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Direct Products of Groups

Definition (Direct Product)

(1) The direct product G1 × G2 × · · · × Gn of the groups G1,G2, . . . ,Gn,
with operations ⋆1, ⋆2, . . . , ⋆n, respectively, is the set of n-tuples
(g1, g2, . . . , gn), where gi ∈ Gi , with operation defined
componentwise:

(g1, g2, . . . , gn) ⋆ (h1, h2, . . . , hn) = (g1 ⋆1 h1, g2 ⋆2 h2, . . . , gn ⋆n hn).

(2) Similarly, the direct product G1 × G2 × · · · of the groups G1,G2, . . .,
with operations ⋆1, ⋆2, . . ., respectively, is the set of sequences
(g1, g2, . . .), where gi ∈ Gi , with operation defined componentwise:

(g1, g2, . . .) ⋆ (h1, h2, . . .) = (g1 ⋆1 h1, g2 ⋆2 h2, . . .).

The operations may be different in each of the factors, but, as usual,
we write all abstract groups multiplicatively:

(g1, g2, . . . , gn)(h1, h2, . . . , hn) = (g1h1, g2h2, . . . , gnhn).
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Examples

(1) Suppose Gi = R (operation addition) for i = 1, 2, . . . , n. Then
R×R× · · · ×R (n-factors) is the familiar Euclidean n-space R

n with
usual vector addition:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn).

(2) The groups forming the direct product may be completely general:

Let G1 = Z, G2 = S3 and G3 = GL2(R), where the group operations
are addition, composition, and matrix multiplication, respectively.
Then the operation in G1 × G2 × G3 is defined by

(

n, σ,

(

a b

c d

))(

m, τ,

(

p q

r s

))

=

(

n +m, σ ◦ τ,

(

ap + br aq + bs

cp + dr cq + ds

))

.
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Products of Groups are Groups

Proposition

If G1, . . . ,Gn are groups, their direct product is a group of order
|G1||G2| · · · |Gn| (if any Gi is infinite, so is the direct product).

Let G = G1 × G2 × · · · × Gn. The group axioms hold for G :
Associative Law: Let (a1, . . . , an), (b1, . . . , bn) and (c1, . . . , cn) ∈ G .
Then

(a1, . . . , an)[(b1, . . . , bn)(c1, . . . , cn)]
= (a1, . . . , an)(b1c1, . . . , bncn) = (a1(b1c1), . . . , an(bncn))
= ((a1b1)c1, . . . , (anbn)cn) = (a1b1, . . . , anbn)(c1, . . . , cn)
= [(a1, . . . , an)(b1, . . . , bn)](c1, . . . , cn).

The identity of G is the n-tuple (11, 12, . . . , 1n), where 1i is the identity
of Gi .
The inverse of (g1, g2, . . . , gn) is (g

−1
1 , g−1

2 , . . . , g−1
n ), where g−1

i is the
inverse of gi in Gi .

The formula for the order of G is clear.

George Voutsadakis (LSSU) Abstract Algebra I March 2016 6 / 53



Direct Products and Abelian Groups Direct Products

Relations Between the Direct Product and its Components

If the factors of the direct product are rearranged, the resulting direct
product is isomorphic to the original one.
Further, G1 × G2 × · · · × Gn contains an isomorphic copy of each Gi .

Proposition

Let G1,G2, . . . ,Gn be groups and G = G1 × · · · × Gn their direct product.

(1) For each fixed i , the set of elements of G which have the identity of Gj in
the j-th position, for all j 6= i , and arbitrary elements of Gi in position i is a
subgroup of G isomorphic to Gi :

Gi
∼= {(1, . . . , 1, gi , 1, . . . , 1) : gi ∈ Gi},

(here gi appears in the i-th position). If we identify Gi with this subgroup,
then Gi E G and G/Gi

∼= G1 × · · · × Gi−1 × Gi+1 × · · · × Gn.

(2) For each fixed i , define πi : G → Gi by πi ((g1, g2, . . . , gn)) = gi . Then πi is
a surjective homomorphism with kerπi = {(g1, . . . , gi−1, 1, gi+1 . . . , gn) :
gj ∈ Gj , for all j 6= i} ∼= G1 × · · · × Gi−1 × Gi+1 × · · · × Gn.

(3) Under the identifications in (1), if x ∈ Gi , y ∈ Gj , for i 6= j , then xy = yx .
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Proof of the Proposition

(1) Let Hi = {(1, . . . , 1, gi , 1, . . . , 1) : gi ∈ Gi}.

Claim: Hi is a subgroup of G .

Let (1, . . . , 1, gi , 1, . . . , 1), (1, . . . , 1, hi , 1, . . . , 1) ∈ Hi . Then we have

(1, . . . , 1, gi , 1, . . . , 1)(1, . . . , 1, hi , 1, . . . , 1)
−1

= (1, . . . , 1, gi , 1, . . . , 1)(1, . . . , 1, h
−1
i , 1, . . . , 1)

= (1, . . . , 1, gih
−1
i , 1, . . . , 1) ∈ Hi .

By the subgroup criterion, Hi ≤ G .

Claim: Gi
∼= Hi .

