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Quotient Groups and Homomorphisms Definitions and Examples

Subgroups and Quotients

Taking a subgroup of a group results in a “smaller” group.

Another way to study “smaller” groups is to take quotients.

The structure of the group G is reflected in the structure of the
quotient groups and the subgroups of G :

The lattice of subgroups for a quotient of G is reflected at the “top” of
the lattice for G ;
The lattice for a subgroup of G occurs naturally at the “bottom.”

Information about the group G itself can be obtained by combining
this information on quotients and subgroups.

The study of the quotient groups of G is essentially equivalent to the
study of the homomorphisms of G , i.e., the maps of the group G to
another group which respect the group structures.
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Quotient Groups and Homomorphisms Definitions and Examples

Illustration of Homomorphisms and Fibers

If ϕ is a homomorphism from G to a group H, the fibers of ϕ are the
sets of elements of G projecting to single elements of H:
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Quotient Groups and Homomorphisms Definitions and Examples

Multiplying Fibers

Consider a homomorphism ϕ : G → H.

The group operation in H provides a natural multiplication of the
fibers lying above two points making the set of fibers into a group:

If Xa is the fiber above a and Xb is the fiber above b, then the
product of Xa with Xb is defined to be the fiber Xab above the
product ab, i.e., XaXb = Xab.

This multiplication is associative since multiplication is associative in H :

(XaXb)Xc = XabXc = X(ab)c = Xa(bc) = XaXbc = Xa(XbXc).

The identity is the fiber over the identity of H .
The inverse of the fiber over a is the fiber over a−1.

The fibers of G , with this group structure, form quotient group of G .

By construction the quotient group with this multiplication is
naturally isomorphic to the image of G under the homomorphism ϕ.
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Quotient Groups and Homomorphisms Definitions and Examples

An Example of a Quotient Group

Let G = Z and let H = Zn = 〈x〉 be the cyclic group of order n.
Define ϕ : Z → Zn by ϕ(a) = xa.

For a, b ∈ Z, ϕ(a + b) = xa+b = xaxb = ϕ(a)ϕ(b). Hence ϕ is a
homomorphism.
ϕ is surjective.
The fiber of ϕ over xa is ϕ−1(xa) = {m ∈ Z : xm = xa} = {m ∈ Z :
xm−a = 1} = {m ∈ Z : n divides m − a} = {m ∈ Z : m ≡ a

(mod n)} = a, i.e., the fibers of ϕ are precisely the residue classes
modulo n:
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Quotient Groups and Homomorphisms Definitions and Examples

Example of a Quotient Group (Cont’d)

The multiplication in Zn is just xaxb = xa+b. The corresponding fibers
are a, b and a+ b. The corresponding group operation for the fibers is
a · b = a + b, which is just the group Z/nZ under addition. It is a
group isomorphic to the image of ϕ, which is all of Zn.
The identity of this group, the fiber above the identity in Zn, consists
of all the multiples of n in Z, namely nZ, a subgroup of Z.
The remaining fibers are just translates a+ nZ of this subgroup.
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Quotient Groups and Homomorphisms Definitions and Examples

Kernels and First Properties of Homomorphisms

Definition (The Kernel of a Homomorphism)

If ϕ is a homomorphism ϕ : G → H, the kernel of ϕ is the set

kerϕ = {g ∈ G : ϕ(g) = 1}.

Proposition (Properties of Homomorphisms)

Let G and H be groups and let ϕ : G → H be a homomorphism.

(1) ϕ(1G ) = 1H , where 1G and 1H are the identities of G and H.

(2) ϕ(g−1) = ϕ(g)−1, for all g ∈ G .

(3) ϕ(gn) = ϕ(g)n, for all n ∈ Z.

(4) kerϕ is a subgroup of G .

(5) im(ϕ), the image of G under ϕ, is a subgroup of H.

(1) We have ϕ(1G )ϕ(1G ) = ϕ(1G1G ) = ϕ(1G ). By the cancelation laws,
we get ϕ(1G ) = 1H .
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Quotient Groups and Homomorphisms Definitions and Examples

Proof of Properties (2) and (3)

(2) ϕ(g)ϕ(g−1) = ϕ(gg−1) = ϕ(1G ) and, by Part (1), ϕ(1G ) = 1H .
Hence, ϕ(g)ϕ(g−1) = 1H . Multiplying both sides on the left by
ϕ(g)−1 gives ϕ(g−1) = ϕ(g)−1.

(3) For n = 0, we get φ(g0) = φ(1G )
(1)
= 1H = φ(g)0.

We show the result for n ∈ Z
+ by induction on n.

For n = 1, φ(g 1) = φ(g) = φ(g)1.
Assume φ(gn) = φ(g)n.
Now we have
φ(gn+1) = φ(gng) = φ(gn)φ(g) = φ(g)nφ(g) = φ(g)n+1.

Finally, for n < 0, we get

φ(gn) = φ((g−n)−1)
(2)
= φ(g−n)−1 −n > 0

= (φ(g)−n)−1 = φ(g)n.
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Quotient Groups and Homomorphisms Definitions and Examples

Proof of Properties (4) and (5)

(4) Since 1G ∈ kerϕ, the kernel of ϕ is not empty.
Let x , y ∈ kerϕ, i.e., ϕ(x) = ϕ(y) = 1H . Then
ϕ(xy−1) = ϕ(x)ϕ(y−1) = ϕ(x)ϕ(y)−1 = 1H1

−1
H = 1H . This shows,

xy−1 ∈ kerϕ. By the subgroup criterion, kerϕ ≤ G .

(5) Since ϕ(1G ) = 1H , the identity of H lies in the image of ϕ. So im(ϕ)
is nonempty.
Suppose x and y are in im(ϕ), say x = ϕ(a), y = ϕ(b). Then
y−1 = ϕ(b−1) by Part (2). So xy−1 = ϕ(a)ϕ(b−1) = ϕ(ab−1).
Hence, also xy−1 is in the image of ϕ. We conclude im(ϕ) is a
subgroup of H by the subgroup criterion.
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Quotient Groups and Homomorphisms Definitions and Examples

Quotient or Factor Groups

Definition (Quotient or Factor Group)

Let ϕ : G → H be a homomorphism with kernel K . The quotient group

or factor group, G/K (read G modulo K or, simply, G mod K ), is the
group whose elements are the fibers of ϕ with group operation defined by:

If X is the fiber above a and Y is the fiber above b then the product
of X with Y is defined to be the fiber above the product ab.

The notation emphasizes the fact that the kernel K is a single
element in the group G/K and, as in the case of Z/nZ, the other
elements of G/K are just the “translates” of the kernel K .

Thus, G/K is obtained by collapsing or “dividing out” by K (by
equivalence modulo K ), explaining the name “quotient” group.

George Voutsadakis (LSSU) Abstract Algebra I March 2016 12 / 100



Quotient Groups and Homomorphisms Definitions and Examples

The Fibers in G/K

Proposition

Let ϕ : G → H be a homomorphism of groups with kernel K . Let
X ∈ G/K be the fiber above a, i.e., X = ϕ−1(a). Then:

(1) For any u ∈ X , X = {uk : k ∈ K};

(2) For any u ∈ X , X = {ku : k ∈ K}.

We prove Part (1) (Part (2) can be proven similarly): Let u ∈ X . By
definition of X , ϕ(u) = a. Let uK = {uk : k ∈ K}.

We first prove uK ⊆ X : For any k ∈ K , ϕ(uk) = ϕ(u)ϕ(k) = a1 = a.
So uk ∈ X . This proves uK ⊆ X .
We now establish X ⊆ uK . Suppose g ∈ X and let k = u−1g . Then
ϕ(k) = ϕ(u−1)ϕ(g) = ϕ(u)−1ϕ(g) = a−1a = 1. Thus k ∈ kerϕ. Since
k = u−1g , g = uk ∈ uK . Therefore, X ⊆ uK .

This proves Part (1).
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Quotient Groups and Homomorphisms Definitions and Examples

Left and Right Cosets

Definition (Left and Right Coset)

For any N ≤ G and any g ∈ G , let

gN = {gn : n ∈ N} and Ng = {ng : n ∈ N},

called respectively a left coset and a right coset of N in G . Any element
of a coset is called a representative for the coset.

We saw that, if N is the kernel of a homomorphism and g1 is any
representative for the coset gN then g1N = gN (and, if g1 ∈ Ng ,
then Ng1 = Ng).
This fact provides an explanation for the terminology of a
representative.

If G is an additive group, we write g + N and N + g for the left and
right cosets of N in G with representative g , respectively.
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Quotient Groups and Homomorphisms Definitions and Examples

Multiplication of Cosets

Theorem

Let G be a group and let K be the kernel of some homomorphism from G

to another group. Then the set whose elements are the left cosets of K in
G , with operation defined by uK ◦ vK = (uv)K , forms a group G/K .
In particular, this operation is well defined in the sense that if u1 is any
element in uK and v1 is any element in vK , then u1v1 ∈ uvK , i.e.,
u1v1K = uvK , so that the multiplication does not depend on the choice of
representatives for the cosets. The same statement is true with “right
coset” in place of “left coset”.

