Abstract Algebra I

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 341

(1) Direct Products and Abelian Groups

- Direct Products
- Recognizing Direct Products
- The Fundamental Theorem of Finitely Generated Abelian Groups

Subsection 1

Direct Products

Direct Products of Groups

Definition (Direct Product)

(1) The direct product $G_{1} \times G_{2} \times \cdots \times G_{n}$ of the groups $G_{1}, G_{2}, \ldots, G_{n}$, with operations $\star_{1}, \star_{2}, \ldots, \star_{n}$, respectively, is the set of n-tuples $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$, where $g_{i} \in G_{i}$, with operation defined componentwise:

$$
\left(g_{1}, g_{2}, \ldots, g_{n}\right) \star\left(h_{1}, h_{2}, \ldots, h_{n}\right)=\left(g_{1} \star_{1} h_{1}, g_{2} \star_{2} h_{2}, \ldots, g_{n} \star_{n} h_{n}\right)
$$

(2) Similarly, the direct product $G_{1} \times G_{2} \times \cdots$ of the groups G_{1}, G_{2}, \ldots, with operations $\star_{1}, \star_{2}, \ldots$, respectively, is the set of sequences $\left(g 1, g_{2}, \ldots\right)$, where $g_{i} \in G_{i}$, with operation defined componentwise:

$$
\left(g_{1}, g_{2}, \ldots\right) \star\left(h_{1}, h_{2}, \ldots\right)=\left(g_{1} \star_{1} h_{1}, g_{2} \star_{2} h_{2}, \ldots\right) .
$$

- The operations may be different in each of the factors, but, as usual, we write all abstract groups multiplicatively:

$$
\left(g_{1}, g_{2}, \ldots, g_{n}\right)\left(h_{1}, h_{2}, \ldots, h_{n}\right)=\left(g_{1} h_{1}, g_{2} h_{2}, \ldots, g_{n} h_{n}\right) .
$$

Examples

(1) Suppose $G_{i}=\mathbb{R}$ (operation addition) for $i=1,2, \ldots, n$. Then $\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}$ (n-factors) is the familiar Euclidean n-space \mathbb{R}^{n} with usual vector addition:

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)
$$

(2) The groups forming the direct product may be completely general: Let $G_{1}=\mathbb{Z}, G_{2}=S_{3}$ and $G_{3}=\mathrm{GL}_{2}(\mathbb{R})$, where the group operations are addition, composition, and matrix multiplication, respectively. Then the operation in $G_{1} \times G_{2} \times G_{3}$ is defined by

$$
\begin{aligned}
&\left(n, \sigma,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)\left(m, \tau,\left(\begin{array}{ll}
p & q \\
r & s
\end{array}\right)\right) \\
&=\left(n+m, \sigma \circ \tau,\left(\begin{array}{ll}
a p+b r & a q+b s \\
c p+d r & c q+d s
\end{array}\right)\right)
\end{aligned}
$$

Products of Groups are Groups

Proposition

If G_{1}, \ldots, G_{n} are groups, their direct product is a group of order $\left|G_{1}\right|\left|G_{2}\right| \cdots\left|G_{n}\right|$ (if any G_{i} is infinite, so is the direct product).

- Let $G=G_{1} \times G_{2} \times \cdots \times G_{n}$. The group axioms hold for G :
- Associative Law: Let $\left(a_{1}, \ldots, a_{n}\right),\left(b_{1}, \ldots, b_{n}\right)$ and $\left(c_{1}, \ldots, c_{n}\right) \in G$. Then

$$
\begin{aligned}
& \left(a_{1}, \ldots, a_{n}\right)\left[\left(b_{1}, \ldots, b_{n}\right)\left(c_{1}, \ldots, c_{n}\right)\right] \\
& =\left(a_{1}, \ldots, a_{n}\right)\left(b_{1} c_{1}, \ldots, b_{n} c_{n}\right)=\left(a_{1}\left(b_{1} c_{1}\right), \ldots, a_{n}\left(b_{n} c_{n}\right)\right) \\
& =\left(\left(a_{1} b_{1}\right) c_{1}, \ldots,\left(a_{n} b_{n}\right) c_{n}\right)=\left(a_{1} b_{1}, \ldots, a_{n} b_{n}\right)\left(c_{1}, \ldots, c_{n}\right) \\
& =\left[\left(a_{1}, \ldots, a_{n}\right)\left(b_{1}, \ldots, b_{n}\right)\right]\left(c_{1}, \ldots, c_{n}\right) .
\end{aligned}
$$

- The identity of G is the n-tuple $\left(1_{1}, 1_{2}, \ldots, 1_{n}\right)$, where 1_{i} is the identity of G_{i}.
- The inverse of $\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ is $\left(g_{1}^{-1}, g_{2}^{-1}, \ldots, g_{n}^{-1}\right)$, where g_{i}^{-1} is the inverse of g_{i} in G_{i}.
The formula for the order of G is clear.

Relations Between the Direct Product and its Components

- If the factors of the direct product are rearranged, the resulting direct product is isomorphic to the original one.
- Further, $G_{1} \times G_{2} \times \cdots \times G_{n}$ contains an isomorphic copy of each G_{i}.

Proposition

Let $G_{1}, G_{2}, \ldots, G_{n}$ be groups and $G=G_{1} \times \cdots \times G_{n}$ their direct product.
(1) For each fixed i, the set of elements of G which have the identity of G_{j} in the j-th position, for all $j \neq i$, and arbitrary elements of G_{i} in position i is a subgroup of G isomorphic to G_{i} :

$$
G_{i} \cong\left\{\left(1, \ldots, 1, g_{i}, 1, \ldots, 1\right): g_{i} \in G_{i}\right\},
$$

(here g_{i} appears in the i-th position). If we identify G_{i} with this subgroup, then $G_{i} \unlhd G$ and $G / G_{i} \cong G_{1} \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_{n}$.
(2) For each fixed i, define $\pi_{i}: G \rightarrow G_{i}$ by $\pi_{i}\left(\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right)=g_{i}$. Then π_{i} is a surjective homomorphism with $\operatorname{ker} \pi_{i}=\left\{\left(g_{1}, \ldots, g_{i-1}, 1, g_{i+1} \ldots, g_{n}\right)\right.$: $g_{j} \in G_{j}$, for all $\left.j \neq i\right\} \cong G_{1} \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_{n}$.
(3) Under the identifications in (1), if $x \in G_{i}, y \in G_{j}$, for $i \neq j$, then $x y=y x$.

Proof of the Proposition

(1) Let $H_{i}=\left\{\left(1, \ldots, 1, g_{i}, 1, \ldots, 1\right): g_{i} \in G_{i}\right\}$.

