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Group Actions and Related Terminology

Let G be a group acting on a nonempty set A.

We showed that, for each g ∈ G , the map σg : A → A, defined by
σg (a) = g · a, is a permutation of A.

We also saw that there is a homomorphism associated to an action of
G on A: ϕ : G → SA, defined by ϕ(g) = σg , called the permutation

representation associated to the given action.

Recall some additional terminology associated to group actions:

Definition

(1) The kernel of the action is the set of elements of G that act trivially on
every element of A: {g ∈ G : g · a = a, for all a ∈ A}.

(2) For each a ∈ A, the stabilizer of a in G is the set of elements of G that fix
the element a: Ga = {g ∈ G : g · a = a}.

(3) An action is faithful if its kernel is the identity.
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Some Remarks on Kernels and Stabilizers

Since the kernel of an action is the same as the kernel of the
associated permutation representation, it is a normal subgroup of G .

Two group elements induce the same permutation on A if and only if
they are in the same coset of the kernel if and only if they are in the
same fiber of the permutation representation ϕ.

Thus, an action of G on A may also be viewed as a faithful action of
the quotient group G/kerϕ on A.

Recall that the stabilizer in G of an element a of A is a subgroup of
G . If a is a fixed element of A, then the kernel of the action is
contained in the stabilizer Ga since the kernel of the action is the set
of elements of G that stabilize every point, namely

⋂

a∈A Ga.
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Example I

Let n be a positive integer. The group G = Sn acts on the set
A = {1, 2, . . . , n} by

σ · i = σ(i), for all i ∈ {1, 2, . . . , n}.

The permutation representation associated to this action is the identity
map ϕ : Sn → Sn.
The action is faithful.
For each i ∈ {1, . . . , n}, the stabilizer Gi is isomorphic to Sn−1.
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Example II

Let G = D8 act on the set A consisting of the four vertices of a
square.

Label these vertices 1, 2, 3, 4 in a clockwise fash-
ion. Let r be the rotation of the square clock-
wise by π

2 radians and let s be the reflection in
the line which passes through vertices 1 and 3.
Then, the permutations of the vertices given by
r and s are σr = (1 2 3 4) and σs = (2 4).

Since the permutation representation is a homomorphism, the
permutation of the four vertices corresponding to sr is
σsr = σsσr = (1 4)(2 3).

The action of D8 on the four vertices of a square is faithful.
The stabilizer of any vertex a is the subgroup of D8 of order 2
generated by the reflection about the line passing through a and the
center of the square.
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Example III

Label the four vertices of a square as in the preceding example and let
A be the set whose elements consist of unordered pairs of opposite
vertices: A = {{1, 3}, {2, 4}}.

Then D8 also acts on this set A since each symmetry of the square
sends a pair of opposite vertices to a pair of opposite vertices. The
rotation r interchanges the pairs {1, 3} and {2, 4}. The reflection s
fixes both unordered pairs of opposite vertices. Thus, if we label the
pairs {1, 3} and {2, 4} as 1 and 2, respectively, the permutations of A
given by r and s are σr = (1 2) and σs = the identity permutation.

This action of D8 is not faithful: its kernel is 〈s, r2〉.
For each a ∈ A, the stabilizer in D8 of a is the same as the kernel of
the action.

Label the four vertices of a square as before and let A be the following
set of unordered pairs of vertices: {{1, 2}, {3, 4}}. The group D8 does
not act on this set A because {1, 2} ∈ A but r · {1, 2} = {2, 3} 6∈ A.

George Voutsadakis (LSSU) Abstract Algebra I March 2016 8 / 86



Group Actions Group Actions and Permutation Representations

Actions of G on A and Homomorphisms of G into SA

The relation between actions and homomorphisms into symmetric
groups may be reversed:

Given any nonempty set A and any homomorphism ϕ of the group G

into SA, we obtain an action of G on A by defining

g · a = ϕ(g)(a), for all g ∈ G and all a ∈ A.

The kernel of this action is the same as kerϕ.
The permutation representation associated to this action is precisely
the given homomorphism.

Proposition

For any group G and any nonempty set A, there is a bijection between the
actions of G on A and the homomorphisms of G into SA.
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Permutation Representations

The proposition allows rephrasing the definition of a permutation
representation:

Definition (Permutation Representation)

If G is a group, a permutation representation of G is any
homomorphism of G into the symmetric group SA for some nonempty set
A. We say a given action of G on A affords or induces the associated
permutation representation of G .

We can think of a permutation representation as an analogue of the
matrix representation of a linear transformation.

In the case where A is a finite set of n elements we have SA ∼= Sn.

Fixing a labeling of the elements of A, we may consider our
permutations as elements of Sn, in the same way that fixing a basis for
a vector space allows us to view a linear transformation as a matrix.
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Equivalence Induced by an Action on a Set

Proposition

Let G be a group acting on the nonempty set A. The relation on A

defined by
a ∼ b if and only if a = g · b, for some g ∈ G ,

is an equivalence relation. For each a ∈ A, the number of elements in the
equivalence class containing a is |G : Ga|, the index of the stabilizer of a.

We first prove ∼ is an equivalence relation:

Reflexivity: Since a = 1 · a, for all a ∈ A, we get a ∼ a. So, the relation
is reflexive.
Symmetry: If a ∼ b, then a = g · b, for some b ∈ G . So
g−1 · a = g−1 · (g · b) = (g−1g) · b = 1 · b = b. Hence b ∼ a and the
relation is symmetric.
Transitivity: Finally, if a ∼ b and b ∼ c , then a = g · b and b = h · c ,
for some g , h ∈ G . So a = g · b = g · (h · c) = (gh) · c . Thus, a ∼ c ,
and the relation is transitive.

George Voutsadakis (LSSU) Abstract Algebra I March 2016 11 / 86



Group Actions Group Actions and Permutation Representations

Equivalence Induced by an Action on a Set (Cont’d)

Let Ca = {g · a : g ∈ G} the equivalence class containing a fixed
a ∈ A.

To prove that |Ca| is the index |G : Ga| of the stabilizer of a, we
exhibit a bijection between the elements of Ca and the left cosets of
Ga in G .

Suppose b = g · a ∈ Ca. Then gGa is a left coset of Ga in G . The map

b = g · a 7→ gGa

is a map from Ca to the set of left cosets of Ga in G .

This map is surjective since for any g ∈ G , the element g · a is an
element of Ca.
Since g · a = h · a if and only if h−1g ∈ Ga if and only if gGa = hGa,
the map is also injective.

Hence it is a bijection.
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Orbits and Transitivity

The group G acting on the set A partitions A into disjoint
equivalence classes under the action of G .

Definition

Let G be a group acting on the nonempty set A.

(1) The equivalence class {g · a : g ∈ G} is called the orbit of G containing a.

(2) The action of G on A is called transitive if there is only one orbit, i.e., given
any two elements a, b ∈ A, there is some g ∈ G , such that a = g · b.

Examples: Let G be a group acting on the set A.

(1) If G acts trivially on A, then Ga = G , for all a ∈ A, and the orbits are
the elements of A. This action is transitive if and only if |A| = 1.

(2) The symmetric group G = Sn acts transitively in its usual action as
permutations on A = {1, 2, . . . , n}. The stabilizer in G of any point i
has index n = |A| in Sn.
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More Examples

(3) When group G acts on the set A, any subgroup of G also acts on A.
If G is transitive on A, a subgroup of G need not be transitive on A.

E.g., if G = 〈(1 2), (3 4)〉 ≤ S4, then the orbits of G on {1, 2, 3, 4}
are {1, 2} and {3, 4}. There is no element of G that sends 2 to 3.

When 〈σ〉 is any cyclic subgroup of Sn then the orbits of 〈σ〉 consist
of the sets of numbers that appear in the individual cycles in the cycle
decomposition of σ.

(4) The group D8 acts transitively on the four vertices of the square.
The stabilizer of any vertex is the subgroup of order 2 (and index 4)
generated by the reflection about the line of symmetry passing
through that point.

(5) The group D8 also acts transitively on the set of two pairs of opposite
vertices. In this action the stabilizer of any point is 〈s, r2〉 (which is
of index 2).
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Cycle Decomposition: Existence

Claim: Every element of the symmetric group Sn has the unique cycle
decomposition.

