Abstract Algebra II

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 342

(1) Vector Spaces

- Definitions and Basic Theory
- The Matrix of a Linear Transformation
- Dual Vector Spaces
- Determinants

Subsection 1

Definitions and Basic Theory

Dictionary of Terms (Modules versus Vector Spaces)

Terminology for R any Ring

M is an R-module
m is an element of M
a is a ring element
N is a submodule of M
M / N is a quotient module M is a free module of rank n M is a finitely generated module M is a nonzero cyclic module $\varphi: M \rightarrow N$ is an R-module homomorphism
M and N are isomorphic as R-modules the subset A of M generates M
$M=R A$

Terminology for R a Field
M is a vector space over R
m is a vector in M
a is a scalar
N is a subspace of M
M / N is a quotient space
M is a vector space of dimension n
M is a finite dimensional vector space
M is a 1-dimensional vector space
$\varphi: M \rightarrow N$ is a linear transformation
M and N are isomorphic vector spaces the subset A of M spans M
each element of M is a linear combination of elements of A, i.e., $M=\operatorname{Span}(A)$
We assume F is a field and V a vector space over F.

Independence and Bases

Definition (Independent Vectors and Bases)

(1) A subset S of V is called a set of linearly independent vectors if an equation $\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}=0$, with $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in F$ and $v_{1}, v_{2}, \ldots, v_{n} \in S$, implies $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=0$.
(2) A basis of a vector space V is an ordered set of linearly independent vectors which span V. In particular two bases will be considered different even if one is simply a rearrangement of the other. This is sometimes referred to as an ordered basis.

Example:

(1) The space $V=F[x]$ of polynomials in the variable x with coefficients from the field F is in particular a vector space over F.
The elements $1, x, x^{2}, \ldots$ are linearly independent by definition, i.e., a polynomial is 0 if and only if all its coefficients are 0 .
Since these elements also span V by definition, they are a basis for V.

Additional Example

(2) The collection of solutions of a linear, homogeneous, constant coefficient differential equation (for example, $y^{\prime \prime}-3 y^{\prime}+2 y=0$) over \mathbb{C} form a vector space over \mathbb{C} since differentiation is a linear operator.
Elements of this vector space are linearly independent if they are linearly independent as functions.
For example, e^{t} and $e^{2 t}$ are easily seen to be solutions of the equation $y^{\prime \prime}-3 y^{\prime}+2 y=0$ (differentiation with respect to t).
They are linearly independent functions: Assume $a e^{t}+b e^{2 t}=0$.

- Set $t=0$. We get $a+b=0$.
- Set $t=1$. We get $a e+b e^{2}=0$.

The only solution to these two equations is $a=b=0$.
It is a theorem in differential equations that these elements span the set of solutions of this equation. Hence they are a basis for this space.

Minimal Spanning Sets form Bases

Proposition

Assume the set $\mathcal{A}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ spans the vector space V but no proper subset of \mathcal{A} spans V. Then \mathcal{A} is a basis of V. In particular, any finitely generated (i.e., finitely spanned) vector space over F is a free F-module.

- It is only necessary to prove that $v_{1}, v_{2}, \ldots, v_{n}$ are linearly independent. Suppose

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}=0
$$

where not all of the α_{i} are 0 . By reordering, we may assume that $a_{1} \neq 0$ and then $v_{1}=-\frac{1}{\alpha_{1}}\left(\alpha_{2} v_{2}+\cdots \alpha_{n} v_{n}\right)$. Using this equation, any linear combination of $v_{1}, v_{2}, \ldots, v_{n}$ can be written as a linear combination of only $v_{2}, v_{3}, \ldots, v_{n}$. It follows that $\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}$ also spans V. This is a contradiction.

An Example

- Let F be a field and consider $F[x] /(f(x))$, where $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$.
The ideal $(f(x))$ is a subspace of the vector space $F[x]$ and the quotient $F[x] /(f(x))$ is also a vector space over F.
By the Euclidean Algorithm, every polynomial $a(x) \in F[x]$ can be written uniquely in the form $a(x)=q(x) f(x)+r(x)$, where $r(x) \in F[x]$ and $0 \leq \operatorname{deg} r(x) \leq n-1$. Since $q(x) f(x) \in(f(x))$, it follows that every element of the quotient is represented by a polynomial $r(x)$ of degree $\leq n-1$. Two distinct such polynomials cannot be the same in the quotient since this would say their difference (which is a nonzero polynomial of degree at most $n-1$) would be divisible by $f(x)$ (which is of degree n). It follows that:
- The elements $\overline{1}, \bar{x}, \overline{x^{2}}, \ldots, \overline{x^{n-1}}$ (the bar denotes image in the quotient) span $F[x] /(f(x))$ as a vector space over F;
- No proper subset of these elements also spans $F[x] /(f(x))$.

Hence, these elements give a basis for $F[x] /(f(x))$.

Existence of Basic and Replacement

Corollary

Assume the finite set \mathcal{A} spans the vector space V. Then \mathcal{A} contains a basis of V.

- Any subset \mathcal{B} of \mathcal{A} spanning V such that no proper subset of \mathcal{B} also spans V (there clearly exist such subsets) is a basis for V.

Theorem (A Replacement Theorem)

Assume $\mathcal{A}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a basis for V containing n elements and $\left\{b_{1}, b_{2}, \ldots, b_{m}\right\}$ is a set of linearly independent vectors in V. Then there is an ordering $a_{1}, a_{2}, \ldots, a_{n}$, such that, for each $k \in\{1,2, \ldots, m\}$, the set $\left\{b_{1}, b_{2}, \ldots, b_{k}, a_{k+1}, a_{k+2}, \ldots, a_{n}\right\}$ is a basis of V. In other words, the elements $b_{1}, b_{2}, \ldots, b_{m}$ can be used to successively replace the elements of the basis \mathcal{A}, still retaining a basis. In particular, $n \geq m$.

- Proceed by induction on k.

If $k=0$, there is nothing to prove, since \mathcal{A} is given as a basis for V.

Proof of Replacement (New Spanning Set)

- Suppose now that $\left\{b_{1}, b_{2}, \ldots, b_{k}, a_{k+1}, a_{k+2}, \ldots, a_{n}\right\}$ is a basis for V. Then, in particular, this is a spanning set. So b_{k+1} is a linear combination: $b_{k+1}=\beta_{1} b_{1}+\cdots+\beta_{k} b_{k}+\alpha_{k+1} a_{k+1}+\cdots+\alpha_{n} a_{n}$. Not all of the α_{i} can be 0 , since this would imply b_{k+1} is a linear combination of $b_{1}, b_{2}, \ldots, b_{k}$, contrary to the linear independence of these elements. By reordering if necessary, we may assume $\alpha_{k+1} \neq 0$. Solving this last equation for α_{k+1} as a linear combination of b_{k+1} and $b_{1}, b_{2}, \ldots, b_{k}, a_{k+2}, \ldots, a_{n}$ shows

$$
\begin{aligned}
\operatorname{Span}\left\{b_{1}\right. & \left., b_{2}, \ldots, b_{k}, b_{k+1}, a_{k+2}, \ldots, a_{n}\right\} \\
& =\operatorname{Span}\left\{b_{1}, b_{2}, \ldots, b_{k}, a_{k+1}, a_{k+2}, \ldots, a_{n}\right\} \\
& =V
\end{aligned}
$$

Thus, $\left\{b_{1}, b_{2}, \ldots, b_{k}, b_{k+1}, a_{k+2}, \ldots, a_{n}\right\}$ is a spanning set for V.

Proof of Replacement (Independence of the New Set)

- It remains to show $b_{1}, \ldots, b_{k}, b_{k+1}, a_{k+2}, \ldots, a_{n}$ are linearly independent. Suppose

$$
\beta_{1}^{\prime} b_{1}+\cdots+\beta_{k}^{\prime} b_{k}+\beta_{k+1}^{\prime} b_{k+1}+\alpha_{k+2}^{\prime} a_{k+2}+\cdots+\alpha_{n}^{\prime} a_{n}=0
$$

Substitute for b_{k+1} from the expression

$$
b_{k+1}=\beta_{1} b_{1}+\cdots+\beta_{k} b_{k}+\alpha_{k+1} a_{k+1}+\cdots+\alpha_{n} a_{n}
$$

We obtain a linear combination of $\left\{b_{1}, b_{2}, \ldots, b_{k}, a_{k+1}, a_{k+2}, \ldots, a_{n}\right\}$ equal to 0 , where the coefficient of a_{k+1} is $\beta_{k+1}^{\prime} \alpha_{k+1}$. This set is a basis by induction. Hence, all the coefficients in the linear combination $=0$. Thus, $\beta_{k+1}^{\prime} \alpha_{k+1}=0$. Since $\alpha_{k+1} \neq 0, \beta_{k+1}^{\prime}=0$. But then we get

$$
\beta_{1}^{\prime} b_{1}+\cdots+\beta_{k}^{\prime} b_{k}+\alpha_{k+2}^{\prime} a_{k+2}+\cdots+\alpha_{n}^{\prime} a_{n}=0
$$

Again by the induction hypothesis all the other coefficients must be 0 as well. Thus $\left\{b_{1}, b_{2}, \ldots, b_{k}, b_{k+1}, a_{k+2}, \ldots, a_{n}\right\}$ is a basis for V.

