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Norms and Euclidean Domains

The notion of a norm on an integral domain R is a measure of “size”
in R .

Definition (Norm)

A function N : R → Z+ ∪ {0}, with N(0) = 0, is called a norm on the
integral domain R . If N(a) > 0, for a 6= 0, N is called a positive norm.

This notion of a norm is fairly weak and it is possible for the same
integral domain R to possess several different norms.

Definition (Euclidean Domain)

The integral domain R is said to be a Euclidean Domain (or possess a
Division Algorithm) if there is a norm N on R , such that, for any two
elements a and b of R , with b 6= 0, there exist elements q and r in R with
a = qb + r , with r = 0 or N(r) < N(b). The element q is called the
quotient and the element r the remainder of the division.
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The Euclidean Algorithm

The importance of the existence of a Division Algorithm on an
integral domain R is that it allows a Euclidean Algorithm for two
elements a and b of R .
By successive “divisions” (in the field of fractions of R) we write:

a = q0b + r0
b = q1r0 + r1
r0 = q2r1 + r2

...
rn−2 = qnrn−1 + rn
rn−1 = qn+1rn

where rn is the last nonzero remainder.
Such an rn exists since N(b) > N(r0) > N(r1) > · · · > N(rn) is a
decreasing sequence of nonnegative integers if the remainders are
nonzero. Such a sequence cannot continue indefinitely.
There is no guarantee that these elements are unique.
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Examples I

(0) Fields are trivial examples of Euclidean Domains where any norm will
satisfy the defining condition (e.g., N(a) = 0, for all a).

This is because for every a, b, with b 6= 0, we have a = qb + 0, where
q = ab−1.

(1) The integers Z are a Euclidean Domain with norm given by
N(a) = |a|, the usual absolute value. The existence of a Division
Algorithm in Z (the familiar “long division” of elementary arithmetic)
is verified as follows:
Let a and b be two nonzero integers.

Suppose first that b > 0. The half open intervals [nb, (n+1)b), n ∈ Z,
partition the real line. So a is in one of them, say a ∈ [kb, (k + 1)b).
For q = k , we have a− qb = r ∈ [0, |b|) as needed.
If b < 0, −b > 0, whence, there is an integer q, such that
a = q(−b) + r , with either r = 0 or |r | < | − b|. Thus, a = (−q)b + r

satisfies the requirements of the Division Algorithm for a and b.

This argument can be made more formal by using induction on |a|.
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Example 1 (Additional Remarks)

If a is not a multiple of b, there are always two possibilities for the
pair q, r : The proof above always produced a positive remainder r .

If for example b > 0 and q, r are as above with r > 0, then

a = q′b + r ′, with q′ = q + 1 and r ′ = r − b

also satisfy the conditions of the Division Algorithm applied to a, b.

E.g.,
5 = 2 · 2 + 1 = 3 · 2− 1

are the two ways of applying the Division Algorithm in Z to a = 5
and b = 2.

The quotient and remainder are unique if we require the remainder to
be nonnegative.
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Polynomial Rings over Fields

(2) If F is a field, then the polynomial ring F [x ] is a Euclidean Domain
with norm given by N(p(x)) = the degree of p(x).

The Division Algorithm for polynomials is simply “long division” of
polynomials which may be familiar for polynomials with real
coefficients.

The proof is very similar to that for Z (for polynomials the quotient
and remainder are shown to be unique).

In order for a polynomial ring to be a Euclidean Domain the
coefficients must come from a field, since the division algorithm
ultimately rests on being able to divide arbitrary nonzero coefficients.

We will see that R [x ] is not a Euclidean Domain if R is not a field.
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The Gaussian Integers

(3) The Gaussian integers Z[i ] are a Euclidean Domain with respect to
the norm N(a + bi) = a2 + b2:

Let α = a + bi , β = c + di be two elements of Z[i ], with β 6= 0.
Then in the field Q(i), we have

α

β
= r + si , where r =

ac + bd

c2 + d2
, s =

be − ad

c2 + d2
∈ Q.

Let p be an integer closest to the rational number r and let q be an
integer closest to the rational number s, so that both |r − p| and
|s − q| are at most 1

2 . We show

α = (p + qi)β + γ, for some γ ∈ Z[i ], with N(γ) ≤ 1
2N(β).

Let θ = (r − p) + (s − q)i . Set γ = βθ. Then γ = α− (p + qi)β. So
γ ∈ Z[i ] is a Gaussian integer and α = (p + qi)β + γ. But
N(θ) = (r − p)2 + (s − q)2 ≤ 1

4 + 1
4 = 1

2 . So the multiplicativity of
the norm N implies that N(γ) = N(θ)N(β) ≤ 1

2N(β).
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Gaussian Integers (Additional Remarks)

The algorithm is explicit:

Given α, β, compute r and s;
From r and s, compute p and q;
Then calculate the remainder γ = α− (p + qi)β.