Let X ,Y ∈ G/K and let Z = XY in G/K . Thus, X ,Y and Z are
(left) cosets of K . By assumption, K is the kernel of some
homomorphism ϕ : G → H, so X = ϕ−1(a) and Y = ϕ−1(b), for
some a, b ∈ H. By definition of the operation in G/K , Z = ϕ−1(ab).
Let u and v be arbitrary representatives of X ,Y , respectively. Then
ϕ(u) = a, ϕ(v) = b and X = uK , Y = vK . We must show uv ∈ Z .
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Quotient Groups and Homomorphisms Definitions and Examples

Multiplication of Cosets (Cont’d)

Using the diagram we must show that uv ∈ Z = ϕ−1(ab).

We have
uv ∈ Z iff uv ∈ ϕ−1(ab) iff
ϕ(uv) = ab iff ϕ(u)ϕ(v) = ab.
Since ϕ(u) = a and ϕ(v) = b,
the last equality holds, showing
that uv ∈ Z , whence Z is the
(left) coset uvK .

The last statement in the theorem now follows, since, by the
preceding proposition, uK = Ku and vK = Kv , for all u and v in G .

The coset uK containing a representative u is denoted u.

With this notation , the quotient group G/K is denoted G and the
product of elements u and v is the coset containing uv , i.e., uv .

This notation also emphasizes the fact that the cosets uK in G/K are
elements u in G/K .
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The Homomorphism from Z to Zn

Recall the homomorphism ϕ from Z to Zn that has fibers the left
(and also the right) cosets a + nZ of the kernel nZ.
The theorem shows that these cosets form the group Z/nZ under
addition of representatives.
The group is naturally isomorphic to its image under ϕ, so we recover
the isomorphism Z/nZ ∼= Zn.
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Isomorphisms and Trivial Homomorphisms

If ϕ : G → H is an isomorphism, then K = 1. The fibers of ϕ are the
singleton subsets of G . So G/1 ∼= G .

Let G be any group, let H = 1 be the group of order 1 and define
ϕ : G → H by ϕ(g) = 1, for all g ∈ G . It is immediate that ϕ is a
homomorphism. This map is called the trivial homomorphism.
In this case kerϕ = G . Thus, G/G is a group with the single element
G , i.e., G/G ∼= Z1 = {1}.
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Quotient Groups and Homomorphisms Definitions and Examples

Projection Onto the x-Axis

Let G = R
2, with operation vector addition, and H = R, with

operation addition. Define ϕ : R2 → R by ϕ((x , y)) = x . Thus, ϕ is
projection onto the x-axis. We show ϕ is a homomorphism:
ϕ((x1, y1) + (x2, y2)) = ϕ((x1 + x2, y1 + y2)) = x1 + x2 =
ϕ((x1, y1)) + ϕ((x2, y2)).
Now kerϕ = {(x , y) : ϕ((x , y)) = 0} = {(x , y) : x = 0} = the y -axis.
Note that kerϕ is a subgroup of R2.

The fiber of ϕ over a ∈ R is the
translate of the y -axis by a, i.e.,
the line x = a. This is also the left
(and the right) coset of the kernel
with representative (a, 0): (a, 0) =
(a, 0) + y -axis.
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Quotient Groups and Homomorphisms Definitions and Examples

The Quaternion Group and the Klein 4-Group

An example with G non-abelian: Let G = Q8 and let H = V4 be the
Klein 4-group. Define ϕ : Q8 → V4 by

ϕ(±1) = 1, ϕ(±i) = a, ϕ(±j) = b, ϕ(±k) = c .

The check that ϕ is a homomorphism involves checking that
ϕ(xy) = ϕ(x)ϕ(y), for all x , y ∈ Q8.
It is clear that ϕ is surjective.
kerϕ = {±1}.
The fibers of ϕ are the sets E = {±1}, A = {±i}, B = {±j} and
C = {±k}, which are collapsed to 1, a, b and c , respectively in
Q8/〈±1〉
These are the left (and also the right) cosets of kerϕ.
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Quotient Groups and Homomorphisms Definitions and Examples

Coset Partition of a Group

The cosets of an arbitrary subgroup of G partition G , i.e., their
union is all of G and distinct cosets have empty intersection.

Proposition

Let N be any subgroup of the group G . The set of left cosets of N in G

form a partition of G . Furthermore, for all u, v ∈ G , uN = vN if and only
if v−1u ∈ N. In particular, uN = vN if and only if u and v are
representatives of the same coset.

Since N is a subgroup of G , 1 ∈ N. Thus, g = g · 1 ∈ gN, for all
g ∈ G , i.e., G =

⋃

g∈G gN. To show that distinct left cosets have
empty intersection, suppose uN ∩ vN 6= ∅. We show uN = vN. Let
x ∈ uN ∩ vN. Write x = un = vm, for some n,m ∈ N. Multiplying on
the right by n−1, u = vmn−1 = vm1, where m1 = mn−1 ∈ N. Now,
for any element ut of uN (t ∈ N), ut = (vm1)t = v(m1t) ∈ vN. This
proves uN ⊆ vN. By interchanging the roles of u and v one obtains
similarly that vN ⊆ uN.
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Coset Partition of a Group (Cont’d)

We showed that two cosets with nonempty intersection coincide.

By the first part,

uN = vN if and only if u ∈ vN

if and only if u = vn, for some n ∈ N,
if and only if v−1u ∈ N.

Finally, v ∈ uN is equivalent to saying v is a representative for uN.
Hence uN = vN if and only if u and v are representatives for the
same coset, the coset uN = vN.
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The Group of Cosets

Proposition

Let G be a group and let N be a subgroup of G .

(1) The operation on the set of left cosets of N in G described by
uN · vN = (uv)N is well defined if and only if gng−1 ∈ N, for all
g ∈ G and all n ∈ N.

(2) If the above operation is well defined, then it makes the set of left
cosets of N in G into a group: The identity of this group is the coset
1N and the inverse of gN is the coset g−1N, i.e., (gN)−1 = g−1N.

(1) Assume, first, that this operation is well defined, that is, for all
u, v ∈ G , if u, u1 ∈ uN and v , v1 ∈ vN, then uvN = u1v1N. Let g be
an arbitrary element of G and let n be an arbitrary element of N. Let
u = 1, u1 = n and v = v1 = g−1. Apply the assumption to get
1g−1N = ng−1N, i.e., g−1N = ng−1N. Since 1 ∈ N,
ng−1 · 1 ∈ ng−1N. Thus ng−1 ∈ g−1N, hence ng−1 = g−1n1, for
some n1 ∈ N. Multiplying on the left by g , gng−1 = n1 ∈ N.
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The Group of Cosets (Cont’d)

Conversely, assume gng−1 ∈ N, for all g ∈ G and all n ∈ N. Let
u, u1 ∈ uN and v , v1 ∈ vN. We may write u1 = un and v1 = vm, for
some n,m ∈ N. We must prove that u1v1 ∈ uvN:
u1v1 = (un)(vm) = u(vv−1)nvm = (uv)(v−1nv)m = (uv)(n1m),
where n1 = v−1nv = (v−1)n(v−1)−1 is an element of N by
assumption. Since N is closed under products, n1m ∈ N. Thus,
u1v1 = (uv)n2, for some n2 ∈ N. Thus, the left cosets uvN and
u1v1N contain the common element u1v1. By the preceding
proposition they are equal, whence the operation is well defined.

(2) If the operation on cosets is well defined the group axioms are easy to
check and are induced by their validity in G . E.g., the associative law
holds because for all u, v ,w ∈ G , (uN)(vNwN) = uN(vwN) =
u(vw)N = (uv)wN = (uvN)(wN) = (uNvN)(wN), since
u(vw) = (uv)w in G . By the definition of the multiplication, the
identity in G/N is the coset 1N and the inverse of gN is g−1N .
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Conjugates and Normal Subgroups

Definition (Conjugate and Normal Subgroup)

Let G be a group and N a subgroup of G .

The element gng−1 is called the conjugate of n ∈ N by g ∈ G .

The set gNg−1 = {gng−1 : n ∈ N} is called the conjugate of N by
g ∈ G .

The element g ∈ G is said to normalize N if gNg−1 = N.

N is called a normal subgroup of G if every element of G normalizes
N, i.e., if gNg−1 = N, for all g ∈ G . In this case, we write N E G .

Note that the structure of G is reflected in the structure of the
quotient G/N when N is a normal subgroup.

E.g., the associativity of the multiplication in G/N is induced from the
associativity in G ;
Inverses in G/N are induced from inverses in G .
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Criteria for Normality

Theorem (Criteria for Normality)

Let N be a subgroup of the group G . The following are equivalent:

(1) N E G ;

(2) NG (N) = G (where NG (N) is the normalizer in G of N);

(3) gN = Ng , for all g ∈ G ;

(4) The operation on the left cosets of N in G described in the preceding
proposition makes the set of left cosets into a group;

(5) gNg−1 ∈ N, for all g ∈ G .

We have seen almost all equivalences already.
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Remarks on Computations for Proving Normality

To determine whether a given subgroup N is normal in a group G , we
would like to avoid as much as possible the computation of all the
conjugates gng−1 for n ∈ N and g ∈ G .

The elements of N itself normalize N since N is a subgroup.
If one has a set of generators for N , it suffices to check that all
conjugates of these generators lie in N . This holds because:

the conjugate of a product is the product of the conjugates;

the conjugate of the inverse is the inverse of the conjugate.