Dimension

Corollary

(1) Suppose V has a finite basis with n elements. Any set of linearly independent vectors has $\leq n$ elements. Any spanning set has $\geq n$ elements.
(2) If V has some finite basis, then any two bases of V have the same cardinality.
(1) This is a restatement of the last result of the theorem.
(2) A basis is both a spanning set and a linearly independent set.

Definition (Dimension)

If V is a finitely generated F-module (i.e., has a finite basis) the cardinality of any basis is called the dimension of V and is denoted by $\operatorname{dim}_{F} V$, or just $\operatorname{dim} V$ when F is clear from the context, and V is said to be finite dimensional over F. If V is not finitely generated, V is said to be infinite dimensional (written $\operatorname{dim} V=\infty$).

Examples

(1) The dimension of the space of solutions to the differential equation $y^{\prime \prime}-3 y^{\prime}+2 y=0$ over \mathbb{C} is 2 (with basis $e^{t}, e^{2 t}$, for example).
In general, it is a theorem in differential equations that the space of solutions of an n-th order linear, homogeneous, constant coefficient differential equation of degree n over \mathbb{C} form a vector space over \mathbb{C} of dimension n.
(2) The dimension over F of the quotient $F[x] /(f(x))$ by the nonzero polynomial $f(x)$ considered above is $n=\operatorname{deg} f(x)$.
The space $F[x]$ and its subspace $(f(x))$ are infinite dimensional vector spaces over F.

Building Up Lemma and Isomorphism Theorem

Lemma (Building-Up Lemma)

If A is a set of linearly independent vectors in the finite dimensional space V, then there exists a basis of V containing A.

- This is also immediate from the theorem, since we can use the elements of A to successively replace the elements of any given basis for V (which exists by the assumption that V is finite dimensional).

Theorem

If V is an n dimensional vector space over F, then $V \cong F^{n}$. In particular, any two finite dimensional vector spaces over F of the same dimension are isomorphic.

- Let $v_{1}, v_{2}, \ldots, v_{n}$ be a basis for V. Define the map $\varphi: F^{n} \rightarrow V$ by $\varphi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\cdots+\alpha_{n} v_{n}$. The map φ is F-linear, surjective since the v_{i} span V, and is injective since the v_{i} are linearly independent. Hence φ is an isomorphism.

Example I

(1) Let \mathbb{F} be a finite field with q elements and let W be a k-dimensional vector space over \mathbb{F}. The number of distinct bases of W is $\left(q^{k}-1\right)\left(q^{k}-q\right)\left(q^{k}-q^{2}\right) \cdots\left(q^{k}-q^{k-1}\right)$. Every basis of W can be built up as follows:

- Any nonzero vector w_{1} can be the first element of a basis. Since W is isomorphic to $\mathbb{F}^{k},|W|=q^{k}$, so there are $q^{k}-1$ choices for w_{1}.
- Any vector not in the 1 -dimensional space spanned by w_{1} is linearly independent from w_{1} and so may be chosen for the second basis element, w_{2}. A 1-dimensional space is isomorphic to \mathbb{F} and so has q elements. Thus, there are $q^{k}-q$ choices for w_{2}.
- Proceeding in this way one sees that at the i-th stage, any vector not in the ($i-1$)-dimensional space spanned by $w_{1}, w_{2}, \ldots, w_{i-1}$ will be linearly independent from $w_{1}, w_{2}, \ldots, w_{i-1}$ and so may be chosen for the i-th basis vector w_{i}. An (i-1)-dimensional space is isomorphic to \mathbb{F}^{i-1} and so has q^{i-1} elements. So, there are $q^{k}-q^{i-1}$ choices for w_{i}.
The process terminates when w_{k} is chosen, for then we have k linear independent vectors in a k-dimensional space, hence a basis.

Example II

(2) Let \mathbb{F} be a finite field with q elements and let V be an n-dimensional vector space over \mathbb{F}. For each $k \in\{1,2, \ldots, n\}$, we show that the number of subspaces of V of dimension k is $\frac{\left(q^{n}-1\right)\left(q^{n}-q\right) \cdots\left(q^{n}-q^{k-1}\right)}{\left(q^{k}-1\right)\left(q^{k}-q\right) \cdots\left(q^{k}-q^{k-1}\right)}$.
Any k-dimensional space is spanned by k independent vectors.

- By arguing as in the preceding example the numerator of the above expression is the number of ways of picking k independent vectors from an n-dimensional space.
- Two sets of k independent vectors span the same space W if and only if they are both bases of the k-dimensional space W.
In order to obtain the formula for the number of distinct subspaces of dimension k we must divide by the number of repetitions, i.e., the number of bases of a fixed k-dimensional space. This factor which appears in the denominator is precisely this number.

The Dimensions of a Subspace and of its Quotient Space

- We prove a relation between the dimensions of a subspace, the associated quotient space and the whole space:

Theorem

Let V be a vector space over F and let W be a subspace of V. Then V / W is a vector space with $\operatorname{dim} V=\operatorname{dim} W+\operatorname{dim} V / W$, where, if one side is infinite, then both are.

- Suppose $\operatorname{dim} W=m$ and $\operatorname{dim} V=n$ and let $w_{1}, w_{2}, \ldots, w_{m}$ be a basis for W. These linearly independent elements of V can be extended to a basis $w_{1}, w_{2}, \ldots, w_{m}, v_{m+1}, \ldots, v_{n}$ of V. The natural surjective projection map of V into V / W maps each w_{i} to 0 . No linear combination of the v_{i} is mapped to 0 , since no linear combination is in W. Hence, the image V / W of this projection map is isomorphic to the subspace of V spanned by the v_{i}. Hence $\operatorname{dim} V / W=n-m$, the conclusion when the dimensions are finite.
If either side is infinite the other side is also infinite.

Images and Kernels of Linear Transformations

Corollary

Let $\varphi: V \rightarrow U$ be a linear transformation of vector spaces over F. Then $\operatorname{ker} \varphi$ is a subspace of $V, \varphi(V)$ is a subspace of U and

$$
\operatorname{dim} V=\operatorname{dimker} \varphi+\operatorname{dim} \varphi(V)
$$

- We know that $\varphi(V) \cong V / \operatorname{ker} \varphi$.

In particular, $\operatorname{dim} \varphi(V)=\operatorname{dim} V / \operatorname{ker} \varphi$.
Now we get, using the theorem,

$$
\begin{aligned}
\operatorname{dim} V & =\operatorname{dimker} \varphi+\operatorname{dim} V / \operatorname{ker} \varphi \\
& =\operatorname{dimker} \varphi+\operatorname{dim} \varphi(V)
\end{aligned}
$$

Characteristic Properties of Isomorphisms

Corollary

Let $\varphi: V \rightarrow W$ be a linear transformation of vector spaces of the same finite dimension. Then the following are equivalent:
(1) φ is an isomorphism;
(2) φ is injective, i.e., $\operatorname{ker} \varphi=0$;
(3) φ is surjective, i.e., $\varphi(V)=W$;
(4) φ sends a basis of V to a basis of W.

- The equivalence of these conditions follows from the corollary by counting dimensions.

Null Space and Nullity

Definition (Null Space and Nullity)

If $\varphi: V \rightarrow U$ is a linear transformation of vector spaces over $F, \operatorname{ker} \varphi$ is sometimes called the null space of φ and the dimension of $\operatorname{ker} \varphi$ is called the nullity of φ. The dimension of $\varphi(V)$ is called the rank of φ. If $\operatorname{ker} \varphi=0$, the transformation is said to be nonsingular.

Example: Let F be a finite field with q elements, V an n-dimensional vector space over F. The general linear group $\mathrm{GL}(V)$ is the group of all nonsingular linear transformations from V to V under composition. The order is $|\mathrm{GL}(V)|=\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \cdots\left(q^{n}-q^{n-1}\right)$. Fix a basis v_{1}, \ldots, v_{n} of V. A linear transformation is nonsingular if and only if it sends this basis to another basis of V. Moreover, if w_{1}, \ldots, w_{n} is any basis of V, by UMP, there is a unique linear transformation which sends v_{i} to $w_{i}, 1 \leq i \leq n$. Thus, the number of nonsingular linear transformations from V to itself equals the number of distinct bases of V. This number is the order of $\mathrm{GL}(V)$.

Subsection 2

The Matrix of a Linear Transformation

Obtaining a Matrix of a Linear Transformation

- Let V, W be vector spaces over the same field F.
- Let $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be an (ordered) basis of V;
- Let $\mathcal{E}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ be an (ordered) basis of W.

Let $\varphi \in \operatorname{Hom}(V, W)$ be a linear transformation from V to W.

- For each $j \in\{1,2, \ldots, n\}$, write the image of v_{j} under φ in terms of the basis \mathcal{E} :

$$
\varphi\left(v_{j}\right)=\sum_{i=1}^{m} \alpha_{i j} w_{i}
$$

- Let $M_{\mathcal{B}}^{\mathcal{E}}(\varphi)=\left(a_{i j}\right)$ be the $m \times n$ matrix whose i, j entry is $\alpha_{i j}$.
- The matrix $M_{\mathcal{B}}^{\mathcal{E}}(\varphi)$ is called the matrix of φ with respect to the bases \mathcal{B}, \mathcal{E}.
The domain basis is the lower and the codomain basis the upper letters appearing after the " M ".

