Abstract Algebra II

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 342

George Voutsadakis (LSSU)

Abstract Algebra II

September 2020 1 / 74

- Definitions and Basic Theory
- The Matrix of a Linear Transformation
- Dual Vector Spaces
- Determinants

Subsection 1

Definitions and Basic Theory

Dictionary of Terms (Modules versus Vector Spaces)

Terminology for *R* **any Ring**

M is an R-module m is an element of Ma is a ring element N is a submodule of MM/N is a quotient module M is a free module of rank n*M* is a finitely generated module *M* is a nonzero cyclic module $\varphi: M \to N$ is an *R*-module homomor- $\varphi: M \to N$ is a linear transformation phism M and N are isomorphic as R-modules M and N are isomorphic vector spaces the subset A of M generates MM = RA

Terminology for R a Field M is a vector space over Rm is a vector in Ma is a scalar N is a subspace of MM/N is a quotient space M is a vector space of dimension n*M* is a finite dimensional vector space M is a 1-dimensional vector space

the subset A of M spans Meach element of M is a linear combination of elements of A, i.e., M = Span(A)

We assume F is a field and V a vector space over F.

Independence and Bases

Definition (Independent Vectors and Bases)

- (1) A subset S of V is called a set of **linearly independent vectors** if an equation $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n = 0$, with $\alpha_1, \alpha_2, \ldots, \alpha_n \in F$ and $v_1, v_2, \ldots, v_n \in S$, implies $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$.
- (2) A **basis** of a vector space V is an ordered set of linearly independent vectors which span V. In particular two bases will be considered different even if one is simply a rearrangement of the other. This is sometimes referred to as an **ordered basis**.

Example:

The space V = F[x] of polynomials in the variable x with coefficients from the field F is in particular a vector space over F.
 The elements 1, x, x², ... are linearly independent by definition, i.e., a polynomial is 0 if and only if all its coefficients are 0.
 Since these elements also span V by definition, they are a basis for V.

Additional Example

(2) The collection of solutions of a linear, homogeneous, constant coefficient differential equation (for example, y" - 3y' + 2y = 0) over C form a vector space over C since differentiation is a linear operator. Elements of this vector space are linearly independent if they are linearly independent as functions.

For example, e^t and e^{2t} are easily seen to be solutions of the equation y'' - 3y' + 2y = 0 (differentiation with respect to t).

They are linearly independent functions: Assume $ae^t + be^{2t} = 0$.

- Set t = 0. We get a + b = 0.
- Set t = 1. We get $ae + be^2 = 0$.

The only solution to these two equations is a = b = 0.

It is a theorem in differential equations that these elements span the set of solutions of this equation. Hence they are a basis for this space.

Minimal Spanning Sets form Bases

Proposition

Assume the set $\mathcal{A} = \{v_1, v_2, \dots, v_n\}$ spans the vector space V but no proper subset of \mathcal{A} spans V. Then \mathcal{A} is a basis of V. In particular, any finitely generated (i.e., finitely spanned) vector space over F is a free F-module.

 It is only necessary to prove that v₁, v₂,..., v_n are linearly independent. Suppose

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \cdots + \alpha_n \mathbf{v}_n = \mathbf{0},$$

where not all of the α_i are 0. By reordering, we may assume that $a_1 \neq 0$ and then $v_1 = -\frac{1}{\alpha_1}(\alpha_2 v_2 + \cdots + \alpha_n v_n)$. Using this equation, any linear combination of v_1, v_2, \ldots, v_n can be written as a linear combination of only v_2, v_3, \ldots, v_n . It follows that $\{v_2, v_3, \ldots, v_n\}$ also spans V. This is a contradiction.

George Voutsadakis (LSSU)

An Example

- Let F be a field and consider F[x]/(f(x)), where $f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$ The ideal (f(x)) is a subspace of the vector space F[x] and the quotient F[x]/(f(x)) is also a vector space over F. By the Euclidean Algorithm, every polynomial $a(x) \in F[x]$ can be written uniquely in the form a(x) = q(x)f(x) + r(x), where $r(x) \in F[x]$ and $0 \leq \deg r(x) \leq n-1$. Since $q(x)f(x) \in (f(x))$, it follows that every element of the quotient is represented by a polynomial r(x) of degree $\leq n-1$. Two distinct such polynomials cannot be the same in the quotient since this would say their difference (which is a nonzero polynomial of degree at most n-1) would be divisible by f(x) (which is of degree n). It follows that:
 - The elements 1, x, x²,..., xⁿ⁻¹ (the bar denotes image in the quotient) span F[x]/(f(x)) as a vector space over F;
 - No proper subset of these elements also spans F[x]/(f(x)).

Hence, these elements give a basis for F[x]/(f(x)).

Existence of Basic and Replacement

Corollary

Assume the finite set A spans the vector space V. Then A contains a basis of V.

 Any subset B of A spanning V such that no proper subset of B also spans V (there clearly exist such subsets) is a basis for V.

Theorem (A Replacement Theorem)

Assume $\mathcal{A} = \{a_1, a_2, \ldots, a_n\}$ is a basis for V containing n elements and $\{b_1, b_2, \ldots, b_m\}$ is a set of linearly independent vectors in V. Then there is an ordering a_1, a_2, \ldots, a_n , such that, for each $k \in \{1, 2, \ldots, m\}$, the set $\{b_1, b_2, \ldots, b_k, a_{k+1}, a_{k+2}, \ldots, a_n\}$ is a basis of V. In other words, the elements b_1, b_2, \ldots, b_m can be used to successively replace the elements of the basis \mathcal{A} , still retaining a basis. In particular, $n \geq m$.

• Proceed by induction on k.

If k = 0, there is nothing to prove, since A is given as a basis for V.

Proof of Replacement (New Spanning Set)

Suppose now that {b₁, b₂,..., b_k, a_{k+1}, a_{k+2},..., a_n} is a basis for V. Then, in particular, this is a spanning set. So b_{k+1} is a linear combination: b_{k+1} = β₁b₁ + ··· + β_kb_k + α_{k+1}a_{k+1} + ··· + α_na_n. Not all of the α_i can be 0, since this would imply b_{k+1} is a linear combination of b₁, b₂,..., b_k, contrary to the linear independence of these elements. By reordering if necessary, we may assume α_{k+1} ≠ 0. Solving this last equation for α_{k+1} as a linear combination of b_{k+1} and b₁, b₂,..., b_k, a_{k+2},..., a_n shows

$$Span\{b_1, b_2, \dots, b_k, b_{k+1}, a_{k+2}, \dots, a_n\} = Span\{b_1, b_2, \dots, b_k, a_{k+1}, a_{k+2}, \dots, a_n\} = V.$$

Thus, $\{b_1, b_2, \ldots, b_k, b_{k+1}, a_{k+2}, \ldots, a_n\}$ is a spanning set for V.

Proof of Replacement (Independence of the New Set)

It remains to show b₁,..., b_k, b_{k+1}, a_{k+2},..., a_n are linearly independent. Suppose

 $\beta'_1b_1+\cdots+\beta'_kb_k+\beta'_{k+1}b_{k+1}+\alpha'_{k+2}a_{k+2}+\cdots+\alpha'_na_n=0.$

Substitute for b_{k+1} from the expression

$$b_{k+1} = \beta_1 b_1 + \dots + \beta_k b_k + \alpha_{k+1} a_{k+1} + \dots + \alpha_n a_n.$$

We obtain a linear combination of $\{b_1, b_2, \ldots, b_k, a_{k+1}, a_{k+2}, \ldots, a_n\}$ equal to 0, where the coefficient of a_{k+1} is $\beta'_{k+1}\alpha_{k+1}$. This set is a basis by induction. Hence, all the coefficients in the linear combination= 0. Thus, $\beta'_{k+1}\alpha_{k+1} = 0$. Since $\alpha_{k+1} \neq 0$, $\beta'_{k+1} = 0$. But then we get

$$\beta'_1b_1+\cdots+\beta'_kb_k+\alpha'_{k+2}a_{k+2}+\cdots+\alpha'_na_n=0.$$

Again by the induction hypothesis all the other coefficients must be 0 as well. Thus $\{b_1, b_2, \ldots, b_k, b_{k+1}, a_{k+2}, \ldots, a_n\}$ is a basis for V.