(Existence) Let A = {1, 2, . . . , n}, let σ be an element of Sn and let
G = 〈σ〉. Then 〈σ〉 acts on A. By a preceding proposition, it
partitions {1, 2, . . . , n} into a unique set of (disjoint) orbits. Let O be
one of these orbits and let x ∈ O. We proved that there is a bijection
between the elements of O and the left cosets of Gx in G , given
explicitly by σix 7→ σiGx . Since G is a cyclic group, Gx E G and
G/Gx is cyclic of order d , where d is the smallest positive integer for
which σd ∈ Gx . Also, d = |G : Gx | = |O|. Thus, the distinct cosets
of Gx in G are 1Gx , σGx , σ

2Gx , . . . , σ
d−1Gx . This shows that the

distinct elements of O are x , σ(x), σ2(x), . . . , σd−1(x). Ordering the
elements of O in this manner shows that σ cycles the elements of O,
that is, on an orbit of size d , σ acts as a d -cycle. This proves the
existence of a cycle decomposition for each σ ∈ Sn.
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Cycle Decomposition: Uniqueness

(Uniqueness) The orbits of 〈σ〉 are uniquely determined by σ, the
only latitude being the order in which the orbits are listed.

Within each orbit O, we may begin with any element as a
representative. Choosing σi (x) instead of x as the initial
representative simply produces the elements of O in the order

σi (x), σi+1(x), . . . , σd−1(x), x , σ(x), . . . , σi−1(x),

which is a cyclic permutation of the original list. Thus, the cycle
decomposition is unique up to a rearrangement of the cycles and up
to a cyclic permutation of the integers within each cycle.
Subgroups of symmetric groups are called permutation groups.

For any subgroup G of Sn the orbits of G will refer to its orbits on
{1, 2, . . . , n}.
The orbits of an element σ in Sn will mean the orbits of the group 〈σ〉
(i.e., the sets of integers comprising the cycles in its cycle
decomposition).
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Subsection 2

Action by Left Multiplication - Cayley’s Theorem
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Action by Left Multiplication

Let G be a group and consider G acting on itself (i.e., A = G ) by
left multiplication:

g · a = ga, for all g ∈ G , a ∈ G ,

where ga is the product of the two group elements g and a in G .

If G is written additively, the action will be written g · a = g + a and
called a left translation.

This action satisfies the two axioms of a group action.

1 · a = 1a = a;
g1 · (g2 · a) = g1(g2a) = (g1g2)a = (g1g2) · a.
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Action by Left Multiplication: Finite Case

When G is a finite group of order n, it is convenient to label the
elements of G with the integers 1, 2, . . . , n, in order to describe the
permutation representation afforded by this action.

So the elements of G are listed as g1, g2, . . . , gn.

For each g ∈ G , σg may be described as a permutation of
{1, 2, . . . , n} by

σg (i) = j if and only if ggi = gj .

A different labeling of the group elements will give a different
description of σg as a permutation of {1, 2, . . . , n}.
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A Representation of the Klein 4-Group

Let G = {1, a, b, c} be the Klein 4-group. Label the group elements
1, a, b, c with the integers 1, 2, 3, 4, respectively. Under this labeling,
the permutation σa induced by the action of left multiplication by the
group element a is:

a · 1 = a1 = a ⇒ σa(1) = 2
a · a = aa = 1 ⇒ σa(2) = 1
a · b = ab = c ⇒ σa(3) = 4
a · c = ac = b ⇒ σa(4) = 3.

· 1 a b c

1 1 a b c

a a 1 c b

b b c 1 a

c c b a 1

With this labeling of the elements of G , we see that σa = (1 2)(3 4).
Similarly, we may compute,

a 7→ σa = (1 2)(3 4), b 7→ σb = (1 3)(2 4), c 7→ σc = (1 4)(2 3),

which explicitly gives the permutation representation G → S4
associated to this action under the specific labeling.

George Voutsadakis (LSSU) Abstract Algebra I March 2016 20 / 86



Group Actions Action by Left Multiplication - Cayley’s Theorem

Properties of the Action by Left Multiplication

Claim: The action of a group on itself by left multiplication is:

(a) transitive;
(b) faithful;
(c) the stabilizer of any point is the identity subgroup.

(a) We must show that, for all a, b ∈ G , there exists g ∈ G , such that
b = g · a. Taking g = ba−1, we get:

g · a = (ba−1) · a = (ba−1)a = b(a−1a) = b.

(b) We must show that the kernel of the action is trivial. Suppose g is in
the kernel, i.e., that g · a = a, for all a ∈ G . Then, we have ga = a.
By right cancelation, we get g = 1.

(c) Let a ∈ G . We need to show that, if g ∈ Ga, then g = 1. Suppose
g ∈ Ga. Then g · a = a. But ga = a gives, by right cancelation,
g = 1.
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Left Multiplication on Cosets

Let H be any subgroup of G and let A be the set of all left cosets of
H in G . Define an action of G on A by

g · aH = gaH, for all g ∈ G , aH ∈ A,

where gaH is the left coset with representative ga.

This satisfies the two axioms for a group action:

1 · aH = (1a)H = aH .
g1 · (g2 · aH) = g1 · (g2a)H = (g1(g2a))H = ((g1g2)a)H = (g1g2) · aH .

So G does act on the set of left cosets of H by left multiplication.

If H = {1} is the identity subgroup of G , the coset aH is just {a}.

If we identify the element a with the set {a}, this action by left
multiplication on left cosets of the identity subgroup is the same as
the action of G on itself by left multiplication.

George Voutsadakis (LSSU) Abstract Algebra I March 2016 22 / 86



Group Actions Action by Left Multiplication - Cayley’s Theorem

Representations Afforded by Multiplication of Cosets

When H is of finite index m in G , it is convenient to label the left
cosets of H with the integers 1, 2, . . . ,m in order to describe the
permutation representation afforded by this action.

So the distinct left cosets of H in G are listed as

a1H, a2H, . . . , amH.

For each g ∈ G , the permutation σg may be described as a
permutation of {1, 2, . . . ,m} by

σg (i) = j if and only if gaiH = ajH.

A different labeling of the group elements will give a different
description of σg as a permutation of {1, 2, . . . ,m}.
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Example: Cosets of 〈s〉 in D8

Let G = D8 and H = 〈s〉. Label the distinct left cosets
1H, rH, r2H, r3H with the integers 1, 2, 3, 4, respectively. Under this
labeling, we compute the permutation as induced by the action of left
multiplication by the group element s on the left cosets of H:

s · 1H = sH = 1H ⇒ σs(1) = 1
s · rH = srH = r3H ⇒ σs(2) = 4
s · r2H = sr2H = r2H ⇒ σs(3) = 3
s · r3H = sr3H = rH ⇒ σs(4) = 2.

With this labeling of the left cosets of H we obtain σs = (2 4).
Similarly, we can see that σr = (1 2 3 4).

Since the permutation representation is a homomorphism, once its
value has been determined on generators for D8, its value on any
other element can be also determined.
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Properties of the Left Multiplication Action on Cosets

Theorem

Let G be a group, H be a subgroup of G and let G act by left
multiplication on the set A of left cosets of H in G . Denote by πH the
associated permutation representation afforded by this action. Then:

(1) G acts transitively on A;

(2) The stabilizer in G of the point 1H ∈ A is the subgroup H;

(3) The kernel of the action (i.e., the kernel of πH) is
⋂

x∈G xHx−1, and
kerπH is the largest normal subgroup of G contained in H.

(1) To see that G acts transitively on A, let aH and bH be any two
elements of A, and let g = ba−1. Then g · aH = (ba−1)aH = bH.
Thus, any two elements aH and bH of A lie in the same orbit.

(2) The stabilizer of the point 1H is, by definition,
{g ∈ G : g · 1H = 1H}, i.e., {g ∈ G : gH = H} = H.
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Proof of Properties (Cont’d)

(3) By definition of πH , we have

kerπH = {g ∈ G : gxH = xH, for all x ∈ G}
= {g ∈ G : (x−1gx)H = H, for all x ∈ G}
= {g ∈ G : x−1gx ∈ H, for all x ∈ G}
= {g ∈ G : g ∈ xHx−1, for all x ∈ G}
=

⋂

x∈G xHx−1.