Obtaining a Linear Transformation from a Matrix

- Given $M_{\mathcal{B}}^{\mathcal{E}}(\varphi)$, we can recover the linear transformation φ as follows: To compute $\varphi(v)$ for $v \in V$, write v in terms of the basis \mathcal{B}

$$
v=\sum_{i=1}^{n} \alpha_{i} v_{i}, \quad \alpha_{i} \in F
$$

Then calculate the product of the $m \times n$ and $n \times 1$ matrices

$$
M_{\mathcal{B}}^{\mathcal{E}}(\varphi) \times\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right)=\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{m}
\end{array}\right)
$$

The image of v under φ is $\varphi(v)=\sum_{i=1}^{m} \beta_{i} w_{i}$, i.e., the column vector of coordinates of $\varphi(v)$ with respect to the basis \mathcal{E} are obtained by multiplying the matrix $M_{\mathcal{B}}^{\mathcal{E}}(\varphi)$ by the column vector of coordinates of v with respect to the basis $\mathcal{B}:[\varphi(v)]_{\mathcal{E}}=M_{\mathcal{B}}^{\mathcal{E}}(\varphi)[v]_{\mathcal{B}}$.

Representation

Definition

The $m \times n$ matrix $A=\left(a_{i j}\right)$ associated to the linear transformation φ above is said to represent the linear transformation φ with respect to the bases \mathcal{B}, \mathcal{E}. Similarly, φ is the linear transformation represented by A with respect to the bases \mathcal{B}, \mathcal{E}.

Example: Let $V=\mathbb{R}^{3}$ with the standard basis $\mathcal{B}=\{(1,0,0)$,
$(0,1,0),(0,0,1)\}$. Let $W=\mathbb{R}^{2}$ with the standard basis $\mathcal{E}=\{(1,0),(0,1)\}$. Let φ be the linear transformation

$$
\varphi(x, y, z)=(x+2 y, x+y+z)
$$

Since $\varphi(1,0,0)=(1,1), \varphi(0,1,0)=(2,1), \varphi(0,0,1)=(0,1)$, the matrix $A=M_{\mathcal{B}}^{\mathcal{E}}(\varphi)$ is the matrix $\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 1\end{array}\right)$.

Another Example

- Let $V=W$ be the 2-dimensional space of solutions of the differential equation $y^{\prime \prime}-3 y^{\prime}+2 y=0$ over \mathbb{C} and let $\mathcal{B}=\mathcal{E}$ be the basis $v_{1}=e^{t}, v_{2}=e^{2 t}$.
Since the coefficients of this equation are constants, it is easy to check that, if y is a solution then its derivative y^{\prime} is also a solution.
It follows that the map

$$
\varphi=\frac{d}{d t}=\text { differentiation (with respect to } t \text {) }
$$

is a linear transformation from V to itself.
Note that $\varphi\left(v_{1}\right)=\frac{d\left(e^{t}\right)}{d t}=e^{t}=v_{1}$ and $\varphi\left(v_{2}\right)=\frac{d\left(e^{2 t}\right)}{d t}=2 e^{2 t}=2 v_{2}$. Thus, the corresponding matrix with respect to these bases is the diagonal matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$.

A Third Example

- Let $V=W=\mathbb{Q}^{3}=\{(x, y, z): x, y, z \in \mathbb{Q}\}$ be the 3-dimensional vector space of ordered 3-tuples with entries from the field $F=\mathbb{Q}$ of rational numbers.
Let $\varphi: V \rightarrow V$ be the linear transformation

$$
\varphi(x, y, z)=(9 x+4 y+5 z,-4 x-3 z,-6 x-4 y-2 z), x, y, z \in \mathbb{Q}
$$

Take the standard basis $e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1)$ for V and for $W=V$.
We have $\varphi(1,0,0)=(9,-4,-6), \varphi(0,1,0)=(4,0,-4)$, $\varphi(0,0,1)=(5,-3,-2)$.
Hence, the matrix A representing this linear transformation with
respect to these bases is $A=\left(\begin{array}{rrr}9 & 4 & 5 \\ -4 & 0 & -3 \\ -6 & -4 & -2\end{array}\right)$.

Isomorphism Between $\operatorname{Hom}_{F}(V, W)$ and $M_{m \times n}(F)$

Theorem

Let V be a vector space over F of dimension n and let W be a vector space over F of dimension m, with bases \mathcal{B}, \mathcal{E}, respectively. Then the map $\operatorname{Hom}_{F}(V, W) \rightarrow M_{m \times n}(F)$ from the space of linear transformations from V to W to the space of $m \times n$ matrices with coefficients in F defined by $\varphi \mapsto M_{\mathcal{B}}^{\mathcal{E}}(\varphi)$ is a vector space isomorphism. In particular, there is a bijective correspondence between linear transformations and their associated matrices with respect to a fixed choice of bases.

- The columns of the matrix $M_{\mathcal{B}}^{\mathcal{E}}(\varphi)$ are determined by the action of φ on \mathcal{B}. Thus, the map $\varphi \mapsto M_{\mathcal{B}}^{\mathcal{E}}(\varphi)$ is F-linear, since φ is F-linear.
- This map is surjective: Let $M \in M_{m \times n}(F)$. Define $\varphi: V \rightarrow W$ by $\varphi\left(v_{j}\right)=\sum_{i=1}^{m} \alpha_{i j} w_{i}$ and extend it by linearity. Then φ is a linear transformation and $M_{\mathcal{B}}^{\mathcal{E}}(\varphi)=M$.
- The map is injective: Two linear transformations agreeing on a basis are the same.

Nonsingularity

Corollary

The dimension of $\operatorname{Hom}_{F}(V, W)$ is $(\operatorname{dim} V)(\operatorname{dim} W)$.

- The dimension of $M_{m \times n}(F)$ is $m n$.

Definition

An $m \times n$ matrix A is called nonsingular if $A x=0$, with $x \in F^{n}$, implies $x=0$.

- The connection of the term nonsingular applied to matrices and to linear transformations is the following:

Let $A=M_{\mathcal{B}}^{\mathcal{E}}(\varphi)$ be the matrix associated to the linear transformation φ (with some choice of bases \mathcal{B}, \mathcal{E}).
Then independently of the choice of bases, the $m \times n$ matrix A is nonsingular if and only if the linear transformation φ is a nonsingular linear transformation from the n-dimensional space V to the m-dimensional space W.

Linear Transformations and Matrices

Theorem

$M_{\mathcal{D}}^{\mathcal{E}}(\varphi \circ \psi)=M_{\mathcal{B}}^{\mathcal{E}}(\varphi) M_{\mathcal{D}}^{\mathcal{B}}(\psi)$, i.e., with respect to a compatible choice of bases, the product of the matrices representing the linear transformations φ and ψ is the matrix representing the composite linear transformation $\varphi \circ \psi$.

- Assume that U, V and W are all finite dimensional vector spaces over F with ordered bases \mathcal{D}, \mathcal{B} and \mathcal{E}, respectively, where \mathcal{B} and \mathcal{E} are as before and suppose $\mathcal{D}=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$. Assume $\psi: U \rightarrow V$ and $\varphi: V \rightarrow W$ are linear transformations. Their composite, $\varphi \circ \psi$, is a linear transformation from U to W. So we can compute its matrix with respect to the appropriate bases. $M_{\mathcal{D}}^{\mathcal{E}}(\varphi \circ \psi)$ is found by computing $\varphi \circ \psi\left(u_{j}\right)=\sum_{i=1}^{m} \gamma_{i j} w_{i}$ and putting the coefficients $\gamma_{i j}$ down the j-th column of $M_{\mathcal{D}}^{\mathcal{E}}(\varphi \circ \psi)$. Next, compose the matrices of ψ and φ separately: $\psi\left(u_{j}\right)=\sum_{p=1}^{n} \alpha_{p j} v_{p}$ and $\varphi\left(v_{p}\right)=\sum_{i=1}^{m} \beta_{i p} w_{i}$, so that $M_{\mathcal{D}}^{\mathcal{B}}(\psi)=\left(\alpha_{p j}\right)$ and $M_{\mathcal{B}}^{\mathcal{E}}(\varphi)=\left(\beta_{i p}\right)$.

Linear Transformations and Matrices (Cont'd)

- Using $M_{\mathcal{D}}^{\mathcal{B}}(\psi)=\left(\alpha_{p j}\right)$ and $M_{\mathcal{B}}^{\mathcal{E}}(\varphi)=\left(\beta_{i p}\right)$ we can find an expression for the γ 's in terms of the α 's and β 's as follows:

$$
\begin{aligned}
\varphi \circ \psi\left(u_{j}\right) & =\varphi\left(\sum_{p=1}^{n} \alpha_{p j} v_{p}\right)=\sum_{p=1}^{n} \alpha_{p j} \varphi\left(v_{p}\right) \\
& =\sum_{p=1}^{n} \alpha_{p j} \sum_{i=1}^{m} \beta_{i p} w_{i} \\
& =\sum_{p=1}^{n} \sum_{i=1}^{m} \alpha_{p j} \beta_{i p} w_{i} \\
& =\sum_{i=1}^{m}\left(\sum_{p=1}^{n} \alpha_{p j} \beta_{i p}\right) w_{i} .
\end{aligned}
$$

- Thus, $\gamma_{i j}$, which is the coefficient of w_{i} in the above expression, is $\gamma_{i j}=\sum_{p=1}^{n} \alpha_{p j} \beta_{i p}$;
- Computing the product of the matrices for φ and ψ (in that order) we obtain $\left(\beta_{i j}\right)\left(\alpha_{i j}\right)=\left(\delta_{i j}\right)$, where $\delta_{i j}=\sum_{p=1}^{m} \beta_{i p} \alpha_{p j}$.
By comparing the two sums above and using the commutativity of field multiplication, we see that for all i and $j, \gamma_{i j}=\delta_{i j}$.

