Abstract Algebra I

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 341

George Voutsadakis (LSSU)

- Definitions and Examples
- More on Cosets and Lagrange's Theorem
- The Isomorphism Theorems
- Composition Series
- Transpositions and the Alternating Group

Subsection 1

Definitions and Examples

Subgroups and Quotients

- Taking a subgroup of a group results in a "smaller" group.
- Another way to study "smaller" groups is to take quotients.
- The structure of the group G is reflected in the structure of the quotient groups and the subgroups of G:
 - The lattice of subgroups for a quotient of G is reflected at the "top" of the lattice for G;
 - The lattice for a subgroup of G occurs naturally at the "bottom."

Information about the group G itself can be obtained by combining this information on quotients and subgroups.

• The study of the quotient groups of G is essentially equivalent to the study of the homomorphisms of G, i.e., the maps of the group G to another group which respect the group structures.

Illustration of Homomorphisms and Fibers

 If φ is a homomorphism from G to a group H, the fibers of φ are the sets of elements of G projecting to single elements of H:

Multiplying Fibers

• Consider a homomorphism $\varphi: G \to H$.

The group operation in H provides a natural multiplication of the fibers lying above two points making the set of fibers into a group: If X_a is the fiber above a and X_b is the fiber above b, then the product of X_a with X_b is defined to be the fiber X_{ab} above the product ab, i.e., $X_a X_b = X_{ab}$.

• This multiplication is associative since multiplication is associative in H:

$$(X_aX_b)X_c = X_{ab}X_c = X_{(ab)c} = X_{a(bc)} = X_aX_{bc} = X_a(X_bX_c).$$

- The identity is the fiber over the identity of *H*.
- The inverse of the fiber over *a* is the fiber over a^{-1} .

The fibers of G, with this group structure, form quotient group of G.

 By construction the quotient group with this multiplication is naturally isomorphic to the image of G under the homomorphism φ.

An Example of a Quotient Group

- Let G = Z and let H = Z_n = ⟨x⟩ be the cyclic group of order n. Define φ : Z → Z_n by φ(a) = x^a.
 - For a, b ∈ Z, φ(a + b) = x^{a+b} = x^ax^b = φ(a)φ(b). Hence φ is a homomorphism.
 - φ is surjective.
 - The fiber of φ over x^a is φ⁻¹(x^a) = {m ∈ Z : x^m = x^a} = {m ∈ Z : x^{m-a} = 1} = {m ∈ Z : n divides m − a} = {m ∈ Z : m ≡ a (mod n)} = ā, i.e., the fibers of φ are precisely the residue classes modulo n:

Example of a Quotient Group (Cont'd)

- The multiplication in Z_n is just $x^a x^b = x^{a+b}$. The corresponding fibers are $\overline{a}, \overline{b}$ and $\overline{a+b}$. The corresponding group operation for the fibers is $\overline{a} \cdot \overline{b} = \overline{a+b}$, which is just the group $\mathbb{Z}/n\mathbb{Z}$ under addition. It is a group isomorphic to the image of φ , which is all of Z_n .
- The identity of this group, the fiber above the identity in Z_n , consists of all the multiples of n in \mathbb{Z} , namely $n\mathbb{Z}$, a subgroup of \mathbb{Z} .
- The remaining fibers are just translates $a + n\mathbb{Z}$ of this subgroup.

Kernels and First Properties of Homomorphisms

Definition (The Kernel of a Homomorphism)

If φ is a homomorphism $\varphi: \mathcal{G} \to \mathcal{H}$, the **kernel** of φ is the set

$$\ker \varphi = \{ g \in G : \varphi(g) = 1 \}.$$

Proposition (Properties of Homomorphisms)

Let G and H be groups and let $\varphi : G \to H$ be a homomorphism.

(1) $\varphi(1_G) = 1_H$, where 1_G and 1_H are the identities of G and H.

(2)
$$\varphi(g^{-1}) = \varphi(g)^{-1}$$
, for all $g \in G$.

- (3) $\varphi(g^n) = \varphi(g)^n$, for all $n \in \mathbb{Z}$.
- (4) ker φ is a subgroup of G.
- (5) $im(\varphi)$, the image of G under φ , is a subgroup of H.

(1) We have $\varphi(1_G)\varphi(1_G) = \varphi(1_G 1_G) = \varphi(1_G)$. By the cancelation laws, we get $\varphi(1_G) = 1_H$.

Proof of Properties (2) and (3)

$$\phi(g^n) = \phi((g^{-n})^{-1}) \stackrel{\scriptscriptstyle (2)}{=} \phi(g^{-n})^{-1} \stackrel{\scriptscriptstyle (n>0}{=} (\phi(g)^{-n})^{-1} = \phi(g)^n.$$

Proof of Properties (4) and (5)

(4) Since
$$1_G \in \ker \varphi$$
, the kernel of φ is not empty.
Let $x, y \in \ker \varphi$, i.e., $\varphi(x) = \varphi(y) = 1_H$. Then
 $\varphi(xy^{-1}) = \varphi(x)\varphi(y^{-1}) = \varphi(x)\varphi(y)^{-1} = 1_H 1_H^{-1} = 1_H$. This shows,
 $xy^{-1} \in \ker \varphi$. By the subgroup criterion, $\ker \varphi \leq G$.

(5) Since $\varphi(1_G) = 1_H$, the identity of *H* lies in the image of φ . So im(φ) is nonempty.

Suppose x and y are in $im(\varphi)$, say $x = \varphi(a)$, $y = \varphi(b)$. Then $y^{-1} = \varphi(b^{-1})$ by Part (2). So $xy^{-1} = \varphi(a)\varphi(b^{-1}) = \varphi(ab^{-1})$. Hence, also xy^{-1} is in the image of φ . We conclude $im(\varphi)$ is a subgroup of H by the subgroup criterion.

Quotient or Factor Groups

Definition (Quotient or Factor Group)

Let $\varphi : G \to H$ be a homomorphism with kernel K. The **quotient group** or **factor group**, G/K (read G **modulo** K or, simply, G **mod** K), is the group whose elements are the fibers of φ with group operation defined by:

If X is the fiber above a and Y is the fiber above b then the product of X with Y is defined to be the fiber above the product ab.

- The notation emphasizes the fact that the kernel K is a single element in the group G/K and, as in the case of $\mathbb{Z}/n\mathbb{Z}$, the other elements of G/K are just the "translates" of the kernel K.
- Thus, *G*/*K* is obtained by collapsing or "dividing out" by *K* (by equivalence modulo *K*), explaining the name "quotient" group.

The Fibers in G/K

Proposition

Let $\varphi : G \to H$ be a homomorphism of groups with kernel K. Let $X \in G/K$ be the fiber above a, i.e., $X = \varphi^{-1}(a)$. Then: (1) For any $u \in X$, $X = \{uk : k \in K\}$; (2) For any $u \in X$, $X = \{ku : k \in K\}$.

- We prove Part (1) (Part (2) can be proven similarly): Let u ∈ X. By definition of X, φ(u) = a. Let uK = {uk : k ∈ K}.
 - We first prove uK ⊆ X: For any k ∈ K, φ(uk) = φ(u)φ(k) = a1 = a. So uk ∈ X. This proves uK ⊆ X.
 - We now establish X ⊆ uK. Suppose g ∈ X and let k = u⁻¹g. Then φ(k) = φ(u⁻¹)φ(g) = φ(u)⁻¹φ(g) = a⁻¹a = 1. Thus k ∈ kerφ. Since k = u⁻¹g, g = uk ∈ uK. Therefore, X ⊆ uK.

This proves Part (1).

Left and Right Cosets

Definition (Left and Right Coset)

For any $N \leq G$ and any $g \in G$, let

$$gN = \{gn : n \in N\}$$
 and $Ng = \{ng : n \in N\},\$

called respectively a **left coset** and a **right coset** of N in G. Any element of a coset is called a **representative** for the coset.

- We saw that, if N is the kernel of a homomorphism and g₁ is any representative for the coset gN then g₁N = gN (and, if g₁ ∈ Ng, then Ng₁ = Ng).
 This fact provides an explanation for the terminology of a representative.
- If G is an additive group, we write g + N and N + g for the left and right cosets of N in G with representative g, respectively.

Multiplication of Cosets

Theorem

Let *G* be a group and let *K* be the kernel of some homomorphism from *G* to another group. Then the set whose elements are the left cosets of *K* in *G*, with operation defined by $uK \circ vK = (uv)K$, forms a group G/K. In particular, this operation is well defined in the sense that if u_1 is any element in uK and v_1 is any element in vK, then $u_1v_1 \in uvK$, i.e., $u_1v_1K = uvK$, so that the multiplication does not depend on the choice of representatives for the cosets. The same statement is true with "right coset" in place of "left coset".

Let X, Y ∈ G/K and let Z = XY in G/K. Thus, X, Y and Z are (left) cosets of K. By assumption, K is the kernel of some homomorphism φ : G → H, so X = φ⁻¹(a) and Y = φ⁻¹(b), for some a, b ∈ H. By definition of the operation in G/K, Z = φ⁻¹(ab). Let u and v be arbitrary representatives of X, Y, respectively. Then φ(u) = a, φ(v) = b and X = uK, Y = vK. We must show uv ∈ Z.

Multiplication of Cosets (Cont'd)

• Using the diagram we must show that $uv \in Z = \varphi^{-1}(ab)$.

We have

 $uv \in Z$ iff $uv \in \varphi^{-1}(ab)$ iff $\varphi(uv) = ab$ iff $\varphi(u)\varphi(v) = ab$. Since $\varphi(u) = a$ and $\varphi(v) = b$, the last equality holds, showing that $uv \in Z$, whence Z is the (left) coset uvK.

The last statement in the theorem now follows, since, by the preceding proposition, uK = Ku and vK = Kv, for all u and v in G.
The coset uK containing a representative u is denoted u.
With this notation, the quotient group G/K is denoted G and the product of elements u and v is the coset containing uv, i.e., uv.
This notation also emphasizes the fact that the cosets uK in G/K are

elements \overline{u} in G/K.

The Homomorphism from \mathbb{Z} to Z_n

 Recall the homomorphism φ from Z to Z_n that has fibers the left (and also the right) cosets a + nZ of the kernel nZ. The theorem shows that these cosets form the group Z/nZ under addition of representatives. The group is naturally isomorphic to its image under φ, so we recover the isomorphism Z/nZ ≅ Z_n.