Claim: H_{i} is a subgroup of G.
Let $\left(1, \ldots, 1, g_{i}, 1, \ldots, 1\right),\left(1, \ldots, 1, h_{i}, 1, \ldots, 1\right) \in H_{i}$. Then we have

$$
\begin{aligned}
& \left(1, \ldots, 1, g_{i}, 1, \ldots, 1\right)\left(1, \ldots, 1, h_{i}, 1, \ldots, 1\right)^{-1} \\
& =\left(1, \ldots, 1, g_{i}, 1, \ldots, 1\right)\left(1, \ldots, 1, h_{i}^{-1}, 1, \ldots, 1\right) \\
& =\left(1, \ldots, 1, g_{i} h_{i}^{-1}, 1, \ldots, 1\right) \in H_{i} .
\end{aligned}
$$

By the subgroup criterion, $H_{i} \leq G$.
Claim: $G_{i} \cong H_{i}$.
Consider $\varphi: G_{i} \rightarrow H_{i}$, defined by $\varphi\left(g_{i}\right)=\left(1,1, \ldots, 1, g_{i}, 1, \ldots, 1\right)$. The map is one-to-one and onto. Further, for all $g_{i}, h_{i} \in G_{i}$,

$$
\begin{aligned}
\varphi\left(g_{i} h_{i}\right) & =\left(1, \ldots, 1, g_{i} h_{i}, 1, \ldots, 1\right) \\
& =\left(1, \ldots, g_{i}, 1, \ldots, 1\right)\left(1, \ldots, 1, h_{i}, 1, \ldots, 1\right) \\
& =\varphi\left(g_{i}\right) \varphi\left(h_{i}\right)
\end{aligned}
$$

So φ is an isomorphism and we have $G_{i} \cong H_{i}$.

Proof of the Proposition (Cont'd)

- To prove the remaining parts of (1) consider the map $\varphi: G \rightarrow G_{1} \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_{n}$ defined by $\varphi\left(g_{1}, g_{2}, \ldots, g_{n}\right)=\left(g_{1}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{n}\right)$, i.e., φ erases the i-th component of G. The map φ is a homomorphism since

$$
\begin{aligned}
& \varphi\left(\left(g_{1}, \ldots, g_{n}\right)\left(h_{1}, \ldots, h_{n}\right)\right) \\
& =\varphi\left(\left(g_{1} h_{1}, \cdots, g_{n} h_{n}\right)\right) \\
& =\left(g_{1} h_{1}, \ldots, g_{i-1} h_{i-1}, g_{i+1} h_{i+1}, \ldots, g_{n} h_{n}\right) \\
& =\left(g_{1}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{n}\right)\left(h_{1}, \ldots, h_{i-1}, h_{i+1}, \ldots, h_{n}\right) \\
& =\varphi\left(\left(g_{1}, \ldots, g_{n}\right)\right) \varphi\left(\left(h_{1}, \ldots, h_{n}\right)\right)
\end{aligned}
$$

Since the entries in position j are arbitrary elements of G_{j}, for all j, φ is surjective. Also, $\operatorname{ker} \varphi=\left\{\left(g_{1}, \ldots, g_{n}\right): g_{j}=1\right.$, for all $\left.j \neq i\right\} \cong G_{i}$.
Thus, G_{i} is a normal subgroup of G (in particular, it again proves this copy of G_{i} is a subgroup). The First Isomorphism Theorem gives $G / G_{i} \cong G_{1} \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_{n}$.

Proof of the Proposition (Parts (2) and (3))

(2) $\pi_{i}: G \rightarrow G_{i}$, with $\pi_{i}\left(\left(g_{1}, \ldots, g_{n}\right)\right)=g_{i}$ is surjective, since, for all $g_{i} \in G_{i}$,

$$
\pi_{i}\left(\left(1, \ldots, 1, g_{i}, 1, \ldots, 1\right)\right)=g_{i}
$$

It is a homomorphism, since

$$
\begin{aligned}
\pi\left(\left(g_{1}, \ldots, g_{n}\right)\left(h_{1}, \ldots, h_{n}\right)\right) & =\pi_{1}\left(\left(g_{1} h_{1}, \ldots, g_{n} h_{n}\right)\right) \\
& =g_{i} h_{i} \\
& =\pi_{i}\left(\left(g_{1}, \ldots, g_{n}\right)\right) \pi_{i}\left(\left(h_{1}, \ldots, h_{n}\right)\right) .
\end{aligned}
$$

The kernel of π_{i} is isomorphic to $G_{1} \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_{n}$, via the isomorphism

$$
\left(g_{1}, \ldots, g_{i-1}, 1, g_{i+1}, \ldots, g_{n}\right) \mapsto\left(g_{1}, \ldots, g_{i-1}, g_{i+1}, \ldots, g_{n}\right)
$$

(3) If $x=\left(1, \ldots, 1, g_{i}, 1, \ldots, 1\right), y=\left(1, \ldots, 1, g_{j}, 1, \ldots, 1\right)$, where the indicated entries appear in positions i, j, with, say $i<j$, respectively, then $x y=\left(1, \ldots, 1, g_{i}, 1, \ldots, 1, g_{j}, 1, \ldots, 1\right)=y x$. This completes the proof.

Components or Factors

- We will identify the "coordinate axis" subgroups

$$
H_{i}=\left\{\left(1, \ldots, 1, g_{i}, 1, \ldots, 1\right): g_{i} \in G_{i}\right\}
$$

with their isomorphic copies, the G_{i} 's. The i-th such subgroup is often called the i-th component or i-th factor of G.

- Example: When we calculate in $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$, we can let x be a generator of the first factor, let y be a generator of the second factor and write the elements of $\mathbb{Z}_{n} \times \mathbb{Z}_{m}$ in the form $x^{a} y^{b}$.
This replaces the formal ordered pairs $(x, 1)$ and $(1, y)$, with x and y and, thus, $x^{a} y^{b}$ replaces $\left(x^{a}, y^{b}\right)$.

Examples

(1) By Part (3), if $x_{i} \in G_{i}, 1 \leq i \leq n$, for all $k \in \mathbb{Z},\left(x_{1} x_{2} \cdots x_{n}\right)^{k}=$ $x_{1}^{k} x_{2}^{k} \cdots x_{n}^{k}$. The order of $x_{1} x_{2} \cdots x_{n}$ is the smallest positive k, such that $x_{i}^{k}=1$, for all i. Hence, $\left|x_{1} x_{2} \cdots x_{k}\right|=$ I.c.m. $\left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{k}\right|\right)$, the order being infinite if and only if one of the x_{i} 's has infinite order.
(2) Let p be a prime and for $n \in \mathbb{Z}^{+}$consider $E_{p^{n}}=Z_{p} \times Z_{p} \times \cdots \times Z_{p}$. Then $E_{p^{n}}$ is abelian of order p^{n}, such that $x^{p}=1$, for all $x \in E_{p^{n}}$. It is the elementary abelian group of order p^{n}.
(3) For p a prime, the elementary abelian group of order p^{2} has exactly $p+1$ subgroups of order p : Let $E=E_{p^{2}}$. Each nonidentity element of E has order p, so it generates a cyclic subgroup of E of order p. By Lagrange's Theorem, distinct subgroups of order p intersect trivially. Thus, the $p^{2}-1$ nonidentity elements of E are partitioned into subsets of size $p-1$. So, there are $\frac{p^{2}-1}{p-1}=p+1$ subgroups of order p. When $p=2, E$ is the Klein 4 -group which has 3 subgroups of order 2 .

