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Introduction to Groups Basic Axioms and Examples

Binary Operations

Definition (Binary Operation, Associativity, Commutativity)

(1) A binary operation ⋆ on a set G is a function ⋆ : G × G → G .
For any a, b ∈ G , we write a ⋆ b for ⋆(a, b).

(2) A binary operation ⋆ on a set G is associative if, for all a, b, c ∈ G ,
we have a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c .

(3) If ⋆ is a binary operation on a set G , we say elements a and b of G
commute if a ⋆ b = b ⋆ a.
We say ⋆ (or G ) is commutative if, for all a, b ∈ G , a ⋆ b = b ⋆ a.
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Introduction to Groups Basic Axioms and Examples

Examples of Binary Operations

(1) + (usual addition) is a commutative binary operation on Z (or on Q,
R, or C).

(2) × (usual multiplication) is a commutative binary operation on Z (or
on Q, R, or C).

(3) − (usual subtraction) is a noncommutative binary operation on Z,
where −(a, b) = a − b.
The map a 7→ −a is not a binary operation (not binary).

(4) − is not a binary operation on Z+ (nor Q+, R+) because, for
a, b ∈ Z+, with a < b, a − b 6∈ Z+, i.e., − does not map Z+ ×Z+

into Z+.

(5) Taking the vector cross-product of two vectors in 3-space R3 is a
binary operation which is not associative and not commutative.
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Introduction to Groups Basic Axioms and Examples

Closure Under an Operation

Suppose that ⋆ is a binary operation on a set G and H is a subset of
G . If the restriction of ⋆ to H is a binary operation on H, i.e., for all
a, b ∈ H, a ⋆ b ∈ H, then H is said to be closed under ⋆

Example: − is a binary operation on R. Z is a subset of R. Clearly,
Z is closed under −.

− is a binary operation on R. N is a subset of R. However, N is not
closed under −.

If ⋆ is an associative (respectively, commutative) binary operation on
G and ⋆ restricted to some subset H of G is a binary operation on H,
then ⋆ is automatically associative (respectively, commutative) on H

as well.
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Introduction to Groups Basic Axioms and Examples

Definition of Group

Definition (Group)

(1) A group is an ordered pair (G , ⋆), where G is a set and ⋆ is a binary
operation on G satisfying the following axioms:

(i) (a ⋆ b) ⋆ c = a ⋆ (b ⋆ c), for all a, b, c ∈ G , i.e., ⋆ is associative;
(ii) There exists an element e in G , called an identity of G , such that, for

all a ∈ G , we have a ⋆ e = e ⋆ a = a;
(iii) For each a ∈ G , there is an element a−1 of G , called an inverse of a,

such that a ⋆ a−1 = a−1 ⋆ a = e.

(2) The group (G , ⋆) is called abelian (or commutative) if a ⋆ b = b ⋆ a,
for all a, b ∈ G .

We usually say G is a group under ⋆ if (G , ⋆) is a group, or just G is
a group when the operation ⋆ is clear from the context.

Also, we say G is a finite group if, in addition, G is a finite set.

Note that axiom (1)(ii) ensures that a group is always nonempty.
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Introduction to Groups Basic Axioms and Examples

Examples of Groups

(1) Z,Q,R and C are groups under + with e = 0 and a−1 = − a, for all
a.

(2) Q− {0}, R− {0}, C− {0}, Q+, R+ are groups under ×, with e = 1
and a−1 = 1

a
, for all a.

Note that Z− {0} is not a group under × because, although × is an
associative binary operation on Z− {0}, the element 2 (for instance)
does not have an inverse in Z− {0}.

For now, we take for granted the fact that the associative law holds in
all these familiar examples.

(3) The axioms for a vector space V include those axioms which specify
that (V ,+) is an abelian group (the operation + is called vector

addition). Thus any vector space, such as Rn, is, in particular, an
additive group.
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Introduction to Groups Basic Axioms and Examples

Examples of Groups (Cont’d)

(4) For n ∈ Z+, Z/nZ is an abelian group under the operation + of
addition of residue classes. For now, we take the facts that + is well
defined and associative for granted. The identity in this group is the
element 0 and for each a ∈ Z/nZ, the inverse of a is −a.
When we talk about the group Z/nZ it will be understood that the
group operation is addition of classes mod n.

(5) For n ∈ Z+, the set (Z/nZ)× of equivalence classes a which have
multiplicative inverses mod n is an abelian group under multiplication
of residue classes. For now, we take for granted that this operation is
well defined and associative. The identity of this group is the element
1 and, by definition of (Z/nZ)×, each element has a multiplicative
inverse.
When we talk about the group (Z/nZ)×, it will be understood that
the group operation is multiplication of classes mod n.
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Examples of Groups: Direct Products

(6) If (A, ⋆) and (B , ⋄) are groups, we can form a new group A× B ,
called their direct product:

Its elements are those in the Cartesian product

A× B = {(a, b) : a ∈ A, b ∈ B};

Its operation is defined componentwise:

(a1, b1)(a2, b2) = (a1 ⋆ a2, b1 ⋄ b2).

Example: If we take A = B = R (both operations addition), R×R is
the familiar Euclidean plane.
The proof that the direct product of two groups is again a group is
easy:

(a1, b1)((a2, b2)(a3, b3)) = (a1, b1)(a2 ⋆ a3, b2 ⋄ b3) =
(a1 ⋆ (a2 ⋆ a3), b1 ⋄ (b2 ⋄ b3)) = ((a1 ⋆ a2) ⋆ a3, (b1 ⋄ b2) ⋄ b3) =
(a1 ⋆ a2, b1 ⋄ b2)(a3, b3) = ((a1, b1)(a2, b2))(a3, b3).
Identity of A× B is (eA, eB).
Inverse of (a, b) is (a−1, b−1).
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Properties of Identities and Inverses

Proposition

If G is a group under the operation ⋆, then:

(1) The identity of G is unique;

(2) For each a ∈ G , a−1 is uniquely determined;

(3) (a−1)−1 = a, for all a ∈ G ;

(4) (a ⋆ b)−1 = (b−1) ⋆ (a−1);

(5) For any a1, a2, . . . , an ∈ G , the value of a1 ⋆ a2 ⋆ · · · ⋆ an is
independent of how the expression is bracketed (this is called the
generalized associative law).

