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Modules

Definition (Module)

Let R be a ring (not necessarily commutative nor with 1). A left

R-module or a left module over R is a set M together with:

(1) a binary operation + on M under which M is an abelian group, and

(2) an action of R on M (that is, a map R ×M → M) denoted by rm,
for all r ∈ R and for all m ∈ M, which satisfies:

(a) (r + s)m = rm + sm, for all r , s ∈ R ,m ∈ M ,
(b) (rs)m = r(sm), for all r , s ∈ R , m ∈ M , and
(c) r(m + n) = rm + rn, for all r ∈ R , m, n ∈ M .

If the ring R has a 1, we impose the additional axiom:

(d) 1m = m, for all m ∈ M .

The descriptor “left” in the above definition indicates that the ring
elements appear on the left.

Right R-modules can be defined analogously.
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Remarks on the Definition

If the ring R is commutative and M is a left R-module, we can make
M into a right R-module by defining mr = rm, for m ∈ M and r ∈ R .

If R is not commutative, Axiom 2(b),

(rs)m = r(sm), for all r , s ∈ R , m ∈ M,

in general will not hold with this definition.

So not every left R-module is also a right R-module.

Unless explicitly mentioned otherwise the term “module” will always
mean “left module.”

Modules satisfying Axiom 2(d),

1m = m, for all m ∈ M,

are called unital modules.

All our modules will be unital.
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Submodules

When R is a field F , the axioms for an R-module are precisely the
same as those for a vector space over F .

Modules over a field F and vector spaces over F are the same.

Definition (Submodule)

Let R be a ring and let M be an R-module. An R-submodule of M is a
subgroup N of M which is closed under the action of ring elements, i.e.,
rn ∈ N, for all r ∈ R , n ∈ N.

Submodules of M are therefore just subsets of M which are
themselves modules under the restricted operations.

In particular, if R = F is a field, submodules are the same as
subspaces.

Every R-module M has the two submodules M and 0 (the latter is
called the trivial submodule).
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View of a Ring as a Module

(1) Let R be any ring. Then M = R is a left R-module, where the action
of a ring element on a module element is just the usual multiplication
in the ring R (similarly, R is a right module over itself).

In particular, every field can be considered as a (1-dimensional) vector
space over itself.

When R is considered as a left module over itself in this fashion, the
submodules of R are precisely the left ideals of R (and if R is
considered as a right R-module over itself, its submodules are the
right ideals).

Thus, if R is not commutative, it has a left and right module
structure over itself and these structures may be different (e.g., the
submodules may be different).
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Affine n-Space of a Field

(2) Let R = F be a field.

Every vector space over F is an F -module and vice versa.

Let n ∈ Z+ and let

F n = {(a1, a2, . . . , an) : ai ∈ F , for all i}

(called affine n-space over F ).

Make F n into a vector space by defining addition and scalar
multiplication componentwise:

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn)
α(a1, . . . , an) = (αa1, . . . , αan), α ∈ F .

As in the case of Euclidean n-space (i.e., when F = R), affine n-space
is a vector space of dimension n over F (we shall discuss the notion of
dimension more formally later).
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Free Modules of Rank n

(3) Let R be a ring with 1 and let n ∈ Z+.

Define
Rn = {(a1, a2, . . . , an) : ai ∈ R , for all i}.

Make Rn into an R-module by componentwise addition and
multiplication by elements of R in the same manner as when R was a
field.

The module Rn is called the free module of rank n over R .

An obvious submodule of Rn is given by the i -th component, namely
the set of n-tuples with arbitrary ring elements in the i -th component
and zeros in the j-th component for all j 6= i .
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Multiple Module Structures

(4) The same abelian group may have the structure of an R-module for a
number of different rings R and each of these module structures may
carry useful information.

Specifically, if M is an R-module and S is a subring of R with
1S = 1R , then M is automatically an S-module as well.

For instance the field R is:

an R-module;
a Q-module;
a Z-module.
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Annihilating Ideals

(5) If M is an R-module and for some (2-sided) ideal I of R ,

am = 0, for all a ∈ I and all m ∈ M,

we say M is annihilated by I .

In this situation we can make M into an (R/I )-module by defining an
action of the quotient ring R/I on M as follows:

(r + I )m = rm, for all m ∈ M and coset r + I in R/I .

Since am = 0, for all a ∈ I and all m ∈ M, this is well defined.

One easily checks that it makes M into an (R/I )-module.

In particular, when I is a maximal ideal in the commutative ring R

and IM = 0, then M is a vector space over the field R/I .
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Z-Modules

Let R = Z, let A be any abelian group (finite or infinite) and write
the operation of A as +.
Make A into a Z-module as follows: for any n ∈ Z and a ∈ A, define

na =







a+ a+ · · ·+ a (n times), if n > 0
0, if n = 0
− a − a− · · · − a (−n times), if n < 0

(here 0 is the identity of the additive group A).