For the second statement, observe, first, that kerπH E G and
kerπH ≤ H. Suppose, next, that N is any normal subgroup of G
contained in H. Then we have N = xNx−1 ≤ xHx−1, for all x ∈ G ,
whence N ≤

⋂

x∈G xHx−1 = kerπH . Therefore, kerπH is the largest
normal subgroup of G contained in H.
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Cayley’s Theorem

Corollary (Cayley’s Theorem)

Every group is isomorphic to a subgroup of some symmetric group. If G is
a group of order n, then G is isomorphic to a subgroup of Sn.

Let H = 1 and apply the preceding theorem to obtain a
homomorphism of G into SG . Since the kernel of this homomorphism
is contained in H = 1, G is isomorphic to its image in SG .

Note that G is isomorphic to a subgroup of a symmetric group, not to
the full symmetric group itself.

Example: We exhibited an isomorphism of the Klein 4-group with the
subgroup 〈(1 2)(3 4), (1 3)(2 4)〉 of S4.
Recall that subgroups of symmetric groups are called permutation

groups. So Cayley’s Theorem states that every group is isomorphic
to a permutation group.

The permutation representation afforded by left multiplication on the
elements of G is called the left regular representation of G .
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Subgroup of Index the Smallest Prime Divisor of the Order

We generalize our result on the normality of subgroups of index 2.

Corollary

If G is a finite group of order n and p is the smallest prime dividing |G |,
then any subgroup of index p is normal.

Remark: A group of order n need not have a subgroup of index p (for
example, A4 has no subgroup of index 2).

Suppose H ≤ G and |G : H| = p. Let πH be the permutation
representation afforded by multiplication on the set of left cosets of H
in G , K = kerπH and |H : K | = k . Then |G : K | = |G : H||H : K | =
pk . Since H has p left cosets, G/K is isomorphic to a subgroup of
Sp, by the First Isomorphism Theorem. By Lagrange’s Theorem,

pk = |G/K | divides p!. Thus, k | p!
p
= (p− 1)!. But all prime divisors

of (p − 1)! are less than p and, by the minimality of p, every prime
divisor of k is greater than or equal to p. So k = 1, and H = K E G .
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Subsection 3

Action by Conjugation - The Class Equation
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Action by Conjugation

Let G be a group and consider G acting on itself (i.e., A = G ) by
conjugation:

g · a = gag−1, for all g ∈ G , a ∈ G ,

where gag−1 is computed in the group G .

This definition satisfies the two axioms for a group action, since, for
all g1, g2 ∈ G and all a ∈ G ,

1 · a = 1a1−1 = a;
g1 · (g2 · a) = g1 · (g2ag

−1
2 ) = g1(g2ag

−1
2 )g−1

1 = (g1g2)a(g
−1
2 g−1

1 ) =
(g1g2)a(g1g2)

−1 = (g1g2) · a.

Definition

Two elements a and b of G are said to be conjugate in G if there is some
g ∈ G , such that b = gag−1, i.e., if and only if they are in the same orbit
of G acting on itself by conjugation. The orbits of G acting on itself by
conjugation are called the conjugacy classes of G .
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Examples

(1) If G is an abelian group, then the action of G on itself by conjugation
is the trivial action: g · a = a, for all g , a ∈ G . Thus, for each a ∈ G ,
the conjugacy class of a is {a}.

(2) If |G | > 1 then, unlike the action by left multiplication, G does not
act transitively on itself by conjugation, because {1} is always a
conjugacy class, i.e., an orbit for this action.
More generally, the one element subset {a} is a conjugacy class if and
only if gag−1 = a, for all g ∈ G , if and only if a is in the center of G .

(3) In S3 one can compute directly that the conjugacy classes are
{1}, {(1 2), (1 3), (2 3)} and {(1 2 3), (1 3 2)}.

We will develop techniques for computing conjugacy classes more
easily, particularly in symmetric groups.
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Action on Subsets by Conjugation

The action by conjugation can be generalized: If S is any subset of
G , define

gSg−1 = {gsg−1 : s ∈ S}.

A group G acts on the set P(G ) of all subsets of itself by defining
g · S = gSg−1, for any g ∈ G and S ∈ P(G ).

This defines a group action of G on P(G ).

If S is the one element set {s} then g · S is the one element set
{gsg−1}, whence this action of G on all subsets of G may be
considered as an extension of the action of G on itself by conjugation.

Definition

Two subsets S and T of G are said to be conjugate in G if there is some
g ∈ G , such that T = gSg−1, i.e., if and only if they are in the same orbit
of G acting on its subsets by conjugation.
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Number of Conjugates of S

We proved that if S is a subset of G , then the number of conjugates
of S equals the index |G : GS | of the stabilizer GS of S .

For action by conjugation GS = {g ∈ G : gSg−1 = S} = NG (S) is
the normalizer of S in G .

Proposition

The number of conjugates of a subset S in a group G is the index of the
normalizer of S , |G : NG (S)|. In particular, the number of conjugates of
an element s of G is the index of the centralizer of s, |G : CG (s)|.

The second assertion of the proposition follows from the observation
that NG ({s}) = CG (s).

The action of G on itself by conjugation partitions G into the
conjugacy classes of G , whose orders can be computed by this
proposition.
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The Class Equation

Theorem (The Class Equation)

Let G be a finite group and let g1, g2, . . . , gr be representatives of the
distinct conjugacy classes of G not contained in the center Z (G ) of G .
Then

|G | = |Z (G )|+
r∑

i=1

|G : CG (gi )|.

The element {x} is a conjugacy class of size 1 if and only if
x ∈ Z (G ), since, then, gxg−1 = x , for all g ∈ G . Let
Z (G ) = {1, z2, . . . , zm}, let K1,K2, . . . ,Kr be the conjugacy classes
of G not contained in the center, and let gi be a representative of Ki

for each i . Then the full set of conjugacy classes of G is given by
{1}, {z2}, . . . , {zm},K1, . . . ,Kr . Since these partition G , we have
|G | =

∑m
i=1 1 +

∑r
i=1 |Ki | = |Z (G )|+

∑r
i=1 |G : CG (gi )|.

All summands on the right hand side of the class equation are divisors
of the group order, since they are indices of subgroups of G .
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Examples

(1) The class equation gives no information in an abelian group since
conjugation is the trivial action and all conjugacy classes have size 1.

(2) In any group G , we have 〈g〉 ≤ CG (g). This observation helps to
minimize computations of conjugacy classes.

Example: In the quaternion group Q8, 〈i〉 ≤ CQ8
(i) ≤ Q8. Since

i 6∈ Z (Q8) and |Q8 : 〈i〉| = 2, we must have CQ8
(i) = 〈i〉. Thus, i has

precisely 2 conjugates in Q8, namely i and −i = kik−1. The other
conjugacy classes in Q8 are {1}, {−1}, {±i}, {±j}, {±k}. The first
two classes form Z (Q8) and the class equation is

|Q8| = 2 + 2 + 2 + 2.
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Examples (Cont’d)

(3) In D8, we have
Z (D8) = {1, r2}.

Moreover, the three subgroups of index 2

〈r〉, 〈s, r2〉, 〈sr , r2〉,

are abelian. So, if x 6∈ Z (D8), then |CD8
(x)| = 4.

The conjugacy classes of D8 are {1}, {r2}, {r , r3}, {s, sr2}, {sr , sr3}.

The first two classes form Z (D8) and the class equation for this group
is

|D8| = 2 + 2 + 2 + 2.
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The Center of a Group of Prime Power Order

Groups of prime power order have nontrivial centers:

Theorem

If p is a prime and P is a group of prime power order pa, for some a ≥ 1,
then P has a nontrivial center: Z (P) 6= 1.

By the class equation

|P | = |Z (P)|+
r∑

i=1

|P : CP(gi )|,

where g1, . . . , gr are representatives of the distinct non-central
conjugacy classes. By definition, CP(gi ) 6= P , for i = 1, 2, . . . , r . So p

divides |P : CP(gi )|. Since p also divides |P |, it follows that p divides
|Z (P)|. Hence the center must be nontrivial.
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G/Z (G ) Cyclic Implies G Abelian

Lemma

Let G be a group. If G/Z (G ) is cyclic, then G is abelian.

Suppose G/Z (G ) is cyclic. So G/Z (G ) = 〈xZ (G )〉, for some x ∈ G .

Claim: Every g ∈ G can be expressed in the form g = xaz , for some
a ∈ Z and some z ∈ Z (G ).