Isomorphisms and Trivial Homomorphisms

- If φ : G → H is an isomorphism, then K = 1. The fibers of φ are the singleton subsets of G. So G/1 ≃ G.
- Let G be any group, let H = 1 be the group of order 1 and define φ : G → H by φ(g) = 1, for all g ∈ G. It is immediate that φ is a homomorphism. This map is called the **trivial homomorphism**. In this case kerφ = G. Thus, G/G is a group with the single element G, i.e., G/G ≅ Z₁ = {1}.

Projection Onto the x-Axis

Let G = R², with operation vector addition, and H = R, with operation addition. Define φ : R² → R by φ((x, y)) = x. Thus, φ is projection onto the x-axis. We show φ is a homomorphism: φ((x₁, y₁) + (x₂, y₂)) = φ((x₁ + x₂, y₁ + y₂)) = x₁ + x₂ = φ((x₁, y₁)) + φ((x₂, y₂)). Now kerφ = {(x, y) : φ((x, y)) = 0} = {(x, y) : x = 0} = the y-axis. Note that kerφ is a subgroup of R².

The fiber of
$$\varphi$$
 over $a \in \mathbb{R}$ is the translate of the *y*-axis by *a*, i.e., the line $x = a$. This is also the left (and the right) coset of the kernel with representative $(a, 0)$: $\overline{(a, 0)} = (a, 0) + y$ -axis.

The Quaternion Group and the Klein 4-Group

 An example with G non-abelian: Let G = Q₈ and let H = V₄ be the Klein 4-group. Define φ : Q₈ → V₄ by

$$\varphi(\pm 1) = 1, \ \varphi(\pm i) = a, \ \varphi(\pm j) = b, \ \varphi(\pm k) = c.$$

The check that φ is a homomorphism involves checking that $\varphi(xy) = \varphi(x)\varphi(y)$, for all $x, y \in Q_8$. It is clear that φ is surjective. $\ker \varphi = \{\pm 1\}$. The fibers of φ are the sets $E = \{\pm 1\}$, $A = \{\pm i\}$, $B = \{\pm j\}$ and $C = \{\pm k\}$, which are collapsed to 1, *a*, *b* and *c*, respectively in $Q_8/\langle \pm 1 \rangle$ These are the left (and also the right) cosets of $\ker \varphi$.

Coset Partition of a Group

• The cosets of an arbitrary subgroup of *G* partition *G*, i.e., their union is all of *G* and distinct cosets have empty intersection.

Proposition

Let *N* be any subgroup of the group *G*. The set of left cosets of *N* in *G* form a partition of *G*. Furthermore, for all $u, v \in G$, uN = vN if and only if $v^{-1}u \in N$. In particular, uN = vN if and only if *u* and *v* are representatives of the same coset.

• Since N is a subgroup of G, $1 \in N$. Thus, $g = g \cdot 1 \in gN$, for all $g \in G$, i.e., $G = \bigcup_{g \in G} gN$. To show that distinct left cosets have empty intersection, suppose $uN \cap vN \neq \emptyset$. We show uN = vN. Let $x \in uN \cap vN$. Write x = un = vm, for some $n, m \in N$. Multiplying on the right by n^{-1} , $u = vmn^{-1} = vm_1$, where $m_1 = mn^{-1} \in N$. Now, for any element ut of uN ($t \in N$), $ut = (vm_1)t = v(m_1t) \in vN$. This proves $uN \subseteq vN$. By interchanging the roles of u and v one obtains similarly that $vN \subseteq uN$.

Coset Partition of a Group (Cont'd)

• We showed that two cosets with nonempty intersection coincide. By the first part,

$$uN = vN$$
 if and only if $u \in vN$
if and only if $u = vn$, for some $n \in N$,
if and only if $v^{-1}u \in N$.

Finally, $v \in uN$ is equivalent to saying v is a representative for uN. Hence uN = vN if and only if u and v are representatives for the same coset, the coset uN = vN.

The Group of Cosets

Proposition

Let G be a group and let N be a subgroup of G.

- (1) The operation on the set of left cosets of N in G described by $uN \cdot vN = (uv)N$ is well defined if and only if $gng^{-1} \in N$, for all $g \in G$ and all $n \in N$.
- (2) If the above operation is well defined, then it makes the set of left cosets of N in G into a group: The identity of this group is the coset 1N and the inverse of gN is the coset $g^{-1}N$, i.e., $(gN)^{-1} = g^{-1}N$.
- (1) Assume, first, that this operation is well defined, that is, for all $u, v \in G$, if $u, u_1 \in uN$ and $v, v_1 \in vN$, then $uvN = u_1v_1N$. Let g be an arbitrary element of G and let n be an arbitrary element of N. Let $u = 1, u_1 = n$ and $v = v_1 = g^{-1}$. Apply the assumption to get $1g^{-1}N = ng^{-1}N$, i.e., $g^{-1}N = ng^{-1}N$. Since $1 \in N$, $ng^{-1} \cdot 1 \in ng^{-1}N$. Thus $ng^{-1} \in g^{-1}N$, hence $ng^{-1} = g^{-1}n_1$, for some $n_1 \in N$. Multiplying on the left by $g, gng^{-1} = n_1 \in N$.

The Group of Cosets (Cont'd)

- Conversely, assume $gng^{-1} \in N$, for all $g \in G$ and all $n \in N$. Let $u, u_1 \in uN$ and $v, v_1 \in vN$. We may write $u_1 = un$ and $v_1 = vm$, for some $n, m \in N$. We must prove that $u_1v_1 \in uvN$: $u_1v_1 = (un)(vm) = u(vv^{-1})nvm = (uv)(v^{-1}nv)m = (uv)(n_1m)$, where $n_1 = v^{-1}nv = (v^{-1})n(v^{-1})^{-1}$ is an element of N by assumption. Since N is closed under products, $n_1m \in N$. Thus, $u_1v_1 = (uv)n_2$, for some $n_2 \in N$. Thus, the left cosets uvN and u_1v_1N contain the common element u_1v_1 . By the preceding proposition they are equal, whence the operation is well defined.
- (2) If the operation on cosets is well defined the group axioms are easy to check and are induced by their validity in *G*. E.g., the associative law holds because for all $u, v, w \in G$, (uN)(vNwN) = uN(vwN) = u(vw)N = (uv)wN = (uvN)(wN) = (uNvN)(wN), since u(vw) = (uv)w in *G*. By the definition of the multiplication, the identity in *G*/*N* is the coset 1*N* and the inverse of gN is $g^{-1}N$.

Conjugates and Normal Subgroups

Definition (Conjugate and Normal Subgroup)

Let G be a group and N a subgroup of G.

- The element gng^{-1} is called the **conjugate** of $n \in N$ by $g \in G$.
- The set $gNg^{-1} = \{gng^{-1} : n \in N\}$ is called the **conjugate** of N by $g \in G$.
- The element $g \in G$ is said to **normalize** N if $gNg^{-1} = N$.
- *N* is called a **normal subgroup** of *G* if every element of *G* normalizes *N*, i.e., if $gNg^{-1} = N$, for all $g \in G$. In this case, we write $N \trianglelefteq G$.
- Note that the structure of G is reflected in the structure of the quotient G/N when N is a normal subgroup.
 - E.g., the associativity of the multiplication in G/N is induced from the associativity in G;
 - Inverses in G/N are induced from inverses in G.

Criteria for Normality

Theorem (Criteria for Normality)

Let N be a subgroup of the group G. The following are equivalent:

- (1) $N \trianglelefteq G$;
- (2) $N_G(N) = G$ (where $N_G(N)$ is the normalizer in G of N);
- (3) gN = Ng, for all $g \in G$;
- (4) The operation on the left cosets of N in G described in the preceding proposition makes the set of left cosets into a group;
- (5) $gNg^{-1} \in N$, for all $g \in G$.
 - We have seen almost all equivalences already.

Remarks on Computations for Proving Normality

- To determine whether a given subgroup N is normal in a group G, we would like to avoid as much as possible the computation of all the conjugates gng^{-1} for $n \in N$ and $g \in G$.
 - The elements of *N* itself normalize *N* since *N* is a subgroup.
 - If one has a set of generators for *N*, it suffices to check that all conjugates of these generators lie in *N*. This holds because:
 - the conjugate of a product is the product of the conjugates;
 - the conjugate of the inverse is the inverse of the conjugate.
 - If generators for G are known, then it suffices to check that these generators for G normalize N.
 - Even more convenient, if generators for both *N* and *G* are known, this reduces the calculations to a small number of conjugations to check.
 - If N is a finite group, then it suffices to check that the conjugates of a set of generators for N by a set of generators for G are in N.
 - Verifying $N_G(N) = G$ can, sometimes, be accomplished without computing all possible conjugates gng^{-1} .

Normal Subgroups as Kernels of Homomorphisms

• Normal subgroups are the same as the kernels of homomorphisms:

Proposition

A subgroup N of the group G is normal if and only if it is the kernel of some homomorphism.

 If N is the kernel of the homomorphism φ, then we have seen that the left cosets of N are the same as the right cosets of N (and both are the fibers of the map φ). By the normality criterion, N is then a normal subgroup.

Conversely, if $N \leq G$, let H = G/N and define $\pi : G \to G/N$ by $\pi(g) = gN$, for all $g \in G$. By definition of the operation in G/N,

$$\pi(g_1g_2) = (g_1g_2)N = g_1Ng_2N = \pi(g_1)\pi(g_2).$$

This proves π is a homomorphism. Now ker $\pi = \{g \in G : \pi(g) = 1N\} = \{g \in G : gN = 1N\} = \{g \in G : g \in N\} = N$. Thus N is the kernel of the homomorphism π .

Natural Projection Homomorphisms

 $\bullet\,$ The homomorphism π of the preceding proof is given a special name:

Definition (Natural Projection)

Let $N \trianglelefteq G$. The homomorphism $\pi : G \to G/N$ defined by $\pi(g) = gN$ is called the **natural projection (homomorphism)** of G onto G/N. If $\overline{H} \le G/N$ is a subgroup of G/N, the **complete preimage** of \overline{H} in G is the preimage of \overline{H} under the natural projection homomorphism.

- The complete preimage of a subgroup of G/N is a subgroup of G which contains the subgroup N, since N consists of the elements which map to the identity $\overline{1} \in \overline{H}$.
- We will see that there is a natural correspondence between the subgroups of G containing N and the subgroups of the quotient G/N.

Normal Subgroups and Normalizers

• One of the criteria for normality, i.e., for a subgroup being the kernel of a homomorphism, is

$$N \trianglelefteq G$$
 iff $N_G(N) = G$.

• Thus, the normalizer of a subgroup N of G is, in a sense, a measure of "how close" N is to being a normal subgroup.

This explains the choice of name for the subgroup.

• It is important to keep in mind that the property of being normal is an **embedding property**, i.e., it depends on the relation of *N* to *G*, not on the internal structure of *N* itself.

In particular, this means that the same group N may be a normal subgroup of G but not a normal subgroup of a larger group containing G.

The Quotient Groups of Cyclic Groups

- For a group G, the subgroups 1 and G are always normal in G. $G/1 \cong G$ and $G/G \cong 1$.
- If G is an abelian group, any subgroup N of G is normal because, for all $g \in G$ and all $n \in N$, $gng^{-1} = gg^{-1}n = n \in N$.

It is important that G be abelian, not just that N be abelian.

The structure of G/N may vary for different subgroups N of G.

- If $G = \mathbb{Z}$, then every subgroup N of G is cyclic: $N = \langle n \rangle = \langle -n \rangle = n\mathbb{Z}$, for some $n \in \mathbb{Z}$. Moreover, $G/N = \mathbb{Z}/n\mathbb{Z}$ is a cyclic group with generator $\overline{1} = 1 + n\mathbb{Z}$ (1 is a generator for G).
- Suppose $G = Z_k$ is the cyclic group of order k. Let x be a generator of G and let $N \leq G$. We know that $N = \langle x^d \rangle$, where d is the smallest power of x which lies in N. Now $G/N = \{gN : g \in G\} = \{x^aN : a \in \mathbb{Z}\}$ and, since $x^aN = (xN)^a$, it follows that $G/N = \langle xN \rangle$, i.e., G/N is cyclic with xN as a generator.

• The order of xN in G/N equals d and $d = \frac{|G|}{|N|}$.

The Klein 4-Group as a Quotient of the Quaternion Group

- If $N \leq Z(G)$, then $N \leq G$ because, for all $g \in G$ and all $n \in N$, $gng^{-1} = n \in N$. In particular, $Z(G) \leq G$.
- The subgroup $\langle -1 \rangle$ of Q_8 was previously seen to be the kernel of a homomorphism. Since $\langle -1 \rangle = Z(Q_8)$, normality of this subgroup is obtained in a different way.
- We also saw that Q₈/⟨-1⟩ ≅ V₄. This can also be seen as follows: Let G = D₈ and Z = ⟨r²⟩ = Z(D₈). Since Z = {1, r²}, each coset gZ consists of the two element set {g, gr²}. Since these cosets partition the 8 elements of D₈ into pairs, there must be 4 (disjoint) left cosets of Z in D₈:

$$\overline{1} = 1Z$$
, $\overline{r} = rZ$, $\overline{s} = sZ$, $\overline{rs} = rsZ$.

By the classification of groups of order 4, we know that $D_8/Z(D_8) \cong Z_4$ or V_4 . To determine which of these two is correct, observe that $(\overline{r})^2 = r^2 Z = 1Z = \overline{1}$, $(\overline{s})^2 = s^2 Z = 1Z = \overline{1}$ and $(\overline{rs})^2 = (rs)^2 Z = 1Z = \overline{1}$. So every nonidentity element in D_8/Z has order 2. In particular there is no element of order 4 in the quotient. Hence D_8/Z is not cyclic. Therefore, $D_8/Z(D_8) \cong V_4$.

Subsection 2

More on Cosets and Lagrange's Theorem

Lagrange's Theorem

Theorem (Lagrange's Theorem)

If G is a finite group and H is a subgroup of G, then the order of H divides the order of G, i.e., |H| | |G|, and the number of left cosets of H in G equals $\frac{|G|}{|H|}$.

• Let |H| = n and let the number of left cosets of H in G equal k. We know that the set of left cosets of H in G partition G. By definition of a left coset, the map: $H \rightarrow gH$ defined by $h \mapsto gh$ is a surjection from H to the left coset gH. The left cancelation law implies this map is injective, since $gh_1 = gh_2$ implies $h_1 = h_2$. This proves that H and gH have the same order: |gH| = |H| = n. Since G is partitioned into k disjoint subsets each of which has cardinality n, |G| = kn. Thus, $k = \frac{|G|}{n} = \frac{|G|}{|H|}$.

Index of a Subgroup in a Group

Definition (Index of a Subgroup in a Group)

If G is a group (possibly infinite) and $H \le G$, the number of left cosets of H in G is called the **index** of H in G and is denoted by |G:H|.

- In the case of finite groups the index of H in G is $\frac{|G|}{|H|}$.
- For G an infinite group the quotient |G| does not make sense. Infinite groups may have subgroups of finite or infinite index.
 Example: Consider the additive group Z:
 - $\{0\}$ is of infinite index in \mathbb{Z} .
 - $\langle n \rangle$ is of index *n* in \mathbb{Z} , for every n > 0.

Consequences of Lagrange's Theorem

Corollary

If G is a finite group and $x \in G$, then the order of x divides the order of G. In particular, $x^{|G|} = 1$, for all x in G.

We have seen that |x| = |⟨x⟩|. The first part of the corollary follows from Lagrange's Theorem applied to H = ⟨x⟩. For the second statement, since |G| is a multiple of the order of x, |G| = k|x|, we get x^{|G|} = x^{k|x|} = (x^{|x|})^k = 1^k = 1.

Corollary

If G is a group of prime order p, then G is cyclic. Hence $G \cong Z_p$.

Let x ∈ G, x ≠ 1. Thus, |⟨x⟩| > 1 and |⟨x⟩| | |G|. Since |G| is prime we must have |⟨x⟩| = |G|. Hence G = ⟨x⟩ is cyclic. Every cyclic group of order p is isomorphic to Z_p.

The Symmetric Group S_3

Claim: Let $G = S_3$ and $H = \langle (1 \ 2 \ 3) \rangle \leq S_3$. Then $H \leq S_3$.

We have $H \leq N_G(H) \leq G$.

By Lagrange's Theorem, the order of H divides the order of $N_G(H)$ and the order of $N_G(H)$ divides the order of G. Since G has order 6 and H has order 3, the only possibilities for $N_G(H)$ are H or G. A direct computation gives

$$(1 \ 2)(1 \ 2 \ 3)(1 \ 2) = (1 \ 3 \ 2) = (1 \ 2 \ 3)^{-1}$$

Since $(1 \ 2) = (1 \ 2)^{-1}$, $(1 \ 2)$ conjugates a generator of H to another generator of H. This suffices to prove that $(1 \ 2) \in N_G(H)$. Thus $N_G(H) \neq H$. So $N_G(H) = G$, i.e., $H \leq S_3$, as claimed.

A Group with a Subgroup of Index 2

Claim: Let G be any group containing a subgroup H of index 2. Then $H \leq G$.

Let $g \in G - H$. By hypothesis, the two left cosets of H in G are 1Hand gH. Since 1H = H and the cosets partition G, we must have gH = G - H. The two right cosets of H in G are H1 and Hg. Since H1 = H, we again must have Hg = G - H. Combining these gives gH = Hg, so every left coset of H in G is a right coset. By the normality criterion, $H \leq G$. By definition of index, |G/H| = 2, so that $G/H \cong Z_2$.

• This result proves the following:

- $\langle i \rangle = \{1, i, -1, -i\}, \langle j \rangle = \{1, j, -1, -j\}$ and $\langle k \rangle = \{1, k, -1, -k\}$ are normal subgroups of Q_8 ;
- $\langle s, r^2 \rangle = \{1, r^2, s, sr^2\}, \langle r \rangle = \{1, r, r^2, r^3\} \text{ and } \langle sr, r^2 \rangle = \{1, r^2, sr, sr^3\}$ are normal subgroups of D_8 .

Non-Transitivity of \trianglelefteq

Claim: The property "is a normal subgroup of" is not transitive. • We have

$$\langle s \rangle = \{1, s\}, \ \langle s, r^2 \rangle = \{1, r^2, s, sr^2\}, \ D_8 = \{s^i r^j : i = 0, 1, 0 \le j \le 3\}.$$

Therefore $\langle s \rangle \trianglelefteq \langle s, r^2 \rangle \trianglelefteq D_8$ (each subgroup is of index 2 in the next). • On the other hand, $\langle s \rangle$ is not normal in D_8 because

$$rsr^{-1} = sr^2 \not\in \langle s \rangle.$$

Abelian Groups and Simple Groups

• In abelian groups every subgroup is normal.

If $H \leq G$ and G is abelian, then, for all $g \in G$,

$$g^{-1}Hg = \{ghg^{-1} : h \in H\} \\ = \{gg^{-1}h : h \in H\} \\ = \{h : h \in H\} \\ = H.$$

- This is not the case in non-abelian groups (in some sense, Q_8 is the unique exception to this).
- There exist groups G in which the only normal subgroups are the trivial ones: 1 and G.

Such groups are called simple groups.

A Non Normal Subgroup of S_3

• Let $H = \langle (1 \ 2) \rangle \leq S_3$. Since H is of prime index 3 in S_3 , by Lagrange's Theorem $N_{S_3}(H) = H$ or S_3 . But $(1 \ 3)(1 \ 2)(1 \ 3)^{-1} = (1 \ 3)(1 \ 2)(1 \ 3) = (2 \ 3) \notin H$. So $N_{S_3}(H) \neq S_3$. Thus, H is not a normal subgroup of S_3 .

One can also see this by considering the left and right cosets of H.

•
$$(1 \ 3)H = \{(1 \ 3), (1 \ 2 \ 3)\};$$

$$H(1 3) = \{(1 3), (1 3 2)\}.$$

Since the left coset $(1 \ 3)H$ is the unique left coset of H containing $(1 \ 3)$, the right coset $H(1 \ 3)$ cannot be a left coset.

- The "group operation" on the left cosets of H in S_3 defined by multiplying representatives is not even well defined.
 - For 1*H* and (1 3)*H*, 1 and (1 2) are both in 1*H*;
 - On the other hand, $1 \cdot (1 \ 3) = (1 \ 3)$ and $(1 \ 2) \cdot (1 \ 3) = (1 \ 3 \ 2)$ are not both elements of the same left coset.

Non Normal Subgroups of S_n , n > 2

• Let $G = S_n$ for some $n \in \mathbb{Z}^+$ and fix some $i \in \{1, 2, ..., n\}$. Let $G_i = \{\sigma \in G : \sigma(i) = i\}$ be the stabilizer of the point *i*.

Claim: Let $\tau \in G$, such that $\tau(i) = j$. The left coset τG_i consists of the permutations in S_n which take *i* to *j*.

First note that, if $\sigma \in G_i$, then $\tau \sigma(i) = \tau(i) = j$. Thus, all permutations in τG_i take *i* to *j*.

Suppose, conversely, that $\mu \in G$, such that $\mu(i) = j$. Then, we have $\tau^{-1}\mu(i) = \tau^{-1}(j) = i$. Thus, $\tau^{-1}\mu \in G_i$ and, hence, $\mu \in \tau G_i$. Thus, all permutations taking *i* to *j* are in τG_i .

- Distinct left cosets have empty intersection;
- The number of distinct left cosets is *n*, the number of distinct images of the integer *i* under the action of *G*. Thus, $|G : G_i| = n$.

Non Normal Subgroups of S_n , n > 2 (Cont'd)

Let G = S_n for some n ∈ Z⁺ and fix some i ∈ {1,2,...,n}. Let G_i = {σ ∈ G : σ(i) = i} be the stabilizer of the point i.
Claim: Let τ ∈ G, such that k = τ⁻¹(i), i.e., τ(k) = i. The right coset G_iτ consists of the permutations in S_n which take k to i.
First note that, if σ ∈ G_i, then στ(k) = σ(i) = i. Thus, all permutations in G_iτ take k to i.

Suppose, conversely, that $\mu \in G$, such that $\mu(k) = i$. Then, we have $\mu \tau^{-1}(i) = \mu(k) = i$. Thus, $\mu \tau^{-1} \in G_i$ and, hence, $\mu \in G_i \tau$. Thus, all permutations taking k to i are in τG_i .

 If n > 2, for some nonidentity element τ, we have τG_i ≠ G_iτ since there are certainly permutations which take i to j but do not take k to i. Thus G_i is not a normal subgroup.

Non Normal Subgroups of D_8

Claim: In D_8 the only subgroup of order 2 which is normal is the center $\langle r^2 \rangle$.

First, we show that $\langle r^2 \rangle$ is normal:

$$\begin{array}{ll} r\{1,r^2\} &=& \{r,r^3\} = \{1,r^2\}r;\\ s\{1,r^2\} &=& \{s,sr^2\} = \{s,r^{-2}s\} = \{s,r^2s\} = \{1,r^2\}s. \end{array}$$

Next we show that none of the other four subgroups of order 2 is normal:

•
$$\langle s \rangle$$
: $r\{1, s\} = \{r, rs\} \neq \{r, sr\} = \{1, s\}r$.
• $\langle r^2 s \rangle$: $r\{1, r^2 s\} = \{r, r^3 s\} \neq \{r, rs\} = \{r, r^2 sr\} = \{1, r^2 s\}r$.
• $\langle rs \rangle$: $r\{1, rs\} = \{r, r^2 s\} \neq \{r, s\} = \{r, rsr\} = \{1, rs\}r$.
• $\langle r^3 s \rangle$: $r\{1, r^3 s\} = \{r, s\} \neq \{r, r^2 s\} = \{1, r^3 s\}r$.

Group of Rigid Motions of the Regular Tetrahdron

Claim: The group G of rigid motions of a regular tetrahedron in \mathbb{R}^3 has order 12.

Let θ be a rigid motion of the tetrahedron. If the vertices of a face, read clockwise from outside the figure, are XYZ, then $\theta(X)\theta(Y)\theta(Z)$ are the vertices of the corresponding face, read clockwise from outside the figure, of the moved copy.

- There are 4 possibilities for $\theta(1)$.
- Once $\theta(1)$ is chosen, there are 3 possibilities for $\theta(2)$.
- Once θ(1) and θ(2) are chosen, θ(3) is determined by orientation.

Thus there are $3 \cdot 4 = 12$ total possibilities for θ , showing that |G| = 12.

Remark on Lagrange's Theorem

The full converse to Lagrange's Theorem is not true: If G is a finite group and n divides |G|, then G need not have a subgroup of order n.
 Example: Let A be the group of symmetries of a regular tetrahedron. We know that |A| = 12.

Claim: A does not have a subgroup of order 6.

If A had a subgroup H of order 6, H would be of index 2 in A, whence $A/H \cong Z_2$. Since the quotient group has order 2, the square of every element in the quotient is the identity, so, for all $g \in A$, $(gH)^2 = 1H$, i.e., for all $g \in A$, $g^2 \in H$. If g is an element of A of order 3, we obtain $g = (g^2)^2 \in H$, i.e., H must contain all elements of A of order 3. This is a contradiction since |H| = 6, but there are 8 rotations of a tetrahedron of order 3.

A Counting Formula

Definition

Let H and K be subgroups of a group and define $HK = \{hk : h \in H, k \in K\}.$

Proposition

If H and K are finite subgroups of a group then $|HK| = \frac{|H||K|}{|H \cap K|}$.

HK is a union of left cosets of *K*, namely, *HK* = ∪_{h∈H} h*K*. Since each coset of *K* has |*K*| elements, it suffices to find the number of distinct left cosets of the form h*K*, h ∈ H. But h₁K = h₂K for h₁, h₂ ∈ H if and only if h₂⁻¹h₁ ∈ K. Thus, h₁K = h₂K iff h₂⁻¹h₁ ∈ H ∩ K iff h₁(H ∩ K) = h₂(H ∩ K). Thus, the number of distinct cosets of the form hK, for h ∈ H is the number of distinct cosets h(H ∩ K), for h ∈ H. The latter number, by Lagrange's Theorem, equals |H|/|H∩K|. Thus HK consists of ||H|/|H∩K| distinct cosets of K (each of which has |K| elements) which yields the formula.

The Set HK

• There was no assumption that HK be a subgroup. Example: If $G = S_3$, $H = \langle (1 \ 2) \rangle$ and $K = \langle (2 \ 3) \rangle$, then |H| = |K| = 2 and $|H \cap K| = 1$. So $|HK| = \frac{|H||K|}{|H \cap K|} = 4$. By Lagrange's Theorem HK cannot be a subgroup. As a consequence, we must have $S_3 = \langle (1 \ 2), (2 \ 3) \rangle$.

Criterion for *HK* to be a Subgroup

Proposition

If H and K are subgroups of a group, HK is a subgroup if and only if HK = KH.

(\Leftarrow): Assume, first, that HK = KH and let $a, b \in HK$. We prove $ab^{-1} \in HK$, which suffices to show that HK is a subgroup, by the subgroup criterion. Let $a = h_1 k_1$ and $b = h_2 k_2$, for some $h_1, h_2 \in H$ and $k_1, k_2 \in K$. Thus, $b^{-1} = k_2^{-1} h_2^{-1}$. So, $ab^{-1} = h_1 k_1 k_2^{-1} h_2^{-1}$. Let $k_3 = k_1 k_2^{-1} \in K$ and $h_3 = h_2^{-1}$. Thus, $ab^{-1} = h_1 k_3 h_3$. Since HK = KH, $k_3h_3 = h_4k_4$, for some $h_4 \in H$, $k_4 \in K$. Thus, $ab^{-1} = h_1h_4k_4$. Since $h_1h_4 \in H$, $k_4 \in K$, we obtain $ab^{-1} \in HK$. (\Rightarrow) : Conversely, assume that HK is a subgroup of G. Since $K \leq HK$ and H < HK, by the closure property of subgroups, $KH \subset HK$. To show the reverse containment let $hk \in HK$. Since HK is assumed to be a subgroup, write $hk = a^{-1}$, for some $a \in HK$. If $a = h_1 k_1$, then $hk = (h_1k_1)^{-1} = k_1^{-1}h_1^{-1} \in KH$, completing the proof.

Remarks on the Criterion

• HK = KH does not imply that the elements of H commute with those of K but rather that every product hk is of the form k'h' (h need not be h' nor k be k') and conversely.

Example: If $G = D_{2n}$, $H = \langle r \rangle$ and $K = \langle s \rangle$, then G = HK = KH so that HK is a subgroup and $rs = sr^{-1}$ so the elements of H do not commute with the elements of K.

Corollary

If H and K are subgroups of G and $H \leq N_G(K)$, then HK is a subgroup of G. In particular, if $K \leq G$, then $HK \leq G$, for any $H \leq G$.

• We prove HK = KH. Let $h \in H$, $k \in K$. By assumption, $hkh^{-1} \in K$, hence $hk = (hkh^{-1})h \in KH$. This proves $HK \subseteq KH$. Similarly, $kh = h(h^{-1}kh) \in HK$, proving the reverse containment. Now the corollary follows from the preceding proposition.

More on the Product HK

Definition

If A is any subset of $N_G(K)$ (or $C_G(K)$), we shall say A normalizes K (centralizes K, respectively).

- Using this terminology, the preceding corollary states that *HK* is a subgroup if *H* normalizes *K*.
- In some cases, it is possible to prove that a finite group is a product of two of its subgroups by simply using the order formula.

Example: Let $G = S_4$, $H = D_8$ and $K = \langle (1 \ 2 \ 3) \rangle$, where we consider D_8 as a subgroup of S_4 by identifying each symmetry with its permutation on the 4 vertices of a square.

By Lagrange's Theorem, $H \cap K = 1$.

The proposition then shows $|HK| = \frac{|H||K|}{|H \cap K|} = 24$. So $HK = S_4$. Since HK is a group, HK = KH.

But note that neither H nor K normalizes the other.

Subsection 3

The Isomorphism Theorems

The First Isomorphism Theorem

Theorem (The First Isomorphism Theorem)

If $\varphi: G \to H$ is a homomorphism of groups, then $\ker \varphi \trianglelefteq G$ and $G/\ker \varphi \cong \varphi(G)$.

• We first show that ker $\varphi < G$. Since $\varphi(1_G) = 1_H$, $1_G \in \ker \varphi$. Therefore, $\ker \varphi \neq \emptyset$. Suppose that $x, y \in \ker \varphi$. Thus, $\varphi(x) = \varphi(y) = 1_H$. So we get $\varphi(xy^{-1}) = \varphi(y) = \varphi(y)$ $\varphi(x)\varphi(y)^{-1} = 1_H 1_H^{-1} = 1_H$. Thus, $xy^{-1} \in \ker \varphi$. By the subgroup criterion, we get that ker $\varphi < G$. We show next that ker $\varphi \triangleleft G$. We do this by showing that, for all $g \in G$, $g \ker \varphi g^{-1} = \ker \varphi$. Suppose $x \in \ker \varphi$. Then $\varphi(gxg^{-1}) = \varphi(g)\varphi(x)\varphi(g)^{-1} =$ $\varphi(g)1_H\varphi(g)^{-1}=1_H$. So $gxg^{-1} \in \ker \varphi$. Thus, $g\ker \varphi g^{-1} \subseteq \ker \varphi$. Suppose, conversely, that $x \in \ker \varphi$. Then $g^{-1}xg \in \ker \varphi$. And we have $x = g(g^{-1}xg)g^{-1} \in g \ker \varphi g^{-1}$. So $\ker \varphi \subseteq g \ker \varphi g^{-1}$.

The First Isomorphism Theorem (Cont'd)

• Now define $\psi : G/\ker\varphi \to \varphi(G)$ by setting $\psi(g/\ker\varphi) = \varphi(g)$. First, we show ψ is well-defined. Suppose that $g_1/\ker\varphi = g_2/\ker\varphi$. Then $g_2^{-1}g_1 \in \ker\varphi$. Hence $\varphi(g_2^{-1}g_1) = 1_H$, i.e., $\varphi(g_2)^{-1}\varphi(g_1) = 1_H$. We get $\varphi(g_1) = \varphi(g_2)$.

Next we show that ψ is a homomorphism:

$$\psi((g_1/\ker\varphi)(g_2/\ker\varphi)) = \psi((g_1g_2)/\ker\varphi)$$

= $\varphi(g_1g_2)$
= $\varphi(g_1)\varphi(g_2)$
= $\psi(g_1/\ker\varphi)\psi(g_2/\ker\varphi)$

 ψ is clearly onto $\varphi(G)$. We finally show that ψ is one-to-one. Suppose $\psi(g_1/\ker\varphi) = \psi(g_2/\ker\varphi)$. Then $\varphi(g_1) = \varphi(g_2)$. Thus, $\varphi(g_2^{-1}g_1) = \varphi(g_2)^{-1}\varphi(g_1) = 1_H$. This shows that $g_2^{-1}g_1 \in \ker\varphi$. Therefore $g_1/\ker\varphi = g_2/\ker\varphi$.

Consequences of the First Isomorphism Theorem

Corollary

Let $\varphi: \mathcal{G} \to \mathcal{H}$ be a homomorphism of groups.

- (1) φ is injective if and only if ker $\varphi = 1$;
- (2) $|G: \ker \varphi| = |\varphi(G)|.$

 Suppose φ is injective. Then, if g ∈ kerφ, φ(g) = 1_H = φ(1_G), whence g = 1_G. Thus, ker φ = 1. Conversely, assume kerφ = 1 and φ(g₁) = φ(g₂). Then φ(g₁g₂⁻¹) = 1_H. Hence, g₁g₂⁻¹ = 1_G i.e., g₁ = g₂. Thus, φ is injective.

(2)
$$|\varphi(G)| = |G/\ker\varphi| = |G: \ker\varphi|.$$

The Second or Diamond Isomorphism Theorem

Theorem (The Second or Diamond Isomorphism Theorem)

Let G be a group, let A and B be subgroups of G and assume $A \le N_G(B)$. Then AB is a subgroup of G, $B \le AB$, $A \cap B \le A$ and $AB/B \cong A/A \cap B$.

Since A ≤ N_G(B), AB is a subgroup of G. Since A ≤ N_G(B), by assumption, and B ≤ N_G(B) trivially, it follows that AB ≤ N_G(B), i.e., B is a normal subgroup of the subgroup AB.
 Since B is normal in AB, the quotient group AB/B is well defined. Define the map φ : A → AB/B by φ(a) = aB. Since the group operation in AB/B is well defined, it is easy to see that φ is a homomorphism:

$$\varphi(a_1a_2) = (a_1a_2)B = a_1B \cdot a_2B = \varphi(a_1)\varphi(a_2).$$

Alternatively, the map φ is just the restriction to the subgroup A of the natural projection homomorphism $\pi : AB \to AB/B$, so is also a homomorphism.

George Voutsadakis (LSSU)

Proof of the Second Isomorphism Theorem

We defined the homomorphism φ : A → AB/B by φ(a) = aB.
It is clear from the definition of AB that φ is surjective. The identity in AB/B is the coset 1B, so the kernel of φ consists of the elements a ∈ A, with aB = 1B, which are the elements a ∈ B, i.e., kerφ = A ∩ B. By the First Isomorphism Theorem, A ∩ B ≤ A and

 $A/A \cap B \cong AB/B.$

• The reason this theorem is called the Diamond Isomorphism is because of the portion of the lattice of subgroups of *G* involved. The markings in the lattice lines indicate which quotients are isomorphic.

• The relation $|AB : A| = |B : A \cap B|$ still holds.

• The "quotient" *AB*/*A* need not be a group (i.e., *A* need not be normal in *AB*).

The Third Isomorphism Theorem

• The third Isomorphism Theorem considers the question of taking quotient groups of quotient groups.

Theorem (The Third Isomorphism Theorem)

Let G be a group and let H and K be normal subgroups of G with $H \leq K$. Then $K/H \leq G/H$ and $(G/H)/(K/H) \cong G/K$. If we denote the quotient by H with a bar, this can be written $\overline{G}/\overline{K} \cong G/K$.

- Verify that $K/H \trianglelefteq G/H$. Define $\varphi : G/H \to G/K$ by $(gH) \mapsto gK$.
 - φ is well defined: If $g_1H = g_2H$, then $g_1 = g_2h$, for some $h \in H$. Since $H \leq K$, $h \in K$, whence $g_1K = g_2K$, i.e., $\varphi(g_1H) = \varphi(g_2H)$.
 - Since g may be chosen arbitrarily in G, φ is a surjective homomorphism.
 - Finally, $\ker \varphi = \{gH \in G/H : \varphi(gH) = 1K\} = \{gH \in G/H : gK = 1K\} = \{gH \in G/H : g \in K\} = K/H.$

By the First Isomorphism Theorem, $(G/H)/(K/H) \cong G/K$.

The Fourth or Lattice Isomorphism Theorem I

 The final isomorphism theorem exhibits a one-to-one correspondence between the subgroups of G containing N and the subgroups of G/N. Thus, the lattice for G/N appears in the lattice for G as the collection of subgroups of G between N and G.

Theorem (The Fourth or Lattice Isomorphism Theorem)

Let *G* be a group and let *N* be a normal subgroup of *G*. Then there is a bijection from the set of subgroups *A* of *G* which contain *N* onto the set of subgroups $\overline{A} = A/N$ of G/N. In particular, every subgroup of *G* is of the form A/N, for some subgroup *A* of *G* containing *N* (its preimage in *G* under the natural projection homomorphism from *G* to G/N). For all $A, B \leq G$ with $N \leq A$ and $N \leq B$, the bijection satisfies:

- (1) $A \leq B$ if and only if $\overline{A} \leq \overline{B}$;
- (2) if $A \leq B$, then $|B : A| = |\overline{B} : \overline{A}|$;

(3)
$$\overline{\langle A, B \rangle} = \langle \overline{A}, \overline{B} \rangle;$$

- (4) $\overline{A \cap B} = \overline{A} \cap \overline{B};$
- (5) $A \trianglelefteq G$ if and only if $\overline{A} \trianglelefteq \overline{G}$.

The Fourth or Lattice Isomorphism Theorem II

Denote by Sub(G : N) the set of subgroups of G containing N and by Sub(G/N) the set of subgroups of G/N.
 Define Ψ : Sub(G : N) → Sub(G/N), by Ψ : S → S/N.

• This map is well-defined, i.e., if $N \leq S \leq G$, then $S/N \leq G/N$: Since $1 \in S$, we get $1/N \in S/N$. Thus, $S/N \neq \emptyset$. Next, let $s_1/N, s_2/N \in S/N$. Then $(s_1N)(s_2N)^{-1} = (s_1s_2^{-1})N \in S/N$, since $S \leq G$. By the subgroup criterion, $S/N \leq G/N$.

We show that Ψ is injective.
Claim: If N ≤ S ≤ G, then π⁻¹(π(S)) = S, where π : G → G/N is the projection.
By set theory S ⊆ π⁻¹π(S). Now, let a ∈ π⁻¹π(S). Then

 $\pi(a) = \pi(s)$, for some $s \in S$. Hence $s^{-1}a \in \ker \pi = N$. So a = sn, for some $n \in N$. But $N \leq S$, whence $a = sn \in S$. Assume S/N = S'/N, where $N \leq S, S' \leq G$. Then

 $\pi^{-1}\pi(S) = \pi^{-1}\pi(S')$. By the claim, S = S'. So Ψ is injective.

The Fourth or Lattice Isomorphism Theorem III

• We Show Ψ is surjective.

Let $U \leq G/N$. $\pi^{-1}(U) \leq G$. Moreover, $N = \pi^{-1}(\{1\})$, whence $N \leq \pi^{-1}(U)$. Finally, $\pi(\pi^{-1}(U)) = U$. Thus, Ψ is surjective.

(1) We show
$$A \leq B$$
 iff $A/N \leq B/N$.

By set theory, if $N \le A \le B \le G$, then $A/N = \pi(A) \le \pi(B) = B/N$. Conversely, assume $A/N \le B/N$. If $a \in A$, then $aN \in A/N \le B/N$. So aN = bN, for some $b \in B$. Hence a = bn, for some $n \in N \le B$. So we get $a \in B$, showing $A \le B$.

The Fourth or Lattice Isomorphism Theorem IV

- (2) We show that, if $A \leq B$, then $|B : A| = |\overline{B} : \overline{A}|$.
 - It suffices to show that there is a bijection from the family of all cosets of the form bA, with $b \in B$, to the family of all cosets of the form $c\overline{A}$, with $c \in \overline{B}$. For all $b \in B$, we set $bA \mapsto \overline{bA}$.
 - The map is injective. Suppose that $\overline{b_1}\overline{A} = \overline{b_2}\overline{A}$, for some $b_1, b_2 \in B$. Then, we get $\overline{b_2}^{-1}\overline{b_1} \in \overline{A}$, i.e., $\overline{b_2}^{-1}b_1 \in \overline{A}$. Thus, $b_2^{-1}b_1 = an$, for some $n \in N$. Since $N \leq A, \ b_2^{-1}b_1 \in A$. So $b_1A = b_2A$.
 - The map is surjective.
 Suppose bA ∈ B/A, for some b ∈ B. Then bN = b'N, for some b ∈ B.
 So b'⁻¹b ∈ N ≤ B. Thus, b ∈ B, whence bA ∈ B/A, and b/A → bA.
 - Note that for finite G, $|B : A| = |\overline{B} : \overline{A}|$ may be proved as follows:

$$|\overline{B}:\overline{A}| = \frac{|\overline{B}|}{|\overline{A}|} = \frac{|B/N|}{|A/N|} = \frac{\frac{|B|}{|N|}}{\frac{|A|}{|N|}} = \frac{|B|}{|A|} = |B:A|.$$

The Fourth or Lattice Isomorphism Theorem V

(3) We show
$$\overline{\langle A, B \rangle} = \langle \overline{A}, \overline{B} \rangle$$
.

$$\overline{\langle A, B \rangle} = \{\overline{c_1^{\epsilon_1} c_2^{\epsilon_2} \cdots c_n^{\epsilon_n}} : n \ge 0, c_i \in A \cup B, \epsilon_i = \pm 1\} \\ = \{\overline{c_1}^{\epsilon_1} \overline{c_2}^{\epsilon_2} \cdots \overline{c_n}^{\epsilon_n} : n \ge 0, c_i \in A \cup B, \epsilon_i = \pm 1\} \\ = \langle \overline{A}, \overline{B} \rangle.$$

(4) We show $\overline{A \cap B} = \overline{A} \cap \overline{B}$.

$$\overline{A \cap B} = \{\overline{c} : c \in A \cap B\} \\ = \overline{A} \cap \overline{B}.$$

(5) We show A ≤ G if and only if A ≤ G.
If A ≤ G, then both N and A are normal subgroups of G, with N ≤ A. By the Third Isomorphism Theorem, A/N ≤ G/N.
Suppose, conversely, that A/N ≤ G/N. Let a ∈ A and g ∈ G. Then gag⁻¹ = g a g⁻¹ ∈ A/N. So gag⁻¹ ∈ A. This proves that A ≤ G.

The Quaternion Group

• Consider $G = Q_8$ and let N be the normal subgroup $\langle -1 \rangle$:

The Dihedral Group of Order 8

• Let $G = D_8$ and $N = \langle r^2 \rangle$:

• Note that there are subgroups of G which do not directly correspond to subgroups in the quotient group G/N, namely the subgroups of G which do not contain the normal subgroup N.

George Voutsadakis (LSSU)

Abstract Algebra I

Remarks on the Lattices of Subgroups

• The examples of Q_8 and D_8 emphasize the fact that the isomorphism type of a group cannot, in general, be determined from the knowledge of the isomorphism types of G/N and N:

 $\mbox{Indeed $Q_8/\langle -1\rangle\cong D_8/\langle r^2\rangle$ and $\langle -1\rangle\cong \langle r^2\rangle$, but $Q_8\ncong D_8$.}$

• We often indicate the index of one subgroup in another in the lattice of subgroups by writing

where the integer n = |A : B|.

• The Lattice Isomorphism Theorem shows that indices remain unchanged in quotients of *G* by normal subgroups of *G* contained in *B*, i.e., the portion of the lattice for *G* corresponding to the lattice of the quotient group has the correct indices for the quotient as well.

Defining Homomorphisms on Quotients

- Sometimes, a homomorphism φ on the quotient group G/N is specified by giving the value of φ on the coset gN in terms of the representative g alone. In that case, one has to show that φ is well defined, i.e., independent of the choice of g.
- This is tantamount to defining a homomorphism Φ on G itself by specifying the value of φ at g. Then independence of g is equivalent to requiring that Φ be trivial on N:

 φ is well defined on G/N if and only if $N \leq \ker \Phi$.

• In this situation we say the homomorphism Φ factors through N and φ is the induced homomorphism on G/N:

Subsection 4

Composition Series

Elements of Prime Order in Abelian Groups

Proposition

If G is a finite abelian group and p is a prime dividing |G| then G contains an element of order p.

• The proof proceeds by complete induction on |G|: We assume the result is valid for every group whose order is strictly smaller than the order of G and then prove the result valid for G.

Since |G| > 1, there is an element $x \in G$, with $x \neq 1$.

- If |G| = p, then x has order p by Lagrange's Theorem and we are done.
- We assume, next, that |G| > p.

The Case |G| > p

- If p divides |x|, there exists an n, such that |x| = pn. Thus, |xⁿ| = p, and again we have an element of order p.
- Assume p does not divide |x|. Let $N = \langle x \rangle$. Since G is abelian, $N \leq G$. By Lagrange's Theorem, $|G/N| = \frac{|G|}{|N|}$. Since $N \neq 1$, |G/N| < |G|. Since p does not divide |N|, we must have $p \mid |G/N|$. By the induction hypothesis, the smaller group G/N contains an element, $\overline{y} = yN$, of order p. If |y| = m, then

$$(yN)^m = y^m N = N.$$

Thus, since |yN| = p, we get, by a preceding proposition, $p \mid |y|$. We are now back to the preceding case. The argument used above produces an element of order p.

Simple Groups

Definition (Simple Group)

A (finite or infinite) group G is called **simple** if |G| > 1 and the only normal subgroups of G are 1 and G.

- By Lagrange's Theorem, if |G| is a prime, its only subgroups (let alone normal ones) are 1 and G, so G is simple.
- Simple groups, by definition, cannot be "factored" into pieces like N and G/N and, as a result, they play a role analogous to that of the primes in the arithmetic of \mathbb{Z} .

Abelian Simple Groups

Claim: Every abelian simple group is isomorphic to Z_p , for some prime p.

Since G is abelian, every subgroup is normal. Since G is simple, |G| > 1 and the only subgroups of G are 1 and G. So for some $x \in G$ we have |x| > 1 and $\langle x \rangle \leq G$. Hence $\langle x \rangle = G$.

- Suppose x has infinite order. Then 1 ≠ ⟨x²⟩ < ⟨x⟩ = G. This is a contradiction.
- Thus, x, and therefore G, has finite order. Suppose x has composite order n. Then, for some p > 1 that divides n, (x^p) is a proper non-trivial subgroup of G. Hence G is not simple. We conclude that G is a cyclic group of prime order.
- There are also *non-abelian* simple groups (of both finite and infinite order), the smallest of which has order 60.

Normal Series

• A normal series of a group G is a finite sequence of subgroups

$$1=G_0\leq G_1\leq G_2\leq\cdots\leq G_{n-1}\leq G_n=G,$$

such that $G_i \trianglelefteq G_{i+1}$, for all $0 \le i \le n-1$.

The factor groups of the series are the groups

$$G_1/G_0, G_2/G_1, \ldots, G_n/G_{n-1}.$$

The **length** of the series is the number of strict inclusions or, equivalently, the number of non-trivial factor groups.

Normal Series

Proposition

Suppose G is a finite group and

$$1=G_0\leq G_1\leq G_2\leq\cdots\leq G_{n-1}\leq G_n=G,$$

is a normal series of G. Then the order |G| of G is the product of the orders of the factor groups in the series.

• We have for all $0 \le i < n$,

$$|G_{i+1}/G_i| = \frac{|G_{i+1}|}{|G_i|} \Rightarrow |G_{i+1}| = |G_{i+1}/G_i| \cdot |G_i|.$$

Therefore, we get

$$|G| = |G_n| = |G_n/G_{n-1}||G_{n-1}| = |G_n/G_{n-1}||G_{n-1}/G_{n-2}||G_{n-2}|$$

= $\cdots = \prod_{i=0}^{n-1} |G_{i+1}/G_i| \cdot |G_0| = \prod_{i=0}^{n-1} |G_{i+1}/G_i|.$

Zassenhaus Lemma

Lemma (Zassenhaus Lemma)

Given four subgroups $A \trianglelefteq A'$ and $B \trianglelefteq B'$ of a group G, then $A(A' \cap B) \trianglelefteq A(A' \cap B')$, $B(B' \cap A) \trianglelefteq B(B' \cap A')$, and there is an isomorphism

$$rac{A(A'\cap B')}{A(A'\cap B)}\cong rac{B(B'\cap A')}{B(B'\cap A)}.$$

Claim: $(A \cap B') \trianglelefteq (A' \cap B')$, i.e., if $c \in A \cap B'$ and $x \in A' \cap B'$, then $xcx^{-1} \in A \cap B'$.

Since $c \in A$, $x \in A'$ and $A \leq A'$, we get $xcx^{-1} \in A$. Since $c, x \in B'$, then $xcx^{-1} \in B'$. Therefore, $(A \cap B') \triangleleft (A' \cap B')$.

Similarly, $(A' \cap B) \trianglelefteq (A' \cap B')$.

Thus, the subgroup $D = (A \cap B')(A' \cap B)$ of G is a normal subgroup of $A' \cap B'$, since it is generated by two normal subgroups.

Zassenhaus Lemma (Cont'd)

Using the symmetry of the claimed isomorphism in A and B, it suffices to show that there is an isomorphism

$$\frac{A(A'\cap B')}{A(A'\cap B)}\to \frac{(A'\cap B')}{D}.$$

Define

$$\varphi: A(A' \cap B') \to (A' \cap B')/D; \quad \varphi: ax \mapsto xD,$$

where $a \in A$ and $x \in A' \cap B'$.

 φ is well-defined: If ax = a'x', where $a' \in A$ and $x' \in A' \cap B'$, then

$$a'^{-1}a = x'x^{-1} \in A \cap (A' \cap B') = A \cap B' \leq D.$$

 φ is clearly surjective.

Moreover, $\ker \varphi = A(A' \cap B)$.

By the First Isomorphism Theorem, we get the result.

Zassenhaus Lemma and the Diamond Isomorphism

The Zassenhaus Lemma implies the Diamond Isomorphism Theorem.
 Suppose that S, T ≤ G with T ≤ G. Setting

$$A'=G, \quad A=T, \quad B'=S, \quad B=S\cap T$$

in the Zassenhaus Lemma, we get by the conclusion $\frac{A(A' \cap B')}{A(A' \cap B)} \cong \frac{B(B' \cap A')}{B(B' \cap A)} \text{ that}$ $\frac{T(G \cap S)}{T(G \cap (S \cap T))} \cong \frac{(S \cap T)(S \cap G)}{(S \cap T)(S \cap T)},$ i.e.,

$$TS/T \cong S(S \cap T).$$

Composition Series

Definition (Composition Series)

In a group G a sequence of subgroups

$$1 = N_0 \leq N_1 \leq N_2 \leq \cdots \leq N_{k-1} \leq N_k = G$$

is called a **composition series** if $N_i \leq N_{i+1}$ and N_{i+1}/N_i is a simple group, $0 \leq i \leq k-1$. If the above sequence is a composition series, the quotient groups N_{i+1}/N_i are called the **composition factors** of *G*.

• A composition series is a normal series all of whose nontrivial factors are simple.

Example: The series

 $1 \trianglelefteq \langle s \rangle \trianglelefteq \langle s, r^2 \rangle \trianglelefteq D_8 \quad \text{and} \quad 1 \trianglelefteq \langle r^2 \rangle \trianglelefteq \langle r \rangle \trianglelefteq D_8$

are two composition series for D_8 . In each series there are 3 composition factors, each of which is isomorphic to (the simple group) Z_2 .

Finite Groups have a Composition Series

Proposition

Every finite group G has a composition series.

 If the proposition is false, let G be a finite group of smallest order that does not have a composition series. G cannot be simple, since otherwise 1 ≤ G is a composition series. Thus, G has a proper normal subgroup N. Assume that N is a maximal normal subgroup, so that G/N is simple. Since |N| < |G|, N has a composition series, say

$$1 \leq N_1 \leq \cdots \leq N_{m-1} \leq N_m = N.$$

But, then,

$$1 \leq N_1 \leq N_2 \leq \cdots \leq N_m \leq G$$

is a composition series for G, a contradiction.

Equivalent Series and Refinements

Definition

Two normal series of a group G are **equivalent** if there is a bijection between the sets of nontrivial factor groups of each so that corresponding factor groups are isomorphic.

Definition

A refinement of a normal series is a normal series

 $1 = N_0 \leq N_1 \leq \cdots \leq N_k = G$ having the original series as a subsequence.

- A refinement of a normal series is a new normal series obtained from the original by inserting more subgroups.
- Claim: A composition series admits only trivial refinements, i.e., one can only repeat terms.

If N_{i+1}/N_i is simple, then it has no proper nontrivial normal subgroups. Hence, there is no intermediate group H, with $N_i < H < N_{i+1}$ and $H \leq N_{i+1}$.

So any refinement of a composition series is equivalent to the original.

The Schreier Refinement Theorem

Theorem (Schreier Refinement Theorem)

Any two normal series

 $1 = G_0 \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_n = G, \quad 1 = N_0 \trianglelefteq N_1 \trianglelefteq \cdots \trianglelefteq N_m = G$

of a group G have equivalent refinements.

• We insert a copy of the second series between each pair of adjacent terms in the first series: for each $i \ge 1$ define $G_{ij} = G_{i-1}(G_i \cap N_j)$, which is a subgroup, since $G_{i-1} \trianglelefteq G_i$. We have $G_{i0} = G_{i-1}(G_i \cap N_0) = G_{i-1}(G_i \cap 1) = G_{i-1}1 = G_{i-1}$. Also $G_{im} = G_{i-1}(G_i \cap N_m) = G_{i-1}(G_i \cap G) = G_{i-1}G_i = G_i$. Therefore the series of G_{ij} is a refinement of the series of G_i :

$$\cdots \leq G_{i-1} = G_{i0} \leq G_{i1} \leq G_{i2} \leq \cdots \leq G_{im} = G_i \leq \cdots .$$

The Schreier Refinement Theorem (Cont'd)

• Similarly, there is a refinement of the second series arising from $N_{pq} = N_{p-1}(N_p \cap G_q)$,

$$\cdots \leq N_{p-1} = N_{p0} \leq N_{p1} \leq N_{p2} \leq \cdots \leq N_{pn} = N_p \leq \cdots$$

Both refinements have nm terms. For each i, j, the Zassenhaus Lemma gives

$$\frac{G_{i-1}(G_i \cap N_j)}{G_{i-1}(G_i \cap N_{j-1})} \cong \frac{N_{j-1}(N_j \cap G_i)}{N_{j-1}(N_j \cap G_{i-1})},$$

i.e., $G_{ij}/G_{i,j-1} \cong N_{ji}/N_{j,i-1}$.

Thus, the association $G_{ij}/G_{i,j-1} \mapsto N_{ji}/N_{j,i-1}$ is a bijection showing that the two refinements are equivalent.

The Jordan-Hölder Theorem

Theorem (Jordan-Hölder)

Let G be a finite group with $G \neq 1$. Then:

- (1) G has a composition series;
- (2) The composition factors in a composition series are unique, i.e., if $1 = N_0 \le N_1 \le \cdots \le N_r = G$ and $1 = M_0 \le M_1 \le \cdots \le M_s = G$, are two composition series for G, then r = s and there is some permutation π of $\{1, 2, \ldots, r\}$, such that $M_{\pi(i)}/M_{\pi(i)-1} \cong N_i/N_{i-1}$, $1 \le i \le r$.
- (1) This was shown in the preceding proposition.
- (2) Suppose $1 = N_0 \le N_1 \le \dots \le N_r = G$ and $1 = M_0 \le M_1 \le \dots \le M_s = G$, are two composition series for G. By the Schreier Refinement Theorem, they have equivalent refinements, with *rs* terms. However, any refinement of a composition series is equivalent to the original composition series. Thus, the two compositions series must be equivalent.

The Fundamental Theorem of Arithmetic

Corollary

Every integer $n \ge 2$ has a factorization into primes. Moreover, the prime factors are uniquely determined by n.

Since Z/nZ is finite, it has a composition series. Let G₁, G₂,..., G_r be the composition factors. By a previous proposition, n = |Z/nZ| is the product of the orders of its composition factors n = ∏^r_{i=0} |G_i|. Also, by a previous proposition, an abelian group is simple if and only if it is of prime order. So |G_i| is prime, for all 1 ≤ i ≤ r. We conclude that n is a product of primes.

By Part (2) of the Jordan-Hölder Theorem, the (prime) orders of the composition factors are unique.

Solvable Groups

Definition (Solvable Group)

A group G is **solvable** if there is a chain of subgroups

$$1 = G_0 \trianglelefteq G_1 \trianglelefteq G_2 \trianglelefteq \cdots \trianglelefteq G_s = G,$$

such that G_{i+1}/G_i is abelian for $i = 0, 1, \ldots, s - 1$.

- The terminology comes from the correspondence in Galois Theory between these groups and polynomials solvable by radicals.
- It turns out that finite solvable groups are precisely those groups whose composition factors are all of prime order.

Solvability and Normal Subgroups

Proposition

Let G is a group and $N \leq G$. If N and G/N are solvable, then so is G.

• Let
$$\overline{G} = G/N$$
 and, also,

- $1 = N_0 \leq N_1 \leq \cdots \leq N_n = N$ be a chain of subgroups of N, such that N_{i+1}/N_i is abelian, $0 \leq i < n$;
- $\overline{1} = \overline{G_0} \trianglelefteq \overline{G_1} \trianglelefteq \cdots \oiint \overline{G_m} = \overline{G}$ be a chain of subgroups of \overline{G} such that $\overline{G_{i+1}}/\overline{G_i}$ is abelian, $0 \le i < m$.

By the Lattice Isomorphism Theorem, there are subgroups G_i of G with $N \leq G_i$, such that $G_i/N = \overline{G_i}$ and $G_i \leq G_{i+1}$, $0 \leq i < m$. By the Third Isomorphism Theorem,

$$\overline{G_{i+1}}/\overline{G_i} = (G_{i+1}/N)/(G_i/N) \cong G_{i+1}/G_i$$
. Thus,

 $1 = N_0 \trianglelefteq N_1 \trianglelefteq \cdots \trianglelefteq N_n = N = G_0 \trianglelefteq G_1 \trianglelefteq \cdots \trianglelefteq G_m = G$

is a chain of subgroups of G all of whose successive quotient groups are abelian. Therefore, G is solvable.

George Voutsadakis (LSSU)

Subsection 5

Transpositions and the Alternating Group

Transpositions

- We saw (formal proof later) that every element of S_n can be written as a product of disjoint cycles in an essentially unique fashion.
- In contrast, every element of S_n can be written in many different ways as a (non disjoint) product of cycles.

Example: Even in S_3 the element $\sigma = (1 \ 2 \ 3)$ may be written

 $\sigma = (1 \ 2 \ 3) = (1 \ 3)(1 \ 2) = (1 \ 2)(1 \ 3)(1 \ 2)(1 \ 3) = (1 \ 2)(2 \ 3).$

In fact, there are an infinite number of different ways to write σ .

- Not requiring the cycles to be disjoint destroys the uniqueness of a representation of a permutation as a product of cycles.
- We can, however, obtain a sort of "parity check" from writing permutations (non uniquely) as products of 2-cycles.

Definition (Transposition)

A 2-cycle is called a transposition.

Generation of S_n by Transpositions

- Every permutation of $\{1, 2, ..., n\}$ can be realized by a succession of transpositions or simple interchanges of pairs of elements:
 - First, note

$$(a_1 \ a_2 \dots a_m) = (a_1 \ a_m)(a_1 \ a_{m-1})(a_1 \ a_{m-2}) \cdots (a_1 \ a_2),$$

for any *m*-cycle.

- Now any permutation in S_n may be written as a product of cycles, e.g., its cycle decomposition.
- Writing each of these cycles as a product of transpositions using the above procedure gives a product of transpositions.

Thus, we have $S_n = \langle T \rangle$, where $T = \{(i \ j) : 1 \le i < j \le n\}$.

Example: A Permutation as a Product of Transpositions

• Consider the permutation $\sigma \in S_{13}$, with

$$\begin{aligned} \sigma(1) &= 12, \quad \sigma(2) = 13, \quad \sigma(3) = 3, \quad \sigma(4) = 1, \quad \sigma(5) = 11, \\ \sigma(6) &= 9, \quad \sigma(7) = 5, \quad \sigma(8) = 10, \quad \sigma(9) = 6, \quad \sigma(10) = 4, \\ \sigma(11) &= 7, \quad \sigma(12) = 8, \quad \sigma(13) = 2. \end{aligned}$$

It can be written in disjoint cycle decomposition as:

$$\sigma = (1 \ 12 \ 8 \ 10 \ 4)(2 \ 13)(5 \ 11 \ 7)(6 \ 9).$$

Therefore, as a product of transpositions,

 $\sigma = (1 \ 4)(1 \ 10)(1 \ 8)(1 \ 12)(2 \ 13)(5 \ 7)(5 \ 11)(6 \ 9).$

The Polynomial Δ

- Even though, for a given $\sigma \in S_n$, there may be many ways of writing σ as a product of transpositions, we show that the parity (odd/even) is the same for any product of transpositions equaling σ .
- Let x_1, \ldots, x_n be independent variables and let Δ be the polynomial

$$\Delta = \prod_{1 \leq i < j \leq n} (x_i - x_j),$$

i.e., the product of all the terms $x_i - x_j$, for i < j. Example: For n = 4,

- $\Delta = (x_1 x_2)(x_1 x_3)(x_1 x_4)(x_2 x_3)(x_2 x_4)(x_3 x_4).$
- For each $\sigma \in S_n$, let σ act on Δ by permuting the variables in the same way it permutes their indices: $\sigma(\Delta) = \prod_{1 \le i < j \le n} (x_{\sigma(i)} x_{\sigma(j)})$.