This definition of an action of Z on A makes A into a Z-module.

The module axioms show that this is the only possible action of Z on
A making it a (unital) Z-module.

Thus every abelian group is a Z-module.

Conversely, if M is any Z-module, a fortiori M is an abelian group.

Hence, Z-modules are the same as abelian groups.

Furthermore, it is immediate from the definition that Z-submodules
are the same as subgroups.
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Z-Modules (Cont’d)

For the cyclic group 〈a〉 written multiplicatively, the additive notation
na becomes an, that is, we have all along been using the fact that 〈a〉
is a right Z-module (the laws of exponents are the Z-module axioms).

Since Z is commutative these definitions of left and right actions by
ring elements give the same module structure.

If A is an abelian group containing an element x of finite order n,
then nx = 0. Thus, in contrast to vector spaces, a Z-module may
have nonzero elements x , such that nx = 0, for some nonzero ring
element n.

In particular, if A has order m, then by Lagrange’s Theorem mx = 0,
for all x ∈ A. In that case, A is a module over Z/mZ.

In particular, if p is a prime and A is an abelian group (written
additively) such that px = 0, for all x ∈ A, then A is a Z/pZ-module,
i.e., can be considered as a vector space over the field Fp = Z/pZ.
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F [x ]-modules

Let F be a field, let x be an indeterminate and let R be the
polynomial ring F [x ].

Let V be a vector space over F (i.e., an F -module) and let T be a
linear transformation from V to V .
The linear map T enables us to make V into an F [x ]-module:

For the nonnegative integer n, define

T 0 = I , the identity map from V to V ,
T n = T ◦ T ◦ · · · ◦ T (n times), ◦ is function composition.

Also, for any two linear transformations A,B from V to V and
elements α, β ∈ F , let αA+ βB be defined (pointwise) by

(αA + βB)(v) = α(A(v)) + β(B(v)).

Then αA + βB is seen to be a linear transformation from V to V .

I.e., linear combinations of linear transformations are again linear
transformations.
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F [x ]-modules (Cont’d)

Define the action of any polynomial in x on V : Let
p(x) = anx

n + an−1x
n−1 + · · ·+ a1x + a0, where a0, . . . , an ∈ F .

For each v ∈ V , define an action of p(x) on the module element v by

p(x)v = (anT
n + an−1T

n−1 + · · ·+ a1T + a0)(v)
= anT

n(v) + an−1T
n−1(v) + · · ·+ a1T (v) + a0v ,

i.e., p(x) acts by:

substituting the linear transformation T for x in p(x);
applying the resulting linear transformation to v .

Put another way:

Let x act on V as the linear transformation T ;
Extend this to an action of all of F [x ] on V in a natural way.
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F [x ]-modules (Verification)

It is easy to check that this definition of an action of F [x ] on V

satisfies all the module axioms,

i.e., for all f (x), g(x) ∈ F [x ] and all v , u ∈ V ,

(f (x) + g(x))v = f (v)v + g(x)v ;
(f (x)g(x))v = f (x)(g(x)v);
f (x)(v + u) = f (x)v + f (x)u;
1v = v .

So it makes V into an F [x ]-module.

The field F is naturally a subring of F [x ] and the action of these field
elements is by definition the same as their action when viewed as
constant polynomials.

So the definition of the F [x ] action on V is consistent with the given
action of the field F on the vector space V .
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F [x ]-modules (Special Cases)

The way F [x ] acts on V depends on the choice of T .
Thus, there are in general many different F [x ]-module structures on
the same vector space V .

If T = 0, and p(x) = anx
n + · · ·+ a1x + a0 ∈ F [x ], v ∈ V , then

p(x)v = a0v ,

i.e., the polynomial p(x) acts on v simply by multiplying by the
constant term of p(x).
In this case, the F [x ]-module structure is just the F -module structure.
If T is the identity transformation,

T n(v) = v for all n and v .

We now get

p(x)v = anv + an−1v + . . .+ a0v

= (an + · · ·+ a0)v .

So p(x) multiplies v by the sum of the coefficients of p(x).
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F [x ]-modules (Another Special Case)

For another example, let V be affine n-space F n and let T be the
“shift operator” T (x1, x2, . . . , xn) = (x2, x3, . . . , xn, 0).

Let ei be the usual i -th basis vector (0, 0, . . . , 0, 1, 0, . . . , 0), where
the 1 is in position i . Then:

T k(ei ) =

{

ei−k , if i > k

0, if i ≤ k

So for example, if m < n,

(amx
m + am−1x

m−1 + · · · + a0)en = (0, . . . , 0, am, am−1, . . . , a0).