Let g ∈ G . Then gZ (G ) ∈ G/Z (G ). Thus, there exists a ∈ Z, such
that gZ (G ) = (xZ (G ))a, i.e., gZ (G ) = xaZ (G ). So (xa)−1g ∈ Z (G ),
i.e., there exists z ∈ Z (G ), such that (xa)−1g = z , or, equivalently,
g = xaz .

Now, for all g1, g2 ∈ G , we have that g1 = xa1z1 and g2 = xa2z2, for
some a1, a2 ∈ Z, z1, z2 ∈ Z (G ). Therefore,

g1g2 = (xa1z1)(x
a2z2) = xa1xa2z1z2 = xa1+a2z2z1

= xa2xa1z2z1 = xa2z2x
a1z1 = g2g1,

showing that G is abelian.
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Groups of Prime Squared Order

Corollary

If |P | = p2, for some prime p, then P is abelian. More precisely, P is
isomorphic to either Zp2 or Zp × Zp.

Since Z (P) 6= 1, by the preceding theorem, P/Z (P) is cyclic. Thus,
by the preceding lemma, P is abelian.

If P has an element of order p2, then P is cyclic.
If every nonidentity element of P has order p, let x be such a
nonidentity element of P and let y ∈ P − 〈x〉. Since
|〈x , y〉| > |〈x〉| = p, we must have that P = 〈x , y〉. Both x and y have
order p, whence 〈x〉 × 〈y〉 = Zp × Zp. It now follows directly that the
map (xa, yb) 7→ xayb is an isomorphism from 〈x〉 × 〈y〉 onto P .
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Conjugacy in Sn

From linear algebra we know that, in the matrix group GLn(F ),
conjugation is the same as “change of basis”: A 7→ PAP−1.

The situation in Sn is analogous:

Proposition

Let σ, τ be elements of the symmetric group Sn and suppose σ has cycle
decomposition

(a1 a2 . . . ak1)(b1 b2 . . . bk2) · · · .

Then τστ−1 has cycle decomposition

(τ(a1) τ(a2) . . . τ(ak1))(τ(b1) τ(b2) . . . τ(bk2)) · · · ,

i.e., τστ−1 is obtained from σ by replacing each entry i in the cycle
decomposition for σ by the entry τ(i).

Observe that if σ(i) = j , then τστ−1(τ(i)) = τ(j). Thus, if the
ordered pair i , j appears in the cycle decomposition of σ, then the
ordered pair τ(i), τ(j) appears in the cycle decomposition of τστ−1.
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Cycle Types and Partitions

Example: Let σ = (1 2)(3 4 5)(6 7 8 9) and let
τ = (1 3 5 7)(2 4 6 8). Then

τστ−1 = (3 4)(5 6 7)(8 1 2 9).

Definition (Cycle Type and Partition)

(1) If σ ∈ Sn is the product of disjoint cycles of lengths n1, n2, . . . , nr , with
n1 ≤ n2 ≤ · · · ≤ nr (including its 1-cycles), then the sequence of integers
n1, n2, . . . , nr is called the cycle type of σ.

(2) If n ∈ Z
+, a partition of n is any nondecreasing sequence of positive

integers whose sum is n.

We proved that the cycle type of a permutation is unique.

Example: The cycle type of an m-cycle in Sn is

1, 1, . . . , 1
︸ ︷︷ ︸

n − m 1’s

,m.
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Conjugacy Classes in Sn and Cycle Decomposition

Proposition

Two elements of Sn are conjugate in Sn if and only if they have the same
cycle type. The number of conjugacy classes of Sn equals the number of
partitions of n.

By the preceding proposition, conjugate permutations have the same
cycle type. Conversely, suppose the permutations σ1 and σ2 have the
same cycle type. Order the cycles in nondecreasing length, including
1-cycles. Ignoring parentheses, each cycle decomposition is a list in
which all the integers from 1 to n appear exactly once. Define τ to be
the function which maps the i -th integer in the list for σ1 to the i -th
integer in the list for σ2. Thus τ is a permutation. Since the
parentheses appear at the same positions in each list, τσ1τ

−1 = σ2.

Since there is a bijection between the conjugacy classes of Sn and the
permissible cycle types and each cycle type for a permutation in Sn is
a partition of n, the second assertion of the proposition follows.
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Examples

(1) Let σ1 = (1)(3 5)(8 9)(2 4 7 6) and let σ2 = (3)(4 7)(8 1)(5 2 6 9).
Then define τ by τ(1) = 3, τ(3) = 4, τ(5) = 7, τ(8) = 8, etc. Then
τ = (1 3 4 2 5 7 6 9) and τσ1τ

−1 = σ2.

(2) Reorder σ2 as σ2 = (3)(8 1)(4 7)(5 2 6 9). Then the corresponding τ
is defined by τ(1) = 3, τ(3) = 8, τ(5) = 1, τ(8) = 4, etc. This gives
the permutation τ = (1 3 8 4 2 5)(6 9 7) again with τσ1τ

−1 = σ2.
Hence, there are many elements conjugating σ1 into σ2.

(3) If n = 5, the partitions of 5 and corresponding representatives of the
conjugacy classes (with 1-cycles not written) are:

Partition of 5 Representative of Conjugacy Class

1, 1, 1, 1, 1 1
1, 1, 1, 2 (1 2)
1, 1, 3 (1 2 3)
1, 4 (1 2 3 4)
5 (1 2 3 4 5)
1, 2, 2 (1 2)(3 4)
2, 3 (1 2)(3 4 5)
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Centralizers of Cycles in Sn

If σ is an m-cycle in Sn, then the number of conjugates of σ (i.e., the

number of m-cycles) is n·(n−1)·····(n−m+1)
m

. By a preceding proposition,

it equals the index of the centralizer of σ: |Sn|
|CSn (σ)|

. Since |Sn| = n!,

we obtain |CSn(σ)| = m · (n −m)!.
The element σ certainly commutes with 1, σ, σ2, . . . , σm−1.
It also commutes with any permutation in Sn whose cycles are disjoint
from σ and there are (n −m)! permutations of this type (the full
symmetric group on the numbers not appearing in σ).

The product of elements of these two types already accounts for
m · (n −m)! elements commuting with σ. Thus, this is the full
centralizer of a in Sn.

So, if σ is an m-cycle in Sn, then CSn(σ) = {σiτ : 0 ≤ i ≤ m − 1,
τ ∈ Sn−m}, where Sn−m denotes the subgroup of Sn which fixes all
integers appearing in the m-cycle σ (and is the identity subgroup if
m = n or m = n − 1).
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Normal Subgroups and Conjugacy Classes

We use this discussion of the conjugacy classes in Sn to give a
combinatorial proof of the simplicity of A5.

Claim

The normal subgroups of a group G are the union of conjugacy classes of
G , i.e., if H E G , then for every conjugacy class K of G , either K ⊆ H or
K ∩ H = ∅.

If K ∩ H = ∅, we are done.

If K ∩ H 6= ∅, there exists x ∈ K ∩ H. Then gxg−1 ∈ gHg−1, for all
g ∈ G . Since H is normal, gHg−1 = H. Hence H contains all the
conjugates of x , i.e., K ⊆ H.

George Voutsadakis (LSSU) Abstract Algebra I March 2016 45 / 86



Group Actions Action by Conjugation - The Class Equation

An and 3-Cycles

Lemma

If n ≥ 3, every element of An is a 3-cycle or a product of 3-cycles.

If α ∈ An, then α is a product of an even number of transpositions

α = τ1τ2 · · · τ2q−1τ2q .

We may assume that adjacent τ ’s are distinct. As the transpositions
can be grouped in pairs τ2i−1τ2i it suffices to consider products ττ ′,
where τ and τ ′ are transpositions.

If τ and τ ′ are not disjoint, then τ = (i j) and τ ′ = (i k). Then
ττ ′ = (i k j).
If τ and τ ′ are disjoint, then τ = (i j) and τ ′ = (k ℓ). Then

ττ ′ = (i j)(k ℓ) = (i j)(j k)(j k)(k ℓ) = (i j k)(j k ℓ).
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Simplicity of A5

Theorem

A5 is a simple group.

We show that if H E A5 and H 6= 1, then H = A5.

If H contains a 3-cycle, then, by normality, H contains all its
conjugates. Thus, H contains all 3-cycles. By the preceding lemma,
H = A5. It suffices, therefore, to show that H contains a 3-cycle.