Consider ϕ : Gi → Hi , defined by ϕ(gi ) = (1, 1, . . . , 1, gi , 1, . . . , 1).
The map is one-to-one and onto. Further, for all gi , hi ∈ Gi ,

ϕ(gihi) = (1, . . . , 1, gihi , 1, . . . , 1)
= (1, . . . , gi , 1, . . . , 1)(1, . . . , 1, hi , 1, . . . , 1)
= ϕ(gi )ϕ(hi ).

So ϕ is an isomorphism and we have Gi
∼= Hi .
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Proof of the Proposition (Cont’d)

To prove the remaining parts of (1) consider the map
ϕ : G → G1 × · · · × Gi−1 × Gi+1 × · · · × Gn defined by
ϕ(g1, g2, . . . , gn) = (g1, . . . , gi−1, gi+1, . . . , gn), i.e., ϕ erases the i -th
component of G . The map ϕ is a homomorphism since

ϕ((g1, . . . , gn)(h1, . . . , hn))
= ϕ((g1h1, · · · , gnhn))
= (g1h1, . . . , gi−1hi−1, gi+1hi+1, . . . , gnhn)
= (g1, . . . , gi−1, gi+1, . . . , gn)(h1, . . . , hi−1, hi+1, . . . , hn)
= ϕ((g1, . . . , gn))ϕ((h1, . . . , hn)).

Since the entries in position j are arbitrary elements of Gj , for all j , ϕ
is surjective. Also, kerϕ = {(g1, . . . , gn) : gj = 1, for all j 6= i} ∼= Gi .
Thus, Gi is a normal subgroup of G (in particular, it again proves this
copy of Gi is a subgroup). The First Isomorphism Theorem gives
G/Gi

∼= G1 × · · · × Gi−1 × Gi+1 × · · · × Gn.
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Proof of the Proposition (Parts (2) and (3))

(2) πi : G → Gi , with πi ((g1, . . . , gn)) = gi is surjective, since, for all
gi ∈ Gi ,

πi((1, . . . , 1, gi , 1, . . . , 1)) = gi .

It is a homomorphism, since

π((g1, . . . , gn)(h1, . . . , hn)) = π1((g1h1, . . . , gnhn))
= gihi
= πi((g1, . . . , gn))πi ((h1, . . . , hn)).

The kernel of πi is isomorphic to G1 × · · · × Gi−1 × Gi+1 × · · · × Gn,
via the isomorphism

(g1, . . . , gi−1, 1, gi+1, . . . , gn) 7→ (g1, . . . , gi−1, gi+1, . . . , gn).

(3) If x = (1, . . . , 1, gi , 1, . . . , 1), y = (1, . . . , 1, gj , 1, . . . , 1), where the
indicated entries appear in positions i , j , with, say i < j , respectively,
then xy = (1, . . . , 1, gi , 1, . . . , 1, gj , 1, . . . , 1) = yx . This completes the
proof.
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Components or Factors

We will identify the “coordinate axis” subgroups

Hi = {(1, . . . , 1, gi , 1, . . . , 1) : gi ∈ Gi}

with their isomorphic copies, the Gi ’s. The i -th such subgroup is
often called the i -th component or i -th factor of G .

Example: When we calculate in Zn ×Zm, we can let x be a generator
of the first factor, let y be a generator of the second factor and write
the elements of Zn ×Zm in the form xayb.

This replaces the formal ordered pairs (x , 1) and (1, y), with x and y

and, thus, xayb replaces (xa, yb).
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Examples

(1) By Part (3), if xi ∈ Gi , 1 ≤ i ≤ n, for all k ∈ Z, (x1x2 · · · xn)
k =

xk1 x
k
2 · · · xkn . The order of x1x2 · · · xn is the smallest positive k , such

that xki = 1, for all i . Hence, |x1x2 · · · xk | = l.c.m.(|x1|, |x2|, . . . , |xk |),
the order being infinite if and only if one of the xi ’s has infinite order.

(2) Let p be a prime and for n ∈ Z
+ consider Epn = Zp × Zp × · · · × Zp.

Then Epn is abelian of order pn, such that xp = 1, for all x ∈ Epn . It
is the elementary abelian group of order pn.

(3) For p a prime, the elementary abelian group of order p2 has exactly
p+1 subgroups of order p: Let E = Ep2 . Each nonidentity element of
E has order p, so it generates a cyclic subgroup of E of order p. By
Lagrange’s Theorem, distinct subgroups of order p intersect trivially.
Thus, the p2 − 1 nonidentity elements of E are partitioned into

subsets of size p− 1. So, there are p2−1
p−1 = p+1 subgroups of order p.

When p = 2, E is the Klein 4-group which has 3 subgroups of order 2.
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Subsection 2

Recognizing Direct Products
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Commutators and Commutator Subgroup

Definition (Commutator Subgroup)

Let G be a group, x , y ∈ G and A,B be nonempty subsets of G .

(1) Define [x , y ] = x−1y−1xy , called the commutator of x and y .

(2) Define [A,B ] = 〈[a, b] : a ∈ A, b ∈ B〉, the group generated by
commutators of elements from A and from B .

(3) Define G ′ = 〈[x , y ] : x , y ∈ G 〉, the subgroup of G generated by
commutators of elements from G , called the commutator subgroup

of G .

The terminology is due to the fact that:

The commutator of x and y is 1 if and only if x and y commute.
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Properties of Commutators

Commutators measure the “difference” in G between xy and yx .