From this we can determine the action of any polynomial on any
vector.
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Characterization of F [x ]-modules

The construction of an F [x ]-module from a vector space V over F
and a linear transformation T from V to V in fact describes all
F [x ]-modules:

An F [x ]-module is a vector space together with a linear transformation
which specifies the action of x , since then:

V is an F -module;
the action of the ring element x on V is a linear transformation from V

to V .
The axioms for a module ensure that the actions of F and x on V

uniquely determine the action of any element of F [x] on V .

There is a bijection between the collection of F [x ]-modules and the
collection of pairs V ,T

V an F [x ]-module ↔

{

V a vector space over F
T : V → V a linear transformation

}

given by: “the element x acts on V as the linear transformation T”.
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F [x ]-Submodules

Consider F [x ]-submodules of V where

V is any F [x ]-module;
T is the linear transformation from V to V given by the action of x .

If W is an F [x ]-submodule of V :

It must first be an F -submodule, i.e., a vector subspace of V .
Second, it must be sent to itself under the action of the ring element x ,
i.e., we must have T (w) ∈ W , for all w ∈ W .

Any vector subspace U of V , such that T (U) ⊆ U is called T -stable
or T -invariant.

If U is any T -stable subspace of V , it follows that T n(U) ⊆ U, for all
n ∈ Z+ (e.g., T (U) ⊆ U implies T 2(U) = T (T (U)) ⊆ T (U) ⊆ U).

Moreover any linear combination of powers of T then sends U into U.

So U is also stable by the action of any polynomial in T .

Thus U is an F [x ]-submodule of V .
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F [x ]-Submodules (Cont’d)

The preceding reasoning shows that the F [x ]-submodules of V are
precisely the T -stable subspaces of V .

In terms of the bijection above,

W an F [x ]-submodule ↔

{

W a subspace of V
W is T -stable

}

which gives a complete dictionary between F [x ]-modules V and vector
spaces V together with a given linear transformation T from V to V .

Example: Suppose T is the shift operator defined on affine n-space
above and k is any integer in the range 0 ≤ k ≤ n. The subspace

Uk = {(x1, x2, . . . , xk , 0, . . . , 0) : xi ∈ F}

is T -stable. So Uk is an F [x ]-submodule of V .
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A Submodule Criterion

Proposition (The Submodule Criterion)

Let R be a ring and let M be an R-module. A subset N of M is a
submodule of M if and only if:

(1) N 6= ∅, and

(2) x + ry ∈ N, for all r ∈ R and for all x , y ∈ N.

If N is a submodule, then 0 ∈ N so N 6= ∅. Also N is closed under
addition and is sent to itself under the action of elements of R .

Conversely, suppose (1) and (2) hold. Let r = −1 and apply the
subgroup criterion (in additive form) to see that N is a subgroup of
M. In particular, 0 ∈ N. Now let x = 0 and apply hypothesis (2) to
see that N is sent to itself under the action of R .

This establishes the proposition.
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Subsection 2

Quotient Modules and Module Homomorphisms
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Homomorphisms, Kernels and Images

Definition (R-Module Homomorphism)

Let R be a ring and let M and N be R-modules.
(1) A map ϕ : M → N is an R-module homomorphism if it respects the

R-module structures of M and N:

(a) ϕ(x + y) = ϕ(x) + ϕ(y), for all x , y ∈ M ;
(b) ϕ(rx) = rϕ(x), for all r ∈ R , x ∈ M .

(2) An R-module homomorphism is an isomorphism (of R-modules) if
it is both injective and surjective. The modules M and N are said to
be isomorphic, denoted M ∼= N, if there is some R-module
isomorphism ϕ : M → N.

(3) If ϕ : M → N is an R-module homomorphism, let kerϕ = {m ∈ M :
ϕ(m) = 0} (the kernel of ϕ) and let ϕ(M) = {n ∈ N : n = ϕ(m),
for some m ∈ M} (the image of ϕ, as usual).

(4) Let M and N be R-modules and define HomR(M,N) to be the set of
all R-module homomorphisms from M into N.
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Remarks

Any R-module homomorphism is also a homomorphism of the
additive groups; However, not every group homomorphism need be a
module homomorphism.

It is an easy exercise using the submodule criterion to show that
kernels and images of R-module homomorphisms are submodules.

If R is a ring and M = R is a module over itself, then:

(a) R-module homomorphisms (even from R to itself) need not be ring
homomorphisms;
Example: When R = Z, the Z-module homomorphism x 7→ 2x is not a
ring homomorphism (1 does not map to 1).