Note also that the quotient need not be unique: if r (or s) is half of
an odd integer then there are two choices for p (or for q, respectively).

We will show that Z[
√
−5] is not Euclidean with respect to any norm.

We will also show that Z[1+
√
−19
2 ] is not a Euclidean Domain with

respect to any norm.
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Ideals in Euclidean Domains

Proposition

Every ideal in a Euclidean Domain is principal. More precisely, if I is any
nonzero ideal in the Euclidean Domain R , then I = (d), where d is any
nonzero element of I of minimum norm.

If I is the zero ideal, there is nothing to prove. Otherwise, let d be any
nonzero element of I of minimum norm. Such a d exists since the set
{N(a) : a ∈ I} has a minimum element by the Well Ordering of Z.

Clearly (d) ⊆ I , since d is an element of I .
For the reverse inclusion, let a ∈ I . By the Division Algorithm,
a = qd + r , with r = 0 or N(r) < N(d). Then r = a− qd . But
a, qd ∈ I . So r ∈ I . By the minimality of the norm of d , we see that r
must be 0. Thus a = qd ∈ (d).

Every ideal of Z is principal.

An integral domain R is not a Euclidean Domain if it has a
non-principal ideal.
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A Polynomial Ring

(1) Let R = Z[x ].

Recall that the ideal (2, x) is not principal.

It follows that the ring Z[x ] of polynomials with integer coefficients is
not a Euclidean Domain (for any choice of norm).
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A Quadratic Integer Ring

(2) Let R be Z[
√
−5]. Let N be the norm N(a + b

√
−5) = a2 + 5b2.

Consider the ideal I = (3, 2 +
√
−5) generated by 3 and 2 +

√
−5.

Suppose I = (a + b
√
−5), a, b ∈ Z, were principal, Then,

3 = α(a + b
√
−5) and 2 +

√
−5 = β(a + b

√
−5), for some α, β ∈ R .

Taking norms in the first equation gives 9 = N(α)(a2 + 5b2). But
a2 + 5b2 is a positive integer. So, it must be 1, 3 or 9.

If the value is 9 then N(α) = 1 and α = ±1. So a+ b
√
−5 = ±3.

This is impossible by the second equation, since the coefficients of
2 +

√
−5 are not divisible by 3.

The value cannot be 3 since there are no a, b ∈ Z, with a2 + 5b2 = 3.
If the value is 1, then a+ b

√
−5 = ±1. The ideal I would be the entire

ring R . But then 1 ∈ I . So 3γ + (2 +
√
−5)δ = 1, for some γ, δ ∈ R .

Multiply both sides by 2−
√
−5. We get (1− 3γ)(2−

√
−5) = 9δ.

Thus, 2−
√
−5 is a multiple of 3 in R . A contradiction.

It follows that I is not a principal ideal. So R is not a Euclidean
Domain (with respect to any norm).
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Multiples, Divisors and Greatest Common Divisor

Definition (Multiple, Divisor, Greatest Common Divisor)

Let R be a commutative ring and let a, b ∈ R , with b 6= 0.

(1) a is said to be a multiple of b if there exists an element x ∈ R , with
a = bx . In this case b is said to divide a or be a divisor of a, written
b | a.

(2) A greatest common divisor of a and b is a nonzero element d , such
that:

(i) d | a and d | b;
(ii) if d ′ | a and d ′ | b, then d ′ | d .
A greatest common divisor of a and b will be denoted by g.c.d.(a, b),
or (abusing the notation) simply (a, b).
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Multiples and Divisors in terms of Ideals

Note that b | a in a ring R if and only if a ∈ (b) if and only if
(a) ⊆ (b).

In particular, if d is any divisor of both a and b then (d) must contain
both a and b and hence must contain the ideal generated by a and b.

The defining properties (i) and (ii) of a greatest common divisor of a
and b translated into the language of ideals become (respectively):

If I is the ideal of R generated by a and b, then d is a greatest
common divisor of a and b if:

(i) I is contained in the principal ideal (d);
(ii) If (d ′) is any principal ideal containing I , then (d) ⊆ (d ′).

Thus a greatest common divisor of a and b (if such exists) is a
generator for the unique smallest principal ideal containing a and b.

There are rings in which greatest common divisors do not exist.
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Existence of Greatest Common Divisors

The preceding discussion gives the following sufficient condition for
the existence of a greatest common divisor:

Proposition

If a and b are nonzero elements in the commutative ring R , such that the
ideal generated by a and b is a principal ideal (d), then d is a greatest
common divisor of a and b.

An integral domain in which every ideal (a, b) generated by two
elements is principal is called a Bezout Domain.

There are Bezout Domains containing nonprincipal (necessarily
infinitely generated) ideals.