If generators for G are known, then it suffices to check that these
generators for G normalize N .
Even more convenient, if generators for both N and G are known, this
reduces the calculations to a small number of conjugations to check.
If N is a finite group, then it suffices to check that the conjugates of a
set of generators for N by a set of generators for G are in N .
Verifying NG (N) = G can, sometimes, be accomplished without
computing all possible conjugates gng−1.
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Normal Subgroups as Kernels of Homomorphisms

Normal subgroups are the same as the kernels of homomorphisms:

Proposition

A subgroup N of the group G is normal if and only if it is the kernel of
some homomorphism.

If N is the kernel of the homomorphism ϕ, then we have seen that
the left cosets of N are the same as the right cosets of N (and both
are the fibers of the map ϕ). By the normality criterion, N is then a
normal subgroup.
Conversely, if N E G , let H = G/N and define π : G → G/N by
π(g) = gN, for all g ∈ G . By definition of the operation in G/N,

π(g1g2) = (g1g2)N = g1Ng2N = π(g1)π(g2).

This proves π is a homomorphism. Now kerπ = {g ∈ G : π(g) =
1N} = {g ∈ G : gN = 1N} = {g ∈ G : g ∈ N} = N. Thus N is the
kernel of the homomorphism π.
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Natural Projection Homomorphisms

The homomorphism π of the preceding proof is given a special name:

Definition (Natural Projection)

Let N E G . The homomorphism π : G → G/N defined by π(g) = gN is
called the natural projection (homomorphism) of G onto G/N.
If H ≤ G/N is a subgroup of G/N, the complete preimage of H in G is
the preimage of H under the natural projection homomorphism.

The complete preimage of a subgroup of G/N is a subgroup of G
which contains the subgroup N, since N consists of the elements
which map to the identity 1 ∈ H .

We will see that there is a natural correspondence between the
subgroups of G containing N and the subgroups of the quotient G/N.
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Normal Subgroups and Normalizers

One of the criteria for normality, i.e., for a subgroup being the kernel
of a homomorphism, is

N E G iff NG (N) = G .

Thus, the normalizer of a subgroup N of G is, in a sense, a measure
of “how close” N is to being a normal subgroup.

This explains the choice of name for the subgroup.

It is important to keep in mind that the property of being normal is
an embedding property, i.e., it depends on the relation of N to G ,
not on the internal structure of N itself.

In particular, this means that the same group N may be a normal
subgroup of G but not a normal subgroup of a larger group
containing G .
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The Quotient Groups of Cyclic Groups

For a group G , the subgroups 1 and G are always normal in G .
G/1 ∼= G and G/G ∼= 1.

If G is an abelian group, any subgroup N of G is normal because, for
all g ∈ G and all n ∈ N, gng−1 = gg−1n = n ∈ N.

It is important that G be abelian, not just that N be abelian.

The structure of G/N may vary for different subgroups N of G .

If G = Z, then every subgroup N of G is cyclic:
N = 〈n〉 = 〈−n〉 = nZ, for some n ∈ Z. Moreover, G/N = Z/nZ is a
cyclic group with generator 1 = 1 + nZ (1 is a generator for G).
Suppose G = Zk is the cyclic group of order k . Let x be a generator of
G and let N ≤ G . We know that N = 〈xd 〉, where d is the smallest
power of x which lies in N . Now G/N = {gN : g ∈ G} =
{xaN : a ∈ Z} and, since xaN = (xN)a, it follows that G/N = 〈xN〉,
i.e., G/N is cyclic with xN as a generator.

The order of xN in G/N equals d and d =
|G |
|N|

.
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The Klein 4-Group as a Quotient of the Quaternion Group

If N ≤ Z (G ), then N E G because, for all g ∈ G and all n ∈ N,
gng−1 = n ∈ N. In particular, Z (G ) E G .

The subgroup 〈−1〉 of Q8 was previously seen to be the kernel of a
homomorphism. Since 〈−1〉 = Z (Q8), normality of this subgroup is
obtained in a different way.
We also saw that Q8/〈−1〉 ∼= V4. This can also be seen as follows:

Let G = D8 and Z = 〈r2〉 = Z (D8). Since Z = {1, r2}, each coset gZ
consists of the two element set {g , gr2}. Since these cosets partition
the 8 elements of D8 into pairs, there must be 4 (disjoint) left cosets of
Z in D8:

1 = 1Z , r = rZ , s = sZ , rs = rsZ .

By the classification of groups of order 4, we know that
D8/Z (D8) ∼= Z4 or V4. To determine which of these two is correct,
observe that (r )2 = r2Z = 1Z = 1, (s)2 = s2Z = 1Z = 1 and
(rs)2 = (rs)2Z = 1Z = 1. So every nonidentity element in D8/Z has
order 2. In particular there is no element of order 4 in the quotient.
Hence D8/Z is not cyclic. Therefore, D8/Z (D8) ∼= V4.
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Subsection 2

More on Cosets and Lagrange’s Theorem
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Lagrange’s Theorem

Theorem (Lagrange’s Theorem)

If G is a finite group and H is a subgroup of G , then the order of H
divides the order of G , i.e., |H| | |G |, and the number of left cosets of H in

G equals |G |
|H| .

Let |H| = n and let the number of left cosets of H in G equal k . We
know that the set of left cosets of H in G partition G . By definition
of a left coset, the map: H → gH defined by h 7→ gh is a surjection
from H to the left coset gH. The left cancelation law implies this
map is injective, since gh1 = gh2 implies h1 = h2. This proves that H
and gH have the same order: |gH| = |H| = n. Since G is partitioned
into k disjoint subsets each of which has cardinality n, |G | = kn.

Thus, k = |G |
n

= |G |
|H| .
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Index of a Subgroup in a Group

Definition (Index of a Subgroup in a Group)

If G is a group (possibly infinite) and H ≤ G , the number of left cosets of
H in G is called the index of H in G and is denoted by |G : H|.

In the case of finite groups the index of H in G is |G |
|H| .

For G an infinite group the quotient |G |
|H| does not make sense. Infinite

groups may have subgroups of finite or infinite index.

Example: Consider the additive group Z:

{0} is of infinite index in Z.
〈n〉 is of index n in Z, for every n > 0.
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Consequences of Lagrange’s Theorem

Corollary

If G is a finite group and x ∈ G , then the order of x divides the order of
G . In particular, x |G | = 1, for all x in G .

We have seen that |x | = |〈x〉|. The first part of the corollary follows
from Lagrange’s Theorem applied to H = 〈x〉. For the second
statement, since |G | is a multiple of the order of x , |G | = k |x |, we
get x |G | = xk|x | = (x |x |)k = 1k = 1.

Corollary

If G is a group of prime order p, then G is cyclic. Hence G ∼= Zp.

Let x ∈ G , x 6= 1. Thus, |〈x〉| > 1 and |〈x〉| | |G |. Since |G | is prime
we must have |〈x〉| = |G |. Hence G = 〈x〉 is cyclic. Every cyclic
group of order p is isomorphic to Zp.
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The Symmetric Group S3

Claim: Let G = S3 and H = 〈(1 2 3)〉 ≤ S3. Then H E S3.

We have H ≤ NG (H) ≤ G .
By Lagrange’s Theorem, the order of H divides the order of NG (H)
and the order of NG (H) divides the order of G . Since G has order 6
and H has order 3, the only possibilities for NG (H) are H or G .
A direct computation gives

(1 2)(1 2 3)(1 2) = (1 3 2) = (1 2 3)−1.

Since (1 2) = (1 2)−1, (1 2) conjugates a generator of H to another
generator of H. This suffices to prove that (1 2) ∈ NG (H). Thus
NG (H) 6= H. So NG (H) = G , i.e., H E S3, as claimed.
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A Group with a Subgroup of Index 2

Claim: Let G be any group containing a subgroup H of index 2. Then
H E G .

Let g ∈ G − H. By hypothesis, the two left cosets of H in G are 1H
and gH. Since 1H = H and the cosets partition G , we must have
gH = G − H. The two right cosets of H in G are H1 and Hg . Since
H1 = H, we again must have Hg = G − H. Combining these gives
gH = Hg , so every left coset of H in G is a right coset. By the
normality criterion, H E G . By definition of index, |G/H| = 2, so
that G/H ∼= Z2.

This result proves the following:

〈i〉 = {1, i ,−1,−i}, 〈j〉 = {1, j ,−1,−j} and 〈k〉 = {1, k ,−1,−k} are
normal subgroups of Q8;
〈s, r2〉 = {1, r2, s, sr2}, 〈r〉 = {1, r , r2, r3} and 〈sr , r2〉 = {1, r2, sr , sr3}
are normal subgroups of D8.
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Non-Transitivity of E

Claim: The property “is a normal subgroup of” is not transitive.

We have

〈s〉 = {1, s}, 〈s, r2〉 = {1, r2, s, sr2}, D8 = {s i r j : i = 0, 1, 0 ≤ j ≤ 3}.

Therefore 〈s〉 E 〈s, r2〉 E D8 (each subgroup is of index 2 in the next).
On the other hand, 〈s〉 is not normal in D8 because

rsr−1 = sr2 6∈ 〈s〉.
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Abelian Groups and Simple Groups

In abelian groups every subgroup is normal.

If H ≤ G and G is abelian, then, for all g ∈ G ,

g−1Hg = {ghg−1 : h ∈ H}
= {gg−1h : h ∈ H}
= {h : h ∈ H}
= H.

This is not the case in non-abelian groups (in some sense, Q8 is the
unique exception to this).

There exist groups G in which the only normal subgroups are the
trivial ones: 1 and G .

Such groups are called simple groups.
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A Non Normal Subgroup of S3

Let H = 〈(1 2)〉 ≤ S3. Since H is of prime index 3 in S3, by
Lagrange’s Theorem NS3(H) = H or S3. But
(1 3)(1 2)(1 3)−1 = (1 3)(1 2)(1 3) = (2 3) 6∈ H. So NS3(H) 6= S3.
Thus, H is not a normal subgroup of S3.

One can also see this by considering the left and right cosets of H.

(1 3)H = {(1 3), (1 2 3)};
H(1 3) = {(1 3), (1 3 2)}.

Since the left coset (1 3)H is the unique left coset of H containing
(1 3), the right coset H(1 3) cannot be a left coset.

The “group operation” on the left cosets of H in S3 defined by
multiplying representatives is not even well defined.

For 1H and (1 3)H , 1 and (1 2) are both in 1H ;
On the other hand, 1 · (1 3) = (1 3) and (1 2) · (1 3) = (1 3 2) are not
both elements of the same left coset.
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Non Normal Subgroups of Sn, n > 2

Let G = Sn for some n ∈ Z
+ and fix some i ∈ {1, 2, . . . , n}. Let

Gi = {σ ∈ G : σ(i) = i} be the stabilizer of the point i .

Claim: Let τ ∈ G , such that τ(i) = j . The left coset τGi consists of
the permutations in Sn which take i to j .

First note that, if σ ∈ Gi , then τσ(i) = τ(i) = j . Thus, all
permutations in τGi take i to j .

Suppose, conversely, that µ ∈ G , such that µ(i) = j . Then, we have
τ−1µ(i) = τ−1(j) = i . Thus, τ−1µ ∈ Gi and, hence, µ ∈ τGi . Thus,
all permutations taking i to j are in τGi .

Distinct left cosets have empty intersection;
The number of distinct left cosets is n, the number of distinct images
of the integer i under the action of G . Thus, |G : Gi | = n.
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Non Normal Subgroups of Sn, n > 2 (Cont’d)

Let G = Sn for some n ∈ Z
+ and fix some i ∈ {1, 2, . . . , n}. Let

Gi = {σ ∈ G : σ(i) = i} be the stabilizer of the point i .

Claim: Let τ ∈ G , such that k = τ−1(i), i.e., τ(k) = i . The right
coset Giτ consists of the permutations in Sn which take k to i .

First note that, if σ ∈ Gi , then στ(k) = σ(i) = i . Thus, all
permutations in Giτ take k to i .

Suppose, conversely, that µ ∈ G , such that µ(k) = i . Then, we have
µτ−1(i) = µ(k) = i . Thus, µτ−1 ∈ Gi and, hence, µ ∈ Giτ . Thus, all
permutations taking k to i are in τGi .

If n > 2, for some nonidentity element τ , we have τGi 6= Giτ since
there are certainly permutations which take i to j but do not take k

to i . Thus Gi is not a normal subgroup.
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Non Normal Subgroups of D8

Claim: In D8 the only subgroup of order 2 which is normal is the
center 〈r2〉.

First, we show that 〈r2〉 is normal:

r{1, r2} = {r , r3} = {1, r2}r ;
s{1, r2} = {s, sr2} = {s, r−2s} = {s, r2s} = {1, r2}s.

Next we show that none of the other four subgroups of order 2 is
normal:

〈s〉: r{1, s} = {r , rs} 6= {r , sr} = {1, s}r .
〈r2s〉: r{1, r2s} = {r , r3s} 6= {r , rs} = {r , r2sr} = {1, r2s}r .
〈rs〉: r{1, rs} = {r , r2s} 6= {r , s} = {r , rsr} = {1, rs}r .
〈r3s〉: r{1, r3s} = {r , s} 6= {r , r2s} = {1, r3s}r .
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Group of Rigid Motions of the Regular Tetrahdron

Claim: The group G of rigid motions of a regular tetrahedron in R
3

has order 12.

Let θ be a rigid motion of the tetrahedron. If the vertices of a face,
read clockwise from outside the figure, are XYZ , then θ(X )θ(Y )θ(Z )
are the vertices of the corresponding face, read clockwise from outside
the figure, of the moved copy.

There are 4 possibilities for θ(1).

Once θ(1) is chosen, there are 3 possibilities for
θ(2).

Once θ(1) and θ(2) are chosen, θ(3) is
determined by orientation.

Finally, there is only one possibility remaining
for θ(4).

Thus there are 3 · 4 = 12 total possibilities for θ, showing that
|G | = 12.
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Remark on Lagrange’s Theorem

The full converse to Lagrange’s Theorem is not true: If G is a finite
group and n divides |G |, then G need not have a subgroup of order n.

Example: Let A be the group of symmetries of a regular tetrahedron.
We know that |A| = 12.

Claim: A does not have a subgroup of order 6.

If A had a subgroup H of order 6, H would be of index 2 in A,
whence A/H ∼= Z2. Since the quotient group has order 2, the square
of every element in the quotient is the identity, so, for all g ∈ A,
(gH)2 = 1H, i.e., for all g ∈ A, g2 ∈ H. If g is an element of A of
order 3, we obtain g = (g2)2 ∈ H, i.e., H must contain all elements
of A of order 3. This is a contradiction since |H| = 6, but there are 8
rotations of a tetrahedron of order 3.
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A Counting Formula

Definition

Let H and K be subgroups of a group and define

HK = {hk : h ∈ H, k ∈ K}.

Proposition

If H and K are finite subgroups of a group then |HK | = |H||K |
|H∩K | .

HK is a union of left cosets of K , namely, HK =
⋃

h∈H hK . Since
each coset of K has |K | elements, it suffices to find the number of
distinct left cosets of the form hK , h ∈ H. But h1K = h2K for
h1, h2 ∈ H if and only if h−1

2 h1 ∈ K . Thus, h1K = h2K iff
h−1
2 h1 ∈ H ∩ K iff h1(H ∩ K ) = h2(H ∩ K ). Thus, the number of

distinct cosets of the form hK , for h ∈ H is the number of distinct
cosets h(H ∩ K ), for h ∈ H. The latter number, by Lagrange’s

Theorem, equals |H|
|H∩K | . Thus HK consists of |H|

|H∩K | distinct cosets of

K (each of which has |K | elements) which yields the formula.
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The Set HK

There was no assumption that HK be a subgroup.

Example: If G = S3, H = 〈(1 2)〉 and K = 〈(2 3)〉, then

|H| = |K | = 2 and |H ∩ K | = 1. So |HK | = |H||K |
|H∩K | = 4.

By Lagrange’s Theorem HK cannot be a subgroup.
As a consequence, we must have S3 = 〈(1 2), (2 3)〉.
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Criterion for HK to be a Subgroup

Proposition

If H and K are subgroups of a group, HK is a subgroup if and only if
HK = KH.

(⇐): Assume, first, that HK = KH and let a, b ∈ HK . We prove
ab−1 ∈ HK , which suffices to show that HK is a subgroup, by the
subgroup criterion. Let a = h1k1 and b = h2k2, for some h1, h2 ∈ H

and k1, k2 ∈ K . Thus, b−1 = k−1
2 h−1

2 . So, ab−1 = h1k1k
−1
2 h−1

2 . Let
k3 = k1k

−1
2 ∈ K and h3 = h−1

2 . Thus, ab−1 = h1k3h3. Since
HK = KH, k3h3 = h4k4, for some h4 ∈ H, k4 ∈ K . Thus,
ab−1 = h1h4k4. Since h1h4 ∈ H, k4 ∈ K , we obtain ab−1 ∈ HK .

(⇒): Conversely, assume that HK is a subgroup of G . Since K ≤ HK

and H ≤ HK , by the closure property of subgroups, KH ⊆ HK . To
show the reverse containment let hk ∈ HK . Since HK is assumed to
be a subgroup, write hk = a−1, for some a ∈ HK . If a = h1k1, then
hk = (h1k1)

−1 = k−1
1 h−1

1 ∈ KH, completing the proof.
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Remarks on the Criterion

HK = KH does not imply that the elements of H commute with
those of K but rather that every product hk is of the form k ′h′ (h
need not be h′ nor k be k ′) and conversely.

Example: If G = D2n, H = 〈r〉 and K = 〈s〉, then G = HK = KH so
that HK is a subgroup and rs = sr−1 so the elements of H do not
commute with the elements of K .

Corollary

If H and K are subgroups of G and H ≤ NG (K ), then HK is a subgroup
of G . In particular, if K E G , then HK ≤ G , for any H ≤ G .

We prove HK = KH. Let h ∈ H, k ∈ K . By assumption, hkh−1 ∈ K ,
hence hk = (hkh−1)h ∈ KH. This proves HK ⊆ KH. Similarly,
kh = h(h−1kh) ∈ HK , proving the reverse containment. Now the
corollary follows from the preceding proposition.
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More on the Product HK

Definition

If A is any subset of NG (K ) (or CG (K )), we shall say A normalizes K

(centralizes K , respectively).

Using this terminology, the preceding corollary states that HK is a
subgroup if H normalizes K .

In some cases, it is possible to prove that a finite group is a product
of two of its subgroups by simply using the order formula.

Example: Let G = S4, H = D8 and K = 〈(1 2 3)〉, where we consider
D8 as a subgroup of S4 by identifying each symmetry with its
permutation on the 4 vertices of a square.
By Lagrange’s Theorem, H ∩ K = 1.
The proposition then shows |HK | = |H||K |

|H∩K | = 24. So HK = S4. Since
HK is a group, HK = KH.
But note that neither H nor K normalizes the other.
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Subsection 3

The Isomorphism Theorems
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The First Isomorphism Theorem

Theorem (The First Isomorphism Theorem)

If ϕ : G → H is a homomorphism of groups, then kerϕ E G and
G/kerϕ ∼= ϕ(G ).

We first show that kerϕ ≤ G .

Since ϕ(1G ) = 1H , 1G ∈ kerϕ. Therefore, kerϕ 6= ∅. Suppose that
x , y ∈ kerϕ. Thus, ϕ(x) = ϕ(y) = 1H . So we get ϕ(xy−1) =
ϕ(x)ϕ(y)−1 = 1H1

−1
H = 1H . Thus, xy

−1 ∈ kerϕ. By the subgroup
criterion, we get that kerϕ ≤ G .

We show next that kerϕ E G . We do this by showing that, for all
g ∈ G , gkerϕg−1 = kerϕ.

Suppose x ∈ kerϕ. Then ϕ(gxg−1) = ϕ(g)ϕ(x)ϕ(g)−1 =
ϕ(g)1Hϕ(g)

−1 = 1H . So gxg−1 ∈ kerϕ. Thus, gkerϕg−1 ⊆ kerϕ.

Suppose, conversely, that x ∈ kerϕ. Then g−1xg ∈ kerϕ. And we
have x = g(g−1xg)g−1 ∈ gkerϕg−1. So kerϕ ⊆ gkerϕg−1.
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The First Isomorphism Theorem (Cont’d)

Now define ψ : G/kerϕ→ ϕ(G ) by setting ψ(g/kerϕ) = ϕ(g).

First, we show ψ is well-defined. Suppose that g1/kerϕ = g2/kerϕ.
Then g−1

2 g1 ∈ kerϕ. Hence ϕ(g−1
2 g1) = 1H , i.e., ϕ(g2)

−1ϕ(g1) = 1H .
We get ϕ(g1) = ϕ(g2).

Next we show that ψ is a homomorphism:

ψ((g1/kerϕ)(g2/kerϕ)) = ψ((g1g2)/kerϕ)
= ϕ(g1g2)
= ϕ(g1)ϕ(g2)
= ψ(g1/kerϕ)ψ(g2/kerϕ).

ψ is clearly onto ϕ(G ).

We finally show that ψ is one-to-one.

Suppose ψ(g1/kerϕ) = ψ(g2/kerϕ). Then ϕ(g1) = ϕ(g2). Thus,
ϕ(g−1

2 g1) = ϕ(g2)
−1ϕ(g1) = 1H . This shows that g

−1
2 g1 ∈ kerϕ.

Therefore g1/kerϕ = g2/kerϕ.
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Consequences of the First Isomorphism Theorem

Corollary

Let ϕ : G → H be a homomorphism of groups.

(1) ϕ is injective if and only if kerϕ = 1;

(2) |G : kerϕ| = |ϕ(G )|.

(1) Suppose ϕ is injective. Then, if g ∈ kerϕ, ϕ(g) = 1H = ϕ(1G ),
whence g = 1G . Thus, ker ϕ = 1.
Conversely, assume kerϕ = 1 and ϕ(g1) = ϕ(g2). Then
ϕ(g1g

−1
2 ) = 1H . Hence, g1g

−1
2 = 1G i.e., g1 = g2. Thus, ϕ is

injective.

(2) |ϕ(G )| = |G/kerϕ| = |G : kerϕ|.
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The Second or Diamond Isomorphism Theorem

Theorem (The Second or Diamond Isomorphism Theorem)

Let G be a group, let A and B be subgroups of G and assume A ≤ NG (B).
Then AB is a subgroup of G , B E AB , A∩ B E A and AB/B ∼= A/A ∩B .

Since A ≤ NG (B), AB is a subgroup of G . Since A ≤ NG (B), by
assumption, and B ≤ NG (B) trivially, it follows that AB ≤ NG (B),
i.e., B is a normal subgroup of the subgroup AB .
Since B is normal in AB , the quotient group AB/B is well defined.
Define the map ϕ : A → AB/B by ϕ(a) = aB . Since the group
operation in AB/B is well defined, it is easy to see that ϕ is a
homomorphism:

ϕ(a1a2) = (a1a2)B = a1B · a2B = ϕ(a1)ϕ(a2).

Alternatively, the map ϕ is just the restriction to the subgroup A of
the natural projection homomorphism π : AB → AB/B , so is also a
homomorphism.

George Voutsadakis (LSSU) Abstract Algebra I March 2016 56 / 100



Quotient Groups and Homomorphisms The Isomorphism Theorems

Proof of the Second Isomorphism Theorem

We defined the homomorphism ϕ : A → AB/B by ϕ(a) = aB .

It is clear from the definition of AB that ϕ is surjective. The identity
in AB/B is the coset 1B , so the kernel of ϕ consists of the elements
a ∈ A, with aB = 1B , which are the elements a ∈ B , i.e.,
kerϕ = A ∩ B . By the First Isomorphism Theorem, A ∩ B E A and
A/A ∩ B ∼= AB/B .

The reason this theorem is called the Diamond Iso-
morphism is because of the portion of the lattice of
subgroups of G involved. The markings in the lattice
lines indicate which quotients are isomorphic.

The “quotient” AB/A need not be a group (i.e., A
need not be normal in AB).

The relation |AB : A| = |B : A ∩ B| still holds.
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The Third Isomorphism Theorem

The third Isomorphism Theorem considers the question of taking
quotient groups of quotient groups.

Theorem (The Third Isomorphism Theorem)

Let G be a group and let H and K be normal subgroups of G with
H ≤ K . Then K/H E G/H and (G/H)/(K/H) ∼= G/K . If we denote the
quotient by H with a bar, this can be written G/K ∼= G/K .

Verify that K/H E G/H. Define ϕ : G/H → G/K by (gH) 7→ gK .

ϕ is well defined: If g1H = g2H , then g1 = g2h, for some h ∈ H . Since
H ≤ K , h ∈ K , whence g1K = g2K , i.e., ϕ(g1H) = ϕ(g2H).
Since g may be chosen arbitrarily in G , ϕ is a surjective
homomorphism.
Finally, kerϕ = {gH ∈ G/H : ϕ(gH) = 1K} = {gH ∈ G/H : gK =
1K} = {gH ∈ G/H : g ∈ K} = K/H .

By the First Isomorphism Theorem, (G/H)/(K/H) ∼= G/K .
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The Fourth or Lattice Isomorphism Theorem I

The final isomorphism theorem exhibits a one-to-one correspondence
between the subgroups of G containing N and the subgroups of G/N.
Thus, the lattice for G/N appears in the lattice for G as the
collection of subgroups of G between N and G .

Theorem (The Fourth or Lattice Isomorphism Theorem)

Let G be a group and let N be a normal subgroup of G . Then there is a
bijection from the set of subgroups A of G which contain N onto the set
of subgroups A = A/N of G/N. In particular, every subgroup of G is of
the form A/N, for some subgroup A of G containing N (its preimage in G
under the natural projection homomorphism from G to G/N). For all
A,B ≤ G with N ≤ A and N ≤ B , the bijection satisfies:
(1) A ≤ B if and only if A ≤ B;

(2) if A ≤ B, then |B : A| = |B : A|;

(3) 〈A,B〉 = 〈A,B〉;

(4) A ∩ B = A ∩ B;

(5) A E G if and only if A E G .

George Voutsadakis (LSSU) Abstract Algebra I March 2016 59 / 100



Quotient Groups and Homomorphisms The Isomorphism Theorems

The Fourth or Lattice Isomorphism Theorem II

Denote by Sub(G : N) the set of subgroups of G containing N and by
Sub(G/N) the set of subgroups of G/N.

Define Ψ : Sub(G : N) → Sub(G/N), by Ψ : S 7→ S/N.

This map is well-defined, i.e., if N ≤ S ≤ G , then S/N ≤ G/N:

Since 1 ∈ S , we get 1/N ∈ S/N. Thus, S/N 6= ∅.

Next, let s1/N, s2/N ∈ S/N. Then (s1N)(s2N)−1 = (s1s
−1
2 )N

∈ S/N, since S ≤ G . By the subgroup criterion, S/N ≤ G/N.

We show that Ψ is injective.

Claim: If N ≤ S ≤ G , then π−1(π(S)) = S , where π : G → G/N is
the projection.

By set theory S ⊆ π−1π(S). Now, let a ∈ π−1π(S). Then
π(a) = π(s), for some s ∈ S . Hence s−1a ∈ kerπ = N. So a = sn, for
some n ∈ N. But N ≤ S , whence a = sn ∈ S .

Assume S/N = S ′/N, where N ≤ S ,S ′ ≤ G . Then
π−1π(S) = π−1π(S ′). By the claim, S = S ′. So Ψ is injective.
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The Fourth or Lattice Isomorphism Theorem III

We Show Ψ is surjective.