Associativity and Distributivity of Matrix Multiplication

Corollary

Matrix multiplication is associative and distributive (whenever the dimensions are such as to make products defined). An $n \times n$ matrix A is nonsingular if and only if it is invertible.

- Let A, B and C be matrices such that the products $(A B) C$ and $A(B C)$ are defined. Let S, T and R denote the associated linear transformations. By the theorem, the linear transformation corresponding to $A B$ is the composite $S \circ T$. So the linear transformation corresponding to $(A B) C$ is the composite $(S \circ T) \circ R$. Similarly, the linear transformation corresponding to $A(B C)$ is the composite $S \circ(T \circ R)$. Since function composition is associative, these linear transformations are the same. Hence, $(A B) C=A(B C)$.
The distributivity is proved similarly.

Nonsingularity and Invertibility

- Suppose A is invertible and $A x=0$. Then

$$
x=A^{-1} A x=A^{-1} 0=0 .
$$

So A is nonsingular.
Conversely, suppose A is nonsingular. Fix bases \mathcal{B}, \mathcal{E} for V. Let φ be the linear transformation of V to itself represented by A with respect to these bases. By the corollary, φ is an isomorphism of V to itself. Hence, it has an inverse, φ^{-1}. Let B be the matrix representing φ^{-1} with respect to the bases \mathcal{E}, \mathcal{B}. Then

$$
A B=M_{\mathcal{B}}^{\mathcal{E}}(\varphi) M_{\mathcal{E}}^{\mathcal{B}}\left(\varphi^{-1}\right)=M_{\mathcal{E}}^{\mathcal{E}}\left(\varphi \circ \varphi^{-1}\right)=M_{\mathcal{E}}^{\mathcal{E}}(1)=I
$$

Similarly, $B A=I$. So B is the inverse of A.

Group of Linear Transformations

Corollary

(1) If \mathcal{B} is a basis of the n-dimensional space V, the $\operatorname{map} \varphi \mapsto M_{\mathcal{B}}^{\mathcal{B}}(\varphi)$ is a ring and a vector space isomorphism of $\operatorname{Hom}_{F}(V, V)$ onto the space $M_{n}(F)$ of $n \times n$ matrices with coefficients in F.
(2) $\mathrm{GL}(V) \cong \mathrm{GL}_{n}(F)$, where $\operatorname{dim} V=n$. In particular, if F is a finite field, the order of the finite group $\mathrm{GL}_{n}(F)$ (which equals $\left.|\mathrm{GL}(V)|\right)$ is given by the formula developed previously.
(1) We have already seen that this map is an isomorphism of vector spaces over F. The corollary shows that $M_{n}(F)$ is a ring under matrix multiplication. The theorem shows that multiplication is preserved under this map. Hence, it is also a ring isomorphism.
(2) This is immediate from Part (1) since a ring isomorphism sends units to units.

Row and Column Rank

Definition (Row Rank and Column Rank)

If A is any $m \times n$ matrix with entries from F, the row rank (respectively, column rank) of A is the maximal number of linearly independent rows (respectively, columns) of A (where the rows or columns of A are considered as vectors in affine n-space, m-space, respectively).

- The rank of φ as a linear transformation equals the column rank of the matrix $M_{\mathcal{B}}^{\mathcal{E}}(\varphi)$.
- We will see that the row rank and the column rank of any matrix are the same.

Similarity

Definition (Similarity)

Two $n \times n$ matrices A and B are said to be similar if there is an invertible (i.e., nonsingular) $n \times n$ matrix P, such that

$$
P^{-1} A P=B
$$

Two linear transformations φ and ψ from a vector space V to itself are said to be similar if there is a nonsingular linear transformation ξ from V to V, such that

$$
\xi^{-1} \varphi \xi=\psi
$$

Transition or Change of Basis Matrix

- Suppose \mathcal{B} and \mathcal{E} are two bases of the same vector space V and let $\varphi \in \operatorname{Hom}_{F}(V, V)$.
Let I be the identity map from V to V and let $P=M_{\mathcal{E}}^{\mathcal{B}}(I)$ be its associated matrix:
- Write the elements of the basis \mathcal{E} in terms of the basis \mathcal{B};
- Use the resulting coordinates for the columns of the matrix P. Note that if $\mathcal{B} \neq \mathcal{E}$ then P is not the identity matrix.
Then $P^{-1} M_{\mathcal{B}}^{\mathcal{B}}(\varphi) P=M_{\mathcal{E}}^{\mathcal{E}}(\varphi)$.
If $[v]_{\mathcal{B}}$ is the $n \times 1$ matrix of coordinates for $v \in V$ with respect to the basis \mathcal{B}, and similarly $[v]_{\mathcal{E}}$ is the $n \times 1$ matrix of coordinates for $v \in V$ with respect to the basis \mathcal{E}, then $[v]_{\mathcal{B}}=P[v]_{\mathcal{E}}$.
- The matrix P is called the transition or change of basis matrix from \mathcal{B} to \mathcal{E}. This similarity action on $M_{\mathcal{B}}^{\mathcal{B}}(\varphi)$ is called a change of basis.
- Thus, the matrices associated to the same linear transformation with respect to two different bases are similar.

Transition or Change of Basis Matrix (Cont'd)

- Conversely, suppose A and B are $n \times n$ matrices similar by a nonsingular matrix P.
Let \mathcal{B} be a basis for the n-dimensional vector space V.
Define the linear transformation φ of V (with basis \mathcal{B}) to V (again with basis \mathcal{B}) using the given matrix A, i.e., $\varphi\left(v_{j}\right)=\sum_{i=1}^{n} \alpha_{i j} v_{i}$.
Then $A=M_{\mathcal{B}}^{\mathcal{B}}(\varphi)$ by definition of φ.
Define a new basis \mathcal{E} of V by using the i-th column of P for the coordinates of w_{i} in terms of the basis $\mathcal{B}\left(P=M_{\mathcal{E}}^{\mathcal{B}}(I)\right.$ by definition). Then $B=P^{-1} A P=P^{-1} M_{\mathcal{B}}^{\mathcal{B}}(\varphi) P=M_{\mathcal{B}}^{\mathcal{E}}(I) M_{\mathcal{B}}^{\mathcal{B}}(\varphi) M_{\mathcal{E}}^{\mathcal{B}}(I)=M_{\mathcal{E}}^{\mathcal{E}}(\varphi)$ is the matrix associated to φ with respect to the basis \mathcal{E}.
- This shows that any two similar $n \times n$ matrices arise in this fashion as the matrices representing the same linear transformation with respect to two different choices of bases.

Similarity Classes or Conjugacy Classes

- Change of basis for a linear transformation from V to itself is the same as conjugation by some element of the group $\mathrm{GL}(V)$ of nonsingular linear transformations of V to V.
- In particular, the relation "similarity" is an equivalence relation whose equivalence classes are the orbits of $\mathrm{GL}(V)$ acting by conjugation on $\operatorname{Hom}_{F}(V, V)$.
- If $\varphi \in \mathrm{GL}(V)$ (i.e., φ is an invertible linear transformation), then the similarity class of φ is none other than the conjugacy class of φ in the group $\mathrm{GL}(V)$.

Example

- Let $V=\mathbb{Q}^{3}$ and let φ be the linear transformation

$$
\varphi(x, y, z)=(9 x+4 y+5 z,-4 x-3 z,-6 x-4 y-2 z), x, y, z \in \mathbb{Q}
$$

from V to itself.
With respect to the standard basis, $\mathcal{B}, b_{1}=(1,0,0), b_{2}=(0,1,0)$, $b_{3}=(0,0,1)$, we saw that the matrix A representing this linear transformation is

$$
A=M_{\mathcal{B}}^{\mathcal{B}}(\varphi)=\left(\begin{array}{rrr}
9 & 4 & 5 \\
-4 & 0 & -3 \\
-6 & -4 & -2
\end{array}\right)
$$

Example (Cont'd)

$$
\varphi(x, y, z)=(9 x+4 y+5 z,-4 x-3 z,-6 x-4 y-2 z), x, y, z \in \mathbb{Q}
$$

- Take now the basis, $\mathcal{E}, e_{1}=(2,-1,-2), e_{2}=(1,0,-1)$, $e_{3}=(3,-2,-2)$ for V.
We have

$$
\begin{aligned}
& \varphi\left(e_{1}\right)=\varphi(2,-1,-2)=(4,-2,-4)=2 e_{1}+0 e_{2}+0 e_{3} ; \\
& \varphi\left(e_{2}\right)=\varphi(1,0,-1)=(4,-1,-4)=1 e_{1}+2 e_{2}+0 e_{3} ; \\
& \varphi\left(e_{3}\right)=\varphi(3,-2,-2)=(9,-6,-6)=0 e_{1}+0 e_{2}+3 e_{3} .
\end{aligned}
$$