Subsection 2

Recognizing Direct Products

Commutators and Commutator Subgroup

Definition (Commutator Subgroup)

Let G be a group, $x, y \in G$ and A, B be nonempty subsets of G.
(1) Define $[x, y]=x^{-1} y^{-1} x y$, called the commutator of x and y.
(2) Define $[A, B]=\langle[a, b]: a \in A, b \in B\rangle$, the group generated by commutators of elements from A and from B.
(3) Define $G^{\prime}=\langle[x, y]: x, y \in G\rangle$, the subgroup of G generated by commutators of elements from G, called the commutator subgroup of G.

- The terminology is due to the fact that:

The commutator of x and y is 1 if and only if x and y commute.

Properties of Commutators

- Commutators measure the "difference" in G between $x y$ and $y x$.

Proposition

Let G be a group, $x, y \in G$ and $H \leq G$. Then:
(1) $x y=y x[x, y]$; in particular, $x y=y x$ if and only if $[x, y]=1$.
(2) $H \unlhd G$ if and only if $[H, G] \leq H$.
(3) $\sigma[x, y]=[\sigma(x), \sigma(y)]$, for any automorphism σ of G, G^{\prime} char G and G / G^{\prime} is abelian.
(4) G / G^{\prime} is the largest abelian quotient of G : if $H \unlhd G$ and G / H is abelian, then $G^{\prime} \leq H$. Conversely, if $G^{\prime} \leq H$, then $H \unlhd G$ and G / H is abelian.
(5) If $\varphi: G \rightarrow A$ is any homomorphism of G into an abelian group A, then φ factors through G^{\prime}, i.e., $G^{\prime} \leq \operatorname{ker} \varphi$ and the following diagram commutes:

Proof of the Proposition (Parts (1)-(3))

(1) $x y=y x[x, y]: y x[x, y]=y x\left(x^{-1} y^{-1} x y\right)=x y$.
(2) $H \unlhd G$ if and only if $[H, G] \leq H$: By definition, $H \unlhd G$ if and only if $g^{-1} h g \in H$, for all $g \in G, h \in H$. For $h \in H, g^{-1} h g \in H$ if and only if $h^{-1} g^{-1} h g \in H$. So $H \unlhd G$ if and only if $[h, g] \in H$, for all $h \in H$ and all $g \in G$. Thus, $H \unlhd G$ if and only if $[H, G] \leq H$.
(3) $\sigma[x, y]=[\sigma(x), \sigma(y)]$, for $\sigma \in \operatorname{Aut}(G), G^{\prime}$ char G and G / G^{\prime} abelian: Let $\sigma \in \operatorname{Aut}(G), x, y \in G$. Then $\sigma([x, y])=\sigma\left(x^{-1} y^{-1} x y\right)=$ $\sigma(x)^{-1} \sigma(y)^{-1} \sigma(x) \sigma(y)=[\sigma(x), \sigma(y)]$. Thus, for every commutator $[x, y]$ of $G^{\prime}, \sigma([x, y])$ is again a commutator. Since σ has a 2-sided inverse, it maps the set of commutators bijectively onto itself. Since the commutators generate $G^{\prime}, \sigma\left(G^{\prime}\right)=G^{\prime}$, i.e., G^{\prime} char G.
To see that G / G^{\prime} is abelian, let $x G^{\prime}$ and $y G^{\prime}$ be arbitrary elements of G / G^{\prime}. By definition of the group operation in G / G^{\prime} and since $[x, y] \in G^{\prime}$, we have $\left(x G^{\prime}\right)\left(y G^{\prime}\right)=(x y) G^{\prime}=(y x[x, y]) G^{\prime}=(y x) G^{\prime}=$ $\left(y G^{\prime}\right)\left(x G^{\prime}\right)$.

Proof of the Proposition (Part (4))

(4) G / G^{\prime} is the largest abelian quotient of G, i.e., if $H \unlhd G$ and G / H is abelian, then $G^{\prime} \leq H$: Suppose $H \unlhd G$ and G / H is abelian. Then, for all $x, y \in G$, we have $(x H)(y H)=(y H)(x H)$, so

$$
1 H=(x H)^{-1}(y H)^{-1}(x H)(y H)=x^{-1} y^{-1} x y H=[x, y] H .
$$

Thus $[x, y] \in H$, for all $x, y \in G$, so that $G^{\prime} \leq H$.
Conversely, if $G^{\prime} \leq H$, then $H \unlhd G$ and G / H is abelian: If $G^{\prime} \leq H$, then, since, by (3), G / G^{\prime} is abelian, every subgroup of G / G^{\prime} is normal. In particular, $H / G^{\prime} \unlhd G / G^{\prime}$. By the Lattice Isomorphism Theorem, $H \unlhd G$. By the Third Isomorphism Theorem, $G / H \cong\left(G / G^{\prime}\right) /\left(H / G^{\prime}\right)$. Hence G / H is abelian.

Proof of the Proposition (Part (5))

(5) Suppose $\varphi: G \rightarrow A$ is a homomorphism, with A abelian, and $x, y \in G$. Then

$$
\begin{aligned}
\varphi([x, y]) & =\varphi\left(x^{-1} y^{-1} x y\right)=\varphi(x)^{-1} \varphi(y)^{-1} \varphi(x) \varphi(y) \\
& =[\varphi(x), \varphi(y)]=1 .
\end{aligned}
$$

So, for all $x, y \in G,[x, y] \in \operatorname{ker} \varphi$. Thus, $G^{\prime} \leq \operatorname{ker} \varphi$.
Define $\psi: G / G^{\prime} \rightarrow A$ by $\psi\left(g G^{\prime}\right)=\varphi(g)$, for all $g \in G$.

- ψ is well-defined: if $x G^{\prime}=y G^{\prime}$, then $y^{-1} x \in G^{\prime} \leq \operatorname{ker} \varphi$. So

$$
\varphi\left(y^{-1} x\right)=1 \text {, i.e., } \varphi(y)^{-1} \varphi(x)=1 \text {. So } \varphi(x)=\bar{\varphi}(y)
$$

- ψ is a homomorphism: For all $x, y \in G$,

$$
\psi\left(\left(x G^{\prime}\right)\left(y G^{\prime}\right)\right)=\psi\left((x y) G^{\prime}\right)=\varphi(x y)=\varphi(x) \varphi(y)=\psi\left(x G^{\prime}\right) \psi\left(y G^{\prime}\right)
$$

Finally, the diagram commutes: For all $x \in G$, we get

$$
\psi(\pi(x))=\psi\left(x G^{\prime}\right)=\varphi(x)
$$

Some Remarks

- Passing to the quotient by the commutator subgroup of G collapses all commutators to the identity so that all elements in the quotient group commute.
- A strong converse to this also holds:

A quotient of G by H is abelian if and only if the commutator subgroup is contained in H, i.e., if and only if G^{\prime} is mapped to the identity in the quotient G / H.