Proposition

Let G be a group, x , y ∈ G and H ≤ G . Then:

(1) xy = yx [x , y ]; in particular, xy = yx if and only if [x , y ] = 1.

(2) H E G if and only if [H ,G ] ≤ H .

(3) σ[x , y ] = [σ(x), σ(y)], for any automorphism σ of G ,G ′ char G and G/G ′ is
abelian.

(4) G/G ′ is the largest abelian quotient of G : if H E G and G/H is abelian,
then G ′ ≤ H . Conversely, if G ′ ≤ H , then H E G and G/H is abelian.

(5) If ϕ : G → A is any homomorphism of G into an abelian
group A, then ϕ factors through G ′, i.e., G ′ ≤ kerϕ and
the following diagram commutes:

G ✲ G/G ′

A
❄

ϕ ✲
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Proof of the Proposition (Parts (1)-(3))

(1) xy = yx [x , y ]: yx [x , y ] = yx(x−1y−1xy) = xy .

(2) H E G if and only if [H,G ] ≤ H: By definition, H E G if and only if
g−1hg ∈ H, for all g ∈ G , h ∈ H. For h ∈ H, g−1hg ∈ H if and only
if h−1g−1hg ∈ H. So H E G if and only if [h, g ] ∈ H, for all h ∈ H

and all g ∈ G . Thus, H E G if and only if [H,G ] ≤ H.

(3) σ[x , y ] = [σ(x), σ(y)], for σ ∈ Aut(G ), G ′ char G and G/G ′ abelian:
Let σ ∈ Aut(G ), x , y ∈ G . Then σ([x , y ]) = σ(x−1y−1xy) =
σ(x)−1σ(y)−1σ(x)σ(y) = [σ(x), σ(y)]. Thus, for every commutator
[x , y ] of G ′, σ([x , y ]) is again a commutator. Since σ has a 2-sided
inverse, it maps the set of commutators bijectively onto itself. Since
the commutators generate G ′, σ(G ′) = G ′, i.e., G ′ char G .

To see that G/G ′ is abelian, let xG ′ and yG ′ be arbitrary elements of
G/G ′. By definition of the group operation in G/G ′ and since
[x , y ] ∈ G ′, we have (xG ′)(yG ′) = (xy)G ′ = (yx [x , y ])G ′ = (yx)G ′ =
(yG ′)(xG ′).
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Proof of the Proposition (Part (4))

(4) G/G ′ is the largest abelian quotient of G , i.e., if H E G and G/H is
abelian, then G ′ ≤ H: Suppose H E G and G/H is abelian. Then, for
all x , y ∈ G , we have (xH)(yH) = (yH)(xH), so

1H = (xH)−1(yH)−1(xH)(yH) = x−1y−1xyH = [x , y ]H.

Thus [x , y ] ∈ H, for all x , y ∈ G , so that G ′ ≤ H.

Conversely, if G ′ ≤ H, then H E G and G/H is abelian: If G ′ ≤ H,
then, since, by (3), G/G ′ is abelian, every subgroup of G/G ′ is
normal. In particular, H/G ′ E G/G ′. By the Lattice Isomorphism
Theorem, H E G . By the Third Isomorphism Theorem,
G/H ∼= (G/G ′)/(H/G ′). Hence G/H is abelian.
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Proof of the Proposition (Part (5))

(5) Suppose ϕ : G → A is a homomorphism, with A abelian, and
x , y ∈ G . Then

ϕ([x , y ]) = ϕ(x−1y−1xy) = ϕ(x)−1ϕ(y)−1ϕ(x)ϕ(y)
= [ϕ(x), ϕ(y)] = 1.

So, for all x , y ∈ G , [x , y ] ∈ kerϕ. Thus, G ′ ≤ kerϕ.
Define ψ : G/G ′ → A by ψ(gG ′) = ϕ(g), for all g ∈ G .

ψ is well-defined: if xG ′ = yG ′, then y−1x ∈ G ′ ≤ kerϕ. So
ϕ(y−1x) = 1, i.e., ϕ(y)−1ϕ(x) = 1. So ϕ(x) = ϕ(y).
ψ is a homomorphism: For all x , y ∈ G ,

ψ((xG ′)(yG ′)) = ψ((xy)G ′) = ϕ(xy) = ϕ(x)ϕ(y) = ψ(xG ′)ψ(yG ′).

Finally, the diagram commutes: For all x ∈ G , we
get

ψ(π(x)) = ψ(xG ′) = ϕ(x).

G
π
✲ G/G ′

A

ψ
❄

ϕ ✲
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Some Remarks

Passing to the quotient by the commutator subgroup of G collapses
all commutators to the identity so that all elements in the quotient
group commute.

A strong converse to this also holds:

A quotient of G by H is abelian if and only if the commutator
subgroup is contained in H , i.e., if and only if G ′ is mapped to the
identity in the quotient G/H .

There are examples of groups with the property that some element in
the commutator group cannot be written as a single commutator
[x , y ], for any x , y ∈ G . Thus, G ′ does not necessarily consist only of
the set of (single) commutators, but is rather the group generated by
all the commutators.
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Examples (1)-(3)

(1) A group G is abelian if and only if G ′ = 1.

(2) Consider G = D8. We know:

Z (D8) = 〈r2〉 E D8;
D8/Z (D8) is abelian (the Klein 4-group).