(1) If f and g are both identities, then, since g is an identity, f ⋆ g = f

and, since f is an identity, f ⋆ g = g . Thus f = g , and the identity is
unique.
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Proof of the Proposition (Cont’d)

(2) Assume b and c are both inverses of a and let e be the identity of G .
Then a ⋆ b = e and c ⋆ a = e. Thus,
c = c ⋆ e = c ⋆ (a ⋆ b) = (c ⋆ a) ⋆ b = e ⋆ b = b.

(3) To show (a−1)−1 = a is exactly the problem of showing a is the
inverse of a−1. By the definition of a−1, with the roles of a and a−1

interchanged, it follows that a is the inverse of a−1.

(4) Let c = (a ⋆ b)−1. By definition of c ,

(a ⋆ b) ⋆ c = e ⇒ a ⋆ (b ⋆ c) = e

⇒ a−1 ⋆ (a ⋆ (b ⋆ c)) = a−1 ⋆ e
⇒ (a−1 ⋆ a) ⋆ (b ⋆ c) = a−1

⇒ e ⋆ (b ⋆ c) = a−1 ⇒ b ⋆ c = a−1

⇒ b−1 ⋆ (b ⋆ c) = b−1 ⋆ a−1

⇒ (b−1 ⋆ b) ⋆ c = b−1 ⋆ a−1

⇒ e ⋆ c = b−1 ⋆ a−1 ⇒ c = b−1 ⋆ a−1.
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Proof of the Proposition (Conclusion)

(5) We show by induction on n that, regardless of bracketing, the
expression a1 ⋆ · · · ⋆ an evaluates to the expression that is
left-parenthesized: ((a1 ⋆ a2) ⋆ · · · ⋆ an−1) ⋆ an.

For n = 3, we have a1 ⋆ (a2 ⋆ a3) = (a1 ⋆ a2) ⋆ a3 by associativity.

Suppose that, for all k < n, we have
a1 ⋆ · · · ⋆ ak = ((a1 ⋆ a2) ⋆ · · · ⋆ ak−1) ⋆ ak .

Then we obtain:

(a1 ⋆ a2 ⋆ · · · ⋆ ai) ⋆ (ai+1 ⋆ · · · ⋆ an)
= (a1 ⋆ a2 ⋆ · · · ⋆ ai) ⋆ ((ai+1 ⋆ ai+2) ⋆ · · · ⋆ an−1) ⋆ an)
= ((a1 ⋆ a2 ⋆ · · · ⋆ ai ) ⋆ ((ai+1 ⋆ ai+2) ⋆ · · · ⋆ an−1)) ⋆ an
= (((a1 ⋆ a2) ⋆ · · · ⋆ an−2) ⋆ an−1) ⋆ an.
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Some Commonly Used Notation

(1) For abstract groups G , H, etc., we write the operation as · and a · b
as ab. In view of the generalized associative law, products of three or
more group elements need not be bracketed. For an abstract group
G , with operation ·, we denote the identity of G by 1.

(2) For any group G , with operation ·, x ∈ G and n ∈ Z+, since the
product xx · · · x

︸ ︷︷ ︸
n terms

does not depend on how it is bracketed, we shall

denote it by xn. Denote x−1x−1 · · · x−1
︸ ︷︷ ︸

n terms

by x−n. Let x0 = 1, the

identity of G .
When we are dealing with specific groups, we shall use the natural
operation. For example, when the operation is +:

the identity will be denoted by 0;
for any element a, the inverse a−1 will be written −a;
a+ a+ · · ·+ a
︸ ︷︷ ︸

n > 0 terms

will be written na; −a− a · · · − a
︸ ︷︷ ︸

n terms

will be written −na;

and 0a = 0.
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Solving Equations and the Cancelation Laws

Proposition

Let G be a group and let a, b ∈ G . The equations ax = b and ya = b have
unique solutions for x , y ∈ G . In particular, the left and right cancelation
laws hold in G :

(1) If au = av , then u = v ;

(2) If ub = vb, then u = v .

To solve ax = b, multiply on the left by a−1 and simplify to get
x = a−1b. Since a−1 is unique so is x . Similarly, if ya = b, y = ba−1.

If au = av , multiply both sides on the left by a−1 to get u = v .

Similarly, the right cancelation law holds.

Useful consequences:
If a ∈ G is such that, for some b ∈ G , ab = e or ba = e, then b = a−1,
i.e., we do not have to show both equations hold.
If, for some b ∈ G , ab = a (or ba = a), then b must be the identity of
G , i.e., we do not have to check bx = xb = x , for all x ∈ G .
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The Order of an Element in a Group

Definition (Order of an Element)

For G a group and x ∈ G , define the order of x to be the smallest positive
integer n, such that xn = 1. This integer is denoted by |x | and x is said to
be of order n. If no positive power of x is the identity, the order of x is
defined to be infinity and x is said to be of infinite order.

The symbol for the order of x should not be confused with the
absolute value symbol; especially when G = R, care is needed to
distinguish the two.

Examples:

(1) An element of a group has order 1 if and only if it is the identity.
(2) In the additive groups Z,Q,R or C, every nonzero (i.e., nonidentity)

element has infinite order.
(3) In the multiplicative groups R− {0} or Q− {0}, the element −1 has

order 2 and all other nonidentity elements have infinite order.
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Additional Examples of Order

Some additional examples drawn from modular arithmetic:
(4) In the additive group Z/9Z:

6 6= 0;
6 + 6 = 12 = 3 6= 0;
6 + 6 + 6 = 18 = 0.

So, the element 6 has order 3.
(5) In the multiplicative group (Z/7Z)×:

The powers of the element 2 are: 2, 4, 8 = 1, the identity in this group.
So 2 has order 3.
Similarly, for the element 3:

3; 3
4
≡ 18 ≡ 4;

3
2
≡ 9 ≡ 2; 3

5
≡ 12 ≡ 5;

3
3
≡ 6; 3

6
≡ 15 ≡ 1.