Dimension

Corollary

- (1) Suppose V has a finite basis with n elements. Any set of linearly independent vectors has $\leq n$ elements. Any spanning set has $\geq n$ elements.
- (2) If V has some finite basis, then any two bases of V have the same cardinality.
- (1) This is a restatement of the last result of the theorem.
- (2) A basis is both a spanning set and a linearly independent set.

Definition (Dimension)

If V is a finitely generated F-module (i.e., has a finite basis) the cardinality of any basis is called the **dimension** of V and is denoted by $\dim_F V$, or just dimV when F is clear from the context, and V is said to be **finite dimensional** over F. If V is not finitely generated, V is said to be **infinite dimensional** (written dim $V = \infty$).

Examples

(1) The dimension of the space of solutions to the differential equation y" - 3y' + 2y = 0 over C is 2 (with basis e^t, e^{2t}, for example).
In general, it is a theorem in differential equations that the space of solutions of an *n*-th order linear, homogeneous, constant coefficient

differential equation of degree n over \mathbb{C} form a vector space over \mathbb{C} of dimension n.

(2) The dimension over F of the quotient F[x]/(f(x)) by the nonzero polynomial f(x) considered above is n = degf(x).
The space F[x] and its subspace (f(x)) are infinite dimensional vector spaces over F.

Building Up Lemma and Isomorphism Theorem

Lemma (Building-Up Lemma)

If A is a set of linearly independent vectors in the finite dimensional space V, then there exists a basis of V containing A.

• This is also immediate from the theorem, since we can use the elements of A to successively replace the elements of any given basis for V (which exists by the assumption that V is finite dimensional).

Theorem

If V is an n dimensional vector space over F, then $V \cong F^n$. In particular, any two finite dimensional vector spaces over F of the same dimension are isomorphic.

• Let v_1, v_2, \ldots, v_n be a basis for V. Define the map $\varphi : F^n \to V$ by $\varphi(\alpha_1, \alpha_2, \ldots, \alpha_n) = \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_n v_n$. The map φ is *F*-linear, surjective since the v_i span V, and is injective since the v_i are linearly independent. Hence φ is an isomorphism.

Example I

- Let F be a finite field with q elements and let W be a k-dimensional vector space over F. The number of distinct bases of W is (q^k − 1)(q^k − q)(q^k − q²) ··· (q^k − q^{k−1}). Every basis of W can be built up as follows:
 - Any nonzero vector w₁ can be the first element of a basis. Since W is isomorphic to 𝔽^k, |W| = q^k, so there are q^k − 1 choices for w₁.
 - Any vector not in the 1-dimensional space spanned by w₁ is linearly independent from w₁ and so may be chosen for the second basis element, w₂. A 1-dimensional space is isomorphic to 𝔽 and so has q elements. Thus, there are q^k q choices for w₂.
 - Proceeding in this way one sees that at the *i*-th stage, any vector not in the (*i*-1)-dimensional space spanned by *w*₁, *w*₂,..., *w_{i-1}* will be linearly independent from *w*₁, *w*₂,..., *w_{i-1}* and so may be chosen for the *i*-th basis vector *w_i*. An (*i*-1)-dimensional space is isomorphic to F^{*i*-1} and so has *qⁱ⁻¹* elements. So, there are *q^k* - *qⁱ⁻¹* choices for *w_i*.

 The process terminates when *w_k* is chosen, for then we have *k* linear independent vectors in a *k*-dimensional space, hence a basis.

Example II

(2) Let \mathbb{F} be a finite field with q elements and let V be an n-dimensional vector space over \mathbb{F} . For each $k \in \{1, 2, ..., n\}$, we show that the number of subspaces of V of dimension k is $\frac{(q^n-1)(q^n-q)\cdots(q^n-q^{k-1})}{(q^k-1)(q^k-q)\cdots(q^k-q^{k-1})}$.

Any k-dimensional space is spanned by k independent vectors.

- By arguing as in the preceding example the numerator of the above expression is the number of ways of picking *k* independent vectors from an *n*-dimensional space.
- Two sets of k independent vectors span the same space W if and only if they are both bases of the k-dimensional space W.
 In order to obtain the formula for the number of distinct subspaces of dimension k we must divide by the number of repetitions, i.e., the number of bases of a fixed k-dimensional space. This factor which appears in the denominator is precisely this number.

The Dimensions of a Subspace and of its Quotient Space

• We prove a relation between the dimensions of a subspace, the associated quotient space and the whole space:

Theorem

Let V be a vector space over F and let W be a subspace of V. Then V/W is a vector space with dim $V = \dim W + \dim V/W$, where, if one side is infinite, then both are.

- Suppose dim W = m and dim V = n and let w₁, w₂,..., w_m be a basis for W. These linearly independent elements of V can be extended to a basis w₁, w₂,..., w_m, v_{m+1},..., v_n of V. The natural surjective projection map of V into V/W maps each w_i to 0. No linear combination of the v_i is mapped to 0, since no linear combination is in W. Hence, the image V/W of this projection map is isomorphic to the subspace of V spanned by the v_i. Hence dim V/W = n − m, the conclusion when the dimensions are finite.
 - If either side is infinite the other side is also infinite.

Images and Kernels of Linear Transformations

Corollary

Let $\varphi: V \to U$ be a linear transformation of vector spaces over F. Then $\ker \varphi$ is a subspace of V, $\varphi(V)$ is a subspace of U and

 $\dim V = \dim \ker \varphi + \dim \varphi(V).$

We know that φ(V) ≅ V/kerφ.
 In particular, dimφ(V) = dimV/kerφ.
 Now we get, using the theorem,

$$\dim V = \dim \ker \varphi + \dim V / \ker \varphi \\ = \dim \ker \varphi + \dim \varphi(V).$$

Characteristic Properties of Isomorphisms

Corollary

Let $\varphi: V \to W$ be a linear transformation of vector spaces of the same finite dimension. Then the following are equivalent:

- (1) φ is an isomorphism;
- (2) φ is injective, i.e., ker $\varphi = 0$;
- (3) φ is surjective, i.e., $\varphi(V) = W$;
- (4) φ sends a basis of V to a basis of W.
 - The equivalence of these conditions follows from the corollary by counting dimensions.

Null Space and Nullity

Definition (Null Space and Nullity)

If $\varphi: V \to U$ is a linear transformation of vector spaces over F, ker φ is sometimes called the **null space** of φ and the dimension of ker φ is called the **nullity** of φ . The dimension of $\varphi(V)$ is called the **rank** of φ . If ker $\varphi = 0$, the transformation is said to be **nonsingular**.

Example: Let F be a finite field with q elements, V an n-dimensional vector space over F. The general linear group GL(V) is the group of all nonsingular linear transformations from V to V under composition. The order is $|GL(V)| = (q^n - 1)(q^n - q)(q^n - q^2) \cdots (q^n - q^{n-1})$. Fix a basis v_1, \ldots, v_n of V. A linear transformation is nonsingular if and only if it sends this basis to another basis of V. Moreover, if w_1, \ldots, w_n is any basis of V, by UMP, there is a unique linear transformation which sends v_i to w_i , $1 \le i \le n$. Thus, the number of nonsingular linear transformations from V to itself equals the number of distinct bases of V. This number is the order of GL(V).

Subsection 2

The Matrix of a Linear Transformation

Obtaining a Matrix of a Linear Transformation

- Let V, W be vector spaces over the same field F.
 - Let $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ be an (ordered) basis of V;
 - Let $\mathcal{E} = \{w_1, w_2, \dots, w_m\}$ be an (ordered) basis of W.

Let $\varphi \in Hom(V, W)$ be a linear transformation from V to W.

For each j ∈ {1,2,...,n}, write the image of v_j under φ in terms of the basis ε:

$$\varphi(\mathbf{v}_j) = \sum_{i=1}^m \alpha_{ij} \mathbf{w}_i.$$

- Let M^ε_B(φ) = (a_{ij}) be the m × n matrix whose i, j entry is α_{ij}.
- The matrix M^E_B(φ) is called the matrix of φ with respect to the bases B, E.

The domain basis is the lower and the codomain basis the upper letters appearing after the "M".