Since H 6= 1, it contains some σ 6= 1. After a possible renaming, we
may assume that it contains σ = (1 2 3) or σ = (1 2)(3 4) or
σ = (1 2 3 4 5).

If σ is a 3-cycle, then we are done.
If σ = (1 2)(3 4), define τ = (1 2)(3 5). By normality, H contains
(τστ−1)σ−1 = (3 5 4).
If σ = (1 2 3 4 5), define ρ = (1 3 2). H contains ρσρ−1σ−1 = (1 3 4).

Thus, in all cases H contains a 3-cycle.
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Right Group Actions

If in the definition of an action the group elements appear to the left
of the set elements, the notion might be termed more precisely a left

group action.
One can analogously define the notion of a right group action of the
group G on the nonempty set A as a map from A× G to A, denoted
by a · g , for a ∈ A and g ∈ G , that satisfies:
(1) (a · g1) · g2 = a · (g1g2), for all a ∈ A, and g1, g2 ∈ G ;
(2) a · 1 = a, for all a ∈ A.

Example: Conjugation is often written as a right group action using
the notation ag = g−1ag , for all g , a ∈ G .

Similarly, for subsets S of G one defines Sg = g−1Sg .
In this notation the axioms for a right action are verified as follows,
for all g1, g2, a ∈ G :

a1 = 1−1a1 = a;
(ag1)g2 = (g−1

1 ag1)
g2 = g−1

2 (g−1
1 ag1)g2 = (g1g2)

−1a(g1g2) = a(g1g2).

The two axioms take the form of the “laws of exponentiation”.
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Relation Between Left and Right Group Actions

For arbitrary group actions, if we are given a left group action of G on
A, then the map A× G → A, defined by a · g = g−1 · a is a right
group action.

Conversely, given a right group action of G on A, we can form a left
group action by g · a = a · g−1.

Call these pairs corresponding group actions.

For any corresponding left and right actions the orbits are the same:
In fact, for all a, b ∈ A and all g ∈ G ,

a = g · b iff a = b · g−1.

Thus, a and b are in the same left orbit iff they are in the same right
orbit.
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Subsection 4

Automorphisms
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Automorphisms of a Group

Definition (Automorphism)

Let G be a group. An isomorphism from G onto itself is called an
automorphism of G . The set of all automorphisms of G is denoted by
Aut(G ).

Note that composition of automorphisms is defined since the domain
and range of each automorphism is the same.

Aut(G ) is a group under composition of automorphisms, called the
automorphism group of G .

Automorphisms of a group G are, in particular, permutations of the
set G , whence Aut(G ) is a subgroup of SG .
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Actions by Conjugation on a Normal Subgroup

Proposition

Let H be a normal subgroup of the group G . Then G acts by conjugation
on H as automorphisms of H. More specifically, the action of G on H by
conjugation is defined, for each g ∈ G , by h 7→ ghg−1, for each h ∈ H.
For each g ∈ G , conjugation by g is an automorphism of H. The
permutation representation afforded by this action is a homomorphism of
G into Aut(H) with kernel CG (H). In particular, G/CG (H) is isomorphic
to a subgroup of Aut(H).

Let ϕg be conjugation by g . Because g normalizes H, ϕg maps H to
itself. Since we have already seen that conjugation defines an action,
it follows that:

ϕ1 = 1 (the identity map on H);
ϕa ◦ ϕb = ϕab, for all a, b ∈ G .

Thus, each ϕg gives a bijection from H to itself since it has a 2-sided
inverse ϕg−1 .
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Actions by Conjugation on a Normal Subgroup (Cont’d)

Each ϕg is a homomorphism from H to H because, for all h, k ∈ H,

ϕg (hk) = g(hk)g−1 = gh(g−1g)kg−1

= (ghg−1)(gkg−1) = ϕg (h)ϕg (k).

This proves that conjugation by any fixed element of G defines an
automorphism of H.
By the preceding remark, the permutation representation ψ : G → SH
defined by ψ(g) = ϕg has image contained in the subgroup Aut(H)
of SH . Finally,

kerψ = {g ∈ G : ϕg = id}
= {g ∈ G : ghg−1 = h, for all h ∈ H}
= CG (H).

The First Isomorphism Theorem implies the final statement of the
proposition.
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Consequences of the Proposition

The action by conjugation on a normal subgroup must send subgroups
to subgroups, elements of order n to elements of order n, etc.

Corollary

If K is any subgroup of the group G and g ∈ G , then K ∼= gKg−1.
Conjugate elements and conjugate subgroups have the same order.

Letting G = H in the proposition shows that conjugation by g ∈ G is
an automorphism of G .

Corollary

For any subgroup H of a group G , the quotient group NG (H)/CG (H) is
isomorphic to a subgroup of Aut(H). In particular, G/Z (G ) is isomorphic
to a subgroup of Aut(G ).

Since H is a normal subgroup of the group NG (H), the proposition
applied with NG (H) playing the role of G , implies the first assertion.
When H = G , NG (G ) = G and CG (G ) = Z (G ).
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Inner Automorphisms

Definition

Let G be a group and let g ∈ G . Conjugation by g is called an inner

automorphism of G . The subgroup of Aut(G ) consisting of all inner
automorphisms is denoted by Inn(G ).

The collection of inner automorphisms of G is a subgroup of Aut(G ).

By the preceding corollary, Inn(G ) ∼= G/Z (G ).

If H is a normal subgroup of G , conjugation by an element of G when
restricted to H is an automorphism of H but need not be an inner
automorphism of H (see next slide).
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Examples of Inner Automorphisms

(1) A group G is abelian if and only if every inner automorphism is trivial.
If H is an abelian normal subgroup of G and H is not contained in
Z (G ), then there is some g ∈ G , such that conjugation by g

restricted to H is not an inner automorphism of H.

Example: Consider

G = A4 = {1, (1 2 3), (1 3 2), (1 2 4), (1 4 2), (1 3 4), (1 4 3),
(2 3 4), (2 4 3), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)};

H = {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)};
g = any 3-cycle.

(2) Since Z (Q8) = 〈−1〉, we have Inn(Q8) ∼= V4.

(3) Since Z (D8) = 〈r2〉, we have Inn(D8) ∼= V4.

(4) Since for all n ≥ 3, Z (Sn) = 1, we have Inn(Sn) ∼= Sn.
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Information from Automorphism Groups of Subgroups

Information about the automorphism group of a subgroup H of a
group G translates into information about NG (H)/CG (H).

Example: If H ∼= Z2, then H has unique elements of orders 1 and 2.
Thus, by the corollary, Aut(H) = 1. Thus, if H ∼= Z2,
NG (H) = CG (H).

If, in addition, H is a normal subgroup of G , then H ≤ Z (G ).

The example illustrates that the action of G by conjugation on a
normal subgroup H can be restricted by knowledge of the
automorphism group of H.

This in turn can be used to investigate the structure of G and obtain
certain classification theorems.
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Characteristic Subgroups

Definition (Characteristic Subgroup)

A subgroup H of a group G is called characteristic in G , denoted
H char G , if every automorphism of G maps H to itself, i.e., σ(H) = H,
for all σ ∈ Aut(G ).

Some results concerning characteristic subgroups:

(1) Characteristic subgroups are normal.
(2) If H is the unique subgroup of G of a given order, then H is

characteristic in G .
(3) If K char H and H E G , then K E G (so, although “normality” is not

a transitive property (i.e., a normal subgroup of a normal subgroup
need not be normal), a characteristic subgroup of a normal subgroup is
normal).

The properties show that, in a certain sense, characteristic subgroups
may be thought of as “strongly normal” subgroups.
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Automorphism Group of Zn

Proposition

The automorphism group of the cyclic group of order n is isomorphic to
(Z/nZ)×, an abelian group of order ϕ(n), where ϕ is Euler’s function.