The condition in the proposition is not a necessary condition:

In R = Z[x ], the elements 2 and x generate a maximal, nonprincipal
ideal. Thus, R = (1) is the unique principal ideal containing both 2
and x . So 1 is a greatest common divisor of 2 and x .
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Uniqueness of Greatest Common Divisors

Proposition

Let R be an integral domain. If two elements d and d ′ of R generate the
same principal ideal, i.e., (d) = (d ′), then d ′ = ud , for some unit u in R .
In particular, if d and d ′ are both greatest common divisors of a and b,
then d ′ = ud , for some unit u.

This is clear if either d or d ′ is zero. So we may assume d and d ′ are
nonzero. Since d ∈ (d ′), there is some x ∈ R , such that d = xd ′.
Since d ′ ∈ (d), there is some y ∈ R , such that d ′ = yd . Thus,
d = xyd . So d(1− xy) = 0. Since d 6= 0, xy = 1. Hence, both x and
y are units.

The second assertion follows from the first since any two greatest
common divisors of a and b generate the same principal ideal (they
divide each other).
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Algorithmic Computation of Greatest Common Divisors

Theorem

Let R be a Euclidean Domain and let a and b be nonzero elements of R .
Let d = rn be the last nonzero remainder in the Euclidean Algorithm for a
and b. Then:

(1) d is a greatest common divisor of a and b;

(2) the principal ideal (d) is the ideal generated by a and b. In particular,
d can be written as an R-linear combination of a and b, i.e., there are
elements x and y in R , such that d = ax + by .

Since R is Euclidean, the ideal generated by a and b is principal. So
a, b do have a greatest common divisor, namely any element which
generates the (principal) ideal (a, b). Both parts of the theorem will
follow, therefore, once we show d = rn generates this ideal, i.e., once
we show that:
(i) d | a and d | b (so (a, b) ⊆ (d));
(ii) d is an R-linear combination of a and b (so (d) ⊆ (a, b)).
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Algorithmic Computation of GCDs (Cont’d)

To prove that d divides both a and b, simply keep track of the
divisibilities in the Euclidean Algorithm:

Starting from the (n + 1)st equation, rn−1 = qn+1rn, we see that
rn | rn−1. Clearly rn | rn.
By induction (from index n downwards to 0) assume rn divides rk+1 and
rk . By the (k + 1)st equation, rk−1 = qk+1rk + rk+1. Since rn divides
both terms on the right hand side, we see that rn also divides rk−1.
From the 1st equation in the Euclidean Algorithm, rn divides b.
Then from the 0th equation we get that rn divides a.

To prove that rn is in the ideal (a, b) generated by a and b, proceed
similarly by induction proceeding from the 0th equation to the nth
equation.

It follows from the 0th equation that r0 ∈ (a, b). By the 1st equation,
r1 = b − q1r0 ∈ (b, r0) ⊆ (a, b).
By induction assume rk−1, rk ∈ (a, b). Then, by the (k + 1)st equation
rk+1 = rk−1 − qk+1rk ∈ (rk−1, rk) ⊆ (a, b).

Thus, rn ∈ (a, b).
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An Example

If a = 2210 and b = 1131 then the smallest ideal of Z that contains
both a and b (the ideal generated by a and b) is 13Z, since 13 is the
greatest common divisor of 2210 and 1131.

This follows quickly from the Euclidean Algorithm:

2210 = 1 · 1131 + 1079
1131 = 1 · 1079 + 52
1079 = 20 · 52 + 39
52 = 1 · 39 + 13
39 = 3 · 13

So 13 = (2210, 1131) is the last nonzero remainder.
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An Example (Cont’d)

We got
2210 = 1 · 1131 + 1079
1131 = 1 · 1079 + 52
1079 = 20 · 52 + 39
52 = 1 · 39 + 13
39 = 3 · 13.

Using the procedure of the theorem we can also write 13 as a linear
combination of 2210 and 1131:

13 = 52− 1 · 39
= 52− (1079 − 20 · 52)
= 21 · 52 − 1079
= 21(1131 − 1079) − 1079
= 21 · 1131 − 22 · 1079
= 21 · 1131 − 22(2210 − 1131)
= 43 · 1131 − 22 · 2210.
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Solutions of the Diophantine Equation ax + by = N

Integers x and y in (a, b) = ax + by are not unique.

Indeed, x ′ = x + b and y ′ = y − a satisfy (a, b) = ax ′ + by ′.
This is essentially the only possibility: If x0 and y0 are solutions to the
equation ax + by = N , then any other solutions x and y to this
equation are of the form x = x0 +m b

(a,b) and y = y0 −m − a
(a,b) , for

some integer m (positive or negative).

We get a complete solution of the First Order Diophantine
Equation ax + by = N, provided we know there is at least one
solution:

The equation ax + by = N states that N is an element of the ideal
generated by a and b. We know this ideal is (d), the principal ideal
generated by the greatest common divisor d of a and b. Thus,
existence of a solution amounts to N ∈ (d), i.e., N is divisible by d .
The equation ax + by = N is solvable in integers x and y if and only if
N is divisible by the g.c.d. of a and b. Then the result quoted above
gives a full set of solutions of this equation.
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Universal Side Divisors in Integral Domains

For any integral domain R , let

R̃ = R× ∪ {0}

denote the collection of units of R together with 0.