Thus, the commutator subgroup D ′

8 is a subgroup of Z (D8). Since
D8 is not itself abelian, its commutator subgroup is nontrivial. The
only possibility is that D ′

8 = Z (D8).

(3) Consider G = Q8. We have:

Z (Q8) = 〈−1〉 E Q8;
Q8/Z (Q8) is abelian (the Klein 4-group).

Thus, the commutator subgroup Q ′

8 is a subgroup of Z (Q8). Since
Q8 is not itself abelian, its commutator subgroup is nontrivial. The
only possibility is that Q ′

8 = Z (Q8) = 〈−1〉.
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Generalizing Examples (2) and (3)

Claim: Let p be prime and G be a nonabelian group of order p3 with
center Z . Then |Z | = p, G/Z ∼= Zp × Zp and G ′ = Z .

Since G is a nontrivial group of p-power order, by a previous theorem
(using the Class Equation) its center is nontrivial. So |Z | 6= 1.
Since G is nonabelian, |Z | 6= p3.
Recall that, for any group G , if G/Z is cyclic then G is abelian. So G

being nonabelian forces G/Z to be noncyclic. Since a group of prime
order is necessarily cyclic, |G/Z | 6= p. Hence, |Z | 6= p2.
The only possibility left is |Z | = p.

So |G/Z | = p2. Up to isomorphism the only groups of order p2 are
Zp2 and Zp × Zp. Since G/Z is noncyclic, G/Z ∼= Zp × Zp.

Since G/Z is abelian, we have G ′ ⊆ Z . Because |Z | = p and G ′ is
nontrivial, necessarily G ′ = Z .
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Example

Claim: Let D2n = 〈r , s | rn = s2 = 1, s−1rs = r−1〉. Then D ′

2n = 〈r2〉.

Since
[r , s] = r−1s−1rs = r−1r−1s−1s = r−2,

we have 〈r−2〉 = 〈r2〉 ≤ D ′

2n.

Furthermore, 〈r2〉 E D2n and the images of r and s in D2n/〈r
2〉

generate this quotient. Moreover, r〈r2〉 and s〈r2〉 are commuting
elements of order ≤ 2. So the quotient is abelian. Thus, D ′

2n ≤ 〈r2〉.
Therefore, D ′

2n = 〈r2〉.

If n(= |r |) is odd, 〈r2〉 = 〈r〉;
If n is even, 〈r2〉 is of index 2 in 〈r〉.

Hence D ′

2n is of index 2 or 4 in D2n according to whether n is odd or
even, respectively.
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Commutators and Conjugation

Conjugation by g ∈ G is an automorphism of G . So, by Part (3) of
the Theorem, [ag , bg ] = [a, b]g , for all a, b ∈ G . I.e., conjugates of
commutators are also commutators.

It follows that once we exhibit an element of one cycle type in Sn as a
commutator, every element of the same cycle type is also a
commutator.

Example: Every 5-cycle is a commutator in S5.

Labeling the vertices of a pentagon as 1, . . . , 5,
we see that D10 ≤ S5 (a subgroup of A5 in fact).
By the preceding example, an element of order
5 is a commutator in D10, hence also in S5. Ex-
plicitly, (1 4 2 5 3) = [(1 2 3 4 5), (2 5)(4 3)].
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Expressing Elements in HK

Proposition

Let H and K be subgroups of the group G . The number of distinct ways
of writing each element of the set HK in the form hk , for some h ∈ H and
k ∈ K is |H ∩ K |. In particular, if H ∩ K = 1, then each element of HK
can be written uniquely as a product hk , for some h ∈ H and k ∈ K .

Consider two fixed elements h0 ∈ H and k0 ∈ K . Let

S = {(h, k) ∈ H × K : hk = h0k0}.

Define a mapping ψ : H ∩ K → S , by setting

ψ(ℓ) = (h0ℓ, ℓ
−1k0), for all ℓ ∈ H ∩ K .

ψ is well-defined: Since ℓ ∈ H ∩ K , we have that ℓ ∈ H and ℓ ∈ K .
Since H ,K ≤ G , we have h0ℓ ∈ H and ℓ−1k0 ∈ K . Moreover, we get
(h0ℓ)(ℓ

−1k0) = h0k0. Therefore, ψ(ℓ) = (h0ℓ, ℓ
−1k0) ∈ S .
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Expressing Elements in HK (Cont’d)

ψ is one-one: Suppose ψ(ℓ) = ψ(ℓ′). Then
(h0ℓ, ℓ

−1k0) = (h0ℓ
′, ℓ′−1k0). This implies h0ℓ = h0ℓ

′, whence by
cancelation, ℓ = ℓ′.
ψ is onto: Suppose (h, k) ∈ S . Then hk = h0k0, whence
h−1
0 h = k0k

−1 ∈ H ∩ K . Define ℓ = h−1
0 h = k0k

−1.
Then we have

ψ(ℓ) = (h0h
−1
0 h, (k0k

−1)−1k0) = (h, kk−1
0 k0) = (h, k).

Thus, ψ is a bijection between S and H ∩ K . This shows that
|S | = |H ∩ K |, as claimed.
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Internal and External Products

Theorem

Suppose G is a group with subgroups H and K , such that:

(1) H and K are normal in G ;

(2) H ∩ K = 1.

Then HK ∼= H × K .

