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Polynomial Rings Definitions and Basic Properties

Polynomials

Let R be a commutative ring with identity 1 6= 0.

The polynomial ring R [x ] in the indeterminate x with

coefficients from R is the set of all formal sums

anx
n + an−1x

n−1 + · · · + a1x + a0,

with n ≥ 0 and each ai ∈ R .

If an 6= 0, then:

the polynomial is of degree n;
anx

n is the leading term;
an is the leading coefficient;
the leading coefficient of the zero polynomial is defined to be 0.

The polynomial is monic if an = 1.
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Polynomial Rings Definitions and Basic Properties

Polynomial Rings

Addition of polynomials is “componentwise”:
n∑

i=0

aix
i +

n∑

i=0

bix
i =

n∑

i=0

(aibi)x
i ,

where an or bn may be zero in order for addition of polynomials of
different degrees to be defined.
Multiplication is performed by first defining

(ax i )(bx j ) = abx i+j

and then extending to all polynomials by the distributive laws so that
in general

(
n∑

i=0

aix
i )× (

m∑

i=0

bix
i ) =

n+m∑

k=0

(
k∑

i=0

aibk−i )x
k .

R [x ] is a commutative ring with identity 1 in which we identify R

with the subring of constant polynomials.
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Polynomial Rings Definitions and Basic Properties

Properties of R[x ]

We have already noted that if R is an integral domain then the
leading term of a product of polynomials is the product of the leading
terms of the factors.

Proposition

Let R be an integral domain. Then:

(1) degreep(x)q(x) = degreep(x) + degreeq(x) if p(x), q(x) are nonzero.

(2) The units of R [x ] are just the units of R .

(3) R [x ] is an integral domain.

Recall also that if R is an integral domain, the quotient field of R [x ]

consists of all quotients p(x)
q(x) , where q(x) is not the zero polynomial;

It is called the field of rational functions in x with coefficients in R .
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Polynomial Rings Definitions and Basic Properties

Ideals of R and of R[x ]

Proposition

Let I be an ideal of the ring R and let (I ) = I [x ] denote the ideal of R [x ]
generated by I (the set of polynomials with coefficients in I ). Then
R [x ]/(I ) ∼= (R/I )[x ]. In particular, if I is a prime ideal of R then (I ) is a
prime ideal of R [x ].

There is a natural map ϕ : R [x ] → (R/I )[x ] given by reducing each of
the coefficients of a polynomial modulo I . The definition of addition
and multiplication in these two rings shows that ϕ is a ring
homomorphism. The kernel is precisely the set of polynomials each of
whose coefficients is an element of I . I.e., kerϕ = I [x ] = (I ).

For the last statement, suppose I is a prime ideal in R . Then, R/I is
an integral domain. Thus, by the preceding proposition, (R/I )[x ] is
an integral domain. Hence, (I ) is a prime ideal of R [x ].
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Polynomial Rings Definitions and Basic Properties

More on Ideals

It is not true that if I is a maximal ideal of R then (I ) is a maximal
ideal of R [x ].

However, if I is maximal in R , then the ideal of R [x ] generated by I

and x is maximal in R [x ].

Example: Let R = Z and consider the ideal nZ of Z. Then the
isomorphism above can be written Z[x ]/nZ[x ] ∼= Z/nZ[x ].

The natural projection map of Z[x ] to Z/nZ[x ] by reducing the
coefficients modulo n is a ring homomorphism.

If n is composite, then the quotient ring is not an integral domain.
If n is a prime p, then Z/pZ is a field and so Z/pZ[x ] is an integral
domain (in fact, a Euclidean Domain, as we will show).
We also see that the set of polynomials whose coefficients are divisible
by p is a prime ideal in Z[x ].
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Polynomial Rings Definitions and Basic Properties

Polynomial Rings in Several Variables

Definition (Polynomial Rings in Several Variables)

The polynomial ring in the variables x1, x2, . . . , xn, with coefficients in

R , denoted R [x1, x2, . . . , xn], is defined inductively by
R [x1, x2, . . . , xn] = R [x1, x2, . . . , xn−1][xn].

Thus, we can consider polynomials in n variables with coefficients in
R simply as polynomials in one variable (say xn) but now with
coefficients that are themselves polynomials in n − 1 variables.

Alternatively, a nonzero polynomial in x1, x2, . . . , xn with coefficients
in R is a finite sum of nonzero monomial terms,

i.e., a finite sum of elements of the form axd11 xd22 · · · xdnn , where a ∈ R

(the coefficient of the term) and the di are nonnegative integers.

A monic term xd11 xd22 · · · xdnn is called simply a monomial; it is the

monomial part of the term axd11 xd22 · · · xdnn .

The exponent di is called the degree in xi of the term and the sum
d = d1 + d2 + · · ·+ dn is called the degree of the term.
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Polynomial Rings Definitions and Basic Properties

Polynomial Rings in Several Variables (Cont’d)

Consider again the term axd11 xd22 · · · xdnn .

The ordered n-tuple (d1, d2, . . . , dn) is the multidegree of the term.

The degree of a nonzero polynomial is the largest degree of any of its
monomial terms.

A polynomial is called homogeneous or a form if all its terms have
the same degree.

If f is a nonzero polynomial in n variables, the sum of all the
monomial terms in f of degree k is called the homogeneous

component of f of degree k .

If f has degree d then f may be written uniquely as the sum
f0 + f1 + · · · + fd , where fk is the homogeneous component of f of
degree k , for 0 ≤ k ≤ d (where some fk may be zero).
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Polynomial Rings Definitions and Basic Properties

Polynomial Rings in Arbