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Subgroups Definition and Examples

Subgroups

Basic methods for studying the structure of groups include
studying subsets of a group which also satisfy the group axioms, called
subgroups;
studying quotients of groups, created by collapsing one group onto a
smaller group.

Definition (Subgroup)

Let G be a group. The subset H of G is a subgroup of G if H is
nonempty and H is closed under products and inverses, i.e., x , y ∈ H

implies x−1 ∈ H and xy ∈ H. If H is a subgroup of G , we write H ≤ G .

Subgroups of G are just subsets of G which are themselves groups
with respect to the operation defined in G , i.e., the binary operation
on G restricts to give a binary operation on H which is:

associative,
has an identity in H ,
has inverses in H , for all the elements of H .
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Subgroups Definition and Examples

The Operation of a Subgroup

H being a subgroup of G means that the operation for the group H is
the operation on G restricted to H.

Care is needed because, in general, it is possible that the subset H
has the structure of a group with respect to some operation other
than the operation on G restricted to H.

The operation for G and the operation for the subgroup H will be
denoted by the same symbol.

If H ≤ G and H 6= G , we write H < G .
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Subgroups Definition and Examples

Identities and Inverses in Subgroups

If H is a subgroup of G then, since the operation for H is the
operation for G restricted to H, any equation in the subgroup H may
also be viewed as an equation in the group G .

Claim: The identity for H is the same as the identity of G .
H 6= ∅ by definition. Suppose g ∈ H . Since H is a subgroup, g−1 ∈ H .
Therefore, again since H is a subgroup, 1 = gg−1 ∈ H .
Thus, every subgroup must contain 1, the identity of G .
Claim: The inverse of an x in H is the same as the inverse of x in G ,
whence the notation x−1 is unambiguous.
Suppose that y is the inverse of x in H and x−1 its inverse in G . Then,
since 1 is the identity in both G and H , we have xy = 1 = xx−1.
Canceling x on the left in G , we get y = x−1. Thus, the inverse of x in
H is the same as the inverse of x in G .
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Examples of Subgroups

(1) Z ≤ Q and Q ≤ R with the operation of addition.

(2) Any group G has two subgroups: H = G and H = {1}; the latter is
called the trivial subgroup and is denoted by 1.

(3) If G = D2n is the dihedral group of order 2n, let

H = {1, r , r2, . . . , rn−1},

the set of all rotations in G . Since the product of two rotations is
again a rotation and the inverse of a rotation is also a rotation, H is a
subgroup of D2n of order n.

(4) The set of even integers is a subgroup of the group of all integers
under addition.
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Examples of Subset Groups that are Not Subgroups

(1) Q− {0} under multiplication is not a subgroup of R under addition
even though both are groups and Q− {0} is a subset of R. The
operation of multiplication on Q− {0} is not the restriction of the
operation of addition on R.

(2) Z+ under addition is not a subgroup of Z under addition because:

although Z+ is closed under +, it does not contain the identity 0 of Z;
although each x ∈ Z+ has an additive inverse, −x in Z, −x 6∈ Z+, i.e.,
Z+ is not closed under the operation of taking inverses.

(3) For analogous reasons, (Z− {0},×) is not a subgroup of
(Q− {0},×).

(4) D6 is not a subgroup of D8 since the former is not even a subset of
the latter.
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Transitivity of the “is a subgroup of” Relation

Claim: The relation “is a subgroup of”, i.e., ≤, is transitive:
If H is a subgroup of a group G and K is a subgroup of H, then K is
also a subgroup of G . In symbols,

H ≤ G and K ≤ H imply K ≤ G .

Suppose H ≤ G and K ≤ H.

Let k ∈ K . Then the inverse of k in H is in K , since K ≤ H. But this
same element is also the inverse of k in G , since H ≤ G .

Let k1, k2 ∈ K . Then the product k1 ·H k2 ∈ K , since K ≤ H. But
the operation ·H is the same as the operation · in G , since H ≤ G .
Therefore, k1 · k2 ∈ K .

Since K is closed under inverses and multiplication in G , we get that
K ≤ G .
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Subgroups Definition and Examples

The Subgroup Criterion

Proposition (The Subgroup Criterion)

A subset H of a group G is a subgroup if and only if

(1) H 6= ∅;

(2) For all x , y ∈ H, xy−1 ∈ H.

Furthermore, if H is finite, then it suffices to check that H is nonempty
and closed under multiplication.

Suppose H is a subgroup of G .

(1) Since H contains the identity of G , H 6= ∅.
(2) If x , y ∈ H , by the subgroup property, y−1 ∈ H . Since x , y−1 ∈ H , by

the subgroup property xy−1 ∈ H .
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The Proof of the Subgroup Criterion

We show, conversely, that if H satisfies (1) and (2), then H ≤ G :

Let x be any element in H 6= ∅. Let y = x and apply Property (2) to
get 1 = xx−1 ∈ H . So H contains the identity of G .
Then, again by (2), since H contains 1 and x , H contains the element
1x−1 = x−1, i.e., H is closed under taking inverses.
Finally, if x and y are any two elements of H , then H contains x and
y−1, whence, by (2), H also contains x(y−1)−1 = xy . Hence H is also
closed under multiplication.

Thus, H is a subgroup of G .