- There are examples of groups with the property that some element in the commutator group cannot be written as a single commutator $[x, y]$, for any $x, y \in G$. Thus, G^{\prime} does not necessarily consist only of the set of (single) commutators, but is rather the group generated by all the commutators.

Examples (1)-(3)

(1) A group G is abelian if and only if $G^{\prime}=1$.
(2) Consider $G=D_{8}$. We know:

- $Z\left(D_{8}\right)=\left\langle r^{2}\right\rangle \unlhd D_{8}$;
- $D_{8} / Z\left(D_{8}\right)$ is abelian (the Klein 4-group).

Thus, the commutator subgroup D_{8}^{\prime} is a subgroup of $Z\left(D_{8}\right)$. Since D_{8} is not itself abelian, its commutator subgroup is nontrivial. The only possibility is that $D_{8}^{\prime}=Z\left(D_{8}\right)$.
(3) Consider $G=Q_{8}$. We have:

- $Z\left(Q_{8}\right)=\langle-1\rangle \unlhd Q_{8}$;
- $Q_{8} / Z\left(Q_{8}\right)$ is abelian (the Klein 4-group).

Thus, the commutator subgroup Q_{8}^{\prime} is a subgroup of $Z\left(Q_{8}\right)$. Since Q_{8} is not itself abelian, its commutator subgroup is nontrivial. The only possibility is that $Q_{8}^{\prime}=Z\left(Q_{8}\right)=\langle-1\rangle$.

Generalizing Examples (2) and (3)

Claim: Let p be prime and G be a nonabelian group of order p^{3} with center Z. Then $|Z|=p, G / Z \cong Z_{p} \times Z_{p}$ and $G^{\prime}=Z$.

- Since G is a nontrivial group of p-power order, by a previous theorem (using the Class Equation) its center is nontrivial. So $|Z| \neq 1$.
- Since G is nonabelian, $|Z| \neq p^{3}$.
- Recall that, for any group G, if G / Z is cyclic then G is abelian. So G being nonabelian forces G / Z to be noncyclic. Since a group of prime order is necessarily cyclic, $|G / Z| \neq p$. Hence, $|Z| \neq p^{2}$.
- The only possibility left is $|Z|=p$.

So $|G / Z|=p^{2}$. Up to isomorphism the only groups of order p^{2} are $Z_{p^{2}}$ and $Z_{p} \times Z_{p}$. Since G / Z is noncyclic, $G / Z \cong Z_{p} \times Z_{p}$. Since G / Z is abelian, we have $G^{\prime} \subseteq Z$. Because $|Z|=p$ and G^{\prime} is nontrivial, necessarily $G^{\prime}=Z$.

Example

Claim: Let $D_{2 n}=\left\langle r, s \mid r^{n}=s^{2}=1, s^{-1} r s=r^{-1}\right\rangle$. Then $D_{2 n}^{\prime}=\left\langle r^{2}\right\rangle$.
Since

$$
[r, s]=r^{-1} s^{-1} r s=r^{-1} r^{-1} s^{-1} s=r^{-2}
$$

we have $\left\langle r^{-2}\right\rangle=\left\langle r^{2}\right\rangle \leq D_{2 n}^{\prime}$.
Furthermore, $\left\langle r^{2}\right\rangle \unlhd D_{2 n}$ and the images of r and s in $D_{2 n} /\left\langle r^{2}\right\rangle$ generate this quotient. Moreover, $r\left\langle r^{2}\right\rangle$ and $s\left\langle r^{2}\right\rangle$ are commuting elements of order ≤ 2. So the quotient is abelian. Thus, $D_{2 n}^{\prime} \leq\left\langle r^{2}\right\rangle$. Therefore, $D_{2 n}^{\prime}=\left\langle r^{2}\right\rangle$.

- If $n(=|r|)$ is odd, $\left\langle r^{2}\right\rangle=\langle r\rangle$;
- If n is even, $\left\langle r^{2}\right\rangle$ is of index 2 in $\langle r\rangle$.

Hence $D_{2 n}^{\prime}$ is of index 2 or 4 in $D_{2 n}$ according to whether n is odd or even, respectively.

Commutators and Conjugation

- Conjugation by $g \in G$ is an automorphism of G. So, by Part (3) of the Theorem, $\left[a^{g}, b^{g}\right]=[a, b]^{g}$, for all $a, b \in G$. I.e., conjugates of commutators are also commutators.
- It follows that once we exhibit an element of one cycle type in S_{n} as a commutator, every element of the same cycle type is also a commutator.

Example: Every 5-cycle is a commutator in S_{5}. Labeling the vertices of a pentagon as $1, \ldots, 5$, we see that $D_{10} \leq S_{5}$ (a subgroup of A_{5} in fact). By the preceding example, an element of order 5 is a commutator in D_{10}, hence also in S_{5}. Explicitly, (14253)=[(12345), (25)(43)].

Expressing Elements in HK

Proposition

Let H and K be subgroups of the group G. The number of distinct ways of writing each element of the set $H K$ in the form $h k$, for some $h \in H$ and $k \in K$ is $|H \cap K|$. In particular, if $H \cap K=1$, then each element of $H K$ can be written uniquely as a product $h k$, for some $h \in H$ and $k \in K$.

- Consider two fixed elements $h_{0} \in H$ and $k_{0} \in K$. Let

$$
S=\left\{(h, k) \in H \times K: h k=h_{0} k_{0}\right\} .
$$

Define a mapping $\psi: H \cap K \rightarrow S$, by setting

$$
\psi(\ell)=\left(h_{0} \ell, \ell^{-1} k_{0}\right), \text { for all } \ell \in H \cap K .
$$

- ψ is well-defined: Since $\ell \in H \cap K$, we have that $\ell \in H$ and $\ell \in K$.

Since $H, K \leq G$, we have $h_{0} \ell \in H$ and $\ell^{-1} k_{0} \in K$. Moreover, we get $\left(h_{0} \ell\right)\left(\ell^{-1} k_{0}\right)=h_{0} k_{0}$. Therefore, $\psi(\ell)=\left(h_{0} \ell, \ell^{-1} k_{0}\right) \in S$.

Expressing Elements in HK (Cont'd)

- ψ is one-one: Suppose $\psi(\ell)=\psi\left(\ell^{\prime}\right)$. Then $\left(h_{0} \ell, \ell^{-1} k_{0}\right)=\left(h_{0} \ell^{\prime}, \ell^{\prime-1} k_{0}\right)$. This implies $h_{0} \ell=h_{0} \ell^{\prime}$, whence by cancelation, $\ell=\ell^{\prime}$.
- ψ is onto: Suppose $(h, k) \in S$. Then $h k=h_{0} k_{0}$, whence $h_{0}^{-1} h=k_{0} k^{-1} \in H \cap K$. Define $\ell=h_{0}^{-1} h=k_{0} k^{-1}$.
Then we have

$$
\psi(\ell)=\left(h_{0} h_{0}^{-1} h,\left(k_{0} k^{-1}\right)^{-1} k_{0}\right)=\left(h, k k_{0}^{-1} k_{0}\right)=(h, k) .
$$

Thus, ψ is a bijection between S and $H \cap K$. This shows that $|S|=|H \cap K|$, as claimed.