Obtaining a Linear Transformation from a Matrix

 Given M^ε_B(φ), we can recover the linear transformation φ as follows: To compute φ(v) for v ∈ V, write v in terms of the basis B

$$v = \sum_{i=1}^{n} \alpha_i v_i, \quad \alpha_i \in F;$$

Then calculate the product of the $m \times n$ and $n \times 1$ matrices

$$M_{\mathcal{B}}^{\mathcal{E}}(\varphi) \times \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix}$$

The image of v under φ is $\varphi(v) = \sum_{i=1}^{m} \beta_i w_i$, i.e., the column vector of coordinates of $\varphi(v)$ with respect to the basis \mathcal{E} are obtained by multiplying the matrix $M_{\mathcal{B}}^{\mathcal{E}}(\varphi)$ by the column vector of coordinates of v with respect to the basis \mathcal{B} : $[\varphi(v)]_{\mathcal{E}} = M_{\mathcal{B}}^{\mathcal{E}}(\varphi)[v]_{\mathcal{B}}$.

Representation

Definition

The $m \times n$ matrix $A = (a_{ij})$ associated to the linear transformation φ above is said to **represent** the linear transformation φ with respect to the bases \mathcal{B}, \mathcal{E} . Similarly, φ is the linear transformation represented by A with respect to the bases \mathcal{B}, \mathcal{E} .

Example: Let $V = \mathbb{R}^3$ with the standard basis $\mathcal{B} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$. Let $W = \mathbb{R}^2$ with the standard basis $\mathcal{E} = \{(1, 0), (0, 1)\}$. Let φ be the linear transformation

$$\varphi(x, y, z) = (x + 2y, x + y + z).$$

Since $\varphi(1,0,0) = (1,1)$, $\varphi(0,1,0) = (2,1)$, $\varphi(0,0,1) = (0,1)$, the matrix $A = M_{\mathcal{B}}^{\mathcal{E}}(\varphi)$ is the matrix $\begin{pmatrix} 1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}$.

Another Example

- Let V = W be the 2-dimensional space of solutions of the differential equation y" − 3y' + 2y = 0 over C and let B = E be the basis v₁ = e^t, v₂ = e^{2t}.
 - Since the coefficients of this equation are constants, it is easy to check that, if y is a solution then its derivative y' is also a solution. It follows that the map

$$\varphi = rac{d}{dt} = ext{differentiation}$$
 (with respect to t)

is a linear transformation from V to itself. Note that $\varphi(v_1) = \frac{d(e^t)}{dt} = e^t = v_1$ and $\varphi(v_2) = \frac{d(e^{2t})}{dt} = 2e^{2t} = 2v_2$. Thus, the corresponding matrix with respect to these bases is the diagonal matrix $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

A Third Example

- Let V = W = Q³ = {(x, y, z) : x, y, z ∈ Q} be the 3-dimensional vector space of ordered 3-tuples with entries from the field F = Q of rational numbers.
 - Let $\varphi: V \to V$ be the linear transformation

$$\varphi(x, y, z) = (9x + 4y + 5z, -4x - 3z, -6x - 4y - 2z), \ x, y, z \in \mathbb{Q}.$$

Take the standard basis $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$, $e_3 = (0, 0, 1)$ for V and for W = V.

We have $\varphi(1,0,0) = (9,-4,-6), \ \varphi(0,1,0) = (4,0,-4), \ \varphi(0,0,1) = (5,-3,-2).$

Hence, the matrix A representing this linear transformation with

respect to these bases is
$$A = \begin{pmatrix} 9 & 4 & 5 \\ -4 & 0 & -3 \\ -6 & -4 & -2 \end{pmatrix}$$
.

Isomorphism Between $Hom_F(V, W)$ and $M_{m \times n}(F)$

Theorem

Let V be a vector space over F of dimension n and let W be a vector space over F of dimension m, with bases \mathcal{B}, \mathcal{E} , respectively. Then the map $\operatorname{Hom}_F(V, W) \to M_{m \times n}(F)$ from the space of linear transformations from V to W to the space of $m \times n$ matrices with coefficients in F defined by $\varphi \mapsto M^{\mathcal{E}}_{\mathcal{B}}(\varphi)$ is a vector space isomorphism. In particular, there is a bijective correspondence between linear transformations and their associated matrices with respect to a fixed choice of bases.

- The columns of the matrix M^ε_B(φ) are determined by the action of φ on β. Thus, the map φ → M^ε_B(φ) is F-linear, since φ is F-linear.
 - This map is surjective: Let $M \in M_{m \times n}(F)$. Define $\varphi : V \to W$ by $\varphi(v_j) = \sum_{i=1}^m \alpha_{ij} w_i$ and extend it by linearity. Then φ is a linear transformation and $M_{\mathcal{B}}^{\mathcal{E}}(\varphi) = M$.
 - The map is injective: Two linear transformations agreeing on a basis are the same.

Nonsingularity

Corollary

The dimension of $\operatorname{Hom}_F(V, W)$ is $(\dim V)(\dim W)$.

• The dimension of $M_{m \times n}(F)$ is mn.

Definition

An $m \times n$ matrix A is called **nonsingular** if Ax = 0, with $x \in F^n$, implies x = 0.

• The connection of the term nonsingular applied to matrices and to linear transformations is the following:

Let $A = M_{\mathcal{B}}^{\mathcal{E}}(\varphi)$ be the matrix associated to the linear transformation φ (with some choice of bases \mathcal{B}, \mathcal{E}).

Then independently of the choice of bases, the $m \times n$ matrix A is nonsingular if and only if the linear transformation φ is a nonsingular linear transformation from the *n*-dimensional space V to the *m*-dimensional space W.

Linear Transformations and Matrices

Theorem

 $M_{\mathcal{D}}^{\mathcal{E}}(\varphi \circ \psi) = M_{\mathcal{B}}^{\mathcal{E}}(\varphi)M_{\mathcal{D}}^{\mathcal{B}}(\psi)$, i.e., with respect to a compatible choice of bases, the product of the matrices representing the linear transformations φ and ψ is the matrix representing the composite linear transformation $\varphi \circ \psi$.

• Assume that U, V and W are all finite dimensional vector spaces over F with ordered bases \mathcal{D}, \mathcal{B} and \mathcal{E} , respectively, where \mathcal{B} and \mathcal{E} are as before and suppose $\mathcal{D} = \{u_1, u_2, \dots, u_k\}$. Assume $\psi : U \to V$ and $\varphi: V \to W$ are linear transformations. Their composite, $\varphi \circ \psi$, is a linear transformation from U to W. So we can compute its matrix with respect to the appropriate bases. $M_{\mathcal{D}}^{\mathcal{E}}(\varphi \circ \psi)$ is found by computing $\varphi \circ \psi(u_i) = \sum_{i=1}^m \gamma_{ii} w_i$ and putting the coefficients γ_{ii} down the *j*-th column of $M_{\mathcal{D}}^{\mathcal{E}}(\varphi \circ \psi)$. Next, compose the matrices of ψ and φ separately: $\psi(u_j) = \sum_{p=1}^n \alpha_{pj} v_p$ and $\varphi(v_p) = \sum_{i=1}^m \beta_{ip} w_i$, so that $M_{\mathcal{D}}^{\mathcal{B}}(\psi) = (\alpha_{pi})$ and $M_{\mathcal{B}}^{\mathcal{E}}(\varphi) = (\beta_{ip})$.

Linear Transformations and Matrices (Cont'd)

• Using $M_{\mathcal{D}}^{\mathcal{B}}(\psi) = (\alpha_{pj})$ and $M_{\mathcal{B}}^{\mathcal{E}}(\varphi) = (\beta_{ip})$ we can find an expression for the γ 's in terms of the α 's and β 's as follows:

$$\varphi \circ \psi(u_j) = \varphi(\sum_{p=1}^n \alpha_{pj} v_p) = \sum_{p=1}^n \alpha_{pj} \varphi(v_p)$$

= $\sum_{p=1}^n \alpha_{pj} \sum_{i=1}^m \beta_{ip} w_i$
= $\sum_{p=1}^n \sum_{i=1}^m \alpha_{pj} \beta_{ip} w_i$
= $\sum_{i=1}^m (\sum_{p=1}^n \alpha_{pj} \beta_{ip}) w_i.$

- Thus, γ_{ij} , which is the coefficient of w_i in the above expression, is $\gamma_{ij} = \sum_{p=1}^{n} \alpha_{pj} \beta_{ip}$;
- Computing the product of the matrices for φ and ψ (in that order) we obtain $(\beta_{ij})(\alpha_{ij}) = (\delta_{ij})$, where $\delta_{ij} = \sum_{p=1}^{m} \beta_{ip} \alpha_{pj}$.