Observe that, by (1), HK is a subgroup of G . Let h ∈ H and k ∈ K .
Since H E G , k−1hk ∈ H, So h−1(k−1hk) ∈ H. Similarly,
(h−1k−1h)k ∈ K . Since H ∩ K = 1, it follows that h−1k−1hk = 1,
i.e., hk = kh. So, every element of H commutes with every element
of K . By the preceding proposition, each element of HK can be
written uniquely as a product hk , with h ∈ H, k ∈ K . Thus, the map

ϕ : HK → H × K ; hk 7→ (h, k),

is well defined.
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Internal and External Products (Cont’d)

We showed that the map ϕ : HK → H × K , hk 7→ (h, k), is well
defined. To see that ϕ is a homomorphism note that if h1, h2 ∈ H,
k1, k2 ∈ K , then h2 and k1 commute: (h1k1)(h2k2) = (h1h2)(k1k2).
This product is the unique way of writing (h1k1)(h2k2) in the form
hk , with h ∈ H and k ∈ K . This shows that

ϕ(h1k1h2k2) = ϕ(h1h2k1k2) = (h1h2, k1k2)
= (h1, k1)(h2, k2) = ϕ(h1k1)ϕ(h2k2).

The homomorphism ϕ is a bijection since the representation of each
element of HK as a product of the form hk is unique. Thus, ϕ is an
isomorphism.
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Internal and External Direct Product

Definition (Internal Direct Product)

If G is a group and H and K are normal subgroups of G , with H ∩ K = 1,
we call HK the internal direct product of H and K .
We will call H × K the external direct product of H and K .

The distinction between internal and external direct product is purely
notational: writing elements in the form hk rather than as pairs (h, k).
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Example I: For n odd, D4n
∼= D2n ×Z2

(1) If n is a positive odd integer, D4n
∼= D2n ×Z2.

To see this let D4n = 〈r , s | r2n = s2 = 1, srs = r−1〉 be the usual
presentation of D4n. Let H = 〈s, r2〉 and K = 〈rn〉. Geometrically, if
D4n is the group of symmetries of a regular 2n-gon, H is the group of
symmetries of the regular n-gon inscribed in the 2n-gon by joining
vertex 2i to vertex 2i + 2, for all i mod 2n (and if one lets r1 = r2, H
has the usual presentation of the dihedral group of order 2n with
generators r1 and s). Note that:

H E D4n (it has index 2).
Since |r | = 2n, |rn| = 2. Since srs = r−1, we have srns = r−n = rn,
i.e., s centralizes rn. Since clearly r centralizes rn, K ≤ Z (D4n). Thus,
K E D4n.
K � H , since r2 has odd order (or because rn sends vertex i into vertex
i + n, hence does not preserve the set of even vertices of the 2n-gon).
Thus, H ∩ K = 1 by Lagrange.

The preceding theorem now completes the proof.
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Example II

(2) Let I be a subset of {1, 2, . . . , n} and let G be the setwise stabilizer of
I in Sn , i.e., G = {σ ∈ Sn : σ(i) ∈ I, for all i ∈ I}. Let
J = {1, 2, . . . , n} − I. Note that G is also the setwise stabilizer of J.
Let H,K be the pointwise stabilizers of I, J, respectively: Thus, we
have

H = {σ ∈ G : σ(i) = i for all i ∈ I},
K = {τ ∈ G : τ(j) = j for all j ∈ J}.

It is easy to see that H and K are normal subgroups of G . In fact they
are kernels of the actions of G on I and J, respectively.
Since any element of H ∩ K fixes all of {1, 2, . . . , n}, we have
H ∩ K = 1.
Since every element σ of G stabilizes the sets I and J, each cycle in the
cycle decomposition of σ involves only elements of I or only elements
of J. Thus σ may be written as a product σIσJ , where σI ∈ H and
σJ ∈ K . This proves G = HK .

By the theorem, G ∼= H × K .
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Example II (Cont’d)

Any permutation of J can be extended to a permutation in Sn by
letting it act as the identity on I. These are precisely the
permutations in H. So H ∼= SJ.

Similarly the permutations in K are the permutations of I which are
the identity on J. So K ∼= SI.

Thus, we get G ∼= Sm × Sn−m, where m = |I|.
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Example III

(3) Let σ ∈ Sn and I be the subset of {1, 2, . . . , n} fixed pointwise by σ:
I = {i ∈ {1, 2, . . . , n} : σ(i) = i}.

Claim: If C = CSn(σ), then C stabilizes the set I and its complement
J.

Let τ ∈ C and let i ∈ I. Then we have

σ(τ(i)) = τ(σ(i)) = τ(i).

Thus, τ(i) ∈ I, showing that τ stabilizes I. It follows that τ also
stabilizes J.

By the preceding example, C is isomorphic to a subgroup of H × K ,
where H is the subgroup of all permutations in Sn fixing I pointwise
and K is the set of all permutations fixing J pointwise. Note that
σ ∈ H. Thus each element α of C can be written (uniquely) as
α = αIαJ, for some aI ∈ H and αJ ∈ K .
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Example III (Cont’d)

If τ is any permutation of {1, 2, . . . , n}, which fixes each j ∈ J, i.e.,
any element of K , then σ and τ commute (since they move no
common integers). Thus, C contains all such τ , i.e., C contains the
subgroup K . This proves that the group C consists of all elements
αIαJ ∈ H × K , such that αJ is arbitrary in K and αI commutes with
σ in H:

CSn(σ) = CH(σ)× K ∼= CSJ(σ)× SI.