Internal and External Products

Theorem

Suppose G is a group with subgroups H and K, such that:
(1) H and K are normal in G;
(2) $H \cap K=1$.

Then $H K \cong H \times K$.

- Observe that, by (1), HK is a subgroup of G. Let $h \in H$ and $k \in K$. Since $H \unlhd G, k^{-1} h k \in H$, So $h^{-1}\left(k^{-1} h k\right) \in H$. Similarly, $\left(h^{-1} k^{-1} h\right) k \in K$. Since $H \cap K=1$, it follows that $h^{-1} k^{-1} h k=1$, i.e., $h k=k h$. So, every element of H commutes with every element of K. By the preceding proposition, each element of $H K$ can be written uniquely as a product $h k$, with $h \in H, k \in K$. Thus, the map

$$
\varphi: H K \rightarrow H \times K ; \quad h k \mapsto(h, k),
$$

is well defined.

Internal and External Products (Cont'd)

- We showed that the map $\varphi: H K \rightarrow H \times K, h k \mapsto(h, k)$, is well defined. To see that φ is a homomorphism note that if $h_{1}, h_{2} \in H$, $k_{1}, k_{2} \in K$, then h_{2} and k_{1} commute: $\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)=\left(h_{1} h_{2}\right)\left(k_{1} k_{2}\right)$. This product is the unique way of writing $\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)$ in the form $h k$, with $h \in H$ and $k \in K$. This shows that

$$
\begin{aligned}
\varphi\left(h_{1} k_{1} h_{2} k_{2}\right) & =\varphi\left(h_{1} h_{2} k_{1} k_{2}\right)=\left(h_{1} h_{2}, k_{1} k_{2}\right) \\
& =\left(h_{1}, k_{1}\right)\left(h_{2}, k_{2}\right)=\varphi\left(h_{1} k_{1}\right) \varphi\left(h_{2} k_{2}\right) .
\end{aligned}
$$

The homomorphism φ is a bijection since the representation of each element of $H K$ as a product of the form $h k$ is unique. Thus, φ is an isomorphism.

Internal and External Direct Product

Definition (Internal Direct Product)

If G is a group and H and K are normal subgroups of G, with $H \cap K=1$, we call $H K$ the internal direct product of H and K. We will call $H \times K$ the external direct product of H and K.

- The distinction between internal and external direct product is purely notational: writing elements in the form $h k$ rather than as pairs (h, k).

Example I: For n odd, $D_{4 n} \cong D_{2 n} \times \mathbb{Z}_{2}$

(1) If n is a positive odd integer, $D_{4 n} \cong D_{2 n} \times \mathbb{Z}_{2}$.

To see this let $D_{4 n}=\left\langle r, s \mid r^{2 n}=s^{2}=1, s r s=r^{-1}\right\rangle$ be the usual presentation of $D_{4 n}$. Let $H=\left\langle s, r^{2}\right\rangle$ and $K=\left\langle r^{n}\right\rangle$. Geometrically, if $D_{4 n}$ is the group of symmetries of a regular $2 n$-gon, H is the group of symmetries of the regular n-gon inscribed in the $2 n$-gon by joining vertex $2 i$ to vertex $2 i+2$, for all $i \bmod 2 n\left(\right.$ and if one lets $r_{1}=r^{2}, H$ has the usual presentation of the dihedral group of order $2 n$ with generators r_{1} and s). Note that:

- $H \unlhd D_{4 n}$ (it has index 2).
- Since $|r|=2 n,\left|r^{n}\right|=2$. Since srs $=r^{-1}$, we have $s r^{n} s=r^{-n}=r^{n}$, i.e., s centralizes r^{n}. Since clearly r centralizes $r^{n}, K \leq Z\left(D_{4 n}\right)$. Thus, $K \unlhd D_{4 n}$.
- $K \not \leq H$, since r^{2} has odd order (or because r^{n} sends vertex i into vertex $i+n$, hence does not preserve the set of even vertices of the $2 n$-gon).
Thus, $H \cap K=1$ by Lagrange.
The preceding theorem now completes the proof.

Example II

(2) Let I be a subset of $\{1,2, \ldots, n\}$ and let G be the setwise stabilizer of I in S_{n}, i.e., $G=\left\{\sigma \in S_{n}: \sigma(i) \in \mathrm{I}\right.$, for all $\left.i \in \mathrm{I}\right\}$. Let $\mathrm{J}=\{1,2, \ldots, n\}-\mathrm{I}$. Note that G is also the setwise stabilizer of J . Let H, K be the pointwise stabilizers of I, J, respectively: Thus, we have

$$
\begin{aligned}
& H=\{\sigma \in G: \sigma(i)=i \text { for all } i \in \mathrm{I}\}, \\
& K=\{\tau \in G: \tau(j)=j \text { for all } j \in \mathrm{~J}\} .
\end{aligned}
$$

- It is easy to see that H and K are normal subgroups of G. In fact they are kernels of the actions of G on I and J, respectively.
- Since any element of $H \cap K$ fixes all of $\{1,2, \ldots, n\}$, we have $H \cap K=1$.
- Since every element σ of G stabilizes the sets I and J, each cycle in the cycle decomposition of σ involves only elements of I or only elements of J. Thus σ may be written as a product $\sigma_{I} \sigma_{\jmath}$, where $\sigma_{I} \in H$ and $\sigma_{\mathrm{J}} \in K$. This proves $G=H K$.
By the theorem, $G \cong H \times K$.

Example II (Cont'd)

- Any permutation of J can be extended to a permutation in S_{n} by letting it act as the identity on I. These are precisely the permutations in H. So $H \cong S_{\mathrm{J}}$.
- Similarly the permutations in K are the permutations of I which are the identity on J . So $K \cong S_{\mathrm{I}}$.
- Thus, we get $G \cong S_{m} \times S_{n-m}$, where $m=|\mathrm{I}|$.

Example III

(3) Let $\sigma \in S_{n}$ and I be the subset of $\{1,2, \ldots, n\}$ fixed pointwise by σ : $\mathrm{I}=\{i \in\{1,2, \ldots, n\}: \sigma(i)=i\}$.
Claim: If $C=C_{S_{n}}(\sigma)$, then C stabilizes the set I and its complement J.