(b) Ring homomorphisms need not be R-module homomorphisms.
Example: When R = F [x ] the ring homomorphism ϕ : f (x) 7→ f (x2) is
not an F [x ]-module homomorphism: If it were, we would have
x2 = ϕ(x) = ϕ(x · 1) = xϕ(1) = x .
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Examples

(2) Let R be a ring, let n ∈ Z+ and let M = Rn. For each i ∈ {1, . . . , n},
the projection map πi : R

n → R ; πi(x1, . . . , xn) = xi , is a surjective
R-module homomorphism with kernel equal to the submodule of
n-tuples which have a zero in position i .

(3) If R is a field, R-module homomorphisms are called linear

transformations.

(4) For the ring R = Z the action of ring elements (integers) on any
Z-module amounts to just adding and subtracting within the
(additive) abelian group structure of the module. So in this case
condition (b) of a homomorphism is implied by condition (a).

E.g., ϕ(2x) = ϕ(x + x) = ϕ(x) + ϕ(x) = 2ϕ(x).

Thus, Z-module homomorphisms are the same as abelian group
homomorphisms.
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Examples (Cont’d)

(5) Let R be a ring, let I be a 2-sided ideal of R and suppose M and N

are R-modules annihilated by I :

am = 0, a ∈ I ,m ∈ M,
an = 0, a ∈ I , n ∈ N.

Any R-module homomorphism from N to M is then automatically a
homomorphism of (R/I )-modules.

In particular, if A is an additive abelian group such that for some
prime p, px = 0, for all x ∈ A, then any group homomorphism from A

to itself is a Z/pZ-module homomorphism, i.e., is a linear
transformation over the field Fp .

In particular, the group of all (group) automorphisms of A is the
group of invertible linear transformations from A to itself: GL(A).
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Properties of Homomorphisms

Proposition

Let M,N and L be R-modules.

(1) A map ϕ : M → N is an R-module homomorphism if and only if
ϕ(rx + y) = rϕ(x) + ϕ(y), for all x , y ∈ M and all r ∈ R .

(2) Let ϕ,ψ ∈ HomR(M,N).

Define ϕ+ ψ by (ϕ+ ψ)(m) = ϕ(m) + ψ(m), for all m ∈ M . Then
ϕ+ ψ ∈ HomR(M ,N), and with this operation HomR(M ,N) is an
abelian group.
If R is a commutative ring, then for r ∈ R , define rϕ by (rϕ)(m) =
r(ϕ(m)), for all m ∈ M . Then rϕ ∈ HomR(M ,N) and with this action
of the commutative ring R the abelian group HomR(M ,N) is an
R-module.

(3) If ϕ ∈ HomR(L,M) and ψ ∈ HomR(M,N), then ψ ◦ϕ ∈ HomR(L,N).

(4) With addition as above and multiplication defined as function
composition, HomR(M,M) is a ring with 1.
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Proof of Properties

(1) If ϕ is an R-module homomorphism, ϕ(rx + y) = rϕ(x) + ϕ(y).
Suppose, conversely, ϕ(rx + y) = rϕ(x) + ϕ(y).

Take r = 1 to see that ϕ is additive;
Take y = 0 to see that ϕ commutes with the action of R on M (i.e., is
homogeneous).

(2) It is straightforward to check that all the abelian group and R-module
axioms hold with these definitions. The commutativity of R is used to
show that rϕ satisfies the second axiom for rϕ:

(r1ϕ)(r2m) = r1ϕ(r2m) (definition of r1ϕ)
= r1r2(ϕ(m)) (ϕ homomorphism)
= r2r1ϕ(m) (R commutative)
= r2(r1ϕ)(m). (definition of r1ϕ)

Verification of the axioms relies ultimately on the hypothesis that N
is an R-module. The domain M could in fact be any set - it does not
have to be an R-module nor an abelian group.

George Voutsadakis (LSSU) Abstract Algebra II September 2020 29 / 56



Introduction to Module Theory Quotient Modules and Module Homomorphisms

Proof of Properties (Cont’d)

(3) Let ϕ and ψ be as given and let r ∈ R , x , y ∈ L. Then

(ψ ◦ ϕ)(rx + y) = ψ(ϕ(rx + y))
= ψ(rϕ(x) + ϕ(y))
= rψ(ϕ(x)) + ψ(ϕ(y))
= r(ψ ◦ ϕ)(x) + (ψ ◦ ϕ)(y).

So, by (1), ψ ◦ ϕ is an R-module homomorphism.