An element u ∈ R − R̃ is called a universal side divisor if, for every
x ∈ R , there is some z ∈ R̃, such that u divides x − z in R ,

i.e., there is a type of “division algorithm” for u: every x ∈ R may be
written

x = qu + z , where z is zero or a unit.
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Criterion for Failure of the Euclidean Property

The existence of universal side divisors is weaker than being Euclidean:

Proposition

Let R be an integral domain that is not a field. If R is a Euclidean Domain
then there are universal side divisors in R .

Suppose R is Euclidean with respect to some norm N.

Since R is not a field R − R̃ 6= ∅.
Let u be an element of R − R̃ of minimal norm.

For any x ∈ R , write x = qu + r , where r is either 0 or N(r) < N(u).

In either case the minimality of u implies r ∈ R̃.

Hence u is a universal side divisor in R .
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Using the Proposition

We prove that the quadratic integer ring R = Z[1+
√
−19
2 ] is not a

Euclidean Domain with respect to any norm.

The strategy is to show that R contains no universal side divisors.

Since all ideals in R are principal, the preceding technique does not
apply to this ring.

We have already determined that ±1 are the only units in R . So
R̃ = {0,±1}. Suppose u ∈ R is a universal side divisor. Let

N(a + b 1+
√
−19
2 ) = a2 + ab + 5b2 denote the field norm on R . If

a, b ∈ Z and b 6= 0, then a2 + ab + 5b2 = (a + b
2 )

2 + 19
4 b

2 ≥ 5. So
the smallest nonzero values of N on R are 1 (for the units ±1) and 4
(for ±2). Let x = 2 in the definition of a universal side divisor. Then
u must divide one of 2− 0 or 2± 1 in R . I.e., u is a nonunit divisor of
2 or 3 in R .
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Using the Proposition (Cont’d)

u must be a nonunit divisor of 2 or 3:

If 2 = αβ, then 4 = N(α)N(β) and by the remark above it follows that
one of α or β has norm 1, i.e., equals ±1. Hence, the only divisors of 2
in R are {±1,±2}.
Similarly, the only divisors of 3 in R are {±1,±3}.

So the only possible values for u are ±2 or ±3.

Taking x = 1+
√
−19
2 , we may check (many cases but straightforward)

that none of x , x ± 1 are divisible by ±2 or ±3 in R , so none of these
is a universal side divisor.
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Subsection 2

Principal Ideal Domains
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Principal Ideal Domains

Definition (Principal Ideal Domain)

A Principal Ideal Domain (P.I.D.) is an integral domain in which every
ideal is principal.

We proved that every Euclidean Domain is a Principal Ideal Domain.
Hence every result about Principal Ideal Domains automatically holds
for Euclidean Domains.
Examples:
(1) The integers Z form a P.I.D.

The polynomial ring Z[x ] contains nonprincipal ideals, so is not a P.I.D.
(2) The quadratic integer ring Z[

√
−5] is not a P.I.D.. In fact the ideal

(3, 1 +
√
−5) is a nonprincipal ideal.

It is possible for the product IJ of two nonprincipal ideals I and J to be
principal: E.g., the ideals (3, 1 +

√
−5) and (3, 1−

√
−5) are both non

principal, but (3, 1 +
√
−5)(3, 1−

√
−5) = (3).

It is not true that every Principal Ideal Domain is a Euclidean Domain.

E.g., Z[1+
√
−19
2 ], which is not a Euclidean Domain, is a P.I.D.
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Properties of Principal Ideal Domains

Many of the properties enjoyed by Euclidean Domains are also
satisfied by Principal Ideal Domains.

A significant advantage of Euclidean Domains over Principal Ideal
Domains, however, is that there exists an algorithm for computing
greatest common divisors.

Proposition

Let R be a Principal Ideal Domain and let a and b be nonzero elements of
R . Let d be a generator for the principal ideal generated by a and b.
Then:

(1) d is a greatest common divisor of a and b;

(2) d can be written as an R-linear combination of a and b, i.e., there are
elements x and y in R , with d = ax + by ;

(3) d is unique up to multiplication by a unit of R .

The statements summarize preceding propositions.
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Prime and Maximal Ideals in P.I.D.s

Recall that maximal ideals are always prime ideals but the converse is
not true in general.

However, in Z, every nonzero prime ideal is a maximal ideal.

Proposition

Every nonzero prime ideal in a Principal Ideal Domain is a maximal ideal.

Let (p) be a nonzero prime ideal in the Principal Ideal Domain R . Let
I = (m) be any ideal containing (p). We must show that I = (p) or
I = R . Now p ∈ (m) so p = rm, for some r ∈ R . Since (p) is a prime
ideal and rm ∈ (p), either r or m must lie in (p).