So 3 has order 6 in (Z/7Z)×.
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Multiplication or Group Table

Definition (Multiplication or Group Table)

Let G = {g1, g2, . . . , gn} be a finite group with g1 = 1. The
multiplication table or group table of G is the n × n matrix whose i , j
entry is the group element gigj .

For a finite group the multiplication table contains, in some sense, all
the information about the group.

Example: Consider the group G , with elements 1, a, b, c . Its
multiplication · is completely specified by the group table:

· 1 a b c

1 1 a b c

a a 1 c b

b b c 1 a

c c b a 1
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Subsection 2

Dihedral Groups
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Introduction to Groups Dihedral Groups

Symmetries of a Regular n-gon

An important family of examples of groups is the class of groups
whose elements are symmetries of geometric objects.

The simplest subclass is when the geometric objects are regular planar
figures.

A symmetry of an n-gon is any rigid motion of the n-gon which can
be effected by:

taking a copy of the n-gon;
moving it in any fashion in 3-space;
placing it back on the original so it exactly covers it.

For each n ∈ Z+, n ≥ 3, let D2n be the set of symmetries of a regular
n-gon.
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Describing Symmetries

We can describe the symmetries by first choosing a labeling of the n

vertices:

Each symmetry s can be described uniquely by
the corresponding permutation σ of {1, 2, 3, . . . ,
n}, where, if the symmetry s puts vertex i in the
place where vertex j was originally, then σ is the
permutation sending i to j .

Example: If s is a rotation of 2π
n

radians clockwise about the center
of the n -gon, then σ sends i to i + 1, 1 ≤ i ≤ n − 1, and σ(n) = 1.
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The Group Structure

We make D2n into a group by defining st for s, t ∈ D2n to be the
symmetry obtained by first applying t then s to the n-gon.

We are viewing symmetries as functions on the n-gon, so st is just
function composition, read, as usual, from right to left.

If s, t effect the permutations σ, τ , respectively, on the vertices, then
st effects σ ◦ τ .

The binary operation on D2n is associative since composition of
functions is associative.
The identity of D2n is the identity symmetry (which leaves all vertices
fixed), denoted by 1.
The inverse of s ∈ D2n is the symmetry which reverses all rigid motions
of s. So, if s effects permutation σ on the vertices, s−1 effects σ−1.

We will show that |D2n| = 2n.

So D2n is called the dihedral group of order 2n.
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Order of D2n

We determine the order |D2n|:

Given any vertex i , there is a symmetry which sends vertex 1 into
position i .
Since vertex 2 is adjacent to vertex 1, vertex 2 must end up in position
i + 1 or i − 1 (where n+ 1 is 1 and 1− 1 is n, i.e., the integers labeling
the vertices are read mod n).
By following the first symmetry by a reflection about the line through
vertex i and the center of the n-gon, we see that vertex 2 can be sent
to either position i + 1 or i − 1 by some symmetry.

Thus there are n · 2 positions the ordered pair of vertices 1, 2 may be
sent to upon applying symmetries.

Since symmetries are rigid motions, once the position of the ordered
pair of vertices 1, 2 has been specified, the action of the symmetry on
all remaining vertices is completely determined.

Thus, there are exactly 2n symmetries of a regular n-gon.
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Exhibiting the Symmetries in D2n

We can explicitly exhibit the 2n symmetries that we proved exist:

The n rotations about the center through 2π
n

radian, 0 ≤ i ≤ n− 1;
The n reflections through the n lines of symmetry;

If n is odd, each symmetry line passes through a vertex and the
mid-point of the opposite side;
If n is even, there are n

2
lines of symmetry which pass through 2

opposite vertices and n
2
which perpendicularly bisect two opposite sides.
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Notation

Fix a regular n-gon centered at the origin in an x , y -plane and label
the vertices consecutively from 1 to n in a clockwise manner.

Let r be the rotation clockwise about the origin through 2π
n

radian.

Let s be the reflection about the line of symmetry through vertex 1
and the origin.

(1) 1, r , r2, . . . , rn−1 are all distinct and rn = 1, so |r | = n.
(2) |s| = 2.
(3) s 6= r i , for any i .
(4) sr i 6= sr j , for all 0 ≤ i , j ≤ n − 1, with i 6= j .

So we get that

D2n = {1, r , r2, . . . , rn−1, s, sr , sr2, . . . , srn−1}.

I.e., each element can be written uniquely in the form sk r i , for some
k = 0 or 1 and 0 ≤ i ≤ n − 1.
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Operations involving s and Powers of r

We saw that

D2n = {1, r , r2, . . . , rn−1, s, sr , sr2, . . . , srn−1}.

(5) rs = sr−1. This shows, in particular, that r and s do not commute, so
that D2n is non-abelian.

(6) r i s = sr−i , for all 0 ≤ i ≤ n− 1.
This can be shown by induction on i :

r i+1s = (rr i )s = r(r i s) = r(sr−i ) = (rs)r−i

= (sr−1)r−i = s(r−1r−i) = sr−(i+1).

It provides a method for commuting s with powers of r .

George Voutsadakis (LSSU) Abstract Algebra I March 2016 26 / 71



Introduction to Groups Dihedral Groups

Multiplying Elements of D2n

The complete multiplication table of D2n can be written in terms of r
and s alone, since all the elements of D2n have a (unique)
representation in the form sk r i , k = 0, 1, and 0 ≤ i ≤ n − 1.

Any product of two elements in this form can be reduced to another
in the same form using only “relations” (1), (2) and (6).

Example: If n = 12,

(sr9)(sr6) = s(r9s)r6 = s(sr−9)r6

= s2r−9+6 = r−3 = r9.
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Generators of a Group

A subset S of elements of a group G with the property that every
element of G can be written as a (finite) product of elements of S
and their inverses is called a set of generators of G . This is indicated
by writing G = 〈S〉. We say G is generated by S or S generates G .

Example: The integer 1 is a generator for the additive group Z of
integers since every integer is a sum of a finite number of +1’s and
−1’s, so Z = 〈1〉.

Example: By the preceding discussion, the set S = {r , s} is a set of
generators of D2n, so D2n = 〈r , s〉.