Example: If
$$n = 4$$
 and $\sigma = (1 \ 2 \ 3 \ 4)$, then
 $\sigma(\Delta) = (x_2 - x_3)(x_2 - x_4)(x_2 - x_1)(x_3 - x_4)(x_3 - x_1)(x_4 - x_1)$.

The Sign Function ϵ

- Δ contains one factor $x_i x_j$, for all i < j.
- Since σ is a bijection of the indices, σ(Δ) must contain either x_i − x_j or x_i − x_i, but not both, for all i < j.
- If $\sigma(\Delta)$ has a factor $x_j x_i$, where j > i, write this term as $-(x_i x_j)$.
- Collecting all the changes in sign together we see that Δ and σ(Δ) have the same factors up to a product of -1's, i.e.,

$$\sigma(\Delta) = \pm \Delta, \, \, ext{for all} \, \, \sigma \in \mathcal{S}_n.$$

• For each $\sigma \in S_n$, let

$$\epsilon(\sigma) = \left\{ egin{array}{ll} +1, & ext{if } \sigma(\Delta) = \Delta \ -1, & ext{if } \sigma(\Delta) = -\Delta \end{array}
ight.$$

Even and Odd Permutations

Example: In the previous example in S_4 , with $\sigma = (1 \ 2 \ 3 \ 4)$, we had

$$\Delta = (x_1 - x_2)(x_1 - x_3)(x_1 - x_4)(x_2 - x_3)(x_2 - x_4)(x_3 - x_4)$$

$$\sigma(\Delta) = (x_2 - x_3)(x_2 - x_4)(x_2 - x_1)(x_3 - x_4)(x_3 - x_1)(x_4 - x_1).$$

There are exactly 3 factors of the form $x_j - x_i$, where j > i, in $\sigma(\Delta)$, each of which contributes a factor of -1. Hence,

$$(1 \ 2 \ 3 \ 4)(\Delta) = (-1)^3 \Delta = -\Delta.$$

Thus,
$$\epsilon((1\ 2\ 3\ 4)) = -1$$
.

Definition (Sign, Even and Odd Permutations)

- (1) $\epsilon(\sigma)$ is called the **sign** of σ .
- (2) σ is called **even** if $\epsilon(\sigma) = 1$ and **odd** if $\epsilon(\sigma) = -1$.

The Sign Function as a Homomorphism

Proposition

The map $\epsilon: S_n \to \{\pm 1\}$ is a homomorphism (where $\{\pm 1\}$ is a multiplicative version of the cyclic group of order 2).

• By definition, $(\tau \sigma)(\Delta) = \prod_{1 \le i \le j \le n} (x_{\tau \sigma(i)} - x_{\tau \sigma(j)})$. Suppose that $\sigma(\Delta)$ has exactly k factors of the form $x_i - x_i$, with i > i, i.e., that $\epsilon(\sigma) = (-1)^k$. When calculating $(\tau \sigma)(\Delta)$, after first applying σ to the indices, we see that $(\tau \sigma)(\Delta)$ has exactly k factors of the form $x_{\tau(i)} - x_{\tau(i)}$, with j > i. Interchanging the order of the terms in these k factors introduces the sign change $(-1)^k = \epsilon(\sigma)$, and now all factors of $(\tau \sigma)(\Delta)$ are of the form $x_{\tau(p)} - x_{\tau(q)}$, with p < q. Thus, $(\tau\sigma)(\Delta) = \epsilon(\sigma) \prod_{1 \le p \le q \le n} (x_{\tau(p)} - x_{\tau(q)})$. Since by definition of ϵ , $\prod_{1 \le p \le q \le p} (x_{\tau(p)} - \overline{x_{\tau(q)}}) = \epsilon(\tau) \Delta, \text{ we obtain } (\tau \sigma)(\Delta) = \epsilon(\sigma) \epsilon(\tau) \Delta,$ whence $\epsilon(\tau\sigma) = \epsilon(\sigma)\epsilon(\tau) = \epsilon(\tau)\epsilon(\sigma)$.

Example

• Let n = 4, $\sigma = (1 \ 2 \ 3 \ 4)$ and $\tau = (4 \ 2 \ 3)$. Then $\tau \sigma = (1 \ 3 \ 2 \ 4)$. By definition (using the explicit Δ in this case),

$$\begin{array}{rcl} (\tau\sigma)(\Delta) &=& (1\ 3\ 2\ 4)(\Delta) \\ &=& (x_3-x_4)(x_3-x_2)(x_3-x_1)(x_4-x_2)(x_4-x_1)(x_2-x_1) \\ &=& (-1)^5\Delta, \end{array}$$

where all factors except the first one are flipped to recover Δ . This shows $\epsilon(\tau\sigma) = -1$. On the other hand,

$$\begin{array}{lll} (\tau\sigma)(\Delta) &=& \tau((x_2-x_3)(x_2-x_4)(x_2-x_1) \\ &\times (x_3-x_4)(x_3-x_1)(x_4-x_1)) \\ &=& (x_{\tau(2)}-x_{\tau(3)})(x_{\tau(2)}-x_{\tau(4)})(x_{\tau(2)}-x_{\tau(1)}) \times \\ &\times (x_{\tau(3)}-x_{\tau(4)})(x_{\tau(3)}-x_{\tau(1)})(x_{\tau(4)}-x_{\tau(1)}) \\ &=& (-1)^3 \prod_{1 \le p < q \le 4} (x_{\tau(p)}-x_{\tau(q)}) = (-1)^3 \tau(\Delta). \end{array}$$

Since $\epsilon(\sigma) = (-1)^3 = -1$ and $\epsilon(\tau) = (-1)^2 = 1$, we verify $\epsilon(\tau\sigma) = -1 = \epsilon(\tau)\epsilon(\sigma)$.

Sign of Transpositions

- In (1 2)(Δ) only ($x_1 x_2$) will be flipped. So (1 2)(Δ) = $-\Delta$, showing that $\epsilon((1 2)) = -1$.
- For any transposition (i j), let λ be the permutation which interchanges 1 and i, interchanges 2 and j, and leaves all other numbers fixed (if i = 1 or j = 2, λ fixes i or j, respectively). Then, computing what λ(1 2)λ does to any k ∈ {1, 2, ..., n}, we get λ(1 2)λ = (i j). Since ε is a homomorphism, we obtain

$$\begin{aligned} \epsilon((i \ j)) &= \epsilon(\lambda(1 \ 2)\lambda) = \epsilon(\lambda)\epsilon((1 \ 2))\epsilon(\lambda) \\ &= (-1)\epsilon(\lambda)^2 = -1. \end{aligned}$$

Proposition

Transpositions are all odd permutations and ϵ is a surjective homomorphism.

The Alternating Groups

Definition (Alternating Group)

The **alternating group of degree** *n*, denoted by A_n , is the kernel of the homomorphism ϵ (i.e., the set of even permutations).

- By the First Isomorphism Theorem $S_n/A_n \cong \epsilon(S_n) = \{\pm 1\}.$
- The order of A_n is easily determined:

$$|A_n| = \frac{1}{2}|S_n| = \frac{1}{2}(n!).$$

- $S_n A_n$ is the coset of A_n which is not the identity coset. This is the set of all odd permutations.
- The signs of permutations obey the usual $\mathbb{Z}/2\mathbb{Z}$ laws:

$$(even)(even) = (odd)(odd) = even;$$

 $(even)(odd) = (odd)(even) = odd.$

Uniqueness of Number of Transposition in Decomposition

- Since ϵ is a homomorphism and every $\sigma \in S_n$ is a product of transpositions, say $\sigma = \tau_1 \tau_2 \cdots \tau_k$, then $\epsilon(\sigma) = \epsilon(\tau_1) \cdots \epsilon(\tau_k)$. Since $\epsilon(\tau_k) = -1$, for $i = 1, \ldots, k$, $\epsilon(\sigma) = (-1)^k$.
 - Thus, the parity of the number k is the same no matter how we write σ as a product: $\epsilon(\sigma) =$
 - $\begin{cases} +1, & \text{if } \sigma \text{ is a product of an even number of transpositions} \\ -1, & \text{if } \sigma \text{ is a product of an odd number of transpositions} \end{cases}$

Computing $\epsilon(\sigma)$ from the Cycle Decomposition of σ

• An *m*-cycle may be written as a product of m-1 transpositions. Thus, an *m*-cycle is an odd permutation if and only if *m* is even.

For any permutation σ , let $\alpha_1 \alpha_2 \cdots \alpha_k$ be its cycle decomposition. Then $\epsilon(\sigma)$ is given by $\epsilon(\alpha_1) \cdots \epsilon(\alpha_k)$ and $\epsilon(\alpha_i) = -1$ if and only if the length of α_i is even. Hence, for $\epsilon(\sigma)$ to be -1 the product of the $\epsilon(\alpha_i)$'s must contain an odd number of factors of (-1).

Proposition

The permutation σ is odd if and only if the number of cycles of even length in its cycle decomposition is odd.

Example: $\sigma = (1 \ 2 \ 3 \ 4 \ 5 \ 6)(7 \ 8 \ 9)(10 \ 11)(12 \ 13 \ 14 \ 15)(16 \ 17 \ 18)$ has 3 cycles of even length, so $\epsilon(\sigma) = -1$. Example: $\tau = (1 \ 12 \ 8 \ 10 \ 4)(2 \ 13)(5 \ 11 \ 7)(6 \ 9)$ has exactly 2 cycles

of even length, hence $\epsilon(\tau) = 1$.

Parity of Order Versus Parity of Permutation

- Be careful not to confuse the terms "odd" and "even" for a permutation σ with the parity of the order of σ .
 - If σ is of odd order, all cycles in the cycle decomposition of σ have odd length so σ has an even (in this case 0) number of cycles of even length and hence is an even permutation.
 - If |σ| is even, σ may be either an even or an odd permutation.
 E.g., (1 2) is odd, (1 2)(3 4) is even but both have order 2.