If m ∈ (p) then (p) = (m) = I .
If, on the other hand, r ∈ (p), write r = ps. In this case
p = rm = psm. So, since R is an integral domain, sm = 1. Thus, m is
a unit and, hence, I = R .
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Fields and their Polynomial Rings

If F is a field, then the polynomial ring F [x ] is a Euclidean Domain.

So, it is a Principal Ideal Domain.

The converse to this is also true: Intuitively, if I is an ideal in R (such
as the ideal (2) in Z), then the ideal (I , x) in R [x ] (such as the ideal
(2, x) in Z[x ]) requires one more generator than does I . Hence, in
general, it is not principal.

Corollary

If R is any commutative ring, such that the polynomial ring R [x ] is a
Principal Ideal Domain (or a Euclidean Domain), then R is a field.

Assume R [x ] is a Principal Ideal Domain. R is a subring of R [x ].
Moreover, since R [x ] has an identity if and only if R does, R does
have an identity. Hence, R must be an integral domain. The ideal (x)
is a nonzero prime ideal in R [x ] because R [x ]/(x) is isomorphic to the
integral domain R . By the preceding proposition, (x) is a maximal
ideal. Hence, the quotient R is a field.
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Dedekind-Hasse Norms

The next result will be used to prove that not every P.I.D. is a
Euclidean Domain.

Definition (Dedekind-Hasse Norm)

Define N to be a Dedekind-Hasse norm if N is a positive norm and, for
every nonzero a, b ∈ R ,

either a is an element of the ideal (b)

or there is a nonzero element in the ideal (a, b) of norm strictly smaller than
the norm of b

(i.e., either b | a in R or there exist s, t ∈ R , with 0 < N(sa− tb) < N(b)).

Suppose R is Euclidean with respect to a positive norm N.

Then, it is always possible to satisfy the Dedekind-Hasse condition
with s = 1.

So this condition is a weakening of the Euclidean condition.
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Principal Ideal Domains and Dedekind-Hasse Norms

Proposition

The integral domain R is a P.I.D. if and only if R has a Dedekind-Hasse
norm.

Assume that R has a Dedekind-Hasse norm N.

Let I be any nonzero ideal in R .

Let b be a nonzero element of I with N(b) minimal.

Suppose a is any nonzero element in I .

Then the ideal (a, b) is contained in I .

The Dedekind-Hasse condition on N and the minimality of b implies
that a ∈ (b). So I = (b) is principal.

The converse will be proved shortly.
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A non-Euclidean P.I.D.

Let R = Z[1+
√
−19
2 ] be the quadratic integer ring considered at the

end of the previous section. We show that the positive field norm

N(a + b 1+
√
−19
2 ) = a2 + ab + 5b2 defined on R is a Dedekind-Hasse

norm. By the proposition this will prove that R is a P.I.D. Suppose
α, β are nonzero elements of R and α

β
6∈ R . We must show that there

are elements s, t ∈ R , with 0 < N(sα − tβ) < N(β), which by the
multiplicativity of the field norm is equivalent to 0 < N(α

β
s − t) < 1.

Write α
β
= a+b

√
−19

c
∈ Q[

√
−19], with integers a, b, c having no

common divisor and with c > 1 (since β is assumed not to divide α).
Since a, b, c have no common divisor there are integers x , y , z , with
ax + by + cz = 1. Write ay − 19bx = cq + r , for some quotient q
and remainder r with |r | ≤ c

2 . Let s = y + x
√
−19, t = q − z

√
−19.
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A non-Euclidean P.I.D. (Cont’d)

Now we compute

0 < N(α
β
s − t)

= N(a+b
√
−19

c
(y + x

√
−19)− (q − z

√
−19))

= N(ay−19bx
c

− q + (ax+by
c

+ z)
√
−19)

= (ay−19bx−cq)2+19(ax+by+cz)2

c2

= r2

c2
+ 19

c2

≤ 1
4 +

19
c2
.

This finishes the proof for c ≥ 5.

The case c = 2: One of a, b must be even and the other odd

(otherwise α
β
∈ R). Let s = 1, t = (a−1)+b

√
−19

2 . Then s, t ∈ R and

0 < N(
α

β
s − t) = N(

a + b
√
−19

2
− (a − 1) + b

√
−19

2
) = N(

1

2
) =

1

4
< 1.
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A non-Euclidean P.I.D. (Cont’d)

The case c = 3: The integer a2 +19b2 is not divisible by 3 (modulo 3
this is a2 + b2; this is 0 modulo 3 if and only if a and b are both 0
modulo 3; but then a, b, c have a common factor). Write
a2 + 19b2 = 3q + r with r = 1 or 2. Then s = a − b

√
−19, t = q are

elements of R that satisfy the required inequality.

The case c = 4: a and b are not both even.

Suppose one of a, b is even and the other odd. Then a2 + 19b2 is odd.
Write a2 + 19b2 = 4q + r , for some q, r ∈ Z and 0 < r < 4. Then
s = a− b

√
−19, t = q satisfy the inequality.