In particular, if σ is an m-cycle in Sn, CSn(σ) = 〈σ〉 × Sn−m.

The latter group has order m(n −m)!.
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Subsection 3

The Fundamental Theorem of Finitely Generated Abelian Groups
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Finitely Generated and Free Abelian Groups

Definition (Finitely Generated and Free Abelian Groups)

(1) A group G is finitely generated if there is a finite subset A of G ,
such that G = 〈A〉.

(2) For each r ∈ Z, with r ≥ 0, let Zr = Z×Z× · · · ×Z be the direct
product of r copies of the group Z, where Z

0 = 1. The group Z
r is

called the free abelian group of rank r .

Any finite group G is, a fortiori, finitely generated, since we may
simply take A = G as a set of generators.

Also, Zr is finitely generated by e1, e2, . . . , en, where

ei = (0, . . . , 0, 1
︸︷︷︸

i

, 0, . . . , 0)

is the n-tuple with 1 in position i and zeros elsewhere.
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The Fundamental Theorem of Finitely Generated Abelian Groups

Theorem (Fundamental Theorem of Finitely Generated Abelian Groups)

Let G be a finitely generated abelian group. Then:

(1) G ∼= Z
r × Zn1 × Zn2 × · · · × Zns , for some integers r , n1, n2, . . ., ns

satisfying the following conditions:

(a) r ≥ 0 and nj ≥ 2, for all j ;
(b) ni+1 | ni , for 1 ≤ i ≤ s − 1.

(2) The expression in (1) is unique: if

G ∼= Z
t × Zm1 × Zm2 × · · · × Zmu .

where t and m1, m2, . . ., mu satisfy (a) and (b), i.e., t ≥ 0, mj ≥ 2,
for all j , and mi+1 | mi , for 1 ≤ i ≤ u − 1, then t = r , u = s and
mi = ni , for all i .

The proof of the Fundamental Theorem is in Abstract Algebra II.
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Free Rank and Invariant Factor Decomposition

Definition (Free Rank and Invariant Factor Decomposition)

The integer r in the expression G ∼= Z
r × Zn1 × Zn2 × · · · × Zns is called

the free rank or Betti number of G . The integers n1, n2, . . ., ns are
called the invariant factors of G . The description itself is called the
invariant factor decomposition of G .

The Fundamental Theorem asserts that the free rank and (ordered)
list of invariant factors of an abelian group are uniquely determined.

Thus, two finitely generated abelian groups are isomorphic if and only
if they have the same free rank and the same list of invariant factors.

A finitely generated abelian group is a finite group if and only if its
free rank is zero. In that case, the order is just the product of its
invariant factors.

If G is a finite abelian group with invariant factors n1, n2, . . ., ns ,
where ni+1 | ni , 1 ≤ i ≤ s − 1, then G is of type (n1, n2, . . . , ns).
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Isomorphism Classes and Types

The Fundamental Theorem gives an effective way of listing all finite
abelian groups of a given order:

To find (up to isomorphism) all abelian groups of a given order n, we
must find all finite sequences of integers n1, n2, . . ., ns , such that

(1) nj ≥ 2, for all j ∈ {1, 2, . . . , s};
(2) ni+1 | ni , 1 ≤ i ≤ s − 1;
(3) n1n2 · · · ns = n.

The Theorem asserts that there is a bijection between the set of such
sequences and the set of isomorphism classes of finite abelian groups
of order n.

Under the bijection, each sequence corresponds to the list of invariant
factors of a finite abelian group.
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Some Remarks on the Invariant Factor Decomposition

Consider, again, the invariant factor decomposition of a finite abelian
group G of order n:

G ∼= Zn1 × Zn2 × · · · × Zns .

The following remarks apply:
n1 ≥ n2 ≥ · · · ≥ ns , so n1 is the largest invariant factor.
Each ni divides n.
If p is any prime divisor of n, then p must divide ni , for some i . Then p

also divides nj , for all j ≤ i . It follows that every prime divisor of n
must divide the first invariant factor n1.

Corollary

If n is the product of distinct primes, then, up to isomorphism, the only
abelian group of order n is the cyclic group Zn of order n.

If n is the product of distinct primes, n | n1. Hence n = n1. Thus, if n
is square free, there is only one possible list of invariant factors for an
abelian group of order n, namely, the list n1 = n.
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Abelian Groups of Order 180

Suppose n = 180 = 22 · 32 · 5. We must have 2 · 3 · 5 | n1. So possible
values of n1 are

n1 = 22 · 32 · 5, 22 · 3 · 5, 2 · 32 · 5, 2 · 3 · 5.

For each of these, one must work out all possible n2’s (subject to
n2 | n1 and n1n2 | n). For each resulting pair n1, n2 one must work out
all possible n3’s etc. until all lists satisfying (1) to (3) are obtained.

If n1 = 2 · 32 · 5, the only number n2 dividing n1, with n1n2 dividing n,
is n2 = 2. In this case n1n2 = n. So this list is complete: 2 · 32 · 5, 2.
The abelian group corresponding to this list is Z90 × Z2.