Let U ≤ G/N. π−1(U) ≤ G . Moreover, N = π−1({1}), whence
N ≤ π−1(U). Finally, π(π−1(U)) = U. Thus, Ψ is surjective.

(1) We show A ≤ B iff A/N ≤ B/N.

By set theory, if N ≤ A ≤ B ≤ G , then A/N = π(A) ≤ π(B) = B/N.

Conversely, assume A/N ≤ B/N. If a ∈ A, then aN ∈ A/N ≤ B/N.
So aN = bN, for some b ∈ B . Hence a = bn, for some n ∈ N ≤ B .
So we get a ∈ B , showing A ≤ B .
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The Fourth or Lattice Isomorphism Theorem IV

(2) We show that, if A ≤ B , then |B : A| = |B : A|.
It suffices to show that there is a bijection from the family of all
cosets of the form bA, with b ∈ B , to the family of all cosets of the
form cA, with c ∈ B. For all b ∈ B , we set bA 7→ bA.

The map is injective.
Suppose that b1A = b2A, for some b1, b2 ∈ B. Then, we get

b
−1

2 b1 ∈ A, i.e., b−1
2 b1 ∈ A. Thus, b−1

2 b1 = an, for some n ∈ N . Since
N ≤ A, b−1

2 b1 ∈ A. So b1A = b2A.
The map is surjective.
Suppose bA ∈ B/A, for some b ∈ B. Then bN = b′N , for some b ∈ B.
So b′−1b ∈ N ≤ B. Thus, b ∈ B, whence bA ∈ B/A, and b/A 7→ bA.

Note that for finite G , |B : A| = |B : A| may be proved as follows:

|B : A| =
|B|

|A|
=

|B/N|

|A/N|
=

|B|
|N|

|A|
|N|

=
|B |

|A|
= |B : A|.
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The Fourth or Lattice Isomorphism Theorem V

(3) We show 〈A,B〉 = 〈A,B〉.

〈A,B〉 = {cǫ11 cǫ22 · · · cǫnn : n ≥ 0, ci ∈ A ∪ B , ǫi = ±1}
= {cǫ11 c

ǫ2
2 · · · cǫnn : n ≥ 0, ci ∈ A ∪ B , ǫi = ±1}

= 〈A,B〉.

(4) We show A ∩ B = A ∩ B.

A ∩ B = {c : c ∈ A ∩ B}
= A ∩ B.

(5) We show A E G if and only if A E G .

If A E G , then both N and A are normal subgroups of G , with
N ≤ A. By the Third Isomorphism Theorem, A/N E G/N.

Suppose, conversely, that A/N E G/N. Let a ∈ A and g ∈ G . Then
gag−1 = g a g−1 ∈ A/N. So gag−1 ∈ A. This proves that A E G .
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The Quaternion Group

Consider G = Q8 and let N be the normal subgroup 〈−1〉:

Q8

〈i〉 〈j〉 〈k〉

〈−1〉

1
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The Dihedral Group of Order 8

Let G = D8 and N = 〈r2〉:

D8

〈s, r2〉 〈r〉 〈rs, r2〉

〈s〉 〈r2s〉 〈r2〉 〈rs〉 〈r3s〉

1

Note that there are subgroups of G which do not directly correspond
to subgroups in the quotient group G/N, namely the subgroups of G
which do not contain the normal subgroup N.
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Remarks on the Lattices of Subgroups

The examples of Q8 and D8 emphasize the fact that the isomorphism
type of a group cannot, in general, be determined from the knowledge
of the isomorphism types of G/N and N:

Indeed Q8/〈−1〉 ∼= D8/〈r2〉 and 〈−1〉 ∼= 〈r2〉, but Q8 ≇ D8.

We often indicate the index of one subgroup in another in the lattice
of subgroups by writing

A

B

n

where the integer n = |A : B |.

The Lattice Isomorphism Theorem shows that indices remain
unchanged in quotients of G by normal subgroups of G contained in
B , i.e., the portion of the lattice for G corresponding to the lattice of
the quotient group has the correct indices for the quotient as well.
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Defining Homomorphisms on Quotients

Sometimes, a homomorphism ϕ on the quotient group G/N is
specified by giving the value of ϕ on the coset gN in terms of the
representative g alone. In that case, one has to show that ϕ is well
defined, i.e., independent of the choice of g .

This is tantamount to defining a homomorphism Φ on G itself by
specifying the value of ϕ at g . Then independence of g is equivalent
to requiring that Φ be trivial on N:

ϕ is well defined on G/N if and only if N ≤ kerΦ.

In this situation we say the homomorphism Φ factors through N and
ϕ is the induced homomorphism on G/N:

G
π
✲ G/N

H

ϕ
❄

Φ
✲
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Subsection 4

Composition Series
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Elements of Prime Order in Abelian Groups

Proposition

If G is a finite abelian group and p is a prime dividing |G | then G contains
an element of order p.

The proof proceeds by complete induction on |G |: We assume the
result is valid for every group whose order is strictly smaller than the
order of G and then prove the result valid for G .

Since |G | > 1, there is an element x ∈ G , with x 6= 1.

If |G | = p, then x has order p by Lagrange’s Theorem and we are done.
We assume, next, that |G | > p.
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The Case |G | > p

If p divides |x |, there exists an n, such that |x | = pn. Thus, |xn| = p,
and again we have an element of order p.

Assume p does not divide |x |. Let N = 〈x〉. Since G is abelian,

N E G . By Lagrange’s Theorem, |G/N| = |G |
|N| . Since N 6= 1,

|G/N| < |G |. Since p does not divide |N|, we must have p | |G/N|.
By the induction hypothesis, the smaller group G/N contains an
element, y = yN, of order p.
If |y | = m, then

(yN)m = ymN = N.

Thus, since |yN| = p, we get, by a preceding proposition, p | |y |.
We are now back to the preceding case. The argument used above
produces an element of order p.
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Simple Groups

Definition (Simple Group)

A (finite or infinite) group G is called simple if |G | > 1 and the only
normal subgroups of G are 1 and G .

By Lagrange’s Theorem, if |G | is a prime, its only subgroups (let
alone normal ones) are 1 and G , so G is simple.

Simple groups, by definition, cannot be “factored” into pieces like N

and G/N and, as a result, they play a role analogous to that of the
primes in the arithmetic of Z.
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Abelian Simple Groups

Claim: Every abelian simple group is isomorphic to Zp, for some
prime p.

Since G is abelian, every subgroup is normal. Since G is simple,
|G | > 1 and the only subgroups of G are 1 and G . So for some x ∈ G
we have |x | > 1 and 〈x〉 ≤ G . Hence 〈x〉 = G .

Suppose x has infinite order. Then 1 6= 〈x2〉 < 〈x〉 = G . This is a
contradiction.
Thus, x , and therefore G , has finite order. Suppose x has composite
order n. Then, for some p > 1 that divides n, 〈xp〉 is a proper
non-trivial subgroup of G . Hence G is not simple. We conclude that G
is a cyclic group of prime order.

There are also non-abelian simple groups (of both finite and infinite
order), the smallest of which has order 60.
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Normal Series

A normal series of a group G is a finite sequence of subgroups

1 = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gn−1 ≤ Gn = G ,

such that Gi E Gi+1, for all 0 ≤ i ≤ n − 1.

The factor groups of the series are the groups

G1/G0,G2/G1, . . . ,Gn/Gn−1.

The length of the series is the number of strict inclusions or,
equivalently, the number of non-trivial factor groups.
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Normal Series

Proposition

Suppose G is a finite group and

1 = G0 ≤ G1 ≤ G2 ≤ · · · ≤ Gn−1 ≤ Gn = G ,

is a normal series of G . Then the order |G | of G is the product of the
orders of the factor groups in the series.

We have for all 0 ≤ i < n,

|Gi+1/Gi | =
|Gi+1|

|Gi |
⇒ |Gi+1| = |Gi+1/Gi | · |Gi |.

Therefore, we get

|G | = |Gn| = |Gn/Gn−1||Gn−1| = |Gn/Gn−1||Gn−1/Gn−2||Gn−2|

= · · · =
n−1
∏

i=0

|Gi+1/Gi | · |G0| =
n−1
∏

i=0

|Gi+1/Gi |.
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Zassenhaus Lemma

Lemma (Zassenhaus Lemma)

Given four subgroups A E A′ and B E B ′ of a group G , then
A(A′ ∩ B) E A(A′ ∩ B ′), B(B ′ ∩ A) E B(B ′ ∩ A′), and there is an
isomorphism

A(A′ ∩ B ′)

A(A′ ∩ B)
∼=

B(B ′ ∩ A′)

B(B ′ ∩ A)
.

Claim: (A ∩ B ′) E (A′ ∩ B ′), i.e., if c ∈ A ∩ B ′ and x ∈ A′ ∩ B ′, then
xcx−1 ∈ A ∩ B ′.

Since c ∈ A, x ∈ A′ and A E A′, we get xcx−1 ∈ A. Since c , x ∈ B ′,
then xcx−1 ∈ B ′. Therefore, (A ∩ B ′) ⊳ (A′ ∩ B ′).

Similarly, (A′ ∩ B) E (A′ ∩ B ′).

Thus, the subgroup D = (A ∩ B ′)(A′ ∩ B) of G is a normal subgroup
of A′ ∩ B ′, since it is generated by two normal subgroups.