Suppose a and b are both odd. Then a2 + 19b2 = 1+ 3 mod 8. Write

a2 + 19b2 = 8q + 4, for some q ∈ Z. Then s = a−b
√
−19

2 , t = q are
elements of R satisfying the inequality.
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Subsection 3

Unique Factorization Domains
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Factorization

In Z, another method for determining the greatest common divisor of
two elements a and b is the “factorization into primes” for a and b,
from which the greatest common divisor can easily be determined.

This can also be extended to a larger class of rings called Unique
Factorization Domains (U.F.D.s).

Every Principal Ideal Domain is a Unique Factorization Domain.

We saw every Euclidean Domain is a Principal Ideal Domain.

Thus, every result about Unique Factorization Domains will
automatically hold for both Euclidean Domains and Principal Ideal
Domains.
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Irreducible Elements, Prime Elements and Associates

Definition

Let R be an integral domain.

(1) Suppose r ∈ R is nonzero and is not a unit. Then r is called
irreducible in R if whenever r = ab, with a, b ∈ R , at least one of a
or b must be a unit in R . Otherwise r is said to be reducible.

(2) The nonzero element p ∈ R is called prime in R if the ideal (p)
generated by p is a prime ideal. In other words, a nonzero element p
is a prime if it is not a unit and whenever p | ab, for any a, b ∈ R ,
then either p | a or p | b.

(3) Two elements a and b of R differing by a unit are said to be
associate in R , i.e., a = ub, for some unit u in R .
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Prime Elements and Irreducible Elements

Proposition

In an integral domain a prime element is always irreducible.

Suppose (p) is a nonzero prime ideal and p = ab. Then
ab = p ∈ (p). So, by definition of prime ideal, one of a or b, say a, is
in (p). Thus, a = pr , for some r . This implies p = ab = prb. So
rb = 1 and b is a unit. This shows that p is irreducible.

It is not true in general that an irreducible element is necessarily
prime:

Example: Consider the element 3 in the quadratic integer ring
R = Z[

√
−5].

3 is irreducible in R ;
3 is not a prime: (2 +

√
−5)(2−

√
−5) = 32 is divisible by 3, but

neither 2 +
√
−5 nor 2−

√
−5 is divisible by 3 in R .
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Prime and Irreducible Elements in P.I.D.s

If R is a Principal Ideal Domain, the notions of prime and irreducible
elements are the same.

In particular these notions coincide in Z and in F [x ] (F a field).

Proposition

In a Principal Ideal Domain, a nonzero element is a prime if and only if it
is irreducible.

We have shown above that prime implies irreducible. We must show
conversely that if p is irreducible, then p is a prime, i.e., the ideal (p)
is a prime ideal. We show that (p) is, in fact, maximal.

Suppose M is any ideal containing (p). By hypothesis, M = (m) is a
principal ideal. Since p ∈ (m), p = rm, for some r . But p is
irreducible. So, by definition, either r or m is a unit. This means
either (p) = (m) or (m) = (1), respectively. Thus, the only ideals
containing (p) are (p) or (1), i.e., (p) is a maximal ideal.
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Prime Factorization in the Integers

Example: Since 3 is irreducible but not prime in Z[
√
−5], by the

proposition, this quadratic integer ring is not a P.I.D.

The irreducible elements in the integers Z are the prime numbers
(and their negatives) familiar from elementary arithmetic; Two
integers a and b are associates of one another if and only if a = ±b.

In the integers Z, any integer n can be written as a product of primes
(not necessarily distinct), as follows: If n is not itself a prime, then by
definition it is possible to write n = n1n2, for two other integers n1
and n2 neither of which is a unit, i.e., neither of which is ±1. Both n1
and n2 must be smaller in absolute value than n itself. If they are
both primes, we have already written n as a product of primes. If one
of n1 or n2 is not prime, then it, in turn, can be factored into two
(smaller) integers. Integers cannot decrease in absolute value
indefinitely. So, we must, at some point, be left only with prime
integer factors. I.e., we have written n as a product of primes.
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An Example of Prime Factorization in the Integers

Example: If n = 2210, the algorithm above proceeds as follows: n is
not itself prime, since we can write n = 2 · 1105. The integer 2 is a
prime, but 1105 is not: 1105 = 5 · 221. The integer 5 is prime, but
221 is not: 221 = 13 · 17. Here the algorithm terminates, since both
13 and 17 are primes. The prime factorization is 2210 = 2 · 5 · 13 · 17.
Similarly, we find 1131 = 3 · 13 · 29. Generally, each prime need not
occur only to the first power.

In the ring Z not only is it true that every integer n can be written as
a product of primes, but in fact this decomposition is unique in the
sense that any two prime factorizations of the same positive integer n
differ only in the order in which the positive prime factors are written.

The restriction to positive integers is to avoid considering the
factorizations (3)(5) and (−3)(−5) of 15 as essentially distinct.