By comparing the two sums above and using the commutativity of field multiplication, we see that for all *i* and *j*, $\gamma_{ij} = \delta_{ij}$.

Associativity and Distributivity of Matrix Multiplication

Corollary

Matrix multiplication is associative and distributive (whenever the dimensions are such as to make products defined). An $n \times n$ matrix A is nonsingular if and only if it is invertible.

Let A, B and C be matrices such that the products (AB)C and A(BC) are defined. Let S, T and R denote the associated linear transformations. By the theorem, the linear transformation corresponding to AB is the composite S ∘ T. So the linear transformation corresponding to (AB)C is the composite (S ∘ T) ∘ R. Similarly, the linear transformation corresponding to A(BC) is the composite S ∘ (T ∘ R). Since function composition is associative, these linear transformations are the same. Hence, (AB)C = A(BC). The distributivity is proved similarly.

Nonsingularity and Invertibility

• Suppose A is invertible and Ax = 0. Then

$$x = A^{-1}Ax = A^{-1}0 = 0.$$

So A is nonsingular.

Conversely, suppose A is nonsingular. Fix bases \mathcal{B}, \mathcal{E} for V. Let φ be the linear transformation of V to itself represented by A with respect to these bases. By the corollary, φ is an isomorphism of V to itself. Hence, it has an inverse, φ^{-1} . Let B be the matrix representing φ^{-1} with respect to the bases \mathcal{E}, \mathcal{B} . Then

$$AB = M_{\mathcal{B}}^{\mathcal{E}}(\varphi)M_{\mathcal{E}}^{\mathcal{B}}(\varphi^{-1}) = M_{\mathcal{E}}^{\mathcal{E}}(\varphi \circ \varphi^{-1}) = M_{\mathcal{E}}^{\mathcal{E}}(1) = I.$$

Similarly, BA = I. So B is the inverse of A.

Group of Linear Transformations

Corollary

- (1) If \mathcal{B} is a basis of the *n*-dimensional space V, the map $\varphi \mapsto M_{\mathcal{B}}^{\mathcal{B}}(\varphi)$ is a ring and a vector space isomorphism of $\operatorname{Hom}_{\mathcal{F}}(V, V)$ onto the space $M_n(F)$ of $n \times n$ matrices with coefficients in F.
- (2) $GL(V) \cong GL_n(F)$, where dim V = n. In particular, if F is a finite field, the order of the finite group $GL_n(F)$ (which equals |GL(V)|) is given by the formula developed previously.
- (1) We have already seen that this map is an isomorphism of vector spaces over F. The corollary shows that $M_n(F)$ is a ring under matrix multiplication. The theorem shows that multiplication is preserved under this map. Hence, it is also a ring isomorphism.
- (2) This is immediate from Part (1) since a ring isomorphism sends units to units.

Row and Column Rank

Definition (Row Rank and Column Rank)

If A is any $m \times n$ matrix with entries from F, the **row rank** (respectively, **column rank**) of A is the maximal number of linearly independent rows (respectively, columns) of A (where the rows or columns of A are considered as vectors in affine *n*-space, *m*-space, respectively).

- The rank of φ as a linear transformation equals the column rank of the matrix M^ε_B(φ).
- We will see that the row rank and the column rank of any matrix are the same.

Similarity

Definition (Similarity)

Two $n \times n$ matrices A and B are said to be **similar** if there is an invertible (i.e., nonsingular) $n \times n$ matrix P, such that

$$P^{-1}AP = B.$$

Two linear transformations φ and ψ from a vector space V to itself are said to be **similar** if there is a nonsingular linear transformation ξ from V to V, such that

$$\xi^{-1}\varphi\xi = \psi.$$

Transition or Change of Basis Matrix

• Suppose \mathcal{B} and \mathcal{E} are two bases of the same vector space V and let $\varphi \in \operatorname{Hom}_F(V, V)$.

Let *I* be the identity map from *V* to *V* and let $P = M_{\mathcal{E}}^{\mathcal{B}}(I)$ be its associated matrix:

- Write the elements of the basis \mathcal{E} in terms of the basis \mathcal{B} ;
- Use the resulting coordinates for the columns of the matrix P.

Note that if $\mathcal{B} \neq \mathcal{E}$ then *P* is not the identity matrix. Then $P^{-1}M_{\mathcal{B}}^{\mathcal{B}}(\varphi)P = M_{\mathcal{E}}^{\mathcal{E}}(\varphi)$.

If $[v]_{\mathcal{B}}$ is the $n \times 1$ matrix of coordinates for $v \in V$ with respect to the basis \mathcal{B} , and similarly $[v]_{\mathcal{E}}$ is the $n \times 1$ matrix of coordinates for $v \in V$ with respect to the basis \mathcal{E} , then $[v]_{\mathcal{B}} = P[v]_{\mathcal{E}}$.

- The matrix P is called the transition or change of basis matrix from *B* to *E*. This similarity action on M^B_B(φ) is called a change of basis.
- Thus, the matrices associated to the same linear transformation with respect to two different bases are similar.
Transition or Change of Basis Matrix (Cont'd)

• Conversely, suppose A and B are $n \times n$ matrices similar by a nonsingular matrix P.

Let \mathcal{B} be a basis for the *n*-dimensional vector space V.

Define the linear transformation φ of V (with basis \mathcal{B}) to V (again with basis \mathcal{B}) using the given matrix A, i.e., $\varphi(v_j) = \sum_{i=1}^{n} \alpha_{ij} v_i$. Then $A = M_{\mathcal{B}}^{\mathcal{B}}(\varphi)$ by definition of φ .

Define a new basis \mathcal{E} of V by using the *i*-th column of P for the coordinates of w_i in terms of the basis \mathcal{B} ($P = M_{\mathcal{E}}^{\mathcal{B}}(I)$ by definition). Then $B = P^{-1}AP = P^{-1}M_{\mathcal{B}}^{\mathcal{B}}(\varphi)P = M_{\mathcal{B}}^{\mathcal{E}}(I)M_{\mathcal{B}}^{\mathcal{B}}(\varphi)M_{\mathcal{E}}^{\mathcal{B}}(I) = M_{\mathcal{E}}^{\mathcal{E}}(\varphi)$ is the matrix associated to φ with respect to the basis \mathcal{E} .

• This shows that any two similar $n \times n$ matrices arise in this fashion as the matrices representing the same linear transformation with respect to two different choices of bases.

Similarity Classes or Conjugacy Classes

- Change of basis for a linear transformation from V to itself is the same as conjugation by some element of the group GL(V) of nonsingular linear transformations of V to V.
- In particular, the relation "similarity" is an equivalence relation whose equivalence classes are the orbits of GL(V) acting by conjugation on $Hom_F(V, V)$.
- If φ ∈ GL(V) (i.e., φ is an invertible linear transformation), then the similarity class of φ is none other than the conjugacy class of φ in the group GL(V).

Example

• Let $V = \mathbb{Q}^3$ and let φ be the linear transformation

$$\varphi(x, y, z) = (9x + 4y + 5z, -4x - 3z, -6x - 4y - 2z), \ x, y, z \in \mathbb{Q},$$

from V to itself.