We will see later that, in a finite group G , the set S generates G if
every element of G is a finite product of elements of S (i.e., it is not
necessary to include the inverses of the elements of S as well).
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Generators and Relations of a Group

Any equations in a general group G that the generators satisfy are
called relations in G .

Example: In D2n we have relations: rn = 1, s2 = 1 and rs = sr−1.

In D2n these three relations have the additional property that any
other relation between elements of the group may be derived from
these three.
This follows from the fact that we can determine exactly when two
group elements are equal by using only these three relations.
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Presentations Through Generators and Relations

If some group G is generated by a subset S and there is some
collection of relations, say R1,R2, . . . ,Rm (each Ri is an equation in
the elements from S ∪ {1}), such that any relation among the
elements of S can be deduced from these, we call these generators
and relations a presentation of G and write

G = 〈S | R1,R2, . . . ,Rm〉.

Example: One presentation for the dihedral group D2n is then

D2n = 〈r , s | rn = s2 = 1, rs = sr−1〉.
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Characterization of D2n

We proved geometrically that there is a group of order 2n with
generators r and s and satisfying the relations in

〈r , s | rn = s2 = 1, rs = sr−1〉.

Thus, a group with only these relations must have order at least 2n.

On the other hand, using with the commutation relation rs = sr−1, it
can be shown that any group defined by this set of generators and
relations has order at most 2n.

It follows that the group with that presentation has order exactly 2n
and that it is the group of symmetries of the regular n-gon.
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Subsection 3

Symmetric Groups
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The Symmetric Groups

Let Ω be any nonempty set and let SΩ be the set of all bijections
from Ω to itself, i.e., the set of all permutations of Ω.

The set SΩ is a group under function composition ◦.
◦ is a binary operation on SΩ since, if σ : Ω → Ω and τ : Ω → Ω are
both bijections, then σ ◦ τ is also a bijection from Ω to Ω.

Since function composition is associative in general, ◦ is associative.
The identity of SΩ is the permutation 1 defined by 1(a) = a, for all
a ∈ Ω.
For every permutation σ, there is a (2-sided) inverse function
σ−1 : Ω → Ω satisfying σ ◦ σ−1 = σ−1 ◦ σ = 1.

Thus, all the group axioms hold for (SΩ, ◦). It is called the
symmetric group on the set Ω.

Note that the elements of SΩ are the permutations of Ω, not the
elements of Ω itself.

In the special case when Ω = {1, 2, 3, . . . , n}, the symmetric group on
Ω is denoted Sn, the symmetric group of degree n.
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The Order of Sn

Claim: The order of Sn is n!.

The permutations of {1, 2, 3, . . . , n} are precisely the injective
functions of this set to itself because it is finite.

To count the number of injective functions, note that an injective
function σ can send:

the number 1 to any of the n elements of {1, 2, 3, . . . , n};
σ(2) can then be any one of the elements of this set except σ(1), so
there are n − 1 choices for σ(2);
σ(3) can be any element except σ(1) or σ(2), so there are n − 2
choices for σ(3), and so on.

Thus, there are precisely n · (n − 1) · (n − 2) · · · 2 · 1 = n! possible
injective functions from {1, 2, 3, . . . , n} to itself.

Hence there are precisely n! permutations of {1, 2, 3, . . . , n}, i.e.,
precisely n! elements in Sn.
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The Cycle Decomposition

An efficient notation for writing elements σ of Sn is called the cycle

decomposition.

A cycle is a string of integers which represent the element of Sn
which cyclically permutes these integers (and fixes all other integers).

The cycle (a1 a2 . . . am) is the permutation which sends ai to ai+1,
1 ≤ i ≤ m − 1 and sends am to a1.

Example: (2 1 3) is the permutation which maps 2 to 1, 1 to 3 and 3
to 2.

For each σ ∈ Sn, the numbers from 1 to n will be rearranged and
grouped into k cycles of the form

(a1 a2 . . . am1)(am1+1 am1+2 . . . am2) · · · (amk−1+1 amk−1+2 . . . amk
),

from which the action of σ on any number from 1 to n can be read.
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Permutation Represented by a Cycle Decomposition

In the representation of σ as

(a1 a2 . . . am1)(am1+1 am1+2 . . . am2) · · · (amk−1+1 amk−1+2 . . . amk
),

the action on any number from 1 to n can be read as follows:
For any x ∈ {1, 2, 3, . . . , n}, first locate x in the above expression.

If x is not followed immediately by a right parenthesis, i.e., x is not at
the right end of one of the k cycles, then σ(x) is the integer appearing
immediately to the right of x .
If x is followed by a right parenthesis, then σ(x) is the number which is
at the start of the cycle ending with x , i.e., if x = ami

for some i , then
σ(x) = ami−1+1.

The product of all the cycles is called the cycle decomposition of σ.
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Computing the Cycle Decomposition of a Permutation

We now give an algorithm for computing the cycle decomposition of
an element σ of Sn.

Running Example: Let n = 13 and let σ ∈ S13 be defined by

σ(1) = 12, σ(2) = 13, σ(3) = 3, σ(4) = 1, σ(5) = 11,
σ(6) = 9, σ(7) = 5, σ(8) = 10, σ(9) = 6, σ(10) = 4,
σ(11) = 7, σ(12) = 8, σ(13) = 2.

The Cycle Decomposition Algorithm:
To start a new cycle pick the smallest element of {1, 2, . . . , n} which
has not yet appeared in a previous cycle - call it a; if just starting,
a = 1; begin the new cycle: (a
In the Example, we have (1
Read off σ(a) from the given description of σ - call it b;

If b = a, close the cycle with a right parenthesis (without writing b

down); this completes a cycle - return to step 1.
If b 6= a, write b next to a in this cycle: (a b

σ(1) = 12 = b, 12 6= 1 so write: (1 12
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Computing the Cycle Decomposition (Cont’d)

Read off σ(b) from the given description of σ - call it c ;
If c = a, close the cycle with a right parenthesis to complete the cycle -
return to step 1.
If c 6= a, write c next to b in this cycle: (a b c

Repeat this step using the number c as the new value for b until the
cycle closes.
σ(12) = 8, 8 6= 1 so continue the cycle as: (1 12 8

This process stops when all the numbers from {1, 2, . . . , n} have
appeared in some cycle.