This unique factorization property of Z is extremely useful for the
arithmetic of the integers.
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Unique Factorization Domains

Definition

A Unique Factorization Domain (U.F.D.) is an integral domain R in
which every nonzero element r ∈ R which is not a unit has the following
two properties:

(i) r can be written as a finite product of irreducibles pi of R (not
necessarily distinct): r = p1p2 · · · pn;

(ii) the decomposition in (i) is unique up to associates: namely, if
r = q1q2 · · · qm is another factorization of r into irreducibles, then
m = n and there is some renumbering of the factors so that pi is
associate to qi for i = 1, 2, . . . , n.

Example:
(1) A field F is trivially a Unique Factorization Domain: In F , every

nonzero element is a unit. So there are no elements for which
properties (i) and (ii) must be verified.
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The Polynomial Ring Z[x ]

(2) As indicated above, we shall prove shortly that every Principal Ideal
Domain is a Unique Factorization Domain.

In particular, Z and F [x ], where F is a field, are both Unique
Factorization Domains.

(3) We will prove that the ring R [x ] of polynomials is a Unique
Factorization Domain whenever R itself is a Unique Factorization
Domain.

Contrast this to the properties of being a Principal Ideal Domain or
being a Euclidean Domain, which do not carry over from a ring R to
the polynomial ring R [x ].

This result together with the preceding example will show that Z[x ] is
a Unique Factorization Domain.
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The Gaussian Integers Z[i ]

(4) The subring of the Gaussian integers

R = Z[2i ] = {a + 2bi : a, b ∈ Z},

where i2 = −1, is an integral domain but not a Unique Factorization
Domain:

The elements 2 and 2i are irreducibles which are not associates in R

since i 6∈ R ;
4 = 2 · 2 = (−2i) · (2i) has two distinct factorizations in R .

One may also check directly that 2i is irreducible but not prime in R

(since R/(2i) ∼= Z/4Z).

In the larger ring of Gaussian integers, Z[i ], (which is a Unique
Factorization Domain) 2 and 2i are associates since i is a unit in this
larger ring.
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The Quadratic Integer Ring Z[
√
−5]

(5) The quadratic integer ring Z[
√
−5] is another example of an integral

domain that is not a Unique Factorization Domain:

2, 3, 1−
√
5, 1 +

√
5 are irreducibles;

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5) gives two distinct factorizations of 6

into irreducibles.

The principal ideal (6) in Z[
√
−5] can be written as a product of 4

nonprincipal prime ideals: (6) = P2
2P3P

′
3.

The two distinct factorizations of the element 6 in Z[
√
−5] can be

interpreted as arising from two rearrangements of this product of
ideals into products of principal ideals:

The product of P2
2 = (2) with P3P

′
3 = (3);

The product of P2P3 = (1 +
√
−5) with P2P

′
3 = (1 −

√
−5).
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Prime and Irreducible Elements in U.F.D.s

Proposition

In a Unique Factorization Domain a nonzero element is a prime if and only
if it is irreducible.

Let R be a Unique Factorization Domain. We have already shown
that primes of R are irreducible. For the converse, let p be an
irreducible in R and assume p | ab, for some a, b ∈ R . We must show
that p divides either a or b. Since p divides ab, ab = pc , for some c

in R . Write a and b as a product of irreducibles. By the uniqueness
of the decomposition into irreducibles of ab, p must be associate to
one of the irreducibles occurring either in the factorization of a or in
the factorization of b. We may assume that p is associate to one of
the irreducibles in the factorization of a. So a can be written as
a = (up)p2 · · · pn, for u a unit and some (possibly empty set of)
irreducibles p2, . . . , pn. But then a = pd , with d = up2 · · · pn. Hence,
p divides a.
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Greatest Common Divisors in U.F.D.s

Proposition

Let a and b be two nonzero elements of the Unique Factorization Domain
R and suppose a = upe11 pe22 · · · penn and b = vpf11 p

f2
2 · · · pfnn are prime

factorizations for a and b, where u and v are units, the primes
p1, p2, . . . , pn are distinct and the exponents ei and fi are ≥ 0. Then the

element d = p
min (e1,f1)
1 p

min (e2,f2)
2 · · · pmin (en,fn)

n (where d = 1 if all the
exponents are 0) is a greatest common divisor of a and b.

Clearly, d divides both a and b. Let c be a common divisor of a and
b. Let c = q

g1
1 q

g2
2 · · · qgmm be the prime factorization of c . Each qi

divides c . By the preceding proposition, qi divides a and b. Thus, qi
must divide one of the primes pj . In particular, up to associates, the
primes occurring in c must be a subset of the primes occurring in a

and b, i.e., {q1, q2, . . . , qm} ⊆ {p1, p2, . . . , pn}. Similarly, the
exponents for the primes occurring in c must be no larger than those
occurring in d . This implies that c divides d .
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P.I.D.s and U.F.D.s

Theorem

Every Principal Ideal Domain is a Unique Factorization Domain. In
particular, every Euclidean Domain is a Unique Factorization Domain.