Suppose now that H is finite and closed under multiplication. Let x
be any element in H. Then there are only finitely many distinct
elements among x , x2, x3, . . .. So xa = xb, for some integers a, b with
b > a. If n = b − a, then xn = 1. In particular, every element x ∈ H

is of finite order. Then xn−1 = x−1 is an element of H, and H is
automatically also closed under inverses.
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Orbits of an Action

Theorem

Let H be a group acting on a set A. The relation ∼ on A defined by

a ∼ b iff a = hb, for some h ∈ H,

is an equivalence relation.

Reflexivity: 1 ∈ H and a = 1a, for all a ∈ A, whence a ∼ a.

Symmetry: Assume a ∼ b. Then, there exists h ∈ H, such that
a = hb. Since H is a group, h−1 ∈ H. We have
b = 1b = (h−1h)b = h−1(hb) = h−1a. Therefore, b ∼ a.

Transitivity: Assume a ∼ b and b ∼ c . Then, there exist h1, h2 ∈ H,
such that a = h1b and b = h2c . Since H is a group, h1h2 ∈ H. We
have a = h1b = h1(h2c) = (h1h2)c . Thus, a ∼ c .

The equivalence class of x ∈ A under ∼ is called the orbit of x .

Corollary

The orbits under the action of H form a partition of A.
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Lagrange’s Theorem

Proposition

Let H be a subgroup of a finite group G . Let H act on G by left
multiplication. If x ∈ G and Ox is the orbit of x under the action of H,
then the map fx : H → Ox defined by fx(h) = hx , for all h ∈ H, is a
bijection.

If y ∈ Ox , then, there exists an h ∈ H, such that y = hx = fx(h).
Thus, fx is surjective. If fx(h1) = fx(h2), then h1x = h2x . By
right-cancelation in G , h1 = h2. Thus, fx is also injective.

Theorem (Lagrange’s Theorem)

If G is a finite group and H ≤ G , then |H| | |G |.

By the preceding corollary, {Ox : x ∈ G} is a partition of G . By the
preceding proposition |Ox | = |H|, for all x ∈ G . Thus,
G = |{Ox : x ∈ G}| · |H| and, therefore, |H| | |G |.
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Subgroups Centralizers, Normalizers, Stabilizers and Kernels

Centralizers

Let A be any nonempty subset of a group G .

Definition (Centralizer)

Define CG (A) = {g ∈ G : gag−1 = a, for all a ∈ A}. This subset of G is
called the centralizer of A in G . Since gag−1 = a if and only if ga = ag ,
CG (A) is the set of elements of G which commute with every element of A.

Claim: CG (A) is a subgroup of G .
Since 1a = a1 = a, for all a ∈ G , we have 1 ∈ CG (A). So, CG (A) 6= ∅.
Assume x ∈ CG (A). Then, for all a ∈ A, xax−1 = a. By multiplying on
the left by x−1, then on the right by x , we get a = x−1ax , i.e.,
x−1 ∈ CG (A). Thus, CG (A) is closed under taking inverses.
Assume x , y ∈ CG (A). Then, for all a ∈ A, xax−1 = a and yay−1 = a.
Now (xy)a(xy)−1 = (xy)a(y−1x−1) = x(yay−1)x−1 = xax−1 = a,
whence xy ∈ CG (A) and CG (A) is closed under products.

Thus CG (A) ≤ G .

If A = {a}, we write simply CG (a) instead of CG ({a}).
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The Center of a Group

Definition (The Center)

Define the center of a group G to be the set

Z (G ) = {g ∈ G : gx = xg , for all x ∈ G}.

So Z (G ) is the set of elements commuting with all the elements of G .

Note that Z (G ) = CG (G ).

So the argument in the preceding slide proves Z (G ) ≤ G as a special
case.
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Normalizers

Definition (Normalizer)

Define gAg−1 = {gag−1 : a ∈ A}. The normalizer of A in G is the set

NG (A) = {g ∈ G : gAg−1 = A}.

Claim: The normalizer NG (A) of A ⊆ G is a subgroup of G .
Since 1A1−1 = {1a1−1 : a ∈ A} = {a : a ∈ A} = A, we have
1 ∈ NG (A). So, NG (A) 6= ∅.
Assume x ∈ NG (A). Then, xAx

−1 = A. By multiplying on the left by
x−1, then on the right by x , we get A = x−1Ax , i.e., x−1 ∈ NG (A).
Thus, NG (A) is closed under taking inverses.
Assume x , y ∈ NG (A). Then, xAx

−1 = A and yAy−1 = A. Now
(xy)A(xy)−1 = (xy)A(y−1x−1) = x(yAy−1)x−1 = xAx−1 = A,
whence xy ∈ NG (A) and NG (A) is closed under products.

Thus NG (A) ≤ G .

Notice that, if g ∈ CG (A), then gag−1 = a ∈ A, for all a ∈ A, so
CG (A) ≤ NG (A).
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Examples I

(1) If G is abelian then all the elements of G commute, so Z (G ) = G .
Similarly, CG (A) = NG (A) = G , for any subset A of G , since
gag−1 = gg−1a = a, for every g ∈ G and every a ∈ A.

(2) Let G = D8 be the dihedral group of order 8 with the usual
generators r and s and let A = {1, r , r2, r3} be the subgroup of
rotations in D8. We show that CD8

(A) = A.

Since all powers of r commute with each other, A ⊆ CD8(A).
Since sr = r−1s 6= rs, the element s does not commute with all
members of A, i.e., s 6∈ CD8(A). Finally, the elements of D8 that are not
in A are all of the form sr i , for some i ∈ {0, 1, 2, 3}. If the element sr i

were in CD8(A), then, since CD8(A) is a subgroup which contains r , we
would also have the element s = (sr i )(r−i ) in CD8(A), a contradiction.

This shows CD8
(A) = A.
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Examples II

(3) Let again G = D8 and let A = {1, r , r2, r3}. We show that
ND8

(A) = D8.

Since, in general, the centralizer of a subset is contained in its
normalizer, A ⊆ ND8

(A). Next compute

sAs−1 = {s1s−1, srs−1, sr2s−1sr3s−1} = {1, r3, r2, r} = A,

so that s ∈ ND8
(A).

Note that the set sAs−1 equals the set A even though the elements in
these two sets appear in different orders, indicating that s is in the
normalizer of A but not in the centralizer of A.

Since both r and s belong to the subgroup ND8
(A), s i r j ∈ ND8

(A),
for all integers i and j , so, since r and s generate D8, every element
of D8 is in ND8

(A). Since D8 ≤ ND8
(A), we have ND8

(A) = D8.
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Examples III

(4) We show that the center of D8 is the subgroup {1, r2}.

Since Z (G ) ≤ CG (A), for any subset A of G , by Example (2),
Z (D8) ≤ CD8

(A) = A, where A = {1, r , r2, r3}. The calculation in
Example (2) shows that r and similarly r3 are not in Z (D8), so
Z (D8) ≤ {1, r2}.

Since r commutes with r2 and s also commutes with r2 and they
generate D8, every element of D8 commutes with r2 (and 1), hence
{1, r2} ≤ Z (D8).
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Examples IV

(5) Let G = S3 and let A be the subgroup {1, (1 2)}. We show that
CS3(A) = NS3(A) = A.

One can compute directly that CS3(A) = A.

Alternatively, since an element commutes with its powers,
A ≤ CS3(A). By Lagrange’s Theorem, the order of the subgroup
CS3(A) of S3 divides |S3| = 6. Also by Lagrange’s Theorem applied to
the subgroup A of the group CS3(A), we have that 2 | |CS3(A)|. The
only possibilities are: |CS3(A)| = 2 or 6. If the latter occurs,
CS3(A) = S3, i.e., A ≤ Z (S3). This is a contradiction because (1 2)
does not commute with (1 2 3). Thus |CS3(A)| = 2. So A = CS3(A).

Next, note that NS3(A) = A because σ ∈ NS3(A) if and only if
{σ1σ−1, σ(1 2)σ−1} = {1, (1 2)}. Since σ1σ−1 = 1, this equality of
sets occurs if and only if σ(1 2)σ−1 = (1 2) as well, i.e., if and only if
σ ∈ CS3(A).

Finally, Z (S3) = {1}, since Z (S3) ≤ CS3(A) = A and (1 2) 6∈ Z (S3).
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Stabilizers

If G is a group acting on a set S and s is some fixed element of S ,
the stabilizer of s in G is the set

Gs = {g ∈ G : g · s = s}.

Claim: Gs ≤ G .

First, 1 ∈ Gs , since 1 · s = s.
If y ∈ Gs , s = 1 · s = (y−1y) · s = y−1 · (y · s) = y−1 · s, so y−1 ∈ Gs

as well.
Finally, if x , y ∈ Gs , then (xy) · s = x · (y · s) = x · s = s. So Gs is also
closed under multiplication.

This proves Gs is a subgroup of G .
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Kernels of Actions

The kernel of the action of G on S is defined as

{g ∈ G : g · s = s, for all s ∈ S}.

Claim: The kernel of an action is also a subgroup.

Set K = {g ∈ G : g · s = s, for all s ∈ S}.
First, 1 ∈ K , since, for all s ∈ S , 1 · s = s.
If y ∈ K , then, for all s ∈ S ,
s = 1 · s = (y−1y) · s = y−1 · (y · s) = y−1 · s, so y−1 ∈ K as well.
Finally, if x , y ∈ K , then, for all s ∈ S , (xy) · s = x · (y · s) = x · s = s.
So K is also closed under multiplication.

This proves K is a subgroup of G .
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Examples

(1) The group G = D8 acts on the set A of four vertices of a square.

The stabilizer of any vertex a is the subgroup {1, t} of D8, where t is
the reflection about the line of symmetry passing through vertex a and
the center of the square.
The kernel of this action is the identity subgroup since only the identity
symmetry fixes every vertex.

(2) The group G = D8 also acts on the set A whose elements are the two
unordered pairs of opposite vertices.

The kernel of the action of D8 on this set A is the subgroup
{1, s, r2, sr2}.
For either element a ∈ A, the stabilizer of a in D8 equals the kernel of
the action.
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Special Subgroups as Stabilizers and Kernels of Actions

Centralizers, normalizers and kernels can be viewed as special cases
stabilizers and kernels of actions:

Let S = P(G ), the collection of all subsets of G , and let G act on S

by conjugation, i.e., for every g ∈ G and every B ⊆ G , let

g : B 7→ gBg−1, where gBg−1 = {gbg−1 : b ∈ B}.

NG (A) is precisely the stabilizer of A in G , i.e., NG (A) = Gs , where
s = A ∈ P(G). Thus, NG (A) is a subgroup of G .

Next, let the group NG (A) act on the set S = A by conjugation, i.e.,
for all g ∈ NG (A) and all a ∈ A, g : a 7→ gag−1. This does map A to
A by the definition of NG (A). So, it gives an action on A.

It is easy to check that CG (A) is precisely the kernel of this action.
Thus, CG (A) ≤ NG (A) By transitivity of the relation “≤”, CG (A) ≤ G .

Finally, Z (G ) is the kernel of G acting on S = G by conjugation.
Hence Z (G ) ≤ G .
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Cyclic Groups

Let G be any group and let x be any element of G . One way of
forming a subgroup H of G is by letting H be the set of all integer
powers of x .

Definition (Cyclic Group)

A group H is cyclic if H can be generated by a single element, i.e., there
is some element x ∈ H, such that H = {xn : n ∈ Z}, where, as usual, the
operation is multiplication.

In additive notation, H is cyclic if H = {nx : n ∈ Z}.

In both cases we shall write H = 〈x〉 and say H is generated by x
and x is a generator of H.
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Remarks

A cyclic group may have more than one generator.

Example: If H = 〈x〉, then also H = 〈x−1〉.

Since (x−1)n = x−n, we get

{xn : n ∈ Z} = {(x−1)n : n ∈ Z}.

The elements of 〈x〉 are powers of x (or multiples of x , in groups
written additively) and not integers.

It is not necessarily true that all powers of x are distinct.

Example: Consider Z/3Z = 〈1〉. Clearly, 2 · 1 = 2 = 5 · 1.

Claim: Cyclic groups are abelian.

Let H = 〈x〉. Suppose g1, g2 ∈ H. Then, there exist m, n ∈ Z, such
that g1 = xm and g2 = xn. Then, we have

g1g2 = xmxn = xm+n = xnxm = g2g1,

showing that H is abelian.
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Example

Example: Let G = D2n = 〈r , s | rn = s2 = 1, rs = sr−1〉, n ≥ 3, and
let H be the subgroup of all rotations of the n-gon. Thus, H = 〈r〉
and the distinct elements of H are 1, r , r2, . . . , rn−1, all the distinct
powers of r . So |H| = n and the generator r of H has order n.

The powers of r “cycle” (forward and backward) with period n, i.e.,
rn = 1, rn+1 = r , rn+2 = r2, . . ., rn−1 = r−1, rn−2 = r−2, . . .

In general, to write any power of r , say r t , in the form rk , for some k
between 0 and n − 1:

We use the Division Algorithm to write t = nq + k , where 0 ≤ k < n;
Then, r t = rnq+k = (rn)qrk = 1qrk = rk .

In D8, r
4 = 1. So r105 = (r4)26r1 = r and r−42 = (r4)−11r2 = r2.

D2n itself is not a cyclic group since it is non-abelian.
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The Cyclic Group Z

Let H = Z with operation +.

Thus H = 〈1〉, where 1 is the integer 1 and the identity of H is 0.
Each element in H can be written uniquely in the form n · 1, for some
n ∈ Z.
In contrast to the preceding example, multiples of the generator are all
distinct and we need to take both positive, negative and zero multiples
of the generator to obtain all elements of H .
In this example |H | and the order of the generator 1 are both ∞.
Note also that H = 〈−1〉 since each integer x can be written
(uniquely) as (−x)(−1).
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Order of Cyclic Groups and Order of Generators

Proposition

If H = 〈x〉, then |H| = |x |, where, if one side of this equality is infinite, so
is the other. More specifically:

(1) If |H| = n < ∞, then xn = 1 and 1, x , x2, . . . , xn−1 are all the distinct
elements of H.

(2) If |H| = ∞, then xn 6= 1, for all n 6= 0, and xa 6= xb, a 6= b in Z.

Let |x | = n and consider, first, the case when n < ∞.
The elements 1, x , x2, . . . , xn−1 are distinct: If xa = xb, with,
0 ≤ a < b < n, then xb−a = x0 = 1, contrary to n being the smallest
positive power of x giving the identity. Thus, H has at least n elements.
To see that these are all of them, let x t be any power of x . Use the
Division Algorithm to write t = nq + k , where 0 ≤ k < n. Then
x t = xnq+k = (xn)qxk = 1qxk = xk ∈ {1, x , x2, . . . , xn−1}.

Next, suppose |x | = ∞, so no positive power of x is the identity.
If xa = xb, for some a < b, then xb−a = 1, a contradiction. Distinct
powers of x yields distinct elements of H and |H | = ∞.
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Powers yielding the Identity

Proposition

Let G be an arbitrary group, x ∈ G and let m, n ∈ Z.

If xn = 1 and xm = 1, then xd = 1, where d = (m, n).

In particular, if xm = 1, for some m ∈ Z, then |x | divides m.

By the Euclidean Algorithm, there exist integers r and s, such that
d = mr + ns, where d is the g.c.d. of m and n. Thus,
xd = xmr+ns = (xm)r (xn)s = 1r1s = 1. This proves the first assertion.

Suppose xm = 1 and let n = |x |. If m = 0, certainly n | m. So we
may assume m 6= 0. Since some nonzero power of x is the identity,
n < ∞. Let d = (m, n). By the preceding result, xd = 1. Since
0 < d ≤ n and n is the smallest positive power of x which gives the
identity, we must have d = n, i.e., n | m, as asserted.
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Isomorphic Cyclic Groups

Theorem

Any two cyclic groups of the same order are isomorphic. More specifically:

(1) If n ∈ Z+ and 〈x〉 and 〈y〉 are both cyclic groups of order n, then the
map ϕ : 〈x〉 → 〈y〉, with xk 7→ yk , is well defined and is an
isomorphism.

(2) If 〈x〉 is an infinite cyclic group, the map ϕ : Z → 〈x〉, with k 7→ xk ,
is well defined and is an isomorphism.

Suppose 〈x〉 and 〈y〉 are both cyclic groups of order n. Let
ϕ : 〈x〉 → 〈y〉 be defined by ϕ(xk) = yk .

We first show ϕ is well defined, i.e., if x r = x s , then ϕ(x r ) = ϕ(x s).
Since x r−s = 1, we have n | r − s. Write r = tn+ s. Then,
ϕ(x r ) = ϕ(x tn+s) = y tn+s = (yn)ty s = y s = ϕ(x s). This proves ϕ is
well defined.
By the laws of exponents ϕ(xaxb) = ϕ(xa)ϕ(xb), i.e., ϕ is a
homomorphism.
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Isomorphic Cyclic Groups (Cont’d)

Continuing with the finite order case:
Since the element yk of 〈y〉 is the image of xk under ϕ, this map is
surjective.
Since both groups have the same finite order, any surjection from one
to the other is a bijection, so ϕ is an isomorphism.

If 〈x〉 is an infinite cyclic group, let ϕ : Z → 〈x〉 be defined by
ϕ(k) = xk .

This map is already well defined since there is no ambiguity in the
representation of elements in the domain.
Since xa 6= xb, for all distinct a, b ∈ Z, ϕ is injective.
By definition of a cyclic group, ϕ is surjective.
As in the finite order case, the laws of exponents ensure ϕ is a
homomorphism.

Hence ϕ is an isomorphism.

For each n ∈ Z+, let Zn be the cyclic group of order n written
multiplicatively. Up to isomorphism, Zn is the unique cyclic group of
order n and Zn

∼= Z/nZ.
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Orders of Powers

We determine precisely which powers of x generate the group 〈x〉.

Proposition

Let G be a group, let x ∈ G and let a ∈ Z− {0}.

(1) If |x | = ∞, then |xa| = ∞.

(2) If |x | = n < ∞, then |xa| = n
(n,a) . So, if a > 0 and a | n, then |xa| = n

a
.

(1) By way of contradiction assume |x | = ∞ but |xa| = m < ∞. By
definition of order 1 = (xa)m = xam and x−am = (xam)−1 = 1−1 = 1.
One of am or −am is positive (since neither a nor m is 0). So some
positive power of x is the identity. This contradicts |x | = ∞. So the
assumption |xa| < ∞ must be false.
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Orders of Powers (Cont’d)

(2) Let y = xa, (n, a) = d and write n = db, a = dc , for suitable
b, c ∈ Z, with b > 0. Since d is the greatest common divisor of n and
a, the integers b and c are relatively prime: (b, c) = 1. We must now
show |y | = b. First note that

yb = xab = xdcb = (xdb)c = (xn)c = 1c = 1.

Thus, |y | divides b.

Let k = |y |. Then xak = yk = 1. Hence n | ak , i.e., db | dck . Thus,
b | ck . Since b and c have no factors in common, b must divide k .

Since b and k are positive integers which divide each other, b = k .
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Subgroups Generated By Powers

Proposition

Let H = 〈x〉.

(1) Assume |x | = ∞. Then H = 〈xa〉 if and only if a = ±1.

(2) Assume |x | = n < ∞. Then H = 〈xa〉 if and only if (a, n) = 1. Thus,
the number of generators of H is ϕ(n), where ϕ is Euler’s ϕ-function.

(1) Clearly, if a = ±1, then 〈x〉 = 〈x−1〉 = H.

Suppose, conversely, that 〈xa〉 = 〈x〉 = H. Then, since x ∈ 〈xa〉,
there exists b ∈ Z, such that (xa)b = x . This gives xab = x . By
cancelation, we get xab−1 = 1. Since |x | = ∞, we must have
ab−1 = 0. This yields ab = 1. Since a, b ∈ Z, we must have a = ±1.

George Voutsadakis (LSSU) Abstract Algebra I March 2016 37 / 65



Subgroups Cyclic Groups and Cyclic Subgroups

Subgroups Generated By Powers (Cont’d)

(2) If |x | = n < ∞, then xa generates a subgroup of H of order |xa|. This
subgroup equals all of H if and only if |xa| = |x |. By the preceding
proposition, |xa| = |x | if and only if n

(a,n) = n, i.e., if and only if

(a, n) = 1.

Since ϕ(n) is, by definition, the number of a ∈ {1, 2, . . . , n}, such
that (a, n) = 1, this is the number of generators of H.

Example: The residue classes a mod n that generate Z/nZ are
precisely those, such that (a, n) = 1.
E.g., if n = 12,

the generators of Z/12Z are 1, 5, 7 and 11;
ϕ(12) = 4.
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The Subgroup Structure of a Cyclic Group (Cyclicity)

Theorem

Let H = 〈x〉 be a cyclic group. Every subgroup of H is cyclic. More
precisely, if K ≤ H, then either K = {1} or K = 〈xd 〉, where d is the
smallest positive integer such that xd ∈ K .

Let K ≤ H. If K = {1}, the proposition is true. So, assume K 6= {1}.
Thus, there exists some a 6= 0, such that xa ∈ K . If a < 0, then,
since K is a group, also x−a = (xa)−1 ∈ K . Hence K always contains
some positive power of x . Let P = {b : b ∈ Z+ and xb ∈ K}. By the
above, P is a nonempty set of positive integers. By the Well Ordering
Principle, P has a minimum element d .

Since K is a subgroup and xd ∈ K , 〈xd 〉 ≤ K .
Since K is a subgroup of H , any element of K is of the form xa, for
some integer a. By the Division Algorithm, write a = qd + r ,
0 ≤ r < d . Then x r = x (a−qd) = xa(xd)−q is an element of K , since
both xa and xd are elements of K . By the minimality of d , it follows
that r = 0, i.e., a = qd , whence xa = (xd )q ∈ 〈xd 〉. So K ≤ 〈xd〉.
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The Subgroup Structure of a Cyclic Group (Infinite Order)

Theorem

Let H = 〈x〉 be a cyclic group. If |H| = ∞, then for any nonnegative
integers a 6= b, 〈xa〉 6= 〈xb〉. Further, for every integer m, 〈xm〉 = 〈x |m|〉,
where |m| is the absolute value of m, so that the nontrivial subgroups of H
correspond bijectively with the integers 1, 2, 3, . . ..

Since |H| = 〈x〉 = ∞, we get |x | = ∞. Suppose that 〈xa〉 = 〈xb〉 for
positive integers a, b. Since |x | = ∞, we get |xb| = ∞. Since
xa ∈ 〈xb〉 and 〈xa〉 = 〈xb〉, we get, by a previous lemma, that
a = ±b. Since both a and b are positive, we get a = b.

It is clear that 〈x−m〉 = 〈xm〉. Therefore, 〈xm〉 = 〈x |m|〉.
Finally, let f be the map from the set of nonidentity subgroups of H
to the set {1, 2, 3, . . .}, with K 7→ d , where d is the smallest positive
integer, such that xd ∈ K .

f is injective by the previous part.
f is surjective by the preceding theorem.
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The Subgroup Structure of a Cyclic Group (Finite Order)

Theorem

Let H = 〈x〉 be a cyclic group. If |H| = n < ∞, then for each positive
integer a dividing n there is a unique subgroup of H of order a. This
subgroup is the cyclic group 〈xd 〉, where d = n

a
. In addition, for every

integer m, 〈xm〉 = 〈x(n,m)〉, so that the subgroups of H correspond
bijectively with the positive divisors of n.

Assume |H| = n < ∞ and a | n. Let d = n
a
. We know that 〈xd 〉 is a

subgroup of order a. Thus, there exists a subgroup of order a.

To show uniqueness, suppose K is any subgroup of H of order a.
By a previous theorem, we have K = 〈xb〉, where b is the smallest
positive integer such that xb ∈ K . But, then, by a previous
proposition, n

d
= a = |K | = |xb| = n

(n,b) . In particular, d | b. Since b

is a multiple of d , xb ∈ 〈xd 〉, Hence K = 〈xb〉 ≤ 〈xd 〉. Since
|〈xd 〉| = a = |K |, we have K = 〈xd 〉.
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The Subgroup Structure of a Cyclic Group (Finite Order)

To see that, for every integer m, 〈xm〉 = 〈x(n,m)〉, note that:

〈xm〉 is a subgroup of 〈x (n,m)〉;

|〈xm〉| =
n

(n,m)
= |〈x (n,m)〉|.

Since (n,m) is certainly a divisor of n, this shows that every subgroup
of H arises from a divisor of n, completing the proof.
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Examples

We can use the last proposition and the last theorem to list all the
subgroups of Z/nZ for any given n.

Example: The subgroups of Z/12Z are:

(a) Z/12Z = 〈1〉 = 〈5) = 〈7〉 = 〈11〉 (order 12);
(b) 〈2〉 = 〈10〉 (order 6);
(c) 〈3〉 = 〈9〉 (order 4);
(d) 〈4〉 = 〈8〉 (order 3);
(e) 〈6〉 (order 2);
(f) 〈0〉 (order 1).

The inclusions between them are given by

〈a〉 ≤ 〈b〉 if and only if (b, 12) | (a, 12), 1 ≤ a, b ≤ 12.
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Subgroup Structure of Z/12Z

〈1〉

〈3〉 〈2〉

〈6〉 〈4〉

〈0〉
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Centralizers of Cyclic Subgroups

Claim: Let G be a group and x ∈ G . Then CG (〈x〉) = CG (x).

It suffices to show that an element g ∈ G commutes with x if and
only if it commutes with all powers of x .