(4) Note that since the domain and codomain of the elements of
HomR(M,M) are the same, function composition is defined. By (3),
it is a binary operation on HomR(M,M). As usual, function
composition is associative. The remaining ring axioms are
straightforward to check. The identity function, I (I (x) = x , for all
x ∈ M), is seen to be the multiplicative identity of HomR(M,M).
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The Ring of Endomorphisms

Definition (Endomorphism Ring)

The ring HomR(M,M) is called the endomorphism ring of M and will
often be denoted by EndR(M), or just End(M) when the ring R is clear
from context. Elements of End(M) are called endomorphisms.

When R is commutative there is a natural map from R into End(M)
given by

r 7→ rI ,

where the latter endomorphism of M is just multiplication by r on M.

The ring homomorphism from R to EndR(M) may not be injective,
since for some r we may have rm = 0, for all m ∈ M,

take, e.g., R = Z,M = Z/2Z, and r = 2.

When R is a field, however, this map is injective (in general, no unit
is in the kernel of this map) and the copy of R in EndR(M) is called
the (subring of) scalar transformations.
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Quotient Modules and Natural Projections

Proposition

Let R be a ring, let M be an R-module and let N be a submodule of M.
The (additive, abelian) quotient group M/N can be made into an
R-module by defining an action of elements of R by

r(x + N) = (rx) + N for all r ∈ R , x + N ∈ M/N.

The natural projection map π : M → M/N defined by π(x) = x + N is an
R-module homomorphism with kernel N.

Since M is an abelian group under + the quotient group M/N is
defined and is an abelian group.
We show, next, that the action of the ring element r on the coset
x + N is well defined:

Suppose x +N = y +N . Then x − y ∈ N . Since N is an R-submodule,
r(x − y) ∈ N . Thus rx − ry ∈ N . Hence, rx + N = ry + N .
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Quotient Modules and Natural Projections (Cont’d)

Since the operations in M/N are “compatible” with those of M, the
axioms for an R-module are easily checked in the same way as was
done for quotient groups.

For example, for axiom 2(b), if r1, r2 ∈ R and x + N ∈ M/N,

(r1r2)(x + N) = (r1r2x) + N

= r1(r2x + N)
= r1(r2(x + N)).

The other axioms are similarly checked.
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Quotient Modules and Natural Projections (Cont’d)

Finally, the natural projection map π described above is, in particular,
the natural projection of the abelian group M onto the abelian group
M/N, hence is a group homomorphism with kernel N.

The kernel of any module homomorphism is the same as its kernel
when viewed as a homomorphism of the abelian group structures.

It remains only to show π is a module homomorphism, i.e.,
π(rm) = rπ(m):

π(rm) = rm + N = r(m + N) = rπ(m).
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The Sum of Two Submodules

Definition (Sum of Submodules)

Let A,B be submodules of the R-module M. The sum of A and B is the
set A+ B = {a + b : a ∈ A, b ∈ B}.

The sum of two submodules A and B is a submodule:
Clearly, 0 = 0 + 0 ∈ A+ B. So A+ B 6= ∅.
Let a1 + b1, a2 + b2 ∈ A+ B and r ∈ R . We have

(a1 + b1) + r(a2 + b2) = (a1 + b1) + (ra2 + rb2)
= (a1 + ra2) + (b1 + rb2) ∈ A+ B.

By the Submodule Criterion, A+ B is a submodule of M.

A+ B is the smallest submodule which contains both A and B .
Since 0 ∈ A and 0 ∈ B, A ⊆ A+ B and B ⊆ A+ B;
Suppose N is a submodule of M containing A and B. Since N is closed
under addition, A+ B ⊆ N . Thus, A+ B is the smallest submodule of
M containing A and B.
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The Module Isomorphism Theorems

Theorem (Isomorphism Theorems)

(1) (The First Isomorphism Theorem for Modules) Let M,N be
R-modules and let ϕ : M → N be an R-module homomorphism.
Then kerϕ is a submodule of M and M/kerϕ ∼= ϕ(M).

(2) (The Second Isomorphism Theorem) Let A,B be submodules of the
R-module M. Then (A+ B)/B ∼= A/(A ∩ B).

(3) (The Third Isomorphism Theorem) Let M be an R-module, and let A,
B be submodules of M with A ⊆ B . Then (M/A)/(B/A) ∼= M/B .

(4) (The Fourth or Lattice Isomorphism Theorem) Let N be a submodule
of the R-module M. There is a bijection between the submodules of
M which contain N and the submodules of M/N, given by A ↔ A/N,
for all A ⊇ N. This correspondence commutes with sums and
intersections (i.e., is a lattice isomorphism between the lattices of
submodules of M/N and of submodules of M which contain N).
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Subsection 3

Generation, Direct Sums and Free Modules

George Voutsadakis (LSSU) Abstract Algebra II September 2020 37 / 56



Introduction to Module Theory Generation, Direct Sums and Free Modules

Sum and Generation

Definition (Sum and Generation of Submodules)

Let M be an R-module and let N1, . . . ,Nn be submodules of M.