Let x be a generator of the cyclic group Zn. lf ψ ∈ Aut(Zn), then
ψ(x) = xa, for some a ∈ Z, and the integer a uniquely determines ψ.
Denote this automorphism by ψa. As usual, since |x | = n, the integer
a is only defined mod n. Since ψa is an automorphism, x and xa must
have the same order. Hence (a, n) = 1. Furthermore, for every a

relatively prime to n, the map x 7→ xa is an automorphism of Zn.
Hence, we have a surjective map Ψ : Aut(Zn) → (Z/nZ)×; ψa 7→ a

(mod n). The map Ψ is a homomorphism: For all ψa, ψb ∈ Aut(Zn),
ψa ◦ ψb(x) = ψa(x

b) = (xb)a = xab = ψab(x). So
Ψ(ψa ◦ ψb) = Ψ(ψab) = ab (mod n) = Ψ(ψa)Ψ(ψb). Finally, Ψ is
clearly injective. Hence Ψ is an isomorphism.
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Groups of Order pq

Claim: Let G be a group of order pq, where p and q are primes (not
necessarily distinct) with p ≤ q. If p ∤ q − 1, then G is abelian.

If Z (G ) 6= 1, Lagrange’s Theorem forces G/Z (G ) to be cyclic. Hence
G is abelian. Hence we may assume Z (G ) = 1.

Suppose every nonidentity element of G has order p. Then the
centralizer of every nonidentity element has index q. Thus, the class
equation for G reads pq = 1 + kq. This is impossible.
Thus G contains an element x of order q. Let H = 〈x〉. Since H has
index p and p is the smallest prime dividing |G |, the subgroup H is
normal in G by a preceding corollary. Since Z (G) = 1, we must have
CG (H) = H . Thus G/H = NG (H)/CG (H) is a group of order p
isomorphic to a subgroup of Aut(H), by a preceding corollary. By a
preceding proposition, Aut(H) has order ϕ(q) = q − 1. By Lagrange’s
Theorem, p | q − 1, contrary to assumption.

This shows that G must be abelian.
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Groups of Order pq (Cont’d)

Claim: Let G be an abelian group of order pq, with p, q two different
primes. Then G is cyclic.

Since |G | = pq, with p, q prime, there exist, by Cauchy’s Theorem,
elements x , y ∈ G , such that |x | = p and |y | = q. We have

(xy)pq = xpqypq = (xp)q(yq)p = 1q1p = 1.

Therefore, we get that |xy | | pq. We show that |xy | 6= 1, p, q. Then
|xy | = pq and G = 〈xy〉.

If |xy | = 1, then xy = 1. Then y = x−1 whence |y | = |x | = p, a
contradiction.
If |xy | = p, then yp = xpyp = (xy)p = 1. But then q | p, a
contradiction.
The case |xy | = q is similar to the preceding one.
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Subsection 5

Sylow’s Theorem
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p-Groups and Sylow’s p-Subgroups

Sylow’s Theorem provides a partial converse to Lagrange’s Theorem.

Definition (p-Groups and Sylow’s p-Subgroups)

Let G be a group and let p be a prime.

(1) A group of order pa, for some a ≥ 1, is called a p-group. Subgroups of G
which are p-groups are called p-subgroups.

(2) If G is a group of order pam, where p ∤ m, then a subgroup of order pa is
called a Sylow p-subgroup of G .

(3) The set of Sylow p-subgroups of G will be denoted by Sylp(G).

The number of Sylow p-subgroups of G will be denoted by np(G) (or just
np, when G is clear from the context).

George Voutsadakis (LSSU) Abstract Algebra I March 2016 63 / 86



Group Actions Sylow’s Theorem

A Preliminary Lemma

Lemma

Let P ∈ Sylp(G ). If Q is any p-subgroup of G , then Q ∩ NG (P) = Q ∩ P .

Let H = NG (P) ∩ Q. Since P ≤ NG (P), it is clear that P ∩ Q ≤ H.
So, it suffices to prove the reverse inclusion. Since, by definition,
H ≤ Q, this is equivalent to showing H ≤ P . We do this by
demonstrating that PH is a p-subgroup of G containing both P and
H. Since, P is a p-subgroup of G of largest possible order, we must
have PH = P , i.e., H ≤ P .

Since H ≤ NG (P), by a preceding corollary, PH is a subgroup. We

know that |PH| = |P||H|
|P∩H| . All the numbers in the above quotient are

powers of p, so PH is a p-group. Moreover, P is a subgroup of PH so
the order of PH is divisible by pa, the largest power of p which divides
|G |. These two facts force |PH| = pa = |P |. This, in turn, implies
P = PH and H ≤ P .
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Sylow’s Theorem

Theorem (Sylow’s Theorem)

Let G be a group of order pam, where p is a prime not dividing m.

(1) Sylow p-subgroups of G exist, i.e., Sylp(G ) 6= ∅.

(2) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G , then
there exists g ∈ G , such that Q ≤ gPg−1, i.e., Q is contained in
some conjugate of P .
In particular, any two Sylow p-subgroups of G are conjugate in G .

(3) The number of Sylow p-subgroups of G is of the form 1 + kp, i.e.,
np ≡ 1 (mod p).
Further, np is the index in G of the normalizer NG (P) for any Sylow
p-subgroup P , whence np divides m.
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Proof of Sylow’s Theorem Part (1)

Sylp(G ) 6= ∅: By induction on |G |.
If |G | = 1, there is nothing to prove.
Assume inductively the existence of Sylow p-subgroups for all groups of
order less than |G |.

If p divides |Z (G)|, then by Cauchy’s Theorem for abelian groups,
Z (G) has a subgroup N of order p. Let G = G/N, so that
|G | = pa−1m. By induction, G has a subgroup P of order pa−1. If we
let P be the subgroup of G containing N such that P/N = P, then
|P| = |P/N||N| = pa. Thus, P is a Sylow p-subgroup of G .
Suppose p does not divide |Z (G)|. Let g1, g2, . . . , gr be representatives
of the distinct non-central conjugacy classes of G . The class equation
for G is |G | = |Z (G)|+

∑r

i=1 |G : CG (gi )|. If p | |G : CG (gi )|, for all i ,
then since p | |G |, we would also have p | |Z (G)|, a contradiction.
Thus, for some i , p does not divide |G : CG (gi )|. For this i , let
H = CG (gi ). Then |H| = pak , where p ∤ k . Since gi 6∈ Z (G),
|H| < |G |. By induction, H has a Sylow p-subgroup P, which of course
is also a subgroup of G . Since |P| = pa, P is a Sylow p-subgroup of G,
which completes the induction.
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Preparation for Sylow’s Theorem Parts (2) and (3)

By Part (1), there exists a Sylow p-subgroup P of G . Let {P1,P2,
. . . ,Pr} = S include all conjugates of P , i.e., S = {gPg−1 : g ∈ G}
and let Q be any p-subgroup of G . By definition of S, G and, hence,
also Q, acts by conjugation on S. Write S as a disjoint union of
orbits under this action by Q: S = O1 ∪ O2 ∪ · · · ∪ Os , where
r = |O1|+ · · · + |Os | (r does not depend on Q, but the number of
Q-orbits s does). By definition, G has only one orbit on S, but a
subgroup Q of G may have more than one orbit. Renumber the
elements of S so that Pi ∈ Oi , 1 ≤ i ≤ s. Now |Oi | = |Q : NQ(Pi )|.
By definition, NQ(Pi ) = NG (Pi ) ∩ Q. By the lemma, NG (Pi ) ∩ Q =
Pi ∩Q. Thus, |Oi | = |Q : Pi ∩ Q|, 1 ≤ i ≤ s.

We show r ≡ 1 (mod p): Take Q = P1. Then, |O1| = 1. For all
i > 1, P1 6= Pi . So P1 ∩ Pi < P1. It follows |Oi | = |P1 : P1 ∩ Pi | > 1,
2 ≤ i ≤ s. Since P1 is a p-group, |P1 : P1 ∩ Pi | must be a power of p.
Hence, p | |Oi |, 2 ≤ i ≤ s. So r = |O1|+

∑s
i=2 |Oi | ≡ 1 (mod p).
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Proof of Sylow’s Theorem Parts (2) and (3)

(2) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G , then
there exists g ∈ G , such that Q ≤ gPg−1, i.e., Q is contained in
some conjugate of P :

Let Q be any p-subgroup of G . Suppose Q is not contained in Pi , for
any i ∈ {1, 2, . . . , r}, i.e., Q � gPg−1, for any g ∈ G . Then
Q ∩ Pi < Q, for all i . By preceding slide, |Oi | = |Q : Q ∩ Pi | > 1.
Thus, p | |Oi |, for all i , whence p divides |O1|+ · · · + |Os | = r ,
contradictng r ≡ 1 (mod p).

