n in the Euclidean Algorithm in terms of the previous remainders: Use the last equation to solve for r_n = r_{n-2} - q_nr_{n-1} in terms of the remainders r_{n-1} and r_{n-2}. Then use the preceding equation to write r_n in terms of the remainders r_{n-2} and r_{n-3}, etc., eventually writing r_n in terms of a and b.
Example: Suppose a = 28 and b = 6. The Euclidean algorithm gives:

$$28 = (4)6 + 4, \quad 6 = (1)4 + 2, \quad 4 = (2)2 + 0.$$

Thus, we find:

$$= 6 - (1)4$$

= 6 - (1)(28 - (4)6)
= 6 - 28 + (4)6
= -28 + 5 \cdot 6.

Primes and the Fundamental Theorem of Arithmetic

• We continue with properties of the integers:

- (8) An element p of Z⁺ is called a prime if p > 1 and the only positive divisors of p are 1 and p.
 An integer n > 1 which is not prime is called composite.
 An important property of primes is that, if p is a prime and p | ab, for some a, b ∈ Z, then p | a or p | b.
- (9) The Fundamental Theorem of Arithmetic: If n ∈ Z, n > 1, then n can be factored uniquely into the product of primes, i.e., there are distinct primes p₁, p₂,..., p_s and positive integers α₁, α₂,..., α_s, such that

$$n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_s^{\alpha_s}.$$

This factorization is unique in the sense that, if q_1, q_2, \ldots, q_t are any distinct primes and $\beta_1, \beta_2, \ldots, \beta_t$ positive integers such that $n = q_1^{\beta_1} q_2^{\beta_2} \cdots q_t^{\beta_t}$, then s = t and, if we arrange the two sets of primes in increasing order, then $q_i = p_i$ and $\alpha_i = \beta_i$, for all $1 \le i \le s$.

Using the Fundamental Theorem to Find GCDs and LCMs

• Suppose the positive integers *a* and *b* are expressed as products of prime powers:

$$a = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s} \quad \text{and} \quad b = p_1^{\beta_1} p_2^{\beta_2} \cdots p_s^{\beta_s},$$

where p_1, p_2, \ldots, p_s are distinct and the exponents are ≥ 0 (the exponents here are allowed to be 0 so that the products are taken over the same set of primes - the exponent will be 0 if that prime is not actually a divisor). Then the greatest common divisor of *a* and *b* is

$$(a,b) = p_1^{\min\{\alpha_1,\beta_1\}} p_2^{\min\{\alpha_2,\beta_2\}} \cdots p_s^{\min\{\alpha_s,\beta_s\}}$$

The least common multiple is obtained by taking the maximum of the α_i and β_i instead of the minimum.

Example: If $a = 57970 = 2 \cdot 5 \cdot 11 \cdot 17 \cdot 31$ and $b = 10353 = 3 \cdot 7 \cdot 17 \cdot 29$, we get greatest common divisor 17.

The Euler φ -Function

- One more property of the integers:
 - (10) The Euler φ-function is defined as follows: For n ∈ Z⁺, let φ(n) be the number of positive integers a ≤ n with a relatively prime to n, i.e., (a, n) = 1.

Example: $\varphi(12) = 4$, since 1, 5, 7 and 11 are the only positive integers less than or equal to 12 which have no factors in common with 12. Similarly, $\varphi(1) = 1$, $\varphi(2) = 1$, $\varphi(3) = 2$, $\varphi(4) = 2$, $\varphi(5) = 4$, $\varphi(6) = 2$.

- For primes p, $\varphi(p) = p 1$.
- For all $a \ge 1$, we have the formula $\varphi(p^a) = p^a p^{a-1} = p^{a-1}(p-1)$.
- The function φ is multiplicative, in the sense that φ(ab) = φ(a)φ(b) if (a, b) = 1 (it is important that a and b be relatively prime).
- Multiplicativity, together with the formula above, gives a general formula for the values of φ :

If
$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$$
, then $\varphi(n) = \varphi(p_1^{\alpha_1})\varphi(p_2^{\alpha_2}) \cdots \varphi(p_s^{\alpha_s}) = p_1^{\alpha_1-1}(p_1-1)p_2^{\alpha_2-1}(p_2-1) \cdots p_s^{\alpha_s-1}(p_s-1).$
Example: $\varphi(12) = \varphi(2^2)\varphi(3) = 2^1(2-1)3^0(3-1) = 4.$

Subsection 3

$\mathbb{Z}/n\mathbb{Z}$: The Integers Modulo n

Congruence Modulo n

- Let n be a fixed positive integer. Define a relation on Z by a ∼ b if and only if n | (b − a).
 - Clearly $a \sim a$. So \sim is reflexive.
 - $a \sim b$ implies $b \sim a$ for any integers a and b, so \sim is symmetric.
 - If a ~ b and b ~ c, then n divides a − b and n divides b − c, so n also divides their sum, i.e., n divides (a − b) + (b − c) = a − c, so a ~ c and the relation is transitive.