(1) The sum of N1, . . . ,Nn is the set of all finite sums of elements from
the sets Ni : {a1 + a2 + · · ·+ an : ai ∈ Ni , for all i}. Denote this sum
by N1 + · · · + Nn.

(2) For any subset A of M let

RA = {r1a1 + r2a2 + · · · + rmam :
r1, . . . , rm ∈ R , a1, . . . , am ∈ A,m ∈ Z+}

(where by convention RA = {0}, if A = ∅). If A is the finite set
{a1, a2, . . . , an}, we shall write Ra1 + Ra2 + · · ·+ Ran, for RA. Call
RA the submodule of M generated by A.
If N is a submodule of M (possibly N = M) and N = RA, for some
subset A of M, we call A a set of generators or generating set for
N, and we say N is generated by A.
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Finite Generation and Cyclic Modules

Definition (Finite Generation and Cyclic Modules)

Let M be an R-module.

(3) A submodule N of M (possibly N = M) is finitely generated if there
is some finite subset A of M such that N = RA, that is, if N is
generated by some finite subset.

(4) A submodule N of M (possibly N = M) is cyclic if there exists an
element a ∈ M such that N = Ra, that is, if N is generated by one
element: N = Ra = {ra : r ∈ R}.

These definitions do not require that the ring R contain a 1; however
this condition ensures that A is contained in RA.

Using the Submodule Criterion, we see that for any subset A of M,
RA is indeed a submodule of M.

RA is the smallest submodule of M which contains A (i.e., any
submodule of M which contains A also contains RA).
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Finite Generation and Minimal Generating Sets

For submodules N1, . . . ,Nn of M, N1 + · · ·+ Nn is the submodule
generated by the set N1 ∪ · · · ∪ Nn.

It is the smallest submodule of M containing Ni , for all i .

If N1, . . . ,Nn are generated by sets A1, . . . ,An, respectively, then
N1 + · · ·+ Nn is generated by A1 ∪ · · · ∪ An.

A submodule N of an R-module M may have many different
generating sets.

If N is finitely generated, then there is a smallest nonnegative integer
d , such that N is generated by d elements (and no fewer).

Any generating set consisting of d elements will be called a minimal

set of generators for N (it is not unique in general).

If N is not finitely generated, it need not have a minimal generating
set.
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The Case of Z-Modules (Abelian Groups)

(1) Let R = Z and let M be any R-module, i.e., any abelian group.

If a ∈ M, then Za is just the cyclic subgroup of M generated by a:
(a).

More generally, M is generated as a Z-module by a set A if and only
if M is generated as a group by A (the action of ring elements in this
instance produces no elements that cannot already be obtained from
A by addition and subtraction).

The definition of “finitely generated” for Z-modules is identical to
that for abelian groups.
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A Ring R Viewed as an R-Module

(2) Let R be a ring with 1 and let M be the (left) R-module R itself.

R is a finitely generated, in fact cyclic, R-module because R = R1.

The submodules of R are precisely the left ideals of R .

Saying I is a cyclic R-submodule of the left R-module R is the same as
saying I is a principal ideal of R .
Saying I is a finitely generated R-submodule of R is the same as saying
I is a finitely generated ideal.

When R is a commutative ring we often write AR or aR for the
submodule (ideal) generated by A or a respectively (e.g., nZ).

In this situation AR = RA and aR = Ra (element-wise as well).

According to this view, a Principal Ideal Domain is a (commutative)
integral domain R with identity in which every R-submodule of R is
cyclic.
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Remark on Finite Generation

Submodules of a finitely generated module need not be finitely
generated.

Example: Take M to be the cyclic R-module R itself, where R is the
polynomial ring in infinitely many variables x1, x2, x3, . . . with
coefficients in some field F .

The submodule (i.e., 2-sided ideal) generated by {x1, x2, . . .} cannot
be generated by any finite set.
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Free Module of Rank n Over R

(3) Let R be a ring with 1 and let M be the free module of rank n over R .

For each i ∈ {1, 2, . . . , n}, let ei = (0, 0, . . . , 0, 1, 0, . . . , 0), where the
1 appears in position i . Since

(s1, s2, . . . , sn) =
n

∑

i=1

siei

it is clear that M is generated by {e1, . . . , en}. If R is commutative,
then this is a minimal generating set.
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F [x ]-Modules

(4) Let F be a field, let x be an indeterminate, let V be a vector space
over F and let T be a linear transformation from V to V .