If Q is any Sylow p-subgroup of G , Q ≤ gPg−1, for some g ∈ G .
Since |gPg−1| = |Q| = pa, we must have gPg−1 = Q.

(3) The number of Sylow p-subgroups of G is of the form 1 + kp and
np = |G : NG (P)|, for any Sylow p-subgroup P , whence np | m:

By Part (2), S = Sylp(G ), since every Sylow p-subgroup of G is
conjugate to P . So np = r ≡ 1 (mod p). Since all Sylow p-subgroups
are conjugate, np = |G : NG (P)|, for any P ∈ Sylp(G ).
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Normality of a Sylow p-Subgroup

Note that the conjugacy part of Sylow’s Theorem shows that any two
Sylow p-subgroups of a group are isomorphic.

Corollary

Let P be a Sylow p-subgroup of G . Then the following are equivalent:

(1) P is the unique Sylow p-subgroup of G , i.e., np = 1.

(2) P is normal in G .

(3) P is characteristic in G .

(4) All subgroups generated by elements of p-power order are p-groups, i.e., if X
is any subset of G , such that |x | is a power of p, for all x ∈ X , then 〈X 〉 is a
p-group.

(1)⇔(2): If (1) holds, then gPg−1 = P , for all g ∈ G , since
gPg−1 ∈ Sylp(G ). Hence P is normal in G .

Conversely, if P E G and Q ∈ Sylp(G ), then, by Sylow’s Theorem,
exists g ∈ G , such that Q = gPg−1 = P . Thus, Sylp(G ) = {P}.
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Normality of a Sylow p-Subgroup (Cont’d)

(2)⇔(3): Since characteristic subgroups are normal, (3) implies (2).

Conversely, if P E G , we just proved P is the unique subgroup of G
of order pa, whence P char G .

(1)⇔(4): Finally, assume (1) holds and suppose X is a subset of G ,
such that |x | is a power of p, for all x ∈ X . By the conjugacy part of
Sylow’s Theorem, for each x ∈ X , there is some g ∈ G , such that
x ∈ gPg−1 = P . Thus, X ⊆ P , whence 〈X 〉 ≤ P , and 〈X 〉 is a
p-group.

Conversely, if (4) holds, let X be the union of all Sylow p-subgroups
of G . If P is any Sylow p-subgroup, P is a subgroup of the p-group
〈X 〉. Since P is a p-subgroup of G of maximal order, we must have
P = 〈X 〉.
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Examples

Let G be a finite group and let p be a prime.
(1) If p ∤ |G |, the Sylow p-subgroup of G is the trivial group (and all parts

of Sylow’s Theorem hold trivially).
If |G | = pa, G is the unique Sylow p-subgroup of G .

(2) A finite abelian group has a unique Sylow p-subgroup for each prime p.
This subgroup consists of all elements x whose order is a power of p. It
is sometimes called the p-primary component of the group.

(3) S3 has three Sylow 2-subgroups: {(1 2)}, {(2 3)} and {(1 3)}. It has a
unique (hence normal) Sylow 3-subgroup: {(1 2 3)} = A3. Note that
3 ≡ 1 (mod 2).

(4) A4 has a unique Sylow 2-subgroup: {(1 2)(3 4), (1 3)(2 4)} ∼= V4.
It has four Sylow 3-subgroups:

{(1 2 3)}, {(1 2 4)}, {(1 3 4)} and {(2 3 4)}.

Note that 4 ≡ 1 (mod 3).
(5) S4 has n2 = 3 and n3 = 4. Since S4 contains a subgroup isomorphic to

D8, every Sylow 2-subgroup of S4 is isomorphic to D8.
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Tips for Applying Sylow’s Theorem

Most of the examples use Sylow’s Theorem to prove that a group of a
particular order is not simple.

For groups of small order, the congruence condition of Sylow’s
Theorem alone is often sufficient to force the existence of a normal
subgroup.

The first step in any numerical application of Sylow’s Theorem is to
factor the group order into prime powers.

The largest prime divisors of the group order tend to give the fewest
possible values for np , which limits the structure of the group G .

In some situations where Sylow’s Theorem alone does not force the
existence of a normal subgroup, but some additional argument (often
involving studying the elements of order p for a number of different
primes p) proves the existence of a normal Sylow subgroup.
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Groups of Order pq, p and q Primes With p < q

Claim: Suppose |G | = pq, for primes p and q, with p < q. Let
P ∈ Sylp(G ) and let Q ∈ Sylq(G ). Then Q is normal in G and, if P
is also normal in G , then G is cyclic.

The three conditions: nq = 1 + kq, for some k ≥ 0, nq divides p and
p < q, together force k = 0. Since nq = 1, Q E G .
Since np divides the prime q, we must have np = 1 or q.

Suppose P E G . Let P = 〈x〉 and Q = 〈y〉. Since P E G , G/CG (P)
is isomorphic to a subgroup of Aut(Zp). The latter group has order
p− 1. Lagrange’s Theorem together with the observation that neither
p nor q can divide p − 1 imply that G = CG (P). In this case
x ∈ P ≤ Z (G ). So x and y commute. This means |xy | = pq. Hence,
in this case G is cyclic: G ∼= Zpq.
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Groups of Order 30

Claim Let G be a group of order 30. Then G has a normal subgroup
isomorphic to Z15.

Note that any subgroup of order 15 is necessarily normal (index 2)
and cyclic (preceding result). So it is only necessary to show there
exists a subgroup of order 15. We give an argument which illustrates
how Sylow’s Theorem can be used in conjunction with a counting of
elements of prime order to produce a normal subgroup:

Let P ∈ Syl5(G ) and let Q ∈ Syl3(G ). If either P or Q is normal in
G , then PQ is a group of order 15.

Note, also, that, if either P or Q is normal, then both P and Q are
characteristic subgroups of PQ.
Moreover, since PQ E G , both P and Q are normal in G .

We assume, therefore, that neither Sylow subgroup is normal.
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Groups of Order 30 (Cont’d)

We assume that neither Sylow subgroup P ∈ Syl5(G ) or Q ∈ Syl3(G )
is normal. The only possibilities by Part (3) of Sylow’s Theorem are
n5 = 6 and n3 = 10.

Each element of order 5 lies in a Sylow 5-subgroup;
Each Sylow 5-subgroup contains 4 nonidentity elements;
By Lagrange’s Theorem, distinct Sylow 5-subgroups intersect in the
identity.

Thus, the number of elements of order 5 in G is the number of
nonidentity elements in one Sylow 5-subgroup times the number of
Sylow 5-subgroups. This would be 4 · 6 = 24 elements of order 5.

By similar reasoning, the number of elements of order 3 would be
2 · 10 = 20.

This is absurd since a group of order 30 cannot contain 24 + 20 = 44
distinct elements. One of P or Q (hence, both) must be normal in G .
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Groups of Order 12

Claim: Let G be a group of order 12. Then either G has a normal
Sylow 3-subgroup or G ∼= A4 (in the latter case G has a normal Sylow
2-subgroup).

Suppose n3 6= 1 and let P ∈ Syl3(G ). Since n3 | 4 and n3 ≡ 1
(mod 3), it follows that n3 = 4. Since distinct Sylow 3-subgroups
intersect in the identity and each contains two elements of order 3, G
contains 2 · 4 = 8 elements of order 3. Since |G : NG (P)| = n3 = 4,
NG (P) = P . Now G acts by conjugation on its four Sylow
3-subgroups. So this action affords a permutation representation. Its
kernel K is the subgroup of G which normalizes all Sylow 3-subgroups
of G . In particular, K ≤ NG (P) = P . Since P is not normal in G , by
assumption, K = 1, i.e., ϕ is injective and G ∼= ϕ(G ) ≤ S4. Since G

contains 8 elements of order 3 and there are precisely 8 elements of
order 3 in S4, all contained in A4, it follows that ϕ(G ) intersects A4

in a subgroup of order at least 8. Since both groups have order 12 it
follows that ϕ(G ) = A4, so that G ∼= A4.
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Groups of Order p2q, p and q Distinct Primes

Claim: Let G be a group of order p2q. Then G has a normal Sylow
subgroup (for either p or q).

Let P ∈ Sylp(G ) and let Q ∈ Sylq(G ).

Suppose, first, p > q. Since np | q and np = 1 + kp, we must have
np = 1. Thus, P E G .
Consider now the case p < q.