The “if” part is obvious.

For the “only if”, suppose that g commutes with x , i.e., gx = xg . We
show by induction on n that gxn = xng , for all n ≥ 0.

For n = 0, we have gx0 = g1 = g = 1g = x0g .
Assume that gxn = xng .

Then we have gxn+1 = g(xnx) = (gxn)x
IH
= (xng)x = xn(gx)

Hyp.
=

xn(xg) = (xnx)g = xn+1g .

George Voutsadakis (LSSU) Abstract Algebra I March 2016 45 / 65



Subgroups Cyclic Groups and Cyclic Subgroups

Normalizers of Cyclic Subgroups

Claim: Let G be a group and x ∈ G . Then 〈x〉 ≤ NG (〈x〉), but
equality need not hold.

Since 〈x〉 ≤ G , it suffices to show that 〈x〉 ⊆ NG (〈x〉). For this, in
turn, it suffices to show that x ∈ NG (〈x〉), since 〈x〉 is the smallest
subgroup of G including x . We have

x〈x〉x−1 = x{xa : a ∈ Z}x−1

= {xxax−1 : a ∈ Z}
= {x1+a−1 : a ∈ Z}
= {xa : a ∈ Z}
= 〈x〉.

Note, however, that for G = Q8 and x = i ,

〈i〉 = {±1,±i};
NQ8(〈i〉) = Q8.

So 〈i〉 � NQ8
(〈i〉).
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Subsection 4

Subgroups Generated by Subsets of a Group
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Intersection of a Collection of Subgroups

Proposition

If A is any nonempty collection of subgroups of G , then the intersection of
all members of A is also a subgroup of G .

We apply the subgroup criterion. Let

K =
⋂

H∈A

H.

Since each H ∈ A is a subgroup, 1 ∈ H , so 1 ∈ K , i.e., K 6= ∅.
If a, b ∈ K , then a, b ∈ H , for all H ∈ A. Since each H is a group,
ab−1 ∈ H , for all H , whence ab−1 ∈ K .

The criterion gives that K ≤ G .
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Subgroup Generated by a Set of Elements

Definition

If A is any subset of the group G define 〈A〉 =
⋂

A⊆H
H≤G

H. This is called the

subgroup of G generated by A.

〈A〉 is a subgroup of G containing A:
It is a subgroup of G by the preceding proposition applied to
A = {H ≤ G : A ⊆ H}. Note that A 6= ∅ since G ∈ A.
Since A lies in each H ∈ A, A is a subset of their intersection 〈A〉.

〈A〉 is the unique minimal element of A:
〈A〉 is a subgroup of G containing A, so 〈A〉 ∈ A;
Any element of A contains the intersection of all elements in A, i.e.,
contains 〈A〉.

If A is the finite set {a1, a2, . . . , an}, we write 〈a1, a2, . . . , an〉, for the
group generated by a1, a2, . . . , an instead of 〈{a1, a2, . . . , an}〉.

If A and B are two subsets of G , we write 〈A,B〉 in place of 〈A ∪ B〉.
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Generating 〈A〉 “Bottom-Up”

For a group G and A ⊆ G , define

A = {aǫ11 a
ǫ2
2 · · · aǫnn : n ∈ Z, n ≥ 0 and ai ∈ A, ǫi = ±1 for all i},

where A = {1} if A = ∅. So A is the set of all finite products, called
words, of elements of A and inverses of elements of A.

The ai ’s need not be distinct, nor is A assumed to be a finite set.

Proposition

A = 〈A〉.

We first prove A is a subgroup:
A 6= ∅.
Let a, b ∈ A, with a = aǫ11 a

ǫ2
2 · · · aǫnn and b = bδ11 bδ22 · · · bδmm . Then

ab−1 = aǫ11 a
ǫ2
2 · · · aǫnn b−δm

m b
−δm−1

m−1 · · · b−δ1
1 . Thus ab−1 is a product of

elements of A raised to powers ±1, whence ab−1 ∈ A.

By the subgroup criterion, A is a subgroup of G .
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The Proof of the Proposition (Cont’d)

Since each a ∈ A may be written a1, A ⊆ A. Since 〈A〉 is the smallest
subgroup of G containing A, 〈A〉 ⊆ A.

On the other hand, 〈A〉 is a group containing A. Since it is closed
under the group operation and the process of taking inverses, 〈A〉
contains each element of the form aǫ11 a

ǫ2
2 · · · aǫnn . Therefore, A ⊆ 〈A〉.

These two inclusions prove that A = 〈A〉.
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A Reformulation of 〈A〉

Since 〈A〉 = A, we may use the notation 〈A〉 in place of A as well.

Note that products of the form a · a, a · a · a, a · a−1, etc. could have
been simplified to a2, a3, 1, etc. respectively.

Thus, another way of writing 〈A〉 is

〈A〉 = {aα1
1 aα2

2 · · · aαn
n : for all i , ai ∈ A, αi ∈ Z, ai 6= ai+1 and n ∈ Z+}.

If G is abelian, we could commute the ai ’s and so collect all powers of
a given generator together.

E.g., if A were the finite subset {a1, a2, . . . , ak} of the abelian group
G , then 〈A〉 = {aα1

1 aα2
2 · · · aαk

k : αi ∈ Z, for each i}.