Example: For the particular σ in the example

σ(1) = 12, σ(2) = 13, σ(3) = 3, σ(4) = 1, σ(5) = 11,
σ(6) = 9, σ(7) = 5, σ(8) = 10, σ(9) = 6, σ(10) = 4,
σ(11) = 7, σ(12) = 8, σ(13) = 2,

σ = (1 12 8 10 4)(2 13)(3)(5 11 7)(6 9).
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Final Step of the Cycle Decomposition Algorithm

The length of a cycle is the number of integers which appear in it.
A cycle of length t is called a t-cycle.

Two cycles are called disjoint if they have no numbers in common.

Example: σ = (1 12 8 10 4)(2 13)(3)(5 11 7)(6 9) is the product of 5
(pairwise) disjoint cycles: a 5-cycle, a 2-cycle, a 1 -cycle, a 3-cycle,
and another 2-cycle.

We adopt the convention that 1-cycles will not be written: If some
integer i does not appear in the cycle decomposition of a permutation
σ, it is understood that σ(i) = i , i.e., σ fixes i .

The identity permutation of Sn has cycle decomposition (1)(2) · · · (n)
and will be written simply as 1.

Final Step of the Algorithm: Remove all cycles of length 1.

Example: The cycle decomposition for the particular σ in the example
is therefore

σ = (1 12 8 10 4)(2 13)(5 11 7)(6 9).

George Voutsadakis (LSSU) Abstract Algebra I March 2016 39 / 71



Introduction to Groups Symmetric Groups

Advantage of Dropping 1-Cycles

The convention of not writing 1-cycles in the cycle decomposition has
the advantage that the cycle decomposition of an element σ of Sn is
also the cycle decomposition of the permutation in Sm for m ≥ n

which acts as σ on {1, 2, 3, . . . , n} and fixes each element of
{n + 1, n + 2, . . . ,m}.

Example: (1 2) is the permutation which interchanges 1 and 2 and
fixes all larger integers whether viewed in S2,S3 or S4, etc.

Example: The 6 elements of S3 have the cycle decompositions:
Values of σ Cycle Decomposition of σ

σ1(1) = 1, σ1(2) = 2, σ1(3) = 3 1
σ2(1) = 1, σ2(2) = 3, σ2(3) = 2 (2 3)
σ3(1) = 3, σ3(2) = 2, σ3(3) = 1 (1 3)
σ4(1) = 2, σ4(2) = 1, σ4(3) = 3 (1 2)
σ5(1) = 2, σ5(2) = 3, σ5(3) = 1 (1 2 3)
σ6(1) = 3, σ6(2) = 1, σ6(3) = 2 (1 3 2)
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Inverses and Compositions in Cycle Representation

For any σ ∈ Sn, the cycle decomposition of σ−1 is obtained by writing
the numbers in each cycle of the cycle decomposition of σ in reverse
order.

Example: If σ = (1 12 8 10 4)(2 13)(5 11 7)(6 9) is the element of
S13, then σ−1 = (4 10 8 12 1)(13 2)(7 11 5)(9 6).

Computing products is straightforward, keeping in mind that when
computing σ ◦ τ in Sn one reads the permutations from right to left.
One simply “follows” the elements under the successive permutations.

Example: In the product (1 2 3) ◦ (1 2)(3 4) the number 1 is sent to
2 by the first permutation, then 2 is sent to 3 by the second
permutation. Hence the composite maps 1 to 3.
To compute the cycle decomposition of the product we need next to
see what happens to 3, etc. We have (1 2 3) ◦ (1 2)(3 4) = (1 3 4).

Note that (1 2) ◦ (1 3) = (1 3 2) and (1 3) ◦ (1 2) = (1 2 3).
Thus Sn is a non-abelian group for all n ≥ 3.
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Rearrangements of a Cycle Decomposition

Each cycle (a1 a2 . . . am) in a cycle decomposition can be viewed as
the permutation which cyclically permutes a1, a2, . . . , am and fixes all
other integers.

Since disjoint cycles permute numbers which lie in disjoint sets, it
follows that disjoint cycles commute.

Thus, rearranging the cycles in any product of disjoint cycles (in
particular, in a cycle decomposition) does not change the
permutation.

Also, since a given cycle (a1 a2 . . . am) permutes {a1, a2, . . . , am}
cyclically, the numbers in the cycle itself can be cyclically permuted
without altering the permutation, i.e., (a1 a2 . . . am) =
(a2 a3 . . . am a1) = (a3 a4 . . . am a1 a2) = · · · = (am a1 a2 . . . am−1).

Example: We have (1 2) = (2 1) and (1 2 3 4) = (3 4 1 2).

By convention, the smallest number appearing in the cycle is usually
written first.
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Some Remarks on the Cycle Decomposition

A permutation may be written in many ways as an arbitrary product
of cycles!

Example: In S3,

(1 2 3) = (1 2)(2 3) = (1 3)(1 3 2)(1 3) etc.

We will show that the cycle decomposition of each permutation is the
unique way of expressing a permutation as a product of disjoint cycles
(up to rearranging its cycles and cyclically permuting the numbers
within each cycle).

Reducing an arbitrary product of cycles to a product of disjoint cycles
allows us to determine at a glance whether or not two permutations are
the same.
Another advantage is that the order of a permutation is the l.c.m. of
the lengths of the cycles in its cycle decomposition.
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Fields

A field is the “smallest” mathematical structure in which we can
perform all the arithmetic operations +,−,× and ÷ (division by
nonzero elements).

In particular every nonzero element must have a multiplicative inverse.

Definition (Field)

(1) A field is a set F together with two binary operations + and · on F such
that

(F ,+) is an abelian group (call its identity 0);
(F − {0}, ·) is also an abelian group;
The following distributive law holds:

a · (b + c) = (a · b) + (a · c).

(2) For any field F , let F× = F − {0}.
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The Set GLn(F )

Let F be a field.