If nq = 1, Q is normal in G .
Assume nq > 1, i.e., nq = 1 + tq, for some t > 0. Now nq divides p2.
So nq = p or p2. Since q > p, we cannot have nq = p, Hence, nq = p2.
Thus, tq = p2 − 1 = (p − 1)(p + 1). Since q is prime, either q | p − 1
or q | p + 1. The former is impossible since q > p so the latter holds.
Since q > p, but q | p + 1, we must have q = p + 1. This forces p = 2,
q = 3 and |G | = 12.
The result now follows from the preceding example.
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Groups of Order 60

We use the technique of changing from one prime to another and
induction in order to study groups of order 60.

Proposition

If |G | = 60 and G has more than one Sylow 5-subgroup, then G is simple.

Suppose by way of contradiction that |G | = 60 and n5 > 1, but that
there exists H a normal subgroup of G with H 6= 1 or G . By Sylow’s
Theorem, the only possibility for n5 is 6. Let P ∈ Syl5(G ), so that
|NG (P)| = 10, since its index is n5.

If 5 | |H |, then H contains a Sylow 5-subgroup of G . Since H is
normal, it contains all 6 conjugates of this subgroup. In particular,
|H | ≥ 1 + 6 · 4 = 25. The only possibility is |H | = 30. This leads to a
contradiction since a previous example proved that any group of order
30 has a normal (hence unique) Sylow 5-subgroup. This argument
shows 5 does not divide |H |, for any proper normal subgroup H of G .
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Groups of Order 60 (Cont’d)

We have assumed |G | = 60 and n5 > 1, but that there exists H a
normal subgroup of G with H 6= 1 or G . We reasoned that n5 = 6,
we let P ∈ Syl5(G ) (thus, |NG (P)| = 10), and showed that 5 ∤ |H|.

If |H | = 6 or 12, H has a normal, hence characteristic, Sylow subgroup,
which is therefore also normal in G . Replacing H by this subgroup, if
necessary, we may assume |H | = 2, 3 or 4. Let G = G/H , so |G | = 30,
20 or 15. In each case, G has a normal subgroup P of order 5 by
previous results. If we let H1 be the complete preimage of P in G , then
H1 E G , H1 6= G and 5 | |H1|. This contradicts the preceding
paragraph and completes the proof.

Corollary

A5 is simple.

The subgroups 〈(1 2 3 4 5)〉 and 〈(1 3 2 4 5)〉 are distinct Sylow
5-subgroups of A5, so the result follows immediately from the
proposition.
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Simple Group of Order 60

Proposition

If G is a simple group of order 60, then G ∼= A5.

Let G be a simple group of order 60, so n2 = 3, 5 or 15. Let
P ∈ Syl2(G ) and let N = NG (P), so |G : N| = n2.
Observe that G has no proper subgroup H of index less that 5:

If H were a subgroup of G of index 4, 3 or 2, then, by a preceding
theorem, G would have a normal subgroup K contained in H , with
G/K isomorphic to a subgroup of S4, S3 or S2. Since K 6= G ,
simplicity forces K = 1. This is impossible since 60 (= |G |) does not
divide 4!. This argument shows, in particular, that n2 6= 3.

If n2 = 5, then N has index 5 in G . So the action of G by left
multiplication on the set of left cosets of N gives a permutation
representation of G into S5. Since the kernel of this representation is
a proper normal subgroup and G is simple, the kernel is 1 and G is
isomorphic to a subgroup of S5.
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Simple Group of Order 60 (Cont’d)

We continue with the case n2 = 5: We discovered that G is
isomorphic to a subgroup of S5. Identifying G with this isomorphic
copy so that we may assume G ≤ S5. If G is not contained in A5,
then S5 = GA5. By the Second Isomorphism Theorem, A5 ∩ G is of
index 2 in G . Since G has no (normal) subgroup of index 2, this is a
contradiction. This argument proves G ≤ A5.

Since |G | = |A5|, the isomorphic copy of G in S5 coincides with A5.
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Simple Group of Order 60 (The Case n2 = 15)

Finally, assume n2 = 15.

If, for all distinct Sylow 2-subgroups P and Q of G , P ∩ Q = 1, then
the number of nonidentity elements in Sylow 2-subgroups of G would
be (4− 1) · 15 = 45. But n5 = 6, whence the number of elements of
order 5 in G is (5− 1) · 6 = 24, accounting for 69 elements. This
contradiction proves that there exist distinct Sylow 2-subgroups P
and Q, with |P ∩ Q| = 2.

Let M = NG (P ∩ Q). Since P and Q are abelian (being groups of
order 4), P and Q are subgroups of M. Since G is simple, M 6= G .
Thus 4 divides |M| and |M| > 4 (otherwise, P = M = Q). The only
possibility is |M| = 12, i.e., M has index 5 in G (recall M cannot have
index 3 or 1). But now the argument of the preceding paragraph,
applied to M in place of N, gives G ∼= A5. This leads to a
contradiction in this case because n2(A5) = 5.
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Subsection 6

The Simplicity of An
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Simplicity of An

There are a number of proofs of the simplicity of An, n ≥ 5.
The most elementary involves showing An is generated by 3-cycles and
that a normal subgroup must contain one 3-cycle, hence must contain
all the 3-cycles so cannot be a proper subgroup.
We use, next, a less computational approach.

Note that A3 is an abelian simple group and that A4 is not simple
(n2(A4) = 1).

Theorem

An is simple for all n ≥ 5.

By induction on n.
The result has already been established for n = 5.
So assume n ≥ 6 and let G = An. Assume there exists H E G , with
H 6= 1 or G . For each i ∈ {1, 2, . . . , n}, let Gi be the stabilizer of i in
the natural action of G on i ∈ {1, 2, . . . , n}. Thus, Gi ≤ G and
Gi

∼= An−1. By induction, Gi is simple for 1 ≤ i ≤ n.
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Simplicity of An: If τ 6= 1, then, for all i , τ(i) 6= i

We continue with the Induction Step:

Suppose first that there is some τ ∈ H , with τ 6= 1, but τ(i) = i , for
some i ∈ {1, 2, . . . , n}. Since τ ∈ H ∩ Gi and H ∩ Gi E Gi , by the
simplicity of Gi , we must have H ∩ Gi = Gi , i.e., Gi ≤ H . Since, for all
σ, σGiσ

−1 = G
σ(i), we get, for all i , σGiσ

−1 ≤ σHσ−1 = H . Thus,
Gj ≤ H , for all j ∈ {1, 2, . . . , n}. Any λ ∈ An may be written as a
product of an even number 2t of transpositions, so λ = λ1λ2 · · ·λt ,
where λk is a product of two transpositions. Since n > 4, each λk ∈ Gj ,
for some j . Hence, G = 〈G1,G2, . . . ,Gn〉 ≤ H , which is a contradiction.

We conclude that:

If τ 6= 1 is an element of H , then τ(i) 6= i , for all i ∈ {1, 2, . . . , n}, i.e.,
no nonidentity element of H fixes any element of {1, 2, . . . , n}.
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Simplicity of An: Conclusion

It follows that:

If τ1, τ2 are elements of H , with τ1(i) = τ2(i), for some i , then τ1 = τ2,
since then τ−1

2 τ1(i) = i .

Now, we conclude the Induction Step:

Suppose there exists a τ ∈ H , such that the cycle decomposition of τ
contains a cycle of length ≥ 3, say τ = (a1 a2 a3 . . .)(b1 b2 . . .) · · ·. Let
σ ∈ G be an element with σ(a1) = a1, σ(a2) = a2, but σ(a3) 6= a3
(such a σ exists in An, since n ≥ 5). Then, τ1 = στσ−1 =
(a1 a2 σ(a3) . . .)(σ(b1) σ(b2) . . .) · · ·. So τ and τ1 are distinct elements
of H with τ(a1) = τ1(a1) = a2, contrary to the preceding conclusion.
This proves that only 2-cycles can appear in the cycle decomposition of
nonidentity elements of H .
Let τ ∈ H , with τ 6= 1, so that τ = (a1 a2)(a3 a4)(a5 a6) · · · (n ≥ 6 is
used here). Let σ = (a1 a2)(a3 a5) ∈ G . Then τ1 = στσ−1 =
(a1 a2)(a5 a4)(a3 a6) · · ·. Hence τ and τ1 are distinct elements of H
with τ(a1) = τ1(a1) = a2, again contrary to the previous conclusion.
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