With respect to the standard basis, \mathcal{B} , $b_1 = (1,0,0)$, $b_2 = (0,1,0)$, $b_3 = (0,0,1)$, we saw that the matrix A representing this linear transformation is

$$A = M_{\mathcal{B}}^{\mathcal{B}}(\varphi) = \begin{pmatrix} 9 & 4 & 5 \\ -4 & 0 & -3 \\ -6 & -4 & -2 \end{pmatrix}$$

Example (Cont'd)

$$\varphi(x, y, z) = (9x + 4y + 5z, -4x - 3z, -6x - 4y - 2z), \ x, y, z \in \mathbb{Q}.$$

• Take now the basis, \mathcal{E} , $e_1 = (2, -1, -2)$, $e_2 = (1, 0, -1)$, $e_3 = (3, -2, -2)$ for V. We have

$$\begin{aligned} \varphi(e_1) &= \varphi(2, -1, -2) = (4, -2, -4) = 2e_1 + 0e_2 + 0e_3; \\ \varphi(e_2) &= \varphi(1, 0, -1) = (4, -1, -4) = 1e_1 + 2e_2 + 0e_3; \\ \varphi(e_3) &= \varphi(3, -2, -2) = (9, -6, -6) = 0e_1 + 0e_2 + 3e_3. \end{aligned}$$

Hence, the matrix representing φ with respect to this basis is the matrix

$$B = M_{\mathcal{E}}^{\mathcal{E}}(\varphi) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Example (Cont'd)

• We have

•
$$\mathcal{B} = \{b_1, b_2, b_3\} = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\};$$

• $\mathcal{E} = \{e_1, e_2, e_3\} = \{(2, -1, -2), (1, 0, -1), (3, -2, -2)\}.$

 \bullet Writing the elements of the basis ${\cal E}$ in terms of the basis ${\cal B},$ we have

$$e_{1} = 2b_{1} - b_{2} - 2b_{3};$$

$$e_{2} = b_{1} - b_{3};$$

$$e_{3} = 3b_{1} - 2b_{2} - 2b_{3}.$$
So the matrix $P = M_{\mathcal{E}}^{\mathcal{B}}(I) = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 0 & -2 \\ -2 & -1 & -2 \end{pmatrix}$ with inverse
$$P^{-1} = \begin{pmatrix} -2 & -1 & -2 \\ 2 & 2 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$
This P conjugates A into B_{1} i.e., $P^{-1}AP = B$.

Subsection 3

Dual Vector Spaces

Dual Space and Linear Functionals

Definition (Dual Space, Linear Functional)

- For V any vector space over F, let V* = Hom_F(V, F) be the space of linear transformations from V to F, called the dual space of V. Elements of V* are called linear functionals.
- (2) If $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ is a basis of the finite dimensional space V, define $v_i^* \in V^*$, for each $i \in \{1, 2, \dots, n\}$ by its action on the basis \mathcal{B} :

$$v_i^*(v_j) = \left\{ egin{array}{cc} 1, & ext{if } i=j \ 0, & ext{if } i
eq j \end{array}
ight., \quad 1\leq j\leq n.$$

Proposition

With notations as above, $\{v_1^*, v_2^*, \dots, v_n^*\}$ is a basis of V^* . In particular, if V is finite dimensional, then V^* has the same dimension as V.

Dual Basis

• Observe that since V is finite dimensional,

```
\dim V^* = \dim \operatorname{Hom}_F(V, F) = \dim V = n.
```

So, since there are n of the v_i^* 's, it suffices to prove that they are linearly independent. Suppose

$$\alpha_1 \mathbf{v}_1^* + \alpha_2 \mathbf{v}_2^* + \dots + \alpha_n \mathbf{v}_n^* = \mathbf{0}$$

in Hom_{*F*}(*V*, *F*). Applying this element to v_i , we obtain $\alpha_i = 0$. Since *i* is arbitrary these elements are linearly independent.

Definition (Dual Basis)

The basis $\{v_1^*, v_2^*, \dots, v_n^*\}$ of V^* is called the **dual basis** to $\{v_1, v_2, \dots, v_n\}$.

Remarks on Linear Functionals

- If V is infinite dimensional it is always true that $\dim V < \dim V^*$.
- For spaces of arbitrary dimension, the space V* is the "algebraic" dual space to V.
- If V has some additional structure, for example a continuous structure (i.e., a topology), then one may define other types of dual spaces (e.g., the continuous dual of V, defined by requiring the linear functionals to be continuous maps).
- One has to be careful when reading other works (particularly analysis books) to ascertain what qualifiers are implicit in the use of the terms "dual space" and "linear functional."

Example: Let [a, b] be a closed interval in \mathbb{R} . Let V be the real vector space of all continuous functions $f : [a, b] \to \mathbb{R}$. If a < b, V is infinite dimensional. For each $g \in V$, the function $\varphi : V \to \mathbb{R}$ defined by $\varphi_g(f) = \int_a^b f(t)g(t)dt$ is a linear functional on V.

The Double Dual

Definition (The Double Dual)

The dual of V^* , namely V^{**} , is called the **double dual** or **second dual** of V.

• Note that for a finite dimensional space V,

 $\dim V^{**} = \dim V^* = \dim V.$

Hence, V and V^{**} are isomorphic vector spaces.

For infinite dimensional spaces dim V < dim V**.
 So V and V** cannot be isomorphic.

Evaluation at x

- Let X is any set.
- Let S be any set of functions of X into the field F.
- Fix a point x in X.
- Compute f(x) as f ranges over all of S.
- This process, called evaluation at x, shows that for each x ∈ X, there is a function E_x : S → F defined by

$$E_{x}(f)=f(x).$$

- This gives a map $x \to E_x$ of X into the set of F-valued functions on S.
- If S "separates points", i.e., for distinct points x and y of X, there is some f ∈ S, such that f(x) ≠ f(y), then the map x → E_x is injective.

A Vector Space and its Double Dual

Theorem

There is a natural injective linear transformation from V to V^{**} . If V is finite dimensional then this linear transformation is an isomorphism.

• Let $v \in V$. Define the map (evaluation at v) $E_v : V^* \to F$ by $E_v(f) = f(v)$. Then

$$E_{v}(f + \alpha g) = (f + \alpha g)(v) = f(v) + \alpha g(v) = E_{v}(f) + \alpha E_{v}(g).$$

So E_v is a linear transformation from V^* to F. Hence E_v is an element of $\operatorname{Hom}_F(V^*, F) = V^{**}$. This defines a natural map $\varphi: V \to V^{**}$ by

$$\varphi(v) = E_v$$

arphi is a linear map: For $v,w\in V$, $lpha\in F$, we get, for all $f\in V^*$,

$$E_{\nu+\alpha w}(f) = f(\nu + \alpha w) = f(\nu) + \alpha f(w) = E_{\nu}(f) + \alpha E_{w}(f).$$

So $\varphi(\nu + \alpha w) = E_{\nu+\alpha w} = E_{\nu} + \alpha E_{w} = \varphi(\nu) + \alpha \varphi(w).$

A Vector Space and its Double Dual (Cont'd)

• We set $\varphi: V \to V^{**}$, $\varphi(v) = E_v$ and showed φ is linear.

To see that φ is injective let v be any nonzero vector in V. By the Building Up Lemma there is a basis \mathcal{B} containing v. Let f be the linear transformation from V to F defined by sending v to 1 and every element of $\mathcal{B} - \{v\}$ to zero. Then $f \in V^*$ and

$$E_{v}(f)=f(v)=1.$$

Thus $\varphi(v) = E_v$ is not zero in V^{**} . This proves ker $\varphi = 0$, i.e., φ is injective.

If V has finite dimension n, then, by the proposition, V^* and hence also V^{**} has dimension n. In this case φ is an injective linear transformation from V to a finite dimensional vector space of the same dimension. Hence, it is an isomorphism.

Relating Dual Spaces

Let V, W be finite dimensional vector spaces over F with bases B, E, respectively, and let B*, E* be the dual bases.
Fix some φ ∈ Hom_F(V, W). Then, for each f ∈ W*, the composite f ∘ φ is a linear transformation from V to F, that is f ∘ φ ∈ V*.
Thus, the map f ↦ f ∘ φ defines a function from W* to V*. We denote this induced function on dual spaces by φ*.

Theorem

With notations as above, φ^* is a linear transformation from W^* to V^* and $M_{\mathcal{E}^*}^{\mathcal{B}^*}(\varphi^*)$ is the transpose of the matrix $M_{\mathcal{B}}^{\mathcal{E}}(\varphi)$ (recall that the transpose of the matrix (a_{ij}) is the matrix (a_{ji})).