If in this situation we further assume that each ai has finite order di ,
for all i , then since there are exactly di distinct powers of ai , the total
number of distinct products of the form aα1

1 aα2

2 · · · aαk

k is at most
d1d2 · · · dk , i.e., |〈A〉| ≤ d1d2 · · · dk .
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The Non-Abelian Case: D8

Let G = D8 and let r and s be the usual generators of D8.
Let a = s, b = rs and let A = {a, b}. Since both s and r (= rs · s)
belong to 〈a, b〉, G = 〈a, b〉, i.e., G is also generated by a and b.
Both a and b have order 2, but D8 has order 8. Thus, it is not
possible to write every element of D8 in the form aαbβ, α, β ∈ Z.
More specifically, the product aba cannot be simplified to a product
of the form aαbβ.

George Voutsadakis (LSSU) Abstract Algebra I March 2016 53 / 65



Subgroups Subgroups Generated by Subsets of a Group

The Non-Abelian Case: D2n

Let G = D2n, for any n > 2, and let r , s be the usual generators of
D2n.
Let a = s and b = rs.
It is still true that |a| = |b| = 2, D2n = 〈a, b〉 and |D2n| = 2n.
This means that for large n, long products of the form abab · · · ab
cannot be further simplified.

This illustrates that, unlike the abelian (or the cyclic) group case, the
order of a (finite) group cannot even be bounded once we know the
orders of the elements in some generating set.
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The Non-Abelian Case: Sn and GL2(R)

Consider
Sn = 〈(1 2), (1 2 3 . . . n)〉.

Thus Sn is generated by an element of order 2 together with one of
order n.
However, |Sn| = n!.

Consider G = GL2(R), a =

(

0 1
1 0

)

and b =

(

0 2
1
2 0

)

.

So a2 = b2 = 1.

But ab =

(

1
2 0
0 2

)

. The element ab has order ∞.

So 〈a, b〉 is an infinite subgroup of GL2(R) which is generated by two
elements of order 2.

George Voutsadakis (LSSU) Abstract Algebra I March 2016 55 / 65



Subgroups The Lattice of Subgroups of a Group

Subsection 5

The Lattice of Subgroups of a Group
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The Lattice of Subgroups of a Group

The lattice of subgroups of a group is a graph that depicts the
relationships among the subgroups of the group.

The lattice of subgroups of a finite group G is constructed as follows:
Plot all subgroups of G starting at the bottom with 1, ending at the
top with G and, roughly speaking, with subgroups of larger order
positioned higher on the page than those of smaller order.
Draw a line upward from subgroup A to subgroup B if A ≤ B and
there are no subgroups properly between A and B.

Thus, if A ≤ B , there is a path (possibly many paths) upward from A

to B passing through a chain of intermediate subgroups.

For any pair of subgroups H and K of G ,
the unique smallest subgroup 〈H ,K 〉 containing both of them, their
join, may be read off by tracing paths upwards from H and K until a
common subgroup A which contains H and K is reached.
the largest subgroup of G which is contained in both H and K , their
intersection, can be found similarly.
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The Groups Z/nZ

For G = Z/nZ, we proved that the lattice of subgroups is the lattice
of divisors of n:

Z/2Z Z/4Z Z/8Z

〈2〉 〈2〉 〈2〉

〈4〉 〈4〉

〈8〉
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Z/6Z and Z/12Z

Z/6Z

〈2〉 〈3〉

〈6〉

〈1〉

〈3〉 〈2〉

〈6〉 〈4〉

〈12〉
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The Klein 4-group

The Klein 4-group (Viergruppe) V4 is the group of order 4 with
multiplication table · 1 a b c

1 1 a b c

a a 1 c b

b b c 1 a

c c b a 1

Its lattice is
V4

〈a〉 〈b〉 〈c〉

1

V4 is abelian and is not isomorphic to Z4.
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The lattice of S3

S3

〈(1 2)〉 〈(1 3)〉 〈(2 3)〉 〈(1 2 3)〉

1
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The lattice of D8

D8

〈s, r2〉 〈r〉 〈rs, r2〉

〈s〉 〈r2s〉 〈r2〉 〈rs〉 〈r3s〉

1
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The lattice of Q8

Q8

〈i〉 〈j〉 〈k〉

〈±1〉

1
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The lattice of D16

D16

〈s, r2〉 〈r〉 〈sr , r2〉

〈sr2, r4〉 〈s, r4〉 〈r2〉 〈sr3, r4〉 〈sr5, r4〉

〈sr6〉 〈sr2〉 〈sr4〉 〈s〉 〈r4〉 〈sr3〉 〈sr7〉 〈sr5〉 〈sr〉

1
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Mining Information From the Lattices

Example: We show that, in D8, CD8
(s) = 〈s, r2〉:

We first calculate that r2 ∈ CD8(s). This proves 〈s, r
2〉 ≤ CD8(s).

The only subgroups which contain 〈s, r2〉 are that subgroup itself and
all of D8. We cannot have CD8(s) = D8 because r does not commute
with s. Thus, necessarily, CD8(s) = 〈s, r2〉.

D8

〈s, r2〉 〈r〉 〈rs, r2〉

〈s〉 〈r2s〉 〈r2〉 〈rs〉 〈r3s〉

1
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