Make V into an F [x ]-module via T .

Then V is a cyclic F [x ]-module (with generator v) if and only if

V = {p(x)v : p(x) ∈ F [x ]},

that is, if and only if every element of V can be written as an F -linear
combination of elements of the set {T n(v) : n ≥ 0}.

This in turn is equivalent to saying {v ,T (v),T 2(v), . . .} span V as a
vector space over F .
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F [x ]-Modules (Cont’d)

(4) Suppose T is the identity linear transformation from V to V or the
zero linear transformation.
Then for every v ∈ V and every p(x) ∈ F [x ], we have p(x)v = αv , for
some α ∈ F .
Thus, if V has dimension > 1, V cannot be a cyclic F [x ]-module.
Suppose V is affine n-space and T is the “shift operator”.
Let ei be the i-th basis vector numbered so that T is defined by

T k(en) = en−k , for 1 ≤ k < n.

Thus, V is spanned by the elements en,T (en), . . . ,T
n−1(en).

Hence, V is a cyclic F [x ]-module with generator en.
For n > 1, V is not a cyclic F -module.
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Direct Product of Modules

Definition (Direct Product of Modules)

Let M1, . . . ,Mk be a collection of R-modules. The collection of k-tuples
(m1,m2, . . . ,mk), where mi ∈ Mi , with addition and action of R defined
componentwise is called the direct product of M1, . . . ,Mk , denoted
M1 × · · · ×Mk .

The direct product of a collection of R-modules is again an R-module.

The direct product of M1, . . . ,Mk is also referred to as the (external)
direct sum of M1, . . . ,Mk and denoted M1 ⊕ · · · ⊕Mk .
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Properties of Direct Product

Proposition

Let N1,N2, . . . ,Nk be submodules of the R-module M. Then the following
are equivalent:

(1) The map π : N1 × N2 × · · · × Nk → N1 + N2 + · · ·+ Nk defined by
π(a1, a2, . . . , ak) = a1 + a2 + · · ·+ ak is an isomorphism (of
R-modules): N1 + N2 + · · · + Nk

∼= N1 × N2 × · · · × Nk .

(2) Nj ∩ (N1 + N2 + · · · + Nj−1 + Nj+1 + · · ·+ Nk) = 0, for all
j ∈ {1, 2, . . . , k}.

(3) Every x ∈ N1 + · · ·+ Nk can be written uniquely in the form
a1 + a2 + · · ·+ ak , with ai ∈ Ni .

(1)⇒(2): Suppose for some j that (2) fails to hold. Let
aj ∈ (N1 + · · ·+ Nj−1 + Nj+1 + · · · + Nk) ∩ Nj with aj 6= 0. Then
aj = a1 + · · ·+ aj−1 + aj+1 + · · ·+ ak , for some aj ∈ Nj . Hence,
(a1, . . . , aj−1,−aj , aj+1, . . . , ak) is a nonzero element of kerπ, a
contradiction.
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Properties of Direct Product (Cont’d)

(2)⇒(3): Assume that (2) holds. Suppose for some module elements
ai , bi ∈ Ni ,

a1 + a2 + · · ·+ ak = b1 + b2 + · · ·+ bk .

Then, for each j ,

aj−bj = (b1−a1)+ · · ·+(bj−1−aj−1)+(bj+1−aj+1)+ · · ·+(bk−ak).

The left hand side is in Nj . The right side belongs to
N1 + · · ·+ Nj−1 + Nj+1 + · · · + Nk . Thus,

aj − bj ∈ Nj ∩ (N1 + · · ·+ Nj−1 + Nj+1 + · · · + Nk) = 0.

This shows aj = bj , for all j . So (2) implies (3).

(3)⇒(1): Observe first that the map π is clearly a surjective
R-module homomorphism. (3) implies π is injective. Hence it is an
isomorphism.
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Internal Direct Sum

If an R-module M = N1 + N2 + · · ·+ Nk is the sum of submodules
N1,N2, . . . ,Nk of M satisfying the equivalent conditions of the
proposition above, then M is said to be the (internal) direct sum of
N1,N2, . . . ,Nk , written M = N1 ⊕ N2 ⊕ · · · ⊕ Nk .

By the proposition, this is equivalent to the assertion that every
element m of M can be written uniquely as a sum of elements
m = n1 + n2 + · · ·+ nk , with ni ∈ Ni .

Part (1) of the proposition says that the internal direct sum of
N1,N2, . . . ,Nk is isomorphic to their external direct sum.
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Free Modules and Bases

Definition (Free Module, Bases, Rank)

An R-module F is said to be free on the subset A of F if, for every
nonzero element x of F , there exist unique nonzero elements r1, r2, . . . , rn
of R and unique a1, a2, . . . , an in A, such that

x = r1a1 + r2a2 + · · ·+ rnan,

for some n ∈ Z+. In this situation we say A is a basis or set of free

generators for F . If R is a commutative ring the cardinality of A is called
the rank of F .