Hence, the matrix representing φ with respect to this basis is the matrix

$$
B=M_{\mathcal{E}}^{\mathcal{E}}(\varphi)=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right) .
$$

Example (Cont'd)

- We have

$$
\begin{aligned}
& \text { - } \mathcal{B}=\left\{b_{1}, b_{2}, b_{3}\right\}=\{(1,0,0),(0,1,0),(0,0,1)\} ; \\
& \text { - } \mathcal{E}=\left\{e_{1}, e_{2}, e_{3}\right\}=\{(2,-1,-2),(1,0,-1),(3,-2,-2)\} .
\end{aligned}
$$

- Writing the elements of the basis \mathcal{E} in terms of the basis \mathcal{B}, we have

$$
\begin{aligned}
& e_{1}=2 b_{1}-b_{2}-2 b_{3} \\
& e_{2}=b_{1}-b_{3} \\
& e_{3}=3 b_{1}-2 b_{2}-2 b_{3}
\end{aligned}
$$

So the matrix $P=M_{\mathcal{E}}^{\mathcal{B}}(I)=\left(\begin{array}{rrr}2 & 1 & 3 \\ -1 & 0 & -2 \\ -2 & -1 & -2\end{array}\right)$ with inverse

$$
P^{-1}=\left(\begin{array}{rrr}
-2 & -1 & -2 \\
2 & 2 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

This P conjugates A into B, i.e., $P^{-1} A P=B$.

Subsection 3

Dual Vector Spaces

Dual Space and Linear Functionals

Definition (Dual Space, Linear Functional)

(1) For V any vector space over F, let $V^{*}=\operatorname{Hom}_{F}(V, F)$ be the space of linear transformations from V to F, called the dual space of V. Elements of V^{*} are called linear functionals.
(2) If $\mathcal{B}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of the finite dimensional space V, define $v_{i}^{*} \in V^{*}$, for each $i \in\{1,2, \ldots, n\}$ by its action on the basis \mathcal{B} :

$$
v_{i}^{*}\left(v_{j}\right)=\left\{\begin{array}{ll}
1, & \text { if } i=j \\
0, & \text { if } i \neq j
\end{array}, \quad 1 \leq j \leq n .\right.
$$

Proposition

With notations as above, $\left\{v_{1}^{*}, v_{2}^{*}, \ldots, v_{n}^{*}\right\}$ is a basis of V^{*}. In particular, if V is finite dimensional, then V^{*} has the same dimension as V.

Dual Basis

- Observe that since V is finite dimensional,

$$
\operatorname{dim} V^{*}=\operatorname{dimHom}_{F}(V, F)=\operatorname{dim} V=n
$$

So, since there are n of the v_{i}^{*} 's, it suffices to prove that they are linearly independent. Suppose

$$
\alpha_{1} v_{1}^{*}+\alpha_{2} v_{2}^{*}+\cdots+\alpha_{n} v_{n}^{*}=0
$$

in $\operatorname{Hom}_{F}(V, F)$. Applying this element to v_{i}, we obtain $\alpha_{i}=0$. Since i is arbitrary these elements are linearly independent.

Definition (Dual Basis)

The basis $\left\{v_{1}^{*}, v_{2}^{*}, \ldots, v_{n}^{*}\right\}$ of V^{*} is called the dual basis to $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.

Remarks on Linear Functionals

- If V is infinite dimensional it is always true that $\operatorname{dim} V<\operatorname{dim} V^{*}$.
- For spaces of arbitrary dimension, the space V^{*} is the "algebraic" dual space to V.
- If V has some additional structure, for example a continuous structure (i.e., a topology), then one may define other types of dual spaces (e.g., the continuous dual of V, defined by requiring the linear functionals to be continuous maps).
- One has to be careful when reading other works (particularly analysis books) to ascertain what qualifiers are implicit in the use of the terms "dual space" and "linear functional."
Example: Let $[a, b]$ be a closed interval in \mathbb{R}. Let V be the real vector space of all continuous functions $f:[a, b] \rightarrow \mathbb{R}$. If $a<b, V$ is infinite dimensional. For each $g \in V$, the function $\varphi: V \rightarrow \mathbb{R}$ defined by $\varphi_{g}(f)=\int_{a}^{b} f(t) g(t) d t$ is a linear functional on V.

The Double Dual

Definition (The Double Dual)

The dual of V^{*}, namely $V^{* *}$, is called the double dual or second dual of V.

- Note that for a finite dimensional space V,

$$
\operatorname{dim} V^{* *}=\operatorname{dim} V^{*}=\operatorname{dim} V
$$

Hence, V and $V^{* *}$ are isomorphic vector spaces.

- For infinite dimensional spaces $\operatorname{dim} V<\operatorname{dim} V^{* *}$.

So V and $V^{* *}$ cannot be isomorphic.

Evaluation at x

- Let X is any set.
- Let S be any set of functions of X into the field F.
- Fix a point x in X.
- Compute $f(x)$ as f ranges over all of S.
- This process, called evaluation at x, shows that for each $x \in X$, there is a function $E_{x}: S \rightarrow F$ defined by

$$
E_{x}(f)=f(x)
$$

- This gives a map $x \rightarrow E_{X}$ of X into the set of F-valued functions on S.
- If S "separates points", i.e., for distinct points x and y of X, there is some $f \in S$, such that $f(x) \neq f(y)$, then the map $x \mapsto E_{x}$ is injective.

A Vector Space and its Double Dual

Theorem

There is a natural injective linear transformation from V to $V^{* *}$. If V is finite dimensional then this linear transformation is an isomorphism.

- Let $v \in V$. Define the map (evaluation at v) $E_{v}: V^{*} \rightarrow F$ by $E_{v}(f)=f(v)$. Then

$$
E_{v}(f+\alpha g)=(f+\alpha g)(v)=f(v)+\alpha g(v)=E_{v}(f)+\alpha E_{v}(g)
$$

So E_{v} is a linear transformation from V^{*} to F. Hence E_{v} is an element of $\operatorname{Hom}_{F}\left(V^{*}, F\right)=V^{* *}$. This defines a natural map $\varphi: V \rightarrow V^{* *}$ by

$$
\varphi(v)=E_{v} .
$$

φ is a linear map: For $v, w \in V, \alpha \in F$, we get, for all $f \in V^{*}$,

$$
E_{v+\alpha w}(f)=f(v+\alpha w)=f(v)+\alpha f(w)=E_{v}(f)+\alpha E_{w}(f)
$$

So $\varphi(v+\alpha w)=E_{v+\alpha w}=E_{v}+\alpha E_{w}=\varphi(v)+\alpha \varphi(w)$.

A Vector Space and its Double Dual (Cont'd)

- We set $\varphi: V \rightarrow V^{* *}, \varphi(v)=E_{V}$ and showed φ is linear.

To see that φ is injective let v be any nonzero vector in V. By the Building Up Lemma there is a basis \mathcal{B} containing v. Let f be the linear transformation from V to F defined by sending v to 1 and every element of $\mathcal{B}-\{v\}$ to zero. Then $f \in V^{*}$ and

$$
E_{v}(f)=f(v)=1
$$

Thus $\varphi(v)=E_{v}$ is not zero in $V^{* *}$. This proves $\operatorname{ker} \varphi=0$, i.e., φ is injective.
If V has finite dimension n, then, by the proposition, V^{*} and hence also $V^{* *}$ has dimension n. In this case φ is an injective linear transformation from V to a finite dimensional vector space of the same dimension. Hence, it is an isomorphism.

Relating Dual Spaces

- Let V, W be finite dimensional vector spaces over F with bases \mathcal{B}, \mathcal{E}, respectively, and let $\mathcal{B}^{*}, \mathcal{E}^{*}$ be the dual bases.
Fix some $\varphi \in \operatorname{Hom}_{F}(V, W)$. Then, for each $f \in W^{*}$, the composite $f \circ \varphi$ is a linear transformation from V to F, that is $f \circ \varphi \in V^{*}$. Thus, the map $f \mapsto f \circ \varphi$ defines a function from W^{*} to V^{*}. We denote this induced function on dual spaces by φ^{*}.

Theorem

With notations as above, φ^{*} is a linear transformation from W^{*} to V^{*} and $M_{\mathcal{E}^{*}}^{\mathcal{B}^{*}}\left(\varphi^{*}\right)$ is the transpose of the matrix $M_{\mathcal{B}}^{\mathcal{E}}(\varphi)$ (recall that the transpose of the matrix $\left(a_{i j}\right)$ is the matrix $\left(a_{j i}\right)$).