Let $\tau \in C$ and let $i \in \mathrm{I}$. Then we have

$$
\sigma(\tau(i))=\tau(\sigma(i))=\tau(i)
$$

Thus, $\tau(i) \in \mathrm{I}$, showing that τ stabilizes I. It follows that τ also stabilizes J.
By the preceding example, C is isomorphic to a subgroup of $H \times K$, where H is the subgroup of all permutations in S_{n} fixing I pointwise and K is the set of all permutations fixing J pointwise. Note that $\sigma \in H$. Thus each element α of C can be written (uniquely) as $\alpha=\alpha_{\mathrm{I}} \alpha_{\mathrm{J}}$, for some $a_{\mathrm{I}} \in H$ and $\alpha_{\mathrm{J}} \in K$.

Example III (Cont'd)

- If τ is any permutation of $\{1,2, \ldots, n\}$, which fixes each $j \in \mathrm{~J}$, i.e., any element of K, then σ and τ commute (since they move no common integers). Thus, C contains all such τ, i.e., C contains the subgroup K. This proves that the group C consists of all elements $\alpha_{\mathrm{I}} \alpha_{\mathrm{J}} \in H \times K$, such that α_{J} is arbitrary in K and α_{I} commutes with σ in H :

$$
C_{S_{n}}(\sigma)=C_{H}(\sigma) \times K \cong C_{S_{\mathrm{J}}}(\sigma) \times S_{\mathrm{I}} .
$$

In particular, if σ is an m-cycle in $S_{n}, C_{S_{n}}(\sigma)=\langle\sigma\rangle \times S_{n-m}$. The latter group has order $m(n-m)$!.

Subsection 3

The Fundamental Theorem of Finitely Generated Abelian Groups

Finitely Generated and Free Abelian Groups

Definition (Finitely Generated and Free Abelian Groups)

(1) A group G is finitely generated if there is a finite subset A of G, such that $G=\langle A\rangle$.
(2) For each $r \in \mathbb{Z}$, with $r \geq 0$, let $\mathbb{Z}^{r}=\mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z}$ be the direct product of r copies of the group \mathbb{Z}, where $\mathbb{Z}^{0}=1$. The group \mathbb{Z}^{r} is called the free abelian group of rank r.

- Any finite group G is, a fortiori, finitely generated, since we may simply take $A=G$ as a set of generators.
- Also, \mathbb{Z}^{r} is finitely generated by $e_{1}, e_{2}, \ldots, e_{n}$, where

$$
e_{i}=(0, \ldots, 0, \underbrace{1}_{i}, 0, \ldots, 0)
$$

is the n-tuple with 1 in position i and zeros elsewhere.

The Fundamental Theorem of Finitely Generated Abelian Groups

Theorem (Fundamental Theorem of Finitely Generated Abelian Groups)

Let G be a finitely generated abelian group. Then:
(1) $G \cong \mathbb{Z}^{r} \times Z_{n_{1}} \times Z_{n_{2}} \times \cdots \times Z_{n_{s}}$, for some integers $r, n_{1}, n_{2}, \ldots, n_{s}$ satisfying the following conditions:
(a) $r \geq 0$ and $n_{j} \geq 2$, for all j;
(b) $n_{i+1} \mid n_{i}$, for $1 \leq i \leq s-1$.
(2) The expression in (1) is unique: if

$$
G \cong \mathbb{Z}^{t} \times Z_{m_{1}} \times Z_{m_{2}} \times \cdots \times Z_{m_{u}}
$$

where t and $m_{1}, m_{2}, \ldots, m_{u}$ satisfy (a) and (b), i.e., $t \geq 0, m_{j} \geq 2$, for all j, and $m_{i+1} \mid m_{i}$, for $1 \leq i \leq u-1$, then $t=r, u=s$ and $m_{i}=n_{i}$, for all i.

- The proof of the Fundamental Theorem is in Abstract Algebra II.

Free Rank and Invariant Factor Decomposition

Definition (Free Rank and Invariant Factor Decomposition)

The integer r in the expression $G \cong \mathbb{Z}^{r} \times Z_{n_{1}} \times Z_{n_{2}} \times \cdots \times Z_{n_{s}}$ is called the free rank or Betti number of G. The integers $n_{1}, n_{2}, \ldots, n_{s}$ are called the invariant factors of G. The description itself is called the invariant factor decomposition of G.

- The Fundamental Theorem asserts that the free rank and (ordered) list of invariant factors of an abelian group are uniquely determined.
- Thus, two finitely generated abelian groups are isomorphic if and only if they have the same free rank and the same list of invariant factors.
- A finitely generated abelian group is a finite group if and only if its free rank is zero. In that case, the order is just the product of its invariant factors.
- If G is a finite abelian group with invariant factors $n_{1}, n_{2}, \ldots, n_{s}$, where $n_{i+1} \mid n_{i}, 1 \leq i \leq s-1$, then G is of type $\left(n_{1}, n_{2}, \ldots, n_{s}\right)$.

Isomorphism Classes and Types

- The Fundamental Theorem gives an effective way of listing all finite abelian groups of a given order:
To find (up to isomorphism) all abelian groups of a given order n, we must find all finite sequences of integers $n_{1}, n_{2}, \ldots, n_{s}$, such that
(1) $n_{j} \geq 2$, for all $j \in\{1,2, \ldots, s\}$;
(2) $n_{i+1} \mid n_{i}, 1 \leq i \leq s-1$;
(3) $n_{1} n_{2} \cdots n_{s}=n$.
- The Theorem asserts that there is a bijection between the set of such sequences and the set of isomorphism classes of finite abelian groups of order n.
Under the bijection, each sequence corresponds to the list of invariant factors of a finite abelian group.

Some Remarks on the Invariant Factor Decomposition

- Consider, again, the invariant factor decomposition of a finite abelian group G of order n :

$$
G \cong Z_{n_{1}} \times Z_{n_{2}} \times \cdots \times Z_{n_{s}} .
$$

The following remarks apply:

- $n_{1} \geq n_{2} \geq \cdots \geq n_{s}$, so n_{1} is the largest invariant factor.
- Each n_{i} divides n.
- If p is any prime divisor of n, then p must divide n_{i}, for some i. Then p also divides n_{j}, for all $j \leq i$. It follows that every prime divisor of n must divide the first invariant factor n_{1}.

Corollary

If n is the product of distinct primes, then, up to isomorphism, the only abelian group of order n is the cyclic group Z_{n} of order n.

- If n is the product of distinct primes, $n \mid n_{1}$. Hence $n=n_{1}$. Thus, if n is square free, there is only one possible list of invariant factors for an abelian group of order n, namely, the list $n_{1}=n$.

Abelian Groups of Order 180

- Suppose $n=180=2^{2} \cdot 3^{2} \cdot 5$. We must have $2 \cdot 3 \cdot 5 \mid n_{1}$. So possible values of n_{1} are

$$
n_{1}=2^{2} \cdot 3^{2} \cdot 5, \quad 2^{2} \cdot 3 \cdot 5, \quad 2 \cdot 3^{2} \cdot 5, \quad 2 \cdot 3 \cdot 5
$$

For each of these, one must work out all possible n_{2} 's (subject to $n_{2} \mid n_{1}$ and $n_{1} n_{2} \mid n$). For each resulting pair n_{1}, n_{2} one must work out all possible n_{3} 's etc. until all lists satisfying (1) to (3) are obtained.