One should be careful to note the difference between the uniqueness
property of direct sums and the uniqueness property of free modules:

In the direct sum of two modules, say N1 ⊕ N2, each element can be
written uniquely as n1 + n2; the uniqueness refers to the module
elements n1 and n2.
In the case of free modules, the uniqueness is on the ring elements as
well as the module elements.
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Examples on Free Modules

Suppose R = Z and let N1 = N2 = Z/2Z.

Each element of N1 ⊕ N2 has a unique representation in the form
n1 + n2, where each ni ∈ Ni .

However, n1 (for instance) can be expressed as n1 or 3n1 or 5n1, etc.

So each element does not have a unique representation in the form
r1a1 + r2a2, where r1, r2 ∈ R , a1 ∈ N1 and a2 ∈ N2.

Thus, Z/2Z⊕Z/2Z is not a free Z-module on the set {(1, 0), (0, 1)}.

Similarly, it is not free on any set.
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Universal Property of Free Modules

Theorem

For any set A, there is a free R-module F (A) on the set A and F (A)
satisfies the following universal property:

If M is any R-module and ϕ : A → M is any map
of sets, then there is a unique R-module homomor-
phism Φ : F (A) → M, such that Φ(a) = ϕ(a), for
all a ∈ A, i.e., the following diagram commutes:

A
inclusion

> F (A)

M

Φ

∨ϕ >

When A = {a1, a2, . . . , an}, F (A) = Ra1 ⊕ Ra2 ⊕ · · · ⊕ Ran ∼= Rn.

Let F (A) = {0} if A = ∅. If A is nonempty, let F (A) be the collection
of all set functions f : A → R , such that f (a) = 0, for all but finitely
many a ∈ A. Make F (A) into an R-module by pointwise operations:

(f + g)(a) = f (a) + g(a), f , g ∈ F (A), a ∈ A;
(rf )(a) = r(f (a)), f ∈ F (A), r ∈ R , a ∈ A.

All the R-module axioms hold.
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Universal Property of Free Modules (Inclusion)

Identify A as a subset of F (A) by

a 7→ fa,

where fa(x) =

{

1, if x = a

0, if x 6= a
, for all x ∈ A.

We can, in this way, think of F (A) as all finite R-linear combinations
of elements of A: Let f ∈ F (A), such that

f (ai ) = ri , i = 1, . . . , n, and f (a) = 0, a 6= ai , i = 1, . . . , n.

Then
f = r1fa1 + r2fa2 + · · · + rnfan .

Moreover, each element of F (A) has a unique expression as such a
formal sum.
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Universal Property of Free Modules (From ϕ to Φ)

To establish the universal property of F (A),
suppose ϕ : A → M is a map of the set A
into the R-module M.

A
inclusion

> F (A)

M

Φ

∨ϕ >

Define Φ : F (A) → M by Φ :
∑n

i=1 ri fai 7→
∑n

i=1 riϕ(ai ).

By the uniqueness of the expression for the elements of F (A) as linear
combinations of the fai we see that Φ is a well defined R-module
homomorphism.
By definition, the restriction of Φ to {fa : a ∈ A} equals ϕ.
F (A) is generated by {fa : a ∈ A}. Hence, once we know the values of
an R-module homomorphism on {fa : a ∈ A}, its values on every
element of F (A) are uniquely determined.

So Φ : F (A) → M is the unique R-module homomorphism, such that
Φ(fa) = ϕ(a). for all a ∈ A.
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Finitely Generated Free Modules

When A is the finite set {a1, a2, . . . , an}, the proposition shows that
F (A) = Ra1 ⊕ Ra2 ⊕ · · · ⊕ Ran. Since R ∼= Rai , for all i (under the
map r 7→ rai ) the direct sum is isomorphic to Rn.

Corollary

(1) If F1 and F2 are free modules on the same set A, there is a unique
isomorphism between F1 and F2 which is the identity map on A.

(2) If F is any free R-module with basis A, then F ∼= F (A). In particular, F
enjoys the same universal property with respect to A as F (A) does.

If F is a free R-module with basis A, we often define R-module
homomorphisms from F into other R-modules by specifying their
values on the elements of A and then saying “extend by linearity”.

When R = Z, the free module on a set A is called the free abelian

group on A. If |A| = n, F (A) is called the free abelian group of rank
n and is isomorphic to Z⊕ · · · ⊕Z (n times).
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