George Voutsadakis (LSSU) Abstract Algebra I March 2016 75 / 100



Quotient Groups and Homomorphisms Composition Series

Zassenhaus Lemma (Cont’d)

Using the symmetry of the claimed isomorphism in A and B , it
suffices to show that there is an isomorphism

A(A′ ∩ B ′)

A(A′ ∩ B)
→

(A′ ∩ B ′)

D
.

Define
ϕ : A(A′ ∩ B ′) → (A′ ∩ B ′)/D; ϕ : ax 7→ xD,

where a ∈ A and x ∈ A′ ∩ B ′.

ϕ is well-defined: If ax = a′x ′, where a′ ∈ A and x ′ ∈ A′ ∩ B ′, then

a′−1a = x ′x−1 ∈ A ∩ (A′ ∩ B ′) = A ∩ B ′ ≤ D.

ϕ is clearly surjective.

Moreover, kerϕ = A(A′ ∩ B).

By the First Isomorphism Theorem, we get the result.
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Zassenhaus Lemma and the Diamond Isomorphism

The Zassenhaus Lemma implies the Diamond Isomorphism Theorem.
Suppose that S ,T ≤ G with T E G . Setting

A′ = G , A = T , B ′ = S , B = S ∩ T

in the Zassenhaus Lemma, we get by the conclusion
A(A′ ∩ B ′)

A(A′ ∩ B)
∼=

B(B ′ ∩ A′)

B(B ′ ∩ A)
that

T (G ∩ S)

T (G ∩ (S ∩ T ))
∼=

(S ∩ T )(S ∩ G )

(S ∩ T )(S ∩ T )
,

i.e.,
TS/T ∼= S(S ∩ T ).
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Composition Series

Definition (Composition Series)

In a group G a sequence of subgroups

1 = N0 ≤ N1 ≤ N2 ≤ · · · ≤ Nk−1 ≤ Nk = G

is called a composition series if Ni E Ni+1 and Ni+1/Ni is a simple
group, 0 ≤ i ≤ k − 1. If the above sequence is a composition series, the
quotient groups Ni+1/Ni are called the composition factors of G .

A composition series is a normal series all of whose nontrivial factors
are simple.
Example: The series

1 E 〈s〉 E 〈s, r2〉 E D8 and 1 E 〈r2〉 E 〈r〉 E D8

are two composition series for D8. In each series there are 3
composition factors, each of which is isomorphic to (the simple
group) Z2.
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Finite Groups have a Composition Series

Proposition

Every finite group G has a composition series.

If the proposition is false, let G be a finite group of smallest order
that does not have a composition series. G cannot be simple, since
otherwise 1 ≤ G is a composition series. Thus, G has a proper normal
subgroup N. Assume that N is a maximal normal subgroup, so that
G/N is simple. Since |N| < |G |, N has a composition series, say

1 ≤ N1 ≤ · · · ≤ Nm−1 ≤ Nm = N.

But, then,
1 ≤ N1 ≤ N2 ≤ · · · ≤ Nm ≤ G

is a composition series for G , a contradiction.
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Equivalent Series and Refinements

Definition

Two normal series of a group G are equivalent if there is a bijection
between the sets of nontrivial factor groups of each so that corresponding
factor groups are isomorphic.

Definition

A refinement of a normal series is a normal series
1 = N0 ≤ N1 ≤ · · · ≤ Nk = G having the original series as a subsequence.

A refinement of a normal series is a new normal series obtained from
the original by inserting more subgroups.

Claim: A composition series admits only trivial refinements, i.e., one
can only repeat terms.

If Ni+1/Ni is simple, then it has no proper nontrivial normal
subgroups. Hence, there is no intermediate group H, with
Ni < H < Ni+1 and H E Ni+1.

So any refinement of a composition series is equivalent to the original.
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The Schreier Refinement Theorem

Theorem (Schreier Refinement Theorem)

Any two normal series

1 = G0 E G1 E · · · E Gn = G , 1 = N0 E N1 E · · · E Nm = G

of a group G have equivalent refinements.

We insert a copy of the second series between each pair of adjacent
terms in the first series: for each i ≥ 1 define Gij = Gi−1(Gi ∩ Nj ),
which is a subgroup, since Gi−1 E Gi . We have
Gi0 = Gi−1(Gi ∩ N0) = Gi−1(Gi ∩ 1) = Gi−11 = Gi−1. Also
Gim = Gi−1(Gi ∩ Nm) = Gi−1(Gi ∩ G ) = Gi−1Gi = Gi . Therefore the
series of Gij is a refinement of the series of Gi :

· · · ≤ Gi−1 = Gi0 ≤ Gi1 ≤ Gi2 ≤ · · · ≤ Gim = Gi ≤ · · · .
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The Schreier Refinement Theorem (Cont’d)

Similarly, there is a refinement of the second series arising from
Npq = Np−1(Np ∩ Gq),

· · · ≤ Np−1 = Np0 ≤ Np1 ≤ Np2 ≤ · · · ≤ Npn = Np ≤ · · ·

Both refinements have nm terms. For each i , j , the Zassenhaus
Lemma gives

Gi−1(Gi ∩ Nj)

Gi−1(Gi ∩ Nj−1)
∼=

Nj−1(Nj ∩ Gi)

Nj−1(Nj ∩ Gi−1)
,

i.e., Gij/Gi ,j−1
∼= Nji/Nj ,i−1.

Thus, the association Gij/Gi ,j−1 7→ Nji/Nj ,i−1 is a bijection showing
that the two refinements are equivalent.
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The Jordan-Hölder Theorem

Theorem (Jordan-Hölder)

Let G be a finite group with G 6= 1. Then:

(1) G has a composition series;

(2) The composition factors in a composition series are unique, i.e., if
1 = N0 ≤ N1 ≤ · · · ≤ Nr = G and 1 = M0 ≤ M1 ≤ · · · ≤ Ms = G ,
are two composition series for G , then r = s and there is some
permutation π of {1, 2, . . . , r}, such that Mπ(i)/Mπ(i)−1

∼= Ni/Ni−1,
1 ≤ i ≤ r .

(1) This was shown in the preceding proposition.

(2) Suppose 1 = N0 ≤ N1 ≤ · · · ≤ Nr = G and
1 = M0 ≤ M1 ≤ · · · ≤ Ms = G , are two composition series for G . By
the Schreier Refinement Theorem, they have equivalent refinements,
with rs terms. However, any refinement of a composition series is
equivalent to the original composition series. Thus, the two
compositions series must be equivalent.
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The Fundamental Theorem of Arithmetic

Corollary

Every integer n ≥ 2 has a factorization into primes. Moreover, the prime
factors are uniquely determined by n.

Since Z/nZ is finite, it has a composition series. Let G1,G2, . . . ,Gr

be the composition factors. By a previous proposition, n = |Z/nZ| is
the product of the orders of its composition factors n =

∏r
i=0 |Gi |.

Also, by a previous proposition, an abelian group is simple if and only
if it is of prime order. So |Gi | is prime, for all 1 ≤ i ≤ r . We conclude
that n is a product of primes.

By Part (2) of the Jordan-Hölder Theorem, the (prime) orders of the
composition factors are unique.
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Solvable Groups

Definition (Solvable Group)

A group G is solvable if there is a chain of subgroups

1 = G0 E G1 E G2 E · · · E Gs = G ,

such that Gi+1/Gi is abelian for i = 0, 1, . . . , s − 1.

The terminology comes from the correspondence in Galois Theory
between these groups and polynomials solvable by radicals.

It turns out that finite solvable groups are precisely those groups
whose composition factors are all of prime order.
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Solvability and Normal Subgroups

Proposition

Let G is a group and N E G . If N and G/N are solvable, then so is G .

Let G = G/N and, also,
1 = N0 E N1 E · · · E Nn = N be a chain of subgroups of N , such that
Ni+1/Ni is abelian, 0 ≤ i < n;
1 = G0 E G1 E · · · E Gm = G be a chain of subgroups of G such that
Gi+1/Gi is abelian, 0 ≤ i < m.

By the Lattice Isomorphism Theorem, there are subgroups Gi of G
with N ≤ Gi , such that Gi/N = Gi and Gi E Gi+1, 0 ≤ i < m. By
the Third Isomorphism Theorem,
Gi+1/Gi = (Gi+1/N)/(Gi/N) ∼= Gi+1/Gi . Thus,

1 = N0 E N1 E · · · E Nn = N = G0 E G1 E · · · E Gm = G

is a chain of subgroups of G all of whose successive quotient groups
are abelian. Therefore, G is solvable.
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Subsection 5

Transpositions and the Alternating Group
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Transpositions

We saw (formal proof later) that every element of Sn can be written
as a product of disjoint cycles in an essentially unique fashion.

In contrast, every element of Sn can be written in many different ways
as a (non disjoint) product of cycles.

Example: Even in S3 the element σ = (1 2 3) may be written

σ = (1 2 3) = (1 3)(1 2) = (1 2)(1 3)(1 2)(1 3) = (1 2)(2 3).

In fact, there are an infinite number of different ways to write σ.

Not requiring the cycles to be disjoint destroys the uniqueness of a
representation of a permutation as a product of cycles.

We can, however, obtain a sort of “parity check” from writing
permutations (non uniquely) as products of 2-cycles.