- If $n_{1}=2 \cdot 3^{2} \cdot 5$, the only number n_{2} dividing n_{1}, with $n_{1} n_{2}$ dividing n, is $n_{2}=2$. In this case $n_{1} n_{2}=n$. So this list is complete: $2 \cdot 3^{2} \cdot 5,2$. The abelian group corresponding to this list is $Z_{90} \times Z_{2}$.
- If $n_{1}=2 \cdot 3 \cdot 5$, the only candidates for n_{2} are $n_{2}=2,3$ or 6 . If $n_{2}=2$ or 3 , then since $n_{3} \mid n_{2}$, we would necessarily have $n_{3}=n_{2}$. This is not possible since n is not divisible 2^{3} or 3^{3}. Thus, the only list of invariant factors whose first term is $2 \cdot 3 \cdot 5$ is $2 \cdot 3 \cdot 5,2 \cdot 3$. The corresponding abelian group is $Z_{30} \times Z_{6}$.
- The complete list of isomorphism types is $Z_{180}, Z_{90} \times Z_{2}, Z_{60} \times Z_{3}$ and $Z_{30} \times Z_{6}$.

The Primary Decomposition Theorem

Theorem (The Primary Decomposition Theorem)

Let G be an abelian group of order $n>1$ and let the unique factorization of n into distinct prime powers be $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$. Then:
(1) $G \cong A_{1} \times A_{2} \times \cdots \times A_{k}$. where $\left|A_{i}\right|=p_{i}^{\alpha_{i}}$.
(2) For each $A \in\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$, with $|A|=p^{\alpha}$, $A \cong Z_{p^{\beta_{1}}} \times Z_{p^{\beta_{2}}} \times \cdots \times Z_{p^{\beta_{t}}}$, with $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{t} \geq 1$ and $\beta_{1}+\beta_{2}+\cdots+\beta_{t}=\alpha$ (t and $\beta_{1}, \ldots, \beta_{t}$ depend on i).
(3) The decomposition in (1) and (2) is unique, i.e., if $G \cong B_{1} \times B_{2} \times \cdots \times B_{m}$, with $\left|B_{i}\right|=p_{i}^{\alpha_{i}}$, for all i, then $B_{i} \cong A_{i}$ and B_{i} and A_{i} have the same invariant factors.

Definition

The integers $p^{\beta_{j}}$, described in the preceding theorem, are called the elementary divisors of G. The description of G in the theorem is called the elementary divisor decomposition of G.

Remarks on the Primary Decomposition Theorem

- The subgroups A_{i} described in Part (1) of the theorem are the Sylow p_{i}-subgroups of G.
- Thus (1) says that G is isomorphic to the direct product of its Sylow subgroups (they are normal, since G is abelian and, hence, unique).
- For p a prime, $p^{\beta} \mid p^{\gamma}$ if and only if $\beta \leq \gamma$. Furthermore, $p^{\beta_{1}} \cdots p^{\beta_{t}}=p^{\alpha}$ if and only if $\beta_{1}+\cdots+\beta_{t}=\alpha$.
Thus, the decomposition of A appearing in Part (2) of the theorem is the invariant factor decomposition of A with the "divisibility" conditions on the integers $p^{\beta_{j}}$ translated into "additive" conditions on their exponents.
The elementary divisors of G are now seen to be the invariant factors of the Sylow p-subgroups as p runs over all prime divisors of G.

Invariant Factors of Primary Components

- In order to find all abelian groups of order $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, one must find for each $i, 1 \leq i \leq k$, all possible lists of invariant factors for groups of order $p_{i}^{\alpha_{i}}$.
- The set of elementary divisors of each abelian group is then obtained by taking one set of invariant factors from each of the k lists.
- The abelian groups are the direct products of the cyclic groups whose orders are the elementary divisors (and distinct lists of elementary divisors give non isomorphic groups).
- We must obey the following conditions for the invariant factors:
(1) $\beta_{j} \geq 1$, for all $j \in\{1,2, \ldots, t\}$;
(2) $\beta_{i} \geq \beta_{i+1}$, for all i;
(3) $\beta_{1}+\beta_{2}+\cdots+\beta_{t}=\beta$.

Abelian Groups of Order p^{5}

- The number of nonisomorphic abelian groups of order p^{β} equals the number of partitions of β, which is independent of the prime p.
Example: The number of abelian groups of order p^{5} is obtained from the list of partitions of 5 :

Partitions of 5	Abelian Groups
5	$Z_{p^{5}}$
4,1	$Z_{p^{4}} \times Z_{p}$
3,2	$Z_{p^{3}} \times Z_{p^{2}}$
$3,1,1$	$Z_{p^{3}} \times Z_{p} \times Z_{p}$
$2,2,1$	$Z_{p^{2}} \times Z_{p^{2}} \times Z_{p}$
$2,1,1,1$	$Z_{p^{2}} \times Z_{p} \times Z_{p} \times Z_{p}$
$1,1,1,1,1$	$Z_{p} \times Z_{p} \times Z_{p} \times Z_{p} \times Z_{p}$

Thus there are precisely 7 non isomorphic groups of order p^{5}.

- The first in the list is the cyclic group $Z_{p^{5}}$.
- The last in the list is the elementary abelian group $E_{p^{5}}$.

Abelian Groups of Order 1800

- If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ and q_{i} is the number of partitions of α_{i}, we see that the number of (distinct, non isomorphic) abelian groups of order n equals $q_{1} q_{2} \cdots q_{k}$.
- Example: If $n=1800=2^{3} 3^{2} 5^{2}$ we list the abelian groups of this order as follows:

Order p^{β}	Partitions of β	Abelian Groups
2^{3}	$3 ; 2,1 ; 1,1,1$	$Z_{8}, Z_{4} \times Z_{2}, Z_{2} \times Z_{2} \times Z_{2}$
3^{2}	$2 ; 1,1$	$Z_{9}, Z_{3} \times Z_{3}$
5^{2}	$2 ; 1,1$	$Z_{25}, Z_{5} \times Z_{5}$

The abelian groups of order 1800 are obtained by taking one abelian group from each of the three lists and taking their direct product: This results in $3 \times 2 \times 2=12$ abelian groups of order 1800 .

- It is important to keep in mind that the elementary divisors of G are not invariant factors of G, but invariant factors of subgroups of G.

A Decomposition Theorem

Proposition

Let $m, n \in \mathbb{Z}^{+}$.
(1) $Z_{m} \times Z_{n} \cong Z_{m n}$ if and only if $(m, n)=1$.
(2) If $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$, then $Z_{n} \cong Z_{p_{1}^{\alpha_{1}}} \times Z_{p_{2}^{\alpha_{2}}} \times \cdots \times Z_{p_{k}^{\alpha_{k}}}$.
(1) Let $Z_{m}=\langle x\rangle, Z_{n}=\langle y\rangle$ and let $\ell=$ I.c.m. (m, n). Note that $\ell=m n$ if and only if $(m, n)=1$. Let $x^{a} y^{b}$ be a typical element of $Z_{m} \times Z_{n}$. Then $\left(x^{a} y^{b}\right)^{\ell}=x^{\ell a} y^{\ell b}=1^{a} 1^{b}=1$.