The determinant of any matrix A with entries from F can be
computed by the same formulas as when F = R.

For each n ∈ Z+, let GLn(F ) be the set of all n × n matrices whose
entries come from F and whose determinant is nonzero:

GLn(F ) = {A : A is an n× n matrix with entries from F

and det(A) 6= 0}.

For arbitrary n× n matrices A and B , let AB be the product of these
matrices, computed by the same rules as when F = R.

Example: A product in GL2(R):

[
1 2
3 4

] [
5 6
7 8

]

=

[
1 · 5 + 2 · 7 1 · 6 + 2 · 8
3 · 5 + 4 · 7 3 · 6 + 4 · 8

]

=

[
19 22
43 50

]

.
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The General Linear Groups of Degree n

Claim: GLn(F ) is a group under matrix multiplication.

Since det(AB) = det(A) · det(B), it follows that, if det(A) 6= 0 and
det(B) 6= 0, then det(AB) 6= 0, so GLn(F ) is closed under matrix
multiplication.

Matrix product is associative.
For every matrix A ∈ GLn(F ), AI = IA = A, where I is the n × n

identity matrix.
det(A) 6= 0 if and only if A has a matrix inverse (that can be computed
by the same adjoint formula used when F = R). So each A ∈ GLn(F )
has an inverse A−1 in GLn(F ), such that AA−1 = A−1A = I .

GLn(F ) is called the general linear group of degree n.
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The Quaternion Group

Definition (The Quaternion Group)

The quaternion group Q8 is defined by

Q8 = {1,−1, i ,−i , j ,−j , k ,−k},

with product · computed as follows:

1 · a = a · 1 = a, for all a ∈ Q8,
(−1) · (−1) = 1, (−1) · a = a · (−1) = −a, for all a ∈ Q8

i · i = j · j = k · k = −1
i · j = k , j · i = −k

j · k = i , k · j = −i

k · i = j , i · k = −j .

We write ab for a · b.

It is tedious to check the associative law, but the other group axioms
are easily checked.

Q8 is a non-abelian group of order 8.

George Voutsadakis (LSSU) Abstract Algebra I March 2016 49 / 71



Introduction to Groups Homomorphisms and Isomorphisms

Subsection 6

Homomorphisms and Isomorphisms

George Voutsadakis (LSSU) Abstract Algebra I March 2016 50 / 71



Introduction to Groups Homomorphisms and Isomorphisms

Group Homomorphisms

Two groups are isomorphic if they “look the same”.

A more relaxed notion is that of a homomorphism:

Definition (Homomorphism)

Let (G , ⋆) and (H, ⋄) be groups. A map ϕ : G → H, such that

ϕ(x ⋆ y) = ϕ(x) ⋄ ϕ(y), for all x , y ∈ G ,

is called a homomorphism.

When the group operations for G and H are not explicitly written, the
homomorphism condition becomes simply

ϕ(xy) = ϕ(x)ϕ(y).

The product xy on the left is computed in G .
The product ϕ(x)ϕ(y) on the right is computed in H .

The idea is that ϕ is a homomorphism if it respects the group
structures of its domain and codomain.
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Group Isomorphisms

Definition (Isomorphism)

The map ϕ : G → H is called an isomorphism and G and H are said to
be isomorphic or of the same isomorphism type, written G ∼= H, if:

(1) ϕ is a homomorphism, i.e., ϕ(xy) = ϕ(x)ϕ(y);

(2) ϕ is a bijection.

The groups G and H are isomorphic if there is a bijection between
them which preserves the group operations.

In effect, G and H are the same group except that the elements and
the operations may be written differently in G and H.

It follows that any property which G has, which depends only on the
group structure of G , also holds in H.
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Isomorphism Classes

Let G be any nonempty collection of groups.
Claim: The relation ∼= is an equivalence relation on G.

Reflexivity: Consider G ∈ G. The identity map iG : G → G is a
bijection. Moreover, for all a, b ∈ G , iG (ab) = ab = iG (a)iG (b). So
iG : G → G is an isomorphism. This proves G ∼= G .
Symmetry: Suppose G1

∼= G2. Then, there exists an isomorphism
f : G1 → G2. Since f is a bijection, it has an inverse f −1 : G2 → G1.
f −1 is a bijection. Moreover, for all a2, b2 ∈ G2, there exist a1, b1 ∈ G1,
such that f (a1) = a2 and f (b1) = b2. Thus, we get f −1(a2b2) =
f −1(f (a1)f (b1)) = f −1(f (a1b1)) = a1b1 = f −1(a2)f

−1(b2). Hence,
f −1 : G2 → G1 is also an isomorphism. This shows that G2

∼= G1.
Transitivity: Suppose G1

∼= G2 and G2
∼= G3. Then, there exist

isomorphisms f : G1 → G2 and g : G2 → G3. Consider the bijection
g ◦ f : G1 → G3. For all a1, b1 ∈ G1, we have (g ◦ f )(a1b1) =
g(f (a1)f (b1)) = g(f (a1))g(f (b1)) = (g ◦ f )(a1)(g ◦ f )(b1). Thus,
g ◦ f : G1 → G3 is an isomorphism. This shows that G1

∼= G3.

The ∼=-equivalence classes are called isomorphism classes.
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Example: The Exponential Map

Example: The exponential map exp : R → R+, defined by

exp(x) = ex ,

where e is the base of the natural logarithm, is an isomorphism from
(R,+) to (R+,×).

exp is a bijection since it has an inverse function ln.
exp preserves the group operations since ex+y = exey .

Note both the elements and the operations are different, yet the two
groups are isomorphic. Thus, as groups they have identical structures.
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Isomorphism Type of a Symmetric Group

Claim: Let ∆ and Ω be nonempty sets. If |∆| = |Ω|, the symmetric
groups S∆ and SΩ are isomorphic.

Suppose |∆| = |Ω|. Then there exists a bijection θ : ∆ → Ω. Define
the map φ : S∆ → SΩ as follows: For all σ : ∆ → ∆ ∈ S∆,
φ(σ) : Ω → Ω is defined by

φ(σ)(ω) = θ(σ(θ−1(ω))), for all ω ∈ Ω.