- The map φ^{*} is linear because $(f+\alpha g) \circ \varphi=(f \circ \varphi)+\alpha(g \circ \varphi)$. The equations which define φ are (from its matrix)

$$
\varphi\left(v_{j}\right)=\sum_{i=1}^{m} \alpha_{i j} w_{i}, \quad 1 \leq j \leq n .
$$

Relating Dual Spaces (Cont'd)

- To compute the matrix for φ^{*}, observe that by the definitions of φ^{*} and w_{k}^{*},

$$
\varphi^{*}\left(w_{k}^{*}\right)\left(v_{j}\right)=\left(w_{k}^{*} \circ \varphi\right)\left(v_{j}\right)=w_{k}^{*}\left(\sum_{i=1}^{m} \alpha_{i j} w_{i}\right)=\alpha_{k j}
$$

Also, for all j,

$$
\left(\sum_{i=1}^{n} \alpha_{k i} v_{i}^{*}\right)\left(v_{j}\right)=\alpha_{k j}
$$

This shows that the two linear functionals below agree on a basis of V, hence they are the same element of $V^{*}: \varphi^{*}\left(w_{k}^{*}\right)=\sum_{i=1}^{n} \alpha_{k i} v_{i}^{*}$. This determines the matrix for φ^{*} with respect to the bases \mathcal{E}^{*} and \mathcal{B}^{*} as the transpose of the matrix for φ.

Row Rank and Column Rank of a Matrix

Corollary

For any matrix A, the row rank of A equals the column rank of A.

- Let $\varphi: V \rightarrow W$ be a linear transformation whose matrix with respect to some fixed bases of V and W is A. By the theorem, the matrix of $\varphi^{*}: W^{*} \rightarrow V^{*}$ with respect to the dual bases is the transpose of A. The column rank of A is the rank of φ and the row rank of $A(=$ the column rank of the transpose of A) is the rank of φ^{*}. It therefore suffices to show that φ and φ^{*} have the same rank.
Now $f \in \operatorname{ker} \varphi^{*}$ iff $\varphi^{*}(f)=0$ iff $f \circ \varphi(v)=0$, for all $v \in V$, iff $\varphi(V) \subseteq \operatorname{ker} f$ iff $f \in \operatorname{Ann}(\varphi(V))$, where $\operatorname{Ann}(S)$ is the annihilator of S. Thus $\operatorname{Ann}(\varphi(V))=\operatorname{ker} \varphi^{*}$. But dimker $\varphi^{*}=\operatorname{dim} W^{*}-\operatorname{dim} \varphi^{*}\left(W^{*}\right)$. We can also show $\operatorname{dim} \operatorname{Ann}(\varphi(V))=\operatorname{dim} W-\operatorname{dim} \varphi(V)$. But W and W^{*} have the same dimension. So $\operatorname{dim} \varphi(V)=\operatorname{dim} \varphi^{*}\left(W^{*}\right)$.

Subsection 4

Determinants

Multilinear Functions

- Let R be any commutative ring with 1 . Let $V_{1}, V_{2}, \ldots, V_{n}, V$ and W be R-modules.

Definition (Multilinear Functions)

(1) A map $\varphi: V_{1} \times V_{2} \times \cdots \times V_{n} \rightarrow W$ is called multilinear if, for each fixed i and fixed elements $v_{j} \in V_{j}, j \neq i$, the map $V_{i} \rightarrow W$,

$$
x \mapsto \varphi\left(v_{1}, \ldots, v_{i-1}, x, v_{i+1}, \ldots, v_{n}\right)
$$

is an R-module homomorphism.
If $V_{i}=V, i=1,2, \ldots, n$, then φ is called an n-multilinear function on V. If, in addition, $W=\mathbb{R}, \varphi$ is called an n-multilinear form on V.
(2) An n-multilinear function φ on V is called alternating if $\varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right)=0$, whenever $v_{i}=v_{i+1}$, for some $i \in\{1,2, \ldots, n-1\}$ (i.e., φ is zero whenever two consecutive arguments are equal).

The function φ is called symmetric if interchanging v_{i} and v_{j}, for any i and j in $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ does not alter the value of φ on this n-tuple.

Remarks on Multilinear Functions

- When $n=2$ (respectively, 3) one says φ is bilinear (respectively, trilinear).
- Also, when n is clear from the context we shall simply say φ is multilinear.

Example: For any fixed $m \geq 0$ the usual dot product on $V=\mathbb{R}^{m}$ is a bilinear form.

Properties of Alternating Multilinear Functions

Proposition

Let φ be an n-multilinear alternating function on V. Then:
(1) $\varphi\left(v_{1}, \ldots, v_{i-1}, v_{i+1}, v_{i}, v_{i+2}, \ldots, v_{n}\right)=-\varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, for any $i \in\{1,2, \ldots, n-1\}$, i.e., the value of φ on an n-tuple is negated if two adjacent components are interchanged.
(2) For each $\sigma \in S_{n}$,

$$
\varphi\left(v_{\sigma(1)}, v_{\sigma(2)}, \ldots, v_{\sigma(n)}\right)=\epsilon(\sigma) \varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

where $\epsilon(\sigma)$ is the sign of the permutation σ.
(3) If $v_{i}=v_{j}$, for any pair of distinct $i, j \in\{1,2, \ldots, n\}$, then $\varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right)=0$.
(4) If v_{i} is replaced by $v_{i}+\alpha v_{j}$ in $\left(v_{1}, \ldots, v_{n}\right)$, for any $j \neq i$ and any $\alpha \in R$, the value of φ on this n-tuple is not changed.

Properties of Alternating Multilinear Functions (Cont'd)

(1) Let $\psi(x, y)$ be the function φ with variable entries x and y in positions i and $i+1$, respectively, and fixed entries v_{j} in position j, for all other j. Thus, (1) is the same as showing $\psi(y, x)=-\psi(x, y)$.
Since φ is alternating $\psi(x+y, x+y)=0$. Expanding $x+y$ gives $\psi(x+y, x+y)=\psi(x, x)+\psi(x, y)+\psi(y, x)+\psi(y, y)$. Again, by the alternating property of φ, the first and last terms on the right hand side of the latter equation are zero. Thus $0=\psi(x, y)+\psi(y, x)$.
(2) Every permutation can be written as a product of transpositions. Furthermore, every transposition may be written as a product of transpositions which interchange two successive integers. Thus, every permutation σ can be written as $\tau_{1} \cdots \tau_{m}$, where τ_{k} is a transposition interchanging two successive integers, for all k. Apply (1) m times:

$$
\varphi\left(v_{\sigma(1)}, v_{\sigma(2)}, \ldots, v_{\sigma(n)}\right)=\epsilon\left(\tau_{m}\right) \cdots \epsilon\left(\tau_{1}\right) \varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

But ϵ is a homomorphism into the abelian group ± 1. Hence, we get $\epsilon\left(\tau_{1}\right) \cdots \epsilon\left(\tau_{m}\right)=\epsilon\left(\tau_{1} \cdots \tau_{m}\right)=\epsilon(\sigma)$.

Properties of Alternating Multilinear Functions (Cont'd)

(3) Choose σ fixing i and moving j to $i+1$.

Then, $\left(v_{\sigma(1)}, v_{\sigma(2)}, \ldots, v_{\sigma(n)}\right)$ has two equal adjacent components.
So φ is zero on this n-tuple.
By (2), we get

$$
\varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right)= \pm \varphi\left(v_{\sigma(1)}, v_{\sigma(2)}, \ldots, v_{\sigma(n)}\right)=0
$$

(4) On expanding by linearity in the i-th position and, then, applying (3), we get

$$
\begin{aligned}
\varphi\left(v_{1}, \ldots,\right. & \left.v_{i}+\alpha v_{j}, \ldots, v_{j}, \ldots, v_{n}\right) \\
& =\varphi\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{n}\right) \\
& \quad+\alpha \varphi\left(v_{1}, \ldots, v_{j}, \ldots, v_{j}, \ldots, v_{n}\right) \\
& =\varphi\left(v_{1}, \ldots, v_{i}, \ldots, v_{j}, \ldots, v_{n}\right)
\end{aligned}
$$

Alternating Multilinear Function in Determinant Form

Proposition

Assume φ is an n-multilinear alternating function on V and that for some $v_{1}, v_{2}, \ldots, v_{n}$ and $w_{1}, w_{2}, \ldots, w_{n} \in V$ and some $\alpha_{i j} \in R$, we have

$$
\begin{aligned}
w_{1} & =\alpha_{11} v_{1}+\alpha_{21} v_{2}+\cdots+\alpha_{n 1} v_{n} \\
w_{2} & =\alpha_{12} v_{1}+\alpha_{22} v_{2}+\cdots+\alpha_{n 2} v_{n} \\
& \vdots \\
w_{n} & =\alpha_{1 n} v_{1}+\alpha_{2 n} v_{2}+\cdots+\alpha_{n n} v_{n}
\end{aligned}
$$

Then

$$
\varphi\left(w_{1}, w_{2}, \ldots, w_{n}\right)=\sum_{\sigma \in S_{n}} \epsilon(\sigma) \alpha_{\sigma(1) 1} \alpha_{\sigma(2) 2} \cdots \alpha_{\sigma(n) n} \varphi\left(v_{1}, v_{2}, \ldots, v_{n}\right)
$$

Proof of the Determinant Form

- If we expand $\varphi\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ by multilinearity, we obtain a sum of n^{n} terms of the form $\alpha_{i_{1}, 1} \alpha_{i_{2}, 2} \cdots \alpha_{i_{n}, n} \varphi\left(v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{n}}\right)$, where the indices $i_{1}, i_{2}, \ldots, i_{n}$ each run over $1,2, \ldots, n$. By the proposition, φ is zero on the terms where two or more of the i_{j} 's are equal. Thus, in this expansion we need only consider the terms where i_{1}, \ldots, i_{n} are distinct. Such sequences are in bijective correspondence with permutations in S_{n}. So each nonzero term may be written as

$$
\alpha_{\sigma(1) 1} \alpha_{\sigma(2) 2} \cdots \alpha_{\sigma(n) n} \varphi\left(v_{\sigma(1)}, v_{\sigma(2)}, \ldots, v_{\sigma(n)}\right)
$$

for some $\sigma \in S_{n}$. Applying (2) of the proposition to each of these terms in the expansion of $\varphi\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ gives the expression in the proposition.