- If $(m, n) \neq 1$, every element of $Z_{m} \times Z_{n}$ has order at most ℓ. So it has order strictly less than $m n$. Thus, $Z_{m} \times Z_{n}$ cannot be isomorphic to $Z_{m n}$.
- Conversely, if $(m, n)=1$, then $|x y|=$ I.c.m. $(|x|,|y|)=m n$. Thus, by order considerations, $Z_{m} \times Z_{n}=\langle x y\rangle$ is cyclic, completing the proof.

A Decomposition Theorem (Part (2))

(2) Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$. We show that $Z_{n} \cong Z_{p_{1}^{\alpha_{1}}} \times \cdots \times Z_{p_{k}^{\alpha_{k}}}$ by induction on k.
For $k=1$ this is trivial.
For $k=2$, we have

$$
Z_{n}=Z_{p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}}} \stackrel{\text { Part (1) }}{\cong} Z_{p_{1}^{\alpha_{1}}} \times Z_{p_{2}^{\alpha_{2}}} .
$$

Suppose the result holds for some $k \geq 2$.
Then, if $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}} p_{k+1}^{\alpha_{k+1}}$, we get

$$
Z_{n} \cong Z_{p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}} p_{k+1}^{\alpha_{k+1}}} \stackrel{\operatorname{Part~}^{(1)}}{=} \quad Z_{p_{1}^{\alpha_{1} \ldots p_{k}^{\alpha_{k}}}} \times Z_{p_{k+1}^{\alpha_{k+1}}} .
$$

From Invariant Factors to Elementary Divisors

- Suppose G is given as an abelian group of type $\left(n_{1}, n_{2}, \ldots, n_{s}\right)$, i.e.,

$$
G \cong Z_{n_{1}} \times Z_{n_{2}} \times \cdots \times Z_{n_{s}} .
$$

Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}=n_{1} n_{2} \cdots n_{s}$. Factor each n_{i} as

$$
n_{i}=p_{1}^{\beta_{i 1}} p_{2}^{\beta_{i 2}} \cdots p_{k}^{\beta_{i k}}
$$

where $\beta_{i j} \geq 0$. By the proposition,

$$
Z_{n_{i}} \cong Z_{p_{1}^{\beta_{i 1}}} \times Z_{p_{2}^{\beta_{i 2}}} \times \cdots \times Z_{p_{k}^{\beta_{i k}}}
$$

for each i. If $\beta_{i j}=0, Z_{p_{j}}{ }_{i j}=1$ and this factor may be deleted from the direct product. Then the elementary divisors of G are precisely the integers

$$
p_{j}^{\beta_{i j}}, 1 \leq j \leq k, 1 \leq i \leq s, \text { such that } \beta_{i j} \neq 0
$$

Example: Invariant Factors to Elementary Divisors

- If $|G|=2^{3} \cdot 3^{2} \cdot 5^{2}$ and G is of type $(30,30,2)$, then

$$
G \cong Z_{30} \times Z_{30} \times Z_{2}
$$

Since $Z_{30} \cong Z_{2} \times Z_{3} \times Z_{5}$,

$$
G \cong Z_{2} \times Z_{3} \times Z_{5} \times Z_{2} \times Z_{3} \times Z_{5} \times Z_{2} .
$$

The elementary divisors of G are $2,3,5,2,3,5,2$, or, grouping like primes together, $2,2,2,3,3,5,5$.
If for each j, the factors $Z_{p_{j}}{ }_{i j}$ are put together, the resulting direct product forms the Sylow p_{j}-subgroup A_{j} of G.
Thus, the Sylow 2-subgroup of the group above is

$$
\cong Z_{2} \times Z_{2} \times Z_{2}
$$

From Cyclic Decompositions to Elementary Divisors

- This same process will give the elementary divisors of a finite abelian group G whenever G is given as a direct product of cyclic groups (not just when the orders of the cyclic components are the invariant factors).
- Example: If $G=Z_{6} \times Z_{15}$, the list 6,15 is
- neither that of the invariant factors (the divisibility condition fails)
- nor that of elementary divisors (they are not prime powers).

To find the elementary divisors, factor $6=2 \cdot 3$ and $15=3 \cdot 5$.
Then the prime powers $2,3,3,5$ are the elementary divisors and

$$
G \cong Z_{2} \times Z_{3} \times Z_{3} \times Z_{5}
$$

From Elementary Divisors to Invariant Factors

- Suppose G is an abelian group of order n, where $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}$ and we are given the elementary divisors of G.
The invariant factors of G are obtained as follows:
(1) First group all elementary divisors which are powers of the same prime together.
In this way we obtain k lists of integers (one for each p_{k}).
(2) In each of these k lists arrange the integers in non-increasing order.
(3) Among these k lists suppose that the longest, i.e., the one with the most terms, consists of t integers.
Make each of the k lists of length t by appending an appropriate number of 1 's at the end of each list.
(4) For each $i \in\{1,2, \ldots, t\}$ the i-th invariant factor, n_{i}, is obtained by taking the product of the i-th integer in each of the t (ordered) lists.
- The point of ordering the lists in this way is to ensure that we have the divisibility condition $n_{i+1} \mid n_{i}$.

Obtaining Invariant Factors From Elementary Divisors

- Suppose that the elementary divisors of G are given as $2,3,2,25,3,2$ (so $|G|=2^{3} \cdot 3^{2} \cdot 25$).
Regrouping and increasing each list to have $3(=t)$ members gives:

$$
\begin{array}{c|ccc}
p=2 & 2 & 2 & 2 \\
\hline p=3 & 3 & 3 & 1 \\
\hline p=5 & 25 & 1 & 1
\end{array}
$$

So the invariant factors of G are

$$
2 \cdot 3 \cdot 25, \quad 2 \cdot 3 \cdot 1, \quad 2 \cdot 1 \cdot 1
$$

and

$$
G \cong Z_{150} \times Z_{6} \times Z_{2}
$$

Using Elementary Divisors to Check Isomorphism

- We can use the decompositions to determine whether any two direct products of finite cyclic groups are isomorphic.
Example: We want to determine whether $Z_{6} \times Z_{15} \cong Z_{10} \times Z_{9}$.
- First determine whether they have the same order (both have order 90).
- Then (the easiest way in general) determine whether they have the same elementary divisors:
- $Z_{6} \times Z_{15}$ has elementary divisors 2,3,3,5. It is isomorphic to $Z_{2} \times Z_{3} \times Z_{3} \times Z_{5}$.
- $Z_{10} \times Z_{9}$ has elementary divisors $2,5,9$. It is isomorphic to $Z_{2} \times Z_{5} \times Z_{9}$.

The lists of elementary divisors are different so the groups are not isomorphic.