Hence, \sim is an equivalence relation.

- Write $a \equiv b \pmod{n}$ and say a is **congruent to** b **mod** n if $a \sim b$.
- For k ∈ Z, we shall denote the equivalence class of a by ā. It is called the congruence class or residue class of a mod n and consists of the integers which differ from a by an integral multiple of n, i.e., a = {a + kn : k ∈ Z} = {a, a ± n, a ± 2n, a ± 3n, ...}.
- There are *n* distinct equivalence classes mod *n*, namely $\overline{0}, \overline{1}, \overline{2}, \ldots, \overline{n-1}$ determined by the possible remainders after division by *n*.
- The set of equivalence classes under this equivalence relation will be denoted by Z/nZ and called the integers modulo n.

Addition and Multiplication Modulo n

- For different *n*'s the equivalence relation and equivalence classes are different. So before using the bar notation, care is needed to fix *n*.
- The process of finding the equivalence class mod *n* of some integer *a* is often referred to as **reducing** *a* mod *n*.
- In $\mathbb{Z}/n\mathbb{Z}$, one can define an **addition** and a **multiplication**: For $\overline{a}, \overline{b} \in \mathbb{Z}/n\mathbb{Z}$, define their **sum** and **product** by

$$\overline{a} + \overline{b} = \overline{a+b}$$
 and $\overline{a} \cdot \overline{b} = \overline{a \cdot b}$.

That is, to compute the sum or the product of \overline{a} and \overline{b} in $\mathbb{Z}/n\mathbb{Z}$:

- take representatives a in \overline{a} and b in \overline{b} ;
- add or multiply the integers a and b as usual in \mathbb{Z} ;
- take the equivalence class containing the result.
- For this process to be valid we must show that the operations are well defined, i.e., do not depend on the choice of representatives taken for the elements \overline{a} and \overline{b} of $\mathbb{Z}/n\mathbb{Z}$.

Example of Modular Arithmetic

- Let us fix n = 12 and consider Z/12Z, which consists of the twelve residue classes 0, 1, 2, ..., 11, determined by the twelve possible remainders of an integer after division by 12.
- The elements in the residue class 5 are the integers which leave a remainder of 5 when divided by 12. Any such integer, such as 5, 17, 29,... or -7, -19,..., can serve as a representative for 5.
- Z/12Z consists of the twelve elements above (each of which consists of an infinite number of usual integers).
- Suppose now that $\overline{a} = \overline{5}$ and $\overline{b} = \overline{8}$. The most obvious representatives for \overline{a} and \overline{b} are the integers 5 and 8, respectively. But 17 and -28 are also representatives of \overline{a} and \overline{b} , respectively.
 - $\overline{5} + \overline{8} = \overline{13} = \overline{1}$, since 13 and 1 lie in the same class modulo n = 12.
 - $\overline{5} + \overline{8} = \overline{17 28} = \overline{-11} = \overline{1}$.

The result does not depend on the choice of representatives.

Modular Addition and Multiplication are Well-Defined

Theorem

The operations of addition and multiplication on $\mathbb{Z}/n\mathbb{Z}$ are well defined, i.e., they do not depend on the choices of representatives for the classes involved. More precisely, if $a_1, a_2 \in \mathbb{Z}$ and $b_1, b_2 \in \mathbb{Z}$, with $\overline{a_1} = \overline{b_1}$ and $\overline{a_2} = \overline{b_2}$, then $\overline{a_1 + a_2} = \overline{b_1 + b_2}$ and $\overline{a_1 a_2} = \overline{b_1 b_2}$, i.e., if $a_1 \equiv b_1 \pmod{n}$ and $a_2 \equiv b_2 \pmod{n}$, then $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$ and $a_1 a_2 \equiv b_1 b_2 \pmod{n}$ (mod *n*).

• Suppose $a_1 = b_1 \pmod{n}$, i.e., $a_1 - b_1$ is divisible by n. Then $a_1 = b_1 + sn$, for some integer s. Similarly, $a_2 \equiv b_2 \pmod{n}$ means $a_2 = b_2 + tn$, for some integer t. Then $a_1 + a_2 = (b_1 + b_2) + (s + t)n$, so that $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$, which shows that the sum of the residue classes is independent of the representatives chosen. Similarly, $a_1a_2 = (b_1 + sn)(b_2 + tn) = b_1b_2 + (b_1t + b_2s + stn)n$, showing that $a_1a_2 \equiv b_1b_2 \pmod{n}$. Thus, the product of the residue classes is also independent of the representatives chosen.