• The map φ^* is linear because $(f + \alpha g) \circ \varphi = (f \circ \varphi) + \alpha(g \circ \varphi)$. The equations which define φ are (from its matrix)

$$\varphi(\mathbf{v}_j) = \sum_{i=1}^m \alpha_{ij} \mathbf{w}_i, \quad 1 \leq j \leq n.$$

Relating Dual Spaces (Cont'd)

• To compute the matrix for φ^* , observe that by the definitions of φ^* and w_k^* ,

$$\varphi^*(w_k^*)(v_j) = (w_k^* \circ \varphi)(v_j) = w_k^*(\sum_{i=1}^m \alpha_{ij}w_i) = \alpha_{kj}.$$

Also, for all *j*,

$$(\sum_{i=1}^n \alpha_{ki} v_i^*)(v_j) = \alpha_{kj}.$$

This shows that the two linear functionals below agree on a basis of V, hence they are the same element of V^* : $\varphi^*(w_k^*) = \sum_{i=1}^n \alpha_{ki}v_i^*$. This determines the matrix for φ^* with respect to the bases \mathcal{E}^* and \mathcal{B}^* as the transpose of the matrix for φ .

Row Rank and Column Rank of a Matrix

Corollary

For any matrix A, the row rank of A equals the column rank of A.

Let φ: V → W be a linear transformation whose matrix with respect to some fixed bases of V and W is A. By the theorem, the matrix of φ*: W* → V* with respect to the dual bases is the transpose of A. The column rank of A is the rank of φ and the row rank of A (= the column rank of the transpose of A) is the rank of φ*. It therefore suffices to show that φ and φ* have the same rank.

Now $f \in \ker \varphi^*$ iff $\varphi^*(f) = 0$ iff $f \circ \varphi(v) = 0$, for all $v \in V$, iff $\varphi(V) \subseteq \ker f$ iff $f \in \operatorname{Ann}(\varphi(V))$, where $\operatorname{Ann}(S)$ is the annihilator of S. Thus $\operatorname{Ann}(\varphi(V)) = \ker \varphi^*$. But $\operatorname{dim} \ker \varphi^* = \dim W^* - \operatorname{dim} \varphi^*(W^*)$. We can also show $\operatorname{dim} \operatorname{Ann}(\varphi(V)) = \operatorname{dim} W - \operatorname{dim} \varphi(V)$. But W and W^* have the same dimension. So $\operatorname{dim} \varphi(V) = \operatorname{dim} \varphi^*(W^*)$.

Subsection 4

Determinants

Multilinear Functions

Let R be any commutative ring with 1.
 Let V₁, V₂,..., V_n, V and W be R-modules.

Definition (Multilinear Functions)

(1) A map $\varphi : V_1 \times V_2 \times \cdots \times V_n \to W$ is called **multilinear** if, for each fixed *i* and fixed elements $v_j \in V_j$, $j \neq i$, the map $V_i \to W$,

 $x \mapsto \varphi(v_1,\ldots,v_{i-1},x,v_{i+1},\ldots,v_n)$

is an *R*-module homomorphism.

If $V_i = V$, i = 1, 2, ..., n, then φ is called an *n*-multilinear function on V.

If, in addition, $W = \mathbb{R}$, φ is called an *n*-multilinear form on V.

(2) An *n*-multilinear function φ on V is called alternating if φ(v₁, v₂,..., v_n) = 0, whenever v_i = v_{i+1}, for some i ∈ {1, 2, ..., n - 1} (i.e., φ is zero whenever two consecutive arguments are equal). The function φ is called symmetric if interchanging v_i and v_j, for any i and j in (v₁, v₂,..., v_n) does not alter the value of φ on this *n*-tuple.

Remarks on Multilinear Functions

- When n = 2 (respectively, 3) one says φ is **bilinear** (respectively, **trilinear**).
- Also, when *n* is clear from the context we shall simply say φ is multilinear.

Example: For any fixed $m \ge 0$ the usual dot product on $V = \mathbb{R}^m$ is a bilinear form.

Properties of Alternating Multilinear Functions

Proposition

Let φ be an *n*-multilinear alternating function on *V*. Then:

- (1) $\varphi(v_1, \ldots, v_{i-1}, v_{i+1}, v_i, v_{i+2}, \ldots, v_n) = -\varphi(v_1, v_2, \ldots, v_n)$, for any $i \in \{1, 2, \ldots, n-1\}$, i.e., the value of φ on an *n*-tuple is negated if two adjacent components are interchanged.
- (2) For each $\sigma \in S_n$,

$$\varphi(\mathbf{v}_{\sigma(1)},\mathbf{v}_{\sigma(2)},\ldots,\mathbf{v}_{\sigma(n)})=\epsilon(\sigma)\varphi(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n),$$

where $\epsilon(\sigma)$ is the sign of the permutation σ .

- (3) If $v_i = v_j$, for any pair of distinct $i, j \in \{1, 2, ..., n\}$, then $\varphi(v_1, v_2, ..., v_n) = 0$.
- (4) If v_i is replaced by $v_i + \alpha v_j$ in (v_1, \ldots, v_n) , for any $j \neq i$ and any $\alpha \in R$, the value of φ on this *n*-tuple is not changed.

Properties of Alternating Multilinear Functions (Cont'd)

(1) Let $\psi(x, y)$ be the function φ with variable entries x and y in positions i and i + 1, respectively, and fixed entries v_i in position j, for all other *j*. Thus, (1) is the same as showing $\psi(y, x) = -\psi(x, y)$. Since φ is alternating $\psi(x + y, x + y) = 0$. Expanding x + y gives $\psi(x+y,x+y) = \psi(x,x) + \psi(x,y) + \psi(y,x) + \psi(y,y)$. Again, by the alternating property of φ , the first and last terms on the right hand side of the latter equation are zero. Thus $0 = \psi(x, y) + \psi(y, x)$. Every permutation can be written as a product of transpositions. (2)Furthermore, every transposition may be written as a product of transpositions which interchange two successive integers. Thus, every permutation σ can be written as $\tau_1 \cdots \tau_m$, where τ_k is a transposition interchanging two successive integers, for all k. Apply (1) m times:

$$\varphi(\mathbf{v}_{\sigma(1)},\mathbf{v}_{\sigma(2)},\ldots,\mathbf{v}_{\sigma(n)})=\epsilon(\tau_m)\cdots\epsilon(\tau_1)\varphi(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n).$$

But ϵ is a homomorphism into the abelian group ± 1 . Hence, we get $\epsilon(\tau_1) \cdots \epsilon(\tau_m) = \epsilon(\tau_1 \cdots \tau_m) = \epsilon(\sigma)$.

Properties of Alternating Multilinear Functions (Cont'd)

(3) Choose σ fixing i and moving j to i + 1.
Then, (v_{σ(1)}, v_{σ(2)},..., v_{σ(n})) has two equal adjacent components. So φ is zero on this *n*-tuple.
By (2), we get

$$\varphi(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_n) = \pm \varphi(\mathbf{v}_{\sigma(1)},\mathbf{v}_{\sigma(2)},\ldots,\mathbf{v}_{\sigma(n)}) = \mathbf{0}.$$

(4) On expanding by linearity in the *i*-th position and, then, applying (3), we get

$$\varphi(\mathbf{v}_1,\ldots,\mathbf{v}_i+\alpha\mathbf{v}_j,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_n) = \varphi(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_n) + \alpha\varphi(\mathbf{v}_1,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_n) = \varphi(\mathbf{v}_1,\ldots,\mathbf{v}_i,\ldots,\mathbf{v}_j,\ldots,\mathbf{v}_n).$$

Alternating Multilinear Function in Determinant Form

Proposition

Assume φ is an *n*-multilinear alternating function on V and that for some v_1, v_2, \ldots, v_n and $w_1, w_2, \ldots, w_n \in V$ and some $\alpha_{ij} \in R$, we have

$$w_1 = \alpha_{11}v_1 + \alpha_{21}v_2 + \dots + \alpha_{n1}v_n$$

$$w_2 = \alpha_{12}v_1 + \alpha_{22}v_2 + \dots + \alpha_{n2}v_n$$

$$\vdots$$

$$w_n = \alpha_{1n}v_1 + \alpha_{2n}v_2 + \dots + \alpha_{nn}v_n$$

Then

$$\varphi(w_1, w_2, \ldots, w_n) = \sum_{\sigma \in S_n} \epsilon(\sigma) \alpha_{\sigma(1)1} \alpha_{\sigma(2)2} \cdots \alpha_{\sigma(n)n} \varphi(v_1, v_2, \ldots, v_n).$$

Proof of the Determinant Form

• If we expand $\varphi(w_1, w_2, \ldots, w_n)$ by multilinearity, we obtain a sum of n^n terms of the form $\alpha_{i_1,1}\alpha_{i_2,2}\cdots\alpha_{i_n,n}\varphi(v_{i_1}, v_{i_2}, \ldots, v_{i_n})$, where the indices i_1, i_2, \ldots, i_n each run over $1, 2, \ldots, n$. By the proposition, φ is zero on the terms where two or more of the i_j 's are equal. Thus, in this expansion we need only consider the terms where i_1, \ldots, i_n are distinct. Such sequences are in bijective correspondence with permutations in S_n . So each nonzero term may be written as

$$\alpha_{\sigma(1)1}\alpha_{\sigma(2)2}\cdots\alpha_{\sigma(n)n}\varphi(v_{\sigma(1)},v_{\sigma(2)},\ldots,v_{\sigma(n)}),$$

for some $\sigma \in S_n$. Applying (2) of the proposition to each of these terms in the expansion of $\varphi(w_1, w_2, \ldots, w_n)$ gives the expression in the proposition.