The Determinant Function

Definition (The Determinant Function)

An $n \times n$ determinant function on R is any function det : $M_{n \times n}(R) \rightarrow R$ that satisfies the following two axioms:
(1) det is an n-multilinear alternating form on $R^{n}(=V)$, where the n-tuples are the n columns of the matrices in $M_{n \times n}(R)$;
(2) $\operatorname{det}(I)=1$, where I is the $n \times n$ identity matrix.

- On occasion we shall write $\operatorname{det}\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ for $\operatorname{det} A$, where $A_{1}, A_{2}, \ldots, A_{n}$ are the columns of A.

Existence of a Determinant Function

Theorem

There is a unique $n \times n$ determinant function on R and it can be computed for any $n \times n$ matrix $\left(\alpha_{i j}\right)$ by the formula:

$$
\operatorname{det}\left(\alpha_{i j}\right)=\sum_{\sigma \in S_{n}} \epsilon(\sigma) \alpha_{\sigma(1) 1} \alpha_{\sigma(2) 2} \cdots \alpha_{\sigma(n) n} .
$$

- Let $A_{1}, A_{2}, \ldots, A_{n}$ be the column vectors in a general $n \times n$ matrix $\left(\alpha_{i j}\right)$. We check that the formula given in the statement of the theorem satisfies the axioms of a determinant:

$$
\begin{aligned}
& \operatorname{det}\left(A_{1} \cdots A_{i}+\gamma B_{i} \cdots A_{n}\right) \\
& =\sum_{\sigma \in S_{n}} \epsilon(\sigma) \alpha_{\sigma(1) 1} \cdots\left(\alpha_{\sigma(i) i}+\gamma \beta_{\sigma(i) i}\right) \cdots \alpha_{\sigma(n) n} \\
& =\sum_{\sigma \in S_{n}} \epsilon(\sigma) \alpha_{\sigma(1) 1} \cdots \alpha_{\sigma(i) i} \cdots \alpha_{\sigma(n) n} \\
& \quad+\gamma \sum_{\sigma \in S_{n}} \epsilon(\sigma) \alpha_{\sigma(1) 1} \cdots \beta_{\sigma(i) i} \cdots \alpha_{\sigma(n) n} \\
& =\operatorname{det}\left(A_{1} \cdots A_{i} \cdots A_{n}\right)+\gamma \operatorname{det}\left(A_{1} \cdots B_{i} \cdots A_{n}\right) ;
\end{aligned}
$$

Existence of a Determinant Function (Cont'd)

- Suppose that the k th and $(k+1)$-st columns of A are equal.

Note that for $\tau=(k k+1) \sigma$,

$$
\begin{aligned}
& \epsilon(\tau) \alpha_{\tau(1) 1} \cdots \alpha_{\tau(k) k} \alpha_{\tau(k+1) k+1} \cdots \alpha_{\tau(n) n} \\
& =-\epsilon(\sigma) \alpha_{\sigma(1) 1} \cdots \alpha_{\sigma(k+1) k} \alpha_{\sigma(k) k+1} \cdots \alpha_{\sigma(n) n} \\
& =-\epsilon(\sigma) \alpha_{\sigma(1) 1} \cdots \alpha_{\sigma(k) k} \alpha_{\sigma(k+1) k+1} \cdots \alpha_{\sigma(n) n} .
\end{aligned}
$$

As σ runs over $S_{n},(k k+1) \sigma$ also runs over S_{n}. So, we get that

$$
\begin{aligned}
& 2 \sum_{\sigma \in S_{n}} \epsilon(\sigma) \alpha_{\sigma(1) 1} \cdots \alpha_{\sigma(n) n} \\
& =\sum_{\sigma \in S_{n}} \epsilon(\sigma) \alpha_{\sigma(1) 1} \cdots \alpha_{\sigma(n) n}+\sum_{\substack{\sigma \in S_{n} \\
\tau:=(k k+1) \sigma}} \epsilon(\tau) \alpha_{\tau(1) 1} \cdots \alpha_{\tau(n) n} \\
& =0 .
\end{aligned}
$$

Hence $\operatorname{det}(A)=0$.
$\operatorname{det}(I)=\sum_{\sigma \in S_{n}} \epsilon(\sigma) i_{\sigma(1) 1} \cdots i_{\sigma(n) n}=+1 \cdot 1 \cdots 1+\sum_{\substack{\sigma \in S_{n} \\ \sigma \neq i d}} 0=1$.
Hence a determinant function exists.

Uniqueness of the Determinant Function

- To prove uniqueness let e_{i} be the column n-tuple with 1 in position i and zeros in all other positions. Then

$$
\begin{aligned}
A_{1} & =\alpha_{11} e_{1}+\alpha_{21} e_{2}+\cdots+\alpha_{n 1} e_{n} \\
A_{2} & =\alpha_{12} e_{1}+\alpha_{22} e_{2}+\cdots+\alpha_{n 2} e_{n} \\
& \vdots \\
A_{n} & =\alpha_{1 n} e_{1}+\alpha_{2 n} e_{2}+\cdots+\alpha_{n n} e_{n}
\end{aligned}
$$

By the proposition,

$$
\operatorname{det} A=\sum_{\sigma \in S_{n}} \epsilon(\sigma) \alpha_{\sigma(1) 1} \alpha_{\sigma(2) 2} \cdots \alpha_{\sigma(n) n} \operatorname{det}\left(e_{1}, \ldots, e_{n}\right)
$$

By axiom (2) of a determinant function $\operatorname{det}\left(e_{1}, e_{2}, \ldots, e_{n}\right)=1$. Hence, the value of $\operatorname{det} A$ is as claimed.

Determinant of the Transpose Matrix

Corollary

The determinant is an n-multilinear function of the rows of $M_{n \times n}(R)$ and for any $n \times n$ matrix $A, \operatorname{det} A=\operatorname{det}\left(A^{t}\right)$, where A^{t} is the transpose of A.

- The first statement is an immediate consequence of the second. So we show that a matrix and its transpose have the same determinant.
For $A=\left(\alpha_{i j}\right)$ we have $\operatorname{det} A^{t}=\sum_{\sigma \in S_{n}} \epsilon(\sigma) \alpha_{1 \sigma(1)} \alpha_{2 \sigma(2)} \cdots \alpha_{n \sigma(n)}$.
Each number from 1 to n appears exactly once among $\sigma(1), \ldots, \sigma(n)$.
So we may rearrange the product $\alpha_{1 \sigma(1)} \alpha_{2 \sigma(2)} \cdots \alpha_{n \sigma(n)}$ as
$\alpha_{\sigma^{-1}(1) 1} \alpha_{\sigma^{-1}(2) 2} \cdots \alpha_{\sigma^{-1}(n) n}$. Also, the homomorphism ϵ takes values in $\{ \pm 1\}$. So $\epsilon(\sigma)=\epsilon\left(\sigma^{-1}\right)$. Thus, the sum for $\operatorname{det} A^{t}$ may be rewritten as $\sum_{\sigma \in S_{n}} \epsilon\left(\sigma^{-1}\right) \alpha_{\sigma^{-1}(1) 1} \alpha_{\sigma^{-1}(2) 2} \cdots \alpha_{\sigma^{-1}(n) n}$. The latter sum is over all permutations. So the index σ may be replaced by σ^{-1}. The resulting expression is the sum for $\operatorname{det} A$.

Cramer's Rule

Theorem (Cramer's Rule)

If $A_{1}, A_{2}, \ldots, A_{n}$ are the columns of an $n \times n$ matrix A and $B=\beta_{1} A_{1}+\beta_{2} A_{2}+\cdots+\beta_{n} A_{n}$, for some $\beta_{1}, \ldots, \beta_{n} \in R$, then

$$
\beta_{i} \operatorname{det} A=\operatorname{det}\left(A_{1}, \ldots, A_{i-1}, B, A_{i+1}, \ldots, A_{n}\right)
$$

- Start from the right side.

Replace B by $\beta_{1} A_{1}+\beta_{2} A_{2}+\cdots+\beta_{n} A_{n}$.
Expand using multilinearity.
Use the fact that a determinant of a matrix with two identical columns is zero.

Determinant and Linear Independence

Corollary

If R is an integral domain, then $\operatorname{det} A=0$, for $A \in M_{n}(R)$ if and only if the columns of A are R-linearly dependent as elements of the free R-module of rank n.
Also, $\operatorname{det} A=0$ if and only if the rows of A are R-linearly dependent.

- Since $\operatorname{det} A=\operatorname{det} A^{t}$, the first sentence implies the second.