If n1 = 2 · 3 · 5, the only candidates for n2 are n2 = 2, 3 or 6. If n2 = 2
or 3, then since n3 | n2, we would necessarily have n3 = n2. This is
not possible since n is not divisible 23 or 33. Thus, the only list of
invariant factors whose first term is 2 · 3 · 5 is 2 · 3 · 5, 2 · 3. The
corresponding abelian group is Z30 × Z6.

The complete list of isomorphism types is Z180,Z90 × Z2,Z60 × Z3

and Z30 × Z6.
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The Primary Decomposition Theorem

Theorem (The Primary Decomposition Theorem)

Let G be an abelian group of order n > 1 and let the unique factorization
of n into distinct prime powers be n = p

α1
1 p

α2
2 · · · pαk

k . Then:

(1) G ∼= A1 × A2 × · · · × Ak . where |Ai | = p
αi

i .

(2) For each A ∈ {A1,A2, . . . ,Ak}, with |A| = pα,
A ∼= Zpβ1 × Zpβ2 × · · · × Zpβt , with β1 ≥ β2 ≥ · · · ≥ βt ≥ 1 and
β1 + β2 + · · ·+ βt = α (t and β1, . . . , βt depend on i).

(3) The decomposition in (1) and (2) is unique, i.e., if
G ∼= B1 × B2 × · · · × Bm, with |Bi | = p

αi

i , for all i , then Bi
∼= Ai and

Bi and Ai have the same invariant factors.

Definition

The integers pβj , described in the preceding theorem, are called the
elementary divisors of G . The description of G in the theorem is called
the elementary divisor decomposition of G .
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Remarks on the Primary Decomposition Theorem

The subgroups Ai described in Part (1) of the theorem are the Sylow
pi -subgroups of G .

Thus (1) says that G is isomorphic to the direct product of its Sylow
subgroups (they are normal, since G is abelian and, hence, unique).

For p a prime, pβ | pγ if and only if β ≤ γ. Furthermore,
pβ1 · · · pβt = pα if and only if β1 + · · · + βt = α.

Thus, the decomposition of A appearing in Part (2) of the theorem is
the invariant factor decomposition of A with the “divisibility”
conditions on the integers pβj translated into “additive” conditions on
their exponents.

The elementary divisors of G are now seen to be the invariant factors
of the Sylow p-subgroups as p runs over all prime divisors of G .
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Invariant Factors of Primary Components

In order to find all abelian groups of order n = pα1
1 pα2

2 · · · pαk

k , one
must find for each i , 1 ≤ i ≤ k , all possible lists of invariant factors
for groups of order pαi

i .

The set of elementary divisors of each abelian group is then obtained
by taking one set of invariant factors from each of the k lists.

The abelian groups are the direct products of the cyclic groups whose
orders are the elementary divisors (and distinct lists of elementary
divisors give non isomorphic groups).

We must obey the following conditions for the invariant factors:

(1) βj ≥ 1, for all j ∈ {1, 2, . . . , t};
(2) βi ≥ βi+1, for all i ;
(3) β1 + β2 + · · ·+ βt = β.
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Abelian Groups of Order p5

The number of nonisomorphic abelian groups of order pβ equals the
number of partitions of β, which is independent of the prime p.

Example: The number of abelian groups of order p5 is obtained from
the list of partitions of 5:

Partitions of 5 Abelian Groups

5 Zp5

4, 1 Zp4 × Zp

3, 2 Zp3 × Zp2

3, 1, 1 Zp3 × Zp × Zp

2, 2, 1 Zp2 × Zp2 × Zp

2, 1, 1, 1 Zp2 × Zp × Zp × Zp

1, 1, 1, 1, 1 Zp × Zp × Zp × Zp × Zp

Thus there are precisely 7 non isomorphic groups of order p5.
The first in the list is the cyclic group Zp5 .
The last in the list is the elementary abelian group Ep5 .
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Abelian Groups of Order 1800

If n = p
α1
1 p

α2
2 · · · pαk

k and qi is the number of partitions of αi , we see
that the number of (distinct, non isomorphic) abelian groups of order
n equals q1q2 · · · qk .

Example: If n = 1800 = 233252 we list the abelian groups of this
order as follows:

Order pβ Partitions of β Abelian Groups

23 3; 2, 1; 1, 1, 1 Z8,Z4 × Z2,Z2 × Z2 × Z2

32 2; 1, 1 Z9,Z3 × Z3

52 2; 1, 1 Z25,Z5 × Z5

The abelian groups of order 1800 are obtained by taking one abelian
group from each of the three lists and taking their direct product:
This results in 3× 2× 2 = 12 abelian groups of order 1800.

It is important to keep in mind that the elementary divisors of G are
not invariant factors of G , but invariant factors of subgroups of G .
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A Decomposition Theorem

Proposition

Let m, n ∈ Z
+.

(1) Zm × Zn
∼= Zmn if and only if (m, n) = 1.

(2) If n = pα1
1 pα2

2 · · · pαk

k , then Zn
∼= Zp

α1
1

× Zp
α2
2

× · · · × Zp
αk
k
.

(1) Let Zm = 〈x〉, Zn = 〈y〉 and let ℓ = l.c.m.(m, n). Note that ℓ = mn if
and only if (m, n) = 1. Let xayb be a typical element of Zm × Zn.
Then (xayb)ℓ = xℓay ℓb = 1a1b = 1.