φ(σ) : Ω → Ω ∈ SΩ, for all σ ∈ S∆:
Note that φ(σ) = θ ◦ σ ◦ θ−1. Since all three of θ, σ, θ−1 are bijections
and the composition of bijections is a bijection, we get that
φ(σ) : Ω → Ω is a bijection, i.e., φ(σ) ∈ ∆Ω.
φ : S∆ → SΩ is a bijection.
Suppose φ(σ) = φ(τ). Then θ ◦ σ ◦ θ−1 = θ ◦ τ ◦ θ−1. Therefore,
θ−1 ◦ θ ◦ σ ◦ θ−1 ◦ θ = θ−1 ◦ θ ◦ τ ◦ θ−1 ◦ θ, i.e., σ = τ . This shows that
φ : S∆ → SΩ is a bijection.
φ : S∆ → SΩ is a homomorphism.
φ(σ ◦ τ) = θ ◦ (σ ◦ τ) ◦ θ−1 = θ ◦ σ ◦ θ−1 ◦ θ ◦ τ ◦ θ−1 = φ(σ) ◦ φ(τ).
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Isomorphism Type of a Symmetric Group (Converse)

Claim: If S∆ = SΩ, then |∆| = |Ω|.

We only show this in the finite case.

Any isomorphism between two groups G and H is a bijection between
them. Thus, |S∆| = |SΩ|. When ∆ is a finite set of order n, then
|S∆| = n!. Similarly, if Ω is a finite set of order m, then |SΩ| = m!.
Thus, if S∆ ∼= SΩ, then n! = m!, whence m = n, i.e., |∆| = |Ω|.
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Some Properties Preserved by Isomorphisms

Proposition

If ϕ : G → H is an isomorphism, then:
(a) |G | = |H|;
(b) G is abelian if and only if H is abelian;
(c) For all x ∈ G , |x | = |ϕ(x)|.

(a) Since isomorphisms are bijections, if G ∼= H , then |G | = |H |.

(b) Suppose G is abelian. Let h1, h2 ∈ H . Since ϕ is surjective, there exist
g1, g2 ∈ G , such that h1 = ϕ(g1) and h2 = ϕ(g2). Now we obtain:
h1 ⋄ h2 = ϕ(g1) ⋄ ϕ(g2) = ϕ(g1 ⋆ g2) = ϕ(g2 ⋆ g1) = ϕ(g2) ⋄ ϕ(g1) = h2 ⋄ h1.
Hence H is also abelian.

Suppose, conversely, that H is abelian. Let g1, g2 ∈ G . Then, we have
ϕ(g1 ⋆ g2) = ϕ(g1) ⋄ ϕ(g2) = ϕ(g2) ⋄ ϕ(g1) = ϕ(g2 ⋆ g1). But ϕ is injective,
whence g1 ⋆ g2 = g2 ⋆ g1. Thus, G is also abelian.

(c) Assume that |x | = n and |ϕ(x)| = m. Since ϕ(x)n = ϕ(xn) = ϕ(1G ) = 1H ,
we have m ≤ n. On the other hand, ϕ(xm) = ϕ(x)m = 1H = ϕ(1G ). Since
ϕ is injective, xm = 1G , whence n ≤ m.
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Using Properties Preserved to Show Non-Isomorphism

The properties that are preserved under isomorphisms, such as “being
abelian”, can be used to show that two groups are not isomorphic.

Show that one has the property and the other does not.

Example: The groups S3 and Z/6Z are not isomorphic:

Z/6Z is abelian;
S3 is not abelian.

Example: (R− {0},×) and (R,+) cannot be isomorphic:

In (R− {0},×) the element −1 has order 2;
(R,+) has no element of order 2.
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Presentations and Homomorphisms

Let G be a finite group of order n for which we have a presentation.
Let S = {s1, . . . , sm} be the generators. Let H be another group and
{r1, . . . , rm} be elements of H. Suppose that any relation satisfied in
G by the si is also satisfied in H when each si is replaced by ri . Then
there is a (unique) homomorphism ϕ : G → H which maps si to ri .

If H is generated by the elements {r1, . . . , rm}, then ϕ is surjective,
since any product of the ri ’s is the image of the corresponding
product of the si ’s.

If, in addition, H has the same finite order as G , then any surjective
map is necessarily injective, i.e., ϕ is an isomorphism.

Intuitively, we can map the generators of G to any elements of H and
obtain a homomorphism, provided that the relations in G are still
satisfied.
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Example: Mapping D2n

Recall that D2n = 〈r , s | rn = s2 = 1, sr = r−1s〉.

Suppose H is a group containing elements a and b with an = 1,
b2 = 1 and ba = a−1b. Then there is a homomorphism from D2n to
H mapping r to a and s to b.

Let k be an integer dividing n, with k ≥ 3, say n = km, and let
D2k = 〈r1, s1 | r

k
1 = s21 = 1, s1r1 = r−1

1 s1〉. Define ϕ : D2n → D2k by

ϕ(r) = r1 and ϕ(s) = s1.

. Since rk1 = 1, also rn1 = (rk1 )
m = 1. Thus, the three relations

satisfied by r , s in D2n are satisfied by r1, s1 in D2k Thus, ϕ extends
(uniquely) to a homomorphism from D2n to D2k . Since {r1, s1}
generates D2k , ϕ is surjective. If k < n, ϕ is not an isomorphism.

George Voutsadakis (LSSU) Abstract Algebra I March 2016 60 / 71



Introduction to Groups Homomorphisms and Isomorphisms

Example: Mapping D6 to S3

Let G = D6 = 〈r , s | r3 = s2 = 1, sr = r−1s〉.

In H = S3, the elements a = (1 2 3) and b = (1 2) satisfy the
relations: a3 = 1, b2 = 1 and ba = ab−1. Thus, there is a
homomorphism from D6 to S3 which sends r 7→ a and s 7→ b.

One may further check that S3 is generated by a and b, so this
homomorphism is surjective.