Definition (Transposition)

A 2-cycle is called a transposition.
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Generation of Sn by Transpositions

Every permutation of {1, 2, . . . , n} can be realized by a succession of
transpositions or simple interchanges of pairs of elements:

First, note

(a1 a2 . . . am) = (a1 am)(a1 am−1)(a1 am−2) · · · (a1 a2),

for any m-cycle.
Now any permutation in Sn may be written as a product of cycles, e.g.,
its cycle decomposition.
Writing each of these cycles as a product of transpositions using the
above procedure gives a product of transpositions.

Thus, we have Sn = 〈T 〉, where T = {(i j) : 1 ≤ i < j ≤ n}.
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Example: A Permutation as a Product of Transpositions

Consider the permutation σ ∈ S13, with

σ(1) = 12, σ(2) = 13, σ(3) = 3, σ(4) = 1, σ(5) = 11,
σ(6) = 9, σ(7) = 5, σ(8) = 10, σ(9) = 6, σ(10) = 4,
σ(11) = 7, σ(12) = 8, σ(13) = 2.

It can be written in disjoint cycle decomposition as:

σ = (1 12 8 10 4)(2 13)(5 11 7)(6 9).

Therefore, as a product of transpositions,

σ = (1 4)(1 10)(1 8)(1 12)(2 13)(5 7)(5 11)(6 9).
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The Polynomial ∆

Even though, for a given σ ∈ Sn, there may be many ways of writing
σ as a product of transpositions, we show that the parity (odd/even)
is the same for any product of transpositions equaling σ.

Let x1, . . . , xn be independent variables and let ∆ be the polynomial

∆ =
∏

1≤i<j≤n

(xi − xj),

i.e., the product of all the terms xi − xj , for i < j .

Example: For n = 4,
∆ = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4).

For each σ ∈ Sn, let σ act on ∆ by permuting the variables in the

same way it permutes their indices: σ(∆) =
∏

1≤i<j≤n

(xσ(i) − xσ(j)).

Example: If n = 4 and σ = (1 2 3 4), then
σ(∆) = (x2 − x3)(x2 − x4)(x2 − x1)(x3 − x4)(x3 − x1)(x4 − x1).
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The Sign Function ǫ

∆ contains one factor xi − xj , for all i < j .

Since σ is a bijection of the indices, σ(∆) must contain either xi − xj
or xj − xi , but not both, for all i < j .

If σ(∆) has a factor xj − xi , where j > i , write this term as −(xi − xj).

Collecting all the changes in sign together we see that ∆ and σ(∆)
have the same factors up to a product of −1’s, i.e.,

σ(∆) = ±∆, for all σ ∈ Sn.

For each σ ∈ Sn, let

ǫ(σ) =

{

+1, if σ(∆) = ∆
−1, if σ(∆) = −∆
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Even and Odd Permutations

Example: In the previous example in S4, with σ = (1 2 3 4), we had

∆ = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4)
σ(∆) = (x2 − x3)(x2 − x4)(x2 − x1)(x3 − x4)(x3 − x1)(x4 − x1).

There are exactly 3 factors of the form xj − xi , where j > i , in σ(∆),
each of which contributes a factor of −1. Hence,

(1 2 3 4)(∆) = (−1)3∆ = −∆.

Thus, ǫ((1 2 3 4)) = −1.

Definition (Sign, Even and Odd Permutations)

(1) ǫ(σ) is called the sign of σ.

(2) σ is called even if ǫ(σ) = 1 and odd if ǫ(σ) = −1.
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The Sign Function as a Homomorphism

Proposition

The map ǫ : Sn → {±1} is a homomorphism (where {±1} is a
multiplicative version of the cyclic group of order 2).

By definition, (τσ)(∆) =
∏

1≤i<j≤n(xτσ(i) − xτσ(j)). Suppose that
σ(∆) has exactly k factors of the form xj − xi , with j > i , i.e., that
ǫ(σ) = (−1)k . When calculating (τσ)(∆), after first applying σ to
the indices, we see that (τσ)(∆) has exactly k factors of the form
xτ(j) − xτ(i), with j > i . Interchanging the order of the terms in these

k factors introduces the sign change (−1)k = ǫ(σ), and now all
factors of (τσ)(∆) are of the form xτ(p) − xτ(q), with p < q. Thus,
(τσ)(∆) = ǫ(σ)

∏

1≤p<q≤n(xτ(p) − xτ(q)). Since by definition of ǫ,
∏

1≤p<q≤n(xτ(p) − xτ(q)) = ǫ(τ)∆, we obtain (τσ)(∆) = ǫ(σ)ǫ(τ)∆,
whence ǫ(τσ) = ǫ(σ)ǫ(τ) = ǫ(τ)ǫ(σ).

George Voutsadakis (LSSU) Abstract Algebra I March 2016 94 / 100



Quotient Groups and Homomorphisms Transpositions and the Alternating Group

Example

Let n = 4, σ = (1 2 3 4) and τ = (4 2 3). Then τσ = (1 3 2 4). By
definition (using the explicit ∆ in this case),

(τσ)(∆) = (1 3 2 4)(∆)
= (x3 − x4)(x3 − x2)(x3 − x1)(x4 − x2)(x4 − x1)(x2 − x1)
= (−1)5∆,

where all factors except the first one are flipped to recover ∆. This
shows ǫ(τσ) = −1. On the other hand,

(τσ)(∆) = τ((x2 − x3)(x2 − x4)(x2 − x1)
× (x3 − x4)(x3 − x1)(x4 − x1))

= (xτ(2) − xτ(3))(xτ(2) − xτ(4))(xτ(2) − xτ(1))×
× (xτ(3) − xτ(4))(xτ(3) − xτ(1))(xτ(4) − xτ(1))

= (−1)3
∏

1≤p<q≤4(xτ(p) − xτ(q)) = (−1)3τ(∆).

Since ǫ(σ) = (−1)3 = −1 and ǫ(τ) = (−1)2 = 1, we verify
ǫ(τσ) = −1 = ǫ(τ)ǫ(σ).
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Sign of Transpositions

In (1 2)(∆) only (x1 − x2) will be flipped. So (1 2)(∆) = −∆,
showing that ǫ((1 2)) = −1.

For any transposition (i j), let λ be the permutation which
interchanges 1 and i , interchanges 2 and j , and leaves all other
numbers fixed (if i = 1 or j = 2, λ fixes i or j , respectively). Then,
computing what λ(1 2)λ does to any k ∈ {1, 2, . . . , n}, we get
λ(1 2)λ = (i j). Since ǫ is a homomorphism, we obtain

ǫ((i j)) = ǫ(λ(1 2)λ) = ǫ(λ)ǫ((1 2))ǫ(λ)
= (−1)ǫ(λ)2 = − 1.

Proposition

Transpositions are all odd permutations and ǫ is a surjective
homomorphism.
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The Alternating Groups

Definition (Alternating Group)

The alternating group of degree n, denoted by An, is the kernel of the
homomorphism ǫ (i.e., the set of even permutations).

By the First Isomorphism Theorem Sn/An
∼= ǫ(Sn) = {±1}.

The order of An is easily determined:

|An| =
1

2
|Sn| =

1

2
(n!).

Sn − An is the coset of An which is not the identity coset. This is the
set of all odd permutations.

The signs of permutations obey the usual Z/2Z laws:

(even)(even) = (odd)(odd) = even;
(even)(odd) = (odd)(even) = odd.
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Uniqueness of Number of Transposition in Decomposition

Since ǫ is a homomorphism and every σ ∈ Sn is a product of
transpositions, say σ = τ1τ2 · · · τk , then ǫ(σ) = ǫ(τ1) · · · ǫ(τk).

Since ǫ(τk) = −1, for i = 1, . . . , k , ǫ(σ) = (−1)k .

Thus, the parity of the number k is the same no matter how we write
σ as a product: ǫ(σ) =
{

+1, if σ is a product of an even number of transpositions
−1, if σ is a product of an odd number of transpositions

.
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Computing ǫ(σ) from the Cycle Decomposition of σ

An m-cycle may be written as a product of m − 1 transpositions.
Thus, an m-cycle is an odd permutation if and only if m is even.

For any permutation σ, let α1α2 · · ·αk be its cycle decomposition.
Then ǫ(σ) is given by ǫ(α1) · · · ǫ(αk) and ǫ(αi ) = −1 if and only if
the length of αi is even. Hence, for ǫ(σ) to be −1 the product of the
ǫ(αi )’s must contain an odd number of factors of (−1).

Proposition

The permutation σ is odd if and only if the number of cycles of even
length in its cycle decomposition is odd.

Example: σ = (1 2 3 4 5 6)(7 8 9)(10 11)(12 13 14 15)(16 17 18)
has 3 cycles of even length, so ǫ(σ) = −1.

Example: τ = (1 12 8 10 4)(2 13)(5 11 7)(6 9) has exactly 2 cycles
of even length, hence ǫ(τ) = 1.
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Parity of Order Versus Parity of Permutation

Be careful not to confuse the terms “odd” and “even” for a
permutation σ with the parity of the order of σ.

If σ is of odd order, all cycles in the cycle decomposition of σ have odd
length so σ has an even (in this case 0) number of cycles of even
length and hence is an even permutation.
If |σ| is even, σ may be either an even or an odd permutation.
E.g., (1 2) is odd, (1 2)(3 4) is even but both have order 2.
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