Let R be a Principal Ideal Domain and let r be a nonzero element of
R which is not a unit. We show first that r can be written as a finite
product of irreducible elements of R . If r is itself irreducible, then we
are done. If not, then by definition r can be written as a product
r = r1r2, where neither r1 nor r2 is a unit. If both these elements are
irreducibles, then again we are done, having written r as a product of
irreducible elements. Otherwise, at least one of the two elements, say
r1 is reducible. Hence r1 can be written as a product of two nonunit
elements r1 = r11r12, and so forth.
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P.I.D.s and U.F.D.s (Termination)

This process terminates: Suppose this is not the case. From the
factorization r = r1r2, we obtain a proper inclusion of ideals:
(r) ⊂ (r1) ⊂ R . The first inclusion is proper since r2 is not a unit, and
the last inclusion is proper since r1 is not a unit. From the
factorization of r1, we similarly obtain (r) ⊂ (r1) ⊂ (r11) ⊂ R . If this
process of factorization did not terminate after a finite number of
steps, then we would obtain an infinite ascending chain of ideals:

(r) ⊂ (r1) ⊂ (r11) ⊂ · · · ⊂ R ,

where all containments are proper.

George Voutsadakis (LSSU) Abstract Algebra II September 2020 51 / 56



EDs, PIDs and UFDs Unique Factorization Domains

P.I.D.s and U.F.D.s (Chain Becomes Stationary)

We now show that any ascending chain I1 ⊆ I2 ⊆ · · · ⊆ R of ideals in
a Principal Ideal Domain eventually becomes stationary, i.e., there is
some positive integer n, such that Ik = In, for all k ≥ n.

In particular, it is not possible to have an infinite ascending chain of
ideals where all containments are proper.

Let I =
⋃∞

i=1 Ii . It follows easily that I is an ideal. Since R is a
Principal Ideal Domain it is principally generated, say I = (a). Since I

is the union of the ideals above, a must be an element of one of the
ideals in the chain, say a ∈ In. But then we have In ⊆ I = (a) ⊆ In.
So I = In and the chain becomes stationary at In.

This proves that every nonzero element of R which is not a unit has
some factorization into irreducibles in R .
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P.I.D.s and U.F.D.s (Uniqueness)

To show uniqueness of the decomposition, we proceed by induction
on the number n of irreducible factors in some factorization of r .

If n = 0, then r is a unit.
If we had r = qc (some other factorization) for some irreducible q, then
q would divide a unit, hence would itself be a unit, a contradiction.
Let n ≥ 1 and r = p1p2 · · · pn = q1q2 · · · qm, m ≥ n, where the pi and
qj are (not necessarily distinct) irreducibles.
Since then p1 divides the product on the right, p1 must divide one of
the factors. Renumbering if necessary, we may assume p1 divides q1.
But then q1 = p1u, for some element u of R . Since q1 is irreducible, u
must be a unit. Thus, p1 and q1 are associates.
Canceling p1 (legitimate in an integral domain), we obtain the equation
p2 · · · pn = uq2q3 · · · qm = q′2q3 · · · qm, m ≥ n, where q′2 = uq2 is again
an irreducible (associate to q2). By induction on n, we conclude that
each of the factors on the left matches bijectively (up to associates)
with the factors on the far right. And with the factors in the middle
(which are the same, up to associates). p1 and q1 (after the initial
renumbering) have already been shown to be associate.
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The Fundamental Theorem of Arithmetic

Corollary (Fundamental Theorem of Arithmetic)

The integers Z are a Unique Factorization Domain.

The integers Z are a Euclidean Domain.

By the Theorem, they are a Unique Factorization Domain.
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Multiplicative Dedekind-Hasse Norms in P.I.D.s

Corollary

Let R be a P.I.D. Then there exists a multiplicative Dedekind-Hasse norm
on R .

If R is a P.I.D., then R i s a U.F.D. Define the norm N by setting:

N(0) = 0;
N(u) = 1, if u is a unit;
N(a) = 2n, if a = p1p2 · · · pn where the pi

are irreducibles in R .

N is well defined since the number of irreducible factors of a is unique.

Clearly N(ab) = N(a)N(b).

So N is positive and multiplicative.
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Multiplicative Dedekind-Hasse Norms in P.I.D.s (Cont’d)

To show that N is a Dedekind-Hasse norm, suppose that a, b are
nonzero elements of R .

The ideal generated by a and b is principal by assumption, say
(a, b) = (r).

If a is not contained in the ideal (b), then also r is not contained in
(b), i.e., r is not divisible by b.

But b = xr , for some x ∈ R . So x is not a unit in R .

Thus, N(b) = N(x)N(r) > N(r).

Hence, (a, b) contains a nonzero element with norm strictly smaller
than the norm of b.
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