Since D6 and S3 both have order 6, this homomorphism is an
isomorphism: D6

∼= S3.
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Group Action

Definition (Group Action)

A group action of a group G on a set A is a map from G × A to A,
written as g · a, for all g ∈ G and a ∈ A, satisfying the following
properties:

(1) g1 · (g2 · a) = (g1g2) · a, for all g1, g2 ∈ G , a ∈ A;

(2) 1 · a = a, for all a ∈ A.

We say G is a group acting on a set A.

The expression g · a will usually be written simply as ga when there is
no danger of confusing this map with the group operation.

Note that:
On the left hand side of the equation in Property (1), g2 · a ∈ A, so it
makes sense to act on this by g1.
On the right hand side, the product (g1g2) ∈ G and the resulting group
element acts on the set element a.
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Permutation Representations Associated with Actions

Claim: Let the group G act on the set A. For each fixed g ∈ G we get
a map σg defined by σg : A → A, with σg (a) = g · a. Then we have:

(i) For each fixed g ∈ G , σg is a permutation of A.
(ii) The map from G to SA defined by g 7→ σg is a homomorphism.

(i) To see that σg is a permutation of A, we show that, as a set map
from A to A, it has a 2-sided inverse σg−1 . We have, for all a ∈ A,
(σg−1 ◦ σg )(a) = σg−1(σg (a)) = g−1 · (g · a) = (g−1g) · a = 1 · a = a.
This proves σg−1 ◦ σg is the identity map from A to A. Interchange
the roles of g and g−1 to get σg ◦ σg−1 is also the identity map on A.
Thus, σg has a 2-sided inverse, and, hence, is a permutation of A.

(ii) Let ϕ : G → SA be defined by ϕ(g) = σg . Part (i) shows that σg is
indeed an element of SA. To see that ϕ is a homomorphism we must
prove ϕ(g1g2) = ϕ(g1) ◦ ϕ(g2). These are equal if and only if their
values agree on every element a ∈ A. For all a ∈ A, ϕ(g1g2)(a) =
σg1g2(a) = (g1g2) · a = g1 · (g2 · a) = σg1(σg2(a)) = (ϕ(g1) ◦ϕ(g2))(a).
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Actions Associated with Permutation Representations

The process of associating a permutation of A with an action of a
group G on A is reversible.

Claim: If ϕ : G → SA is any homomorphism from a group G to the
symmetric group on a set A, then the map from G ×A to A defined by

g · a = ϕ(g)(a), for all g ∈ G , and all a ∈ A,

satisfies the properties of a group action of G on A.

We have, for all g1, g2 ∈ G and all a ∈ A,

g1 · (g2 · a) = φ(g1)(φ(g2)(a)) = (φ(g1) ◦ φ(g2))(a) = φ(g1g2)(a) =
(g1g2) · a.
1 · a = φ(1)(a) = 1(a) = a.

Thus, actions of a group G on a set A and the homomorphisms from
G into the symmetric group SA are in bijective correspondence
(essentially the same notion, phrased in different terminology).
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Trivial Actions

Let G be a group and A a nonempty set.

Define
ga = a, for all g ∈ G , a ∈ A.

This forms a group action of G on A, called the trivial action.

In this case G is said to act trivially on A.

Distinct elements of G induce the same permutation on A, namely,
the identity permutation.

The associated permutation representation G → SA is the trivial
homomorphism which maps every element of G to the identity.
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Faithful Actions and Kernel of an Action

If G acts on a set B and distinct elements of G induce distinct
permutations of B , the action is said to be faithful.

Thus, a faithful action is one in which the associated representation is
injective.

The kernel of the action of G on B is defined to be

{g ∈ G : gb = b, for all b ∈ B},

i.e., consists of the elements of G which fix all elements of B .

For the trivial action, the kernel of the action is all of G and this
action is not faithful when |G | > 1.
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Vector Spaces

The axioms for a vector space V over a field F include the two
axioms that the multiplicative group F× act on the set V :

(ab) · v = a · (b · v), for all a, b ∈ F× and all v ∈ V ;
1 · v = v, for all v ∈ V .

Thus, vector spaces are familiar examples of actions of multiplicative
groups of fields with additional structure (in particular, V must be an
abelian group).

In the special case when V = Rn and F = R, the action is specified
by

a(r1, r2, . . . , rn) = (ar1, ar2, . . . , arn),

for all a ∈ R, (r1, r2, . . . , rn) ∈ Rn, where ari is just multiplication of
two real numbers.
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Symmetric Groups

For any nonempty set A, the symmetric group SA acts on A by

σ · a = σ(a), for all σ ∈ SA, a ∈ A.

The associated permutation representation is the identity map from
SA to itself.
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Dihedral Action

If we fix a labeling of the vertices of a regular n-gon, each element α
of D2n gives rise to a permutation σα of {1, 2, . . . , n} by the way the
symmetry α permutes the corresponding vertices.

The map of D2n × {1, 2, . . . , n} onto {1, 2, . . . , n} defined by

(α, i) 7→ σα(i)

defines a group action of D2n on {1, 2, . . . , n}.

To simplify notation, we write αi in place of σα(i).
This action is faithful.

When n = 3 the action of D6 on the three vertices of a triangle gives
an injective homomorphism from D6 to S3. Since these groups have
the same order, this map must also be injective. So it is an
isomorphism: D6

∼= S3.
The analogous statement is not true for any n-gon with n ≥ 4.
Just by order considerations we cannot have D2n isomorphic to Sn, for
any n ≥ 4.
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Left Regular Action

Let G be any group and let A = G . Define a map from G ×A to A by

g · a = ga, for all g ∈ G , a ∈ A,

where ga on the right hand side is the product of g and a in G .

This gives a group action of G on itself, where each g ∈ G permutes
the elements of G by left multiplication:

g : a 7→ ga, for all a ∈ G .

This action is called the left regular action of G on itself.

Claim: The left regular action is faithful.

Let ϕ : G → SG be the representation associated by the left regular
action. Suppose ϕ(g1) = ϕ(g2), for some g1, g2 ∈ G . Then, for all
g ∈ G , ϕ(g1)(g) = ϕ(g2)(g), i.e., g1g = g2g . But, then
g1gg

−1 = g2gg
−1, giving g1 = g2. This shows that the action is

faithful.
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