If (m, n) 6= 1, every element of Zm × Zn has order at most ℓ. So it has
order strictly less than mn. Thus, Zm × Zn cannot be isomorphic to
Zmn.
Conversely, if (m, n) = 1, then |xy | = l.c.m.(|x |, |y |) = mn. Thus, by
order considerations, Zm × Zn = 〈xy〉 is cyclic, completing the proof.
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A Decomposition Theorem (Part (2))

(2) Let n = pα1
1 pα2

2 · · · pαk

k . We show that Zn
∼= Zp

α1
1

× · · · × Zp
αk
k

by

induction on k .

For k = 1 this is trivial.

For k = 2, we have

Zn = Zp
α1
1 p

α2
2

Part (1)
∼= Zp

α1
1

× Zp
α2
2
.

Suppose the result holds for some k ≥ 2.

Then, if n = pα1
1 · · · pαk

k p
αk+1

k+1 , we get

Zn
∼= Z

p
α1
1 ···p

αk
k

p
αk+1
k+1

Part (1)
∼= Z

p
α1
1 ···p

αk
k

× Z
p
αk+1
k+1

Ind.Hyp.
∼= Zp

α1
1

× · · · × Z
p
αk
k

× Z
p
αk+1
k+1

.
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From Invariant Factors to Elementary Divisors

Suppose G is given as an abelian group of type (n1, n2, . . . , ns), i.e.,

G ∼= Zn1 × Zn2 × · · · × Zns .

Let n = pα1
1 pα2

2 · · · pαk

k = n1n2 · · · ns . Factor each ni as

ni = p
βi1
1 p

βi2
2 · · · pβik

k ,

where βij ≥ 0. By the proposition,

Zni
∼= Z

p
βi1
1

× Z
p
βi2
2

× · · · × Z
p
βik
k

,

for each i . If βij = 0, Z
p
βij
j

= 1 and this factor may be deleted from

the direct product. Then the elementary divisors of G are precisely
the integers

p
βij

j , 1 ≤ j ≤ k , 1 ≤ i ≤ s, such that βij 6= 0.
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Example: Invariant Factors to Elementary Divisors

If |G | = 23 · 32 · 52 and G is of type (30, 30, 2), then

G ∼= Z30 × Z30 × Z2.

Since Z30
∼= Z2 × Z3 × Z5,

G ∼= Z2 × Z3 × Z5 × Z2 × Z3 × Z5 × Z2.

The elementary divisors of G are 2, 3, 5, 2, 3, 5, 2, or, grouping like
primes together, 2, 2, 2, 3, 3, 5, 5.

If for each j , the factors Z
p
βij
j

are put together, the resulting direct

product forms the Sylow pj -subgroup Aj of G .

Thus, the Sylow 2-subgroup of the group above is

∼= Z2 × Z2 × Z2.
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From Cyclic Decompositions to Elementary Divisors

This same process will give the elementary divisors of a finite abelian
group G whenever G is given as a direct product of cyclic groups (not
just when the orders of the cyclic components are the invariant
factors).

Example: If G = Z6 × Z15, the list 6, 15 is

neither that of the invariant factors (the divisibility condition fails)
nor that of elementary divisors (they are not prime powers).

To find the elementary divisors, factor 6 = 2 · 3 and 15 = 3 · 5.
Then the prime powers 2, 3, 3, 5 are the elementary divisors and

G ∼= Z2 × Z3 × Z3 × Z5.
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From Elementary Divisors to Invariant Factors

Suppose G is an abelian group of order n, where n = pα1
1 pα2

2 · · · pαk

k

and we are given the elementary divisors of G .

The invariant factors of G are obtained as follows:

(1) First group all elementary divisors which are powers of the same prime
together.
In this way we obtain k lists of integers (one for each pk).

(2) In each of these k lists arrange the integers in non-increasing order.
(3) Among these k lists suppose that the longest, i.e., the one with the

most terms, consists of t integers.
Make each of the k lists of length t by appending an appropriate
number of 1’s at the end of each list.

(4) For each i ∈ {1, 2, . . . , t} the i-th invariant factor, ni , is obtained by
taking the product of the i-th integer in each of the t (ordered) lists.

The point of ordering the lists in this way is to ensure that we have
the divisibility condition ni+1 | ni .
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Obtaining Invariant Factors From Elementary Divisors

Suppose that the elementary divisors of G are given as 2, 3, 2, 25, 3, 2
(so |G | = 23 · 32 · 25).

Regrouping and increasing each list to have 3 (= t) members gives:

p = 2 2 2 2

p = 3 3 3 1

p = 5 25 1 1

So the invariant factors of G are

2 · 3 · 25, 2 · 3 · 1, 2 · 1 · 1.

and
G ∼= Z150 × Z6 × Z2.
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Using Elementary Divisors to Check Isomorphism

We can use the decompositions to determine whether any two direct
products of finite cyclic groups are isomorphic.

Example: We want to determine whether Z6 × Z15
∼= Z10 × Z9.

First determine whether they have the same order (both have order 90).
Then (the easiest way in general) determine whether they have the
same elementary divisors:

Z6 × Z15 has elementary divisors 2, 3, 3, 5. It is isomorphic to

Z2 × Z3 × Z3 × Z5.

Z10 × Z9 has elementary divisors 2, 5, 9. It is isomorphic to

Z2 × Z5 × Z9.

The lists of elementary divisors are different so the groups are not
isomorphic.
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