Assume, first, that the columns of A are linearly dependent and $0=\beta_{1} A_{1}+\beta_{2} A_{2}+\cdots+\beta_{n} A_{n}$ is a dependence relation on the columns of A with, say, $\beta_{i} \neq 0$. By Cramer's Rule,

$$
\begin{aligned}
\beta_{i} \operatorname{det} A & =\operatorname{det}\left(A_{1}, \ldots, A_{i-1}, B, A_{i+1}, \ldots, A_{n}\right) \\
& =\operatorname{det}\left(A_{1}, \ldots, A_{i-1}, 0, A_{i+1}, \ldots, A_{n}\right) \\
& =0 .
\end{aligned}
$$

But R is an integral domain and $\beta_{i} \neq 0$. Hence, $\operatorname{det} A=0$.

Determinant and Linear Independence (Converse)

- Conversely, assume the columns of A are independent. Consider the integral domain R as embedded in its quotient field F. Then $M_{n \times n}(R)$ may be considered as a subring of $M_{n \times n}(F)$. Note that the determinant function on the subring is the restriction of the determinant function from $M_{n \times n}(F)$. The columns of A in this way become elements of F^{n}. Any nonzero F-linear combination of the columns of A which is zero in F^{n} gives, by multiplying the coefficients by a common denominator, a nonzero R-linear dependence relation. The columns of A must therefore be independent vectors in F^{n}. Since A has n columns, these form a basis of F^{n}. Thus, there are elements $\beta_{i j}$ of F, such that for each i, the i-th basis vector e_{i} in F^{n} may be expressed as $e_{i}=\beta_{1 i} A_{1}+\beta_{2 i} A_{2}+\cdots+\beta_{n i} A_{n}$. The $n \times n$ identity matrix is the one whose columns are $e_{1}, e_{2}, \ldots, e_{n}$. The determinant of the identity matrix is some F-multiple of $\operatorname{det} A$. But the determinant of the identity matrix is 1 . Hence, $\operatorname{det} A \neq 0$.

Multiplicativity of the Determinant

Theorem

For matrices $A, B \in M_{n \times n}(R), \operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$.

- Let $B=\left(\beta_{i j}\right)$ and let $A_{1}, A_{2}, \ldots, A_{n}$ be the columns of A.
$C=A B$ is the $n \times n$ matrix whose j-th column is

$$
C_{j}=\beta_{1 j} A_{1}+\beta_{2 j} A_{2}+\cdots+\beta_{n j} A_{n}
$$

By the determinant formula, we obtain

$$
\begin{aligned}
\operatorname{det} C & =\operatorname{det}\left(C_{1}, \ldots, C_{n}\right) \\
& =\left[\sum_{\sigma \in S_{n}} \epsilon(\sigma) \beta_{\sigma(1) 1} \beta_{\sigma(2) 2} \cdots \beta_{\sigma(n) n}\right] \operatorname{det}\left(A_{1}, \ldots, A_{n}\right) .
\end{aligned}
$$

The sum inside the brackets is the formula for $\operatorname{det} B$.
Hence, $\operatorname{det} C=(\operatorname{det} B)(\operatorname{det} A)$.

Cofactors and Cofactor Expansion Formula

Definition (Cofactor)

Let $A=\left(\alpha_{i j}\right)$ be an $n \times n$ matrix. For each i, j, let $A_{i j}$ be the $(n-1) \times$ ($n-1$) matrix obtained from A by deleting its i-th row and j-th column (an $(n-1) \times(n-1)$ minor of A). Then $(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$ is the $i j$ cofactor of A.

Theorem (The Cofactor Expansion Formula Along the i-th Row)

If $A=\left(\alpha_{i j}\right)$ is an $n \times n$ matrix, then for each fixed $i \in\{1,2, \ldots, n\}$, the determinant of A can be computed from the formula $\operatorname{det} A=(-1)^{i+1} \alpha_{i 1} \operatorname{det} A_{i 1}+(-1)^{i+2} \alpha_{i 2} \operatorname{det} A_{i 2}+\cdots+(-1)^{i+n} \alpha_{i n} \operatorname{det} A_{i n}$.

- For each A let $D(A)$ be the element of R obtained from the cofactor expansion formula. We prove that D satisfies the axioms of a determinant function. Hence it must be the determinant function. Proceed by induction on n.

The Cofactor Expansion Formula (Multilinearity)

- For $n=1$, let (α) be a 1×1 matrix.

Then $D((\alpha))=\alpha$ and the result holds.

- Assume now that $n \geq 2$. We want to show that D is an alternating multilinear function of the columns. Fix an index k and consider the k-th column as varying and all other columns as fixed.
- If $j \neq k, \alpha_{i j}$ does not depend on k. So $D\left(A_{i j}\right)$ is linear in the k-th column by induction.
- As the k-th column varies linearly, so does $\alpha_{i k}$, whereas $D\left(A_{i k}\right)$ remains unchanged (the k-th column has been deleted from $A_{i k}$).
Thus, each term in the formula for D varies linearly in the k-th column. This proves D is multilinear in the columns.

The Cofactor Expansion Formula (Alternation)

- To prove D is alternating, assume columns k and $k+1$ of A are equal. If $j \neq k$ or $k+1$, the two equal columns of A become two equal columns in the matrix $A_{i j}$. By induction $D\left(A_{i j}\right)=0$. The formula for D, therefore, has at most two nonzero terms: When $j=k$ and when $j=k+1$.
- The minor matrices $A_{i k}$ and $A_{i k+1}$ are identical and $\alpha_{i k}=\alpha_{i k+1}$;
- Thus, the two remaining terms in the expansion for D,

$$
(-1)^{i+k} \alpha_{i k} D\left(A_{i k}\right) \quad \text { and } \quad(-1)^{i+k+1} \alpha_{i k+1} D\left(A_{i k+1}\right)
$$

are equal and appear with opposite signs;

- Hence they cancel.

Thus, $D(A)=0$ if A has two adjacent columns which are equal, i.e., D is alternating.
Finally, it follows easily from the formula and induction that $D(I)=1$, where I is the identity matrix.
This completes the induction.

Cofactor Formula for the Inverse of a Matrix

Theorem (Cofactor Formula for the Inverse of a Matrix)

Let $A=\left(\alpha_{i j}\right)$ be an $n \times n$ matrix and let B be the transpose of its matrix of cofactors, i.e., $B=\left(\beta_{i j}\right)$, where $\beta_{i j}=(-1)^{i+i} \operatorname{det} A_{j i}, 1 \leq i, j \leq n$. Then $A B=B A=(\operatorname{det} A) I$. Moreover, $\operatorname{det} A$ is a unit in R if and only if A is a unit in $M_{n \times n}(R)$. In this case the matrix $\frac{1}{\operatorname{det} A} B$ is the inverse of A.

- The i, j entry of $A B$ is $\alpha_{i 1} \beta_{1 j}+\alpha_{i 2} \beta_{2 j}+\cdots+\alpha_{i n} \beta_{n j}$. This equals $\alpha_{i 1}(-1)^{j+1} D\left(A_{j 1}\right)+\alpha_{i 2}(-1)^{j+2} D\left(A_{j 2}\right)+\cdots+\alpha_{i n}(-1)^{j+n} D\left(A_{j n}\right)$.
- If $i=j$, this is the cofactor expansion for $\operatorname{det} A$ along the i-th row. The diagonal entries of $A B$ are thus all equal to $\operatorname{det} A$.
- If $i \neq j$, let \bar{A} be the matrix A with the j-th row replaced by the i-th row, so $\operatorname{det} A=0$. By inspection $\bar{A}_{j k}=A_{j k}$ and $\alpha_{i k}=\bar{\alpha}_{j k}$, for every $k \in\{1,2, \ldots, n\}$. By making these substitutions in the equation above, for each $k=1,2, \ldots, n$, one sees that the i, j entry in $A B$ equals $\bar{\alpha}_{j 1}(-1)^{1+j} D\left(\bar{A}_{j 1}\right)+\cdots+\bar{\alpha}_{j n}(-1)^{n+j} D\left(\bar{A}_{j n}\right)$. This expression is the cofactor expansion for $\operatorname{det} \bar{A}$ along the j-th row. But $\operatorname{det} \bar{A}=0$. Hence, all off diagonal terms of $A B$ are zero. So $A B=(\operatorname{det} A) I$.

Cofactor Formula for the Inverse of a Matrix (Cont'd)

- It follows directly from the definition of B that the pair $\left(A^{t}, B^{t}\right)$
satisfies the same hypotheses as the pair (A, B). By what has already been shown it follows that $(B A)^{t}=A^{t} B^{t}=\left(\operatorname{det} A^{t}\right) I$. Since $\operatorname{det} A^{t}=\operatorname{det} A$ and the transpose of a diagonal matrix is itself, we obtain $B A=(\operatorname{det} A) I$ as well.
- If $d=\operatorname{det} A$ is a unit in R, then $d^{-1} B$ is a matrix with entries in R whose product with A (on either side) is the identity, i.e., A is a unit in $M_{n \times n}(R)$.
Conversely, assume that A is a unit in R, with (2-sided) inverse matrix C. But $\operatorname{det} C \in R$ and, moreover,

$$
1=\operatorname{det} I=\operatorname{det} A C=(\operatorname{det} A)(\operatorname{det} C)=(\operatorname{det} C)(\operatorname{det} A)
$$

It follows that $\operatorname{det} A$ has a 2 -sided inverse in R.