The Determinant Function

Definition (The Determinant Function)

An $n \times n$ determinant function on R is any function det : $M_{n \times n}(R) \to R$ that satisfies the following two axioms:

- (1) det is an *n*-multilinear alternating form on R^n (= V), where the *n*-tuples are the *n* columns of the matrices in $M_{n \times n}(R)$;
- (2) det(I) = 1, where I is the $n \times n$ identity matrix.
 - On occasion we shall write $det(A_1, A_2, ..., A_n)$ for detA, where $A_1, A_2, ..., A_n$ are the columns of A.

Existence of a Determinant Function

Theorem

There is a unique $n \times n$ determinant function on R and it can be computed for any $n \times n$ matrix (α_{ij}) by the formula:

$$\det(\alpha_{ij}) = \sum_{\sigma \in S_n} \epsilon(\sigma) \alpha_{\sigma(1)1} \alpha_{\sigma(2)2} \cdots \alpha_{\sigma(n)n}.$$

Let A₁, A₂,..., A_n be the column vectors in a general n × n matrix (α_{ij}). We check that the formula given in the statement of the theorem satisfies the axioms of a determinant:

$$det(A_{1} \cdots A_{i} + \gamma B_{i} \cdots A_{n}) = \sum_{\sigma \in S_{n}} \epsilon(\sigma) \alpha_{\sigma(1)1} \cdots (\alpha_{\sigma(i)i} + \gamma \beta_{\sigma(i)i}) \cdots \alpha_{\sigma(n)n} \\ = \sum_{\sigma \in S_{n}} \epsilon(\sigma) \alpha_{\sigma(1)1} \cdots \alpha_{\sigma(i)i} \cdots \alpha_{\sigma(n)n} \\ + \gamma \sum_{\sigma \in S_{n}} \epsilon(\sigma) \alpha_{\sigma(1)1} \cdots \beta_{\sigma(i)i} \cdots \alpha_{\sigma(n)n} \\ = det(A_{1} \cdots A_{i} \cdots A_{n}) + \gamma det(A_{1} \cdots B_{i} \cdots A_{n});$$

Existence of a Determinant Function (Cont'd)

• Suppose that the kth and (k + 1)-st columns of A are equal. Note that for $\tau = (k \ k + 1)\sigma$,

$$\begin{aligned} \epsilon(\tau) \alpha_{\tau(1)1} \cdots \alpha_{\tau(k)k} \alpha_{\tau(k+1)k+1} \cdots \alpha_{\tau(n)n} \\ &= -\epsilon(\sigma) \alpha_{\sigma(1)1} \cdots \alpha_{\sigma(k+1)k} \alpha_{\sigma(k)k+1} \cdots \alpha_{\sigma(n)n} \\ &= -\epsilon(\sigma) \alpha_{\sigma(1)1} \cdots \alpha_{\sigma(k)k} \alpha_{\sigma(k+1)k+1} \cdots \alpha_{\sigma(n)n}. \end{aligned}$$

As σ runs over S_n , $(k \ k+1)\sigma$ also runs over S_n . So, we get that

$$2\sum_{\sigma\in S_n} \epsilon(\sigma)\alpha_{\sigma(1)1}\cdots\alpha_{\sigma(n)n} = \sum_{\sigma\in S_n} \epsilon(\sigma)\alpha_{\sigma(1)1}\cdots\alpha_{\sigma(n)n} + \sum_{\substack{\sigma\in S_n\\\tau:=(k\ k+1)\sigma}} \epsilon(\tau)\alpha_{\tau(1)1}\cdots\alpha_{\tau(n)n}$$
$$= 0.$$

Hence det(A) = 0. det(I) = $\sum_{\sigma \in S_n} \epsilon(\sigma) i_{\sigma(1)1} \cdots i_{\sigma(n)n} = +1 \cdot 1 \cdots 1 + \sum_{\substack{\sigma \in S_n \\ \sigma \neq id}} 0 = 1.$ Hence a determinant function exists.

Uniqueness of the Determinant Function

• To prove uniqueness let *e_i* be the column *n*-tuple with 1 in position *i* and zeros in all other positions. Then

$$A_{1} = \alpha_{11}e_{1} + \alpha_{21}e_{2} + \dots + \alpha_{n1}e_{n}$$

$$A_{2} = \alpha_{12}e_{1} + \alpha_{22}e_{2} + \dots + \alpha_{n2}e_{n}$$

$$\vdots$$

$$A_{n} = \alpha_{1n}e_{1} + \alpha_{2n}e_{2} + \dots + \alpha_{nn}e_{n}$$

By the proposition,

$$\det A = \sum_{\sigma \in S_n} \epsilon(\sigma) \alpha_{\sigma(1)1} \alpha_{\sigma(2)2} \cdots \alpha_{\sigma(n)n} \det(e_1, \dots, e_n).$$

By axiom (2) of a determinant function $det(e_1, e_2, \ldots, e_n) = 1$. Hence, the value of det*A* is as claimed.

Determinant of the Transpose Matrix

Corollary

The determinant is an *n*-multilinear function of the rows of $M_{n \times n}(R)$ and for any $n \times n$ matrix A, det $A = det(A^t)$, where A^t is the transpose of A.

 The first statement is an immediate consequence of the second. So we show that a matrix and its transpose have the same determinant.

For $A = (\alpha_{ij})$ we have $\det A^t = \sum_{\sigma \in S_n} \epsilon(\sigma) \alpha_{1\sigma(1)} \alpha_{2\sigma(2)} \cdots \alpha_{n\sigma(n)}$. Each number from 1 to *n* appears exactly once among $\sigma(1), \ldots, \sigma(n)$. So we may rearrange the product $\alpha_{1\sigma(1)}\alpha_{2\sigma(2)} \cdots \alpha_{n\sigma(n)}$ as $\alpha_{\sigma^{-1}(1)1}\alpha_{\sigma^{-1}(2)2} \cdots \alpha_{\sigma^{-1}(n)n}$. Also, the homomorphism ϵ takes values in $\{\pm 1\}$. So $\epsilon(\sigma) = \epsilon(\sigma^{-1})$. Thus, the sum for det A^t may be rewritten as $\sum_{\sigma \in S_n} \epsilon(\sigma^{-1})\alpha_{\sigma^{-1}(1)1}\alpha_{\sigma^{-1}(2)2} \cdots \alpha_{\sigma^{-1}(n)n}$. The latter sum is over all permutations. So the index σ may be replaced by σ^{-1} . The resulting expression is the sum for detA.

Cramer's Rule

Theorem (Cramer's Rule)

If A_1, A_2, \ldots, A_n are the columns of an $n \times n$ matrix A and $B = \beta_1 A_1 + \beta_2 A_2 + \cdots + \beta_n A_n$, for some $\beta_1, \ldots, \beta_n \in R$, then

$$\beta_i \det A = \det(A_1, \ldots, A_{i-1}, B, A_{i+1}, \ldots, A_n).$$

• Start from the right side.

Replace B by $\beta_1 A_1 + \beta_2 A_2 + \cdots + \beta_n A_n$.

Expand using multilinearity.

Use the fact that a determinant of a matrix with two identical columns is zero.

Determinant and Linear Independence

Corollary

If R is an integral domain, then det A = 0, for $A \in M_n(R)$ if and only if the columns of A are R-linearly dependent as elements of the free R-module of rank n.