Suppressing the Class Notation

- The notion of adding equivalence classes is familiar in the context of adding rational numbers: Each rational number $\frac{a}{b}$ is really a class of expressions: $\frac{a}{b} = \frac{2a}{2b} = \frac{-3a}{-3b}$ etc. and we often change representatives (for instance, take common denominators) in order to add two fractions. E.g., $\frac{1}{2} + \frac{1}{3}$ is computed by taking instead the equivalent representatives $\frac{3}{6}$ for $\frac{1}{2}$ and $\frac{2}{6}$ for $\frac{1}{3}$ to obtain $\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}$.
- The notion of modular arithmetic is also familiar: to find the hour of day after adding or subtracting some number of hours we reduce mod 12 and find the least residue.
- It is convenient to think of the equivalence classes of some equivalence relation as elements which can be manipulated rather than as sets.
- Thus, we frequently denote the elements of Z/nZ simply by {0,1, ..., n-1} where addition and multiplication are reduced mod n. Nevertheless, the elements of Z/nZ are not integers, but rather collections of usual integers, and the arithmetic is quite different. For example, 5 + 8 ≠ 1 in Z as it is in Z/12Z.

Application of Modular Arithmetic

 We apply arithmetic in ℤ/nℤ to compute the last two digits in the number 2¹⁰⁰⁰.

First observe that the last two digits give the remainder of 2^{1000} after we divide by 100, so we are interested in the residue class mod 100 containing 2^{1000} . We compute:

$$\begin{array}{rcl} 2^{10} & = & 1024 \equiv 24 \pmod{100}, \\ 2^{20} & = & (2^{10})^2 = 24^2 = 576 \equiv 76 \pmod{100}, \\ 2^{40} & = & (2^{20})^2 = 76^2 = 5776 \equiv 76 \pmod{100}, \\ 2^{80} & \equiv & 2^{160} \equiv 2^{320} \equiv 2^{640} \equiv 76 \pmod{100}. \end{array}$$

Finally, $2^{1000} = 2^{640} 2^{320} 2^{40} \equiv 76 \cdot 76 \cdot 76 \equiv 76 \pmod{100}$. So the final two digits of 2^{1000} are 76.

Multiplicative Inverses in $\mathbb{Z}/n\mathbb{Z}$

 An important subset of Z/nZ consists of the collection of residue classes which have a multiplicative inverse in Z/nZ:

 $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\overline{a} \in \mathbb{Z}/n\mathbb{Z} : \text{there exists } \overline{c} \in \mathbb{Z}/n\mathbb{Z}, \text{ with } \overline{a} \cdot \overline{c} = \overline{1}\}.$

 (ℤ/nℤ)[×] is also the collection of residue classes whose representatives are relatively prime to n, which proves the following proposition:

Proposition

$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{\overline{a} \in \mathbb{Z}/n\mathbb{Z} : (a, n) = 1\}.$

• Note, if any representative of \overline{a} is relatively prime to *n*, then all representatives are relatively prime to *n*, so that the set on the right in the proposition is well defined.

Example: For n = 9 we obtain $(\mathbb{Z}/9\mathbb{Z})^{\times} = \{\overline{1}, \overline{2}, \overline{4}, \overline{5}, \overline{7}, \overline{8}\}$ from the proposition. The multiplicative inverses of these are $\{\overline{1}, \overline{5}, \overline{7}, \overline{2}, \overline{4}, \overline{8}\}$, respectively.

Computing Multiplicative Inverses in $\mathbb{Z}/n\mathbb{Z}$

If a is an integer relatively prime to n, then the Euclidean Algorithm produces integers x and y, satisfying ax + ny = 1. Hence ax ≡ 1 (mod n), so that x̄ is the multiplicative inverse of ā in Z/nZ. This gives an efficient method for computing multiplicative inverses in Z/nZ.

Example: Suppose n = 60 and a = 17. Applying the Euclidean Algorithm we obtain

 $60 = (3)17 + 9, \quad 17 = (1)9 + 8, \quad 9 = (1)8 + 1.$

So a and n are relatively prime. Moreover, $1 = 9 - 8 = 9 - (17 - 9) = 2 \cdot 9 - 17 = 2(60 - 3 \cdot 17) - 17 = 2 \cdot 60 - 7 \cdot 17$. Hence $\overline{-7} = \overline{53}$ is the multiplicative inverse of $\overline{17}$ in $\mathbb{Z}/60\mathbb{Z}$.