Also, det A = 0 if and only if the rows of A are R-linearly dependent.

• Since $det A = det A^t$, the first sentence implies the second.

Assume, first, that the columns of A are linearly dependent and $0 = \beta_1 A_1 + \beta_2 A_2 + \cdots + \beta_n A_n$ is a dependence relation on the columns of A with, say, $\beta_i \neq 0$. By Cramer's Rule,

$$\begin{array}{rcl} \beta_i {\rm det} A & = & {\rm det}(A_1, \dots, A_{i-1}, B, A_{i+1}, \dots, A_n) \\ & = & {\rm det}(A_1, \dots, A_{i-1}, 0, A_{i+1}, \dots, A_n) \\ & = & 0. \end{array}$$

But R is an integral domain and $\beta_i \neq 0$. Hence, det A = 0.

Determinant and Linear Independence (Converse)

 Conversely, assume the columns of A are independent. Consider the integral domain R as embedded in its quotient field F. Then $M_{n \times n}(R)$ may be considered as a subring of $M_{n \times n}(F)$. Note that the determinant function on the subring is the restriction of the determinant function from $M_{n \times n}(F)$. The columns of A in this way become elements of F^n . Any nonzero F-linear combination of the columns of A which is zero in F^n gives, by multiplying the coefficients by a common denominator, a nonzero *R*-linear dependence relation. The columns of A must therefore be independent vectors in F^n . Since A has n columns, these form a basis of F^n . Thus, there are elements β_{ii} of F, such that for each i, the i-th basis vector e_i in F^n may be expressed as $e_i = \beta_{1i}A_1 + \beta_{2i}A_2 + \cdots + \beta_{ni}A_n$. The $n \times n$ identity matrix is the one whose columns are e_1, e_2, \ldots, e_n . The determinant of the identity matrix is some F-multiple of detA. But the determinant of the identity matrix is 1. Hence, det $A \neq 0$.

Multiplicativity of the Determinant

Theorem

For matrices $A, B \in M_{n \times n}(R)$, $\det AB = (\det A)(\det B)$.

Let B = (β_{ij}) and let A₁, A₂,..., A_n be the columns of A.
 C = AB is the n × n matrix whose j-th column is

$$C_j = \beta_{1j}A_1 + \beta_{2j}A_2 + \cdots + \beta_{nj}A_n.$$

By the determinant formula, we obtain

$$\det C = \det(C_1, \dots, C_n) \\ = [\sum_{\sigma \in S_n} \epsilon(\sigma) \beta_{\sigma(1)1} \beta_{\sigma(2)2} \cdots \beta_{\sigma(n)n}] \det(A_1, \dots, A_n).$$

The sum inside the brackets is the formula for det*B*. Hence, detC = (detB)(detA).

Cofactors and Cofactor Expansion Formula

Definition (Cofactor)

Let $A = (\alpha_{ij})$ be an $n \times n$ matrix. For each i, j, let A_{ij} be the $(n-1) \times (n-1)$ matrix obtained from A by deleting its *i*-th row and *j*-th column (an $(n-1) \times (n-1)$ minor of A). Then $(-1)^{i+j} \det(A_{ij})$ is the *ij* cofactor of A.

Theorem (The Cofactor Expansion Formula Along the *i*-th Row)

If $A = (\alpha_{ij})$ is an $n \times n$ matrix, then for each fixed $i \in \{1, 2, ..., n\}$, the determinant of A can be computed from the formula $\det A = (-1)^{i+1} \alpha_{i1} \det A_{i1} + (-1)^{i+2} \alpha_{i2} \det A_{i2} + \cdots + (-1)^{i+n} \alpha_{in} \det A_{in}.$

For each A let D(A) be the element of R obtained from the cofactor expansion formula. We prove that D satisfies the axioms of a determinant function. Hence it must be the determinant function. Proceed by induction on n.

The Cofactor Expansion Formula (Multilinearity)

• For n = 1, let (α) be a 1×1 matrix.

Then $D((\alpha)) = \alpha$ and the result holds.

- Assume now that n ≥2. We want to show that D is an alternating multilinear function of the columns. Fix an index k and consider the k-th column as varying and all other columns as fixed.
 - If j ≠ k, α_{ij} does not depend on k. So D(A_{ij}) is linear in the k-th column by induction.
 - As the k-th column varies linearly, so does α_{ik}, whereas D(A_{ik}) remains unchanged (the k-th column has been deleted from A_{ik}).

Thus, each term in the formula for D varies linearly in the k-th column. This proves D is multilinear in the columns.

The Cofactor Expansion Formula (Alternation)

- To prove *D* is alternating, assume columns *k* and k + 1 of *A* are equal. If $j \neq k$ or k + 1, the two equal columns of *A* become two equal columns in the matrix A_{ij} . By induction $D(A_{ij}) = 0$. The formula for *D*, therefore, has at most two nonzero terms: When j = k and when j = k + 1.
 - The minor matrices A_{ik} and A_{ik+1} are identical and $\alpha_{ik} = \alpha_{ik+1}$;
 - Thus, the two remaining terms in the expansion for *D*,

 $(-1)^{i+k}\alpha_{ik}D(A_{ik})$ and $(-1)^{i+k+1}\alpha_{ik+1}D(A_{ik+1}),$

are equal and appear with opposite signs;

• Hence they cancel.

Thus, D(A) = 0 if A has two adjacent columns which are equal, i.e., D is alternating.

Finally, it follows easily from the formula and induction that D(I) = 1, where I is the identity matrix.

This completes the induction.
Cofactor Formula for the Inverse of a Matrix

Theorem (Cofactor Formula for the Inverse of a Matrix)

Let $A = (\alpha_{ij})$ be an $n \times n$ matrix and let B be the transpose of its matrix of cofactors, i.e., $B = (\beta_{ij})$, where $\beta_{ij} = (-1)^{i+i} \det A_{ji}$, $1 \le i, j \le n$. Then $AB = BA = (\det A)I$. Moreover, $\det A$ is a unit in R if and only if A is a unit in $M_{n \times n}(R)$. In this case the matrix $\frac{1}{\det A}B$ is the inverse of A.

- The *i*, *j* entry of AB is α_{i1}β_{1j} + α_{i2}β_{2j} + ··· + α_{in}β_{nj}. This equals α_{i1}(-1)^{j+1}D(A_{j1}) + α_{i2}(-1)^{j+2}D(A_{j2}) + ··· + α_{in}(-1)^{j+n}D(A_{jn}).
 If *i* = *j*, this is the cofactor expansion for detA along the *i*-th row. The diagonal entries of AB are thus all equal to detA.
 - If $i \neq j$, let \overline{A} be the matrix A with the *j*-th row replaced by the *i*-th row, so detA = 0. By inspection $\overline{A}_{jk} = A_{jk}$ and $\alpha_{ik} = \overline{\alpha}_{jk}$, for every $k \in \{1, 2, ..., n\}$. By making these substitutions in the equation above, for each k = 1, 2, ..., n, one sees that the *i*, *j* entry in AB equals $\overline{\alpha}_{j1}(-1)^{1+j}D(\overline{A}_{j1}) + \cdots + \overline{\alpha}_{jn}(-1)^{n+j}D(\overline{A}_{jn})$. This expression is the cofactor expansion for det \overline{A} along the *j*-th row. But det $\overline{A} = 0$. Hence, all off diagonal terms of AB are zero. So $AB = (\det A)I$.

Cofactor Formula for the Inverse of a Matrix (Cont'd)

- It follows directly from the definition of B that the pair (A^t, B^t) satisfies the same hypotheses as the pair (A, B). By what has already been shown it follows that (BA)^t = A^tB^t = (detA^t)I. Since detA^t = detA and the transpose of a diagonal matrix is itself, we obtain BA = (detA)I as well.
- If d = detA is a unit in R, then d⁻¹B is a matrix with entries in R whose product with A (on either side) is the identity, i.e., A is a unit in M_{n×n}(R).

Conversely, assume that A is a unit in R, with (2-sided) inverse matrix C. But det $C \in R$ and, moreover,

 $1 = \det I = \det AC = (\det A)(\det C) = (\det C)(\det A).$

It follows that $\det A$ has a 2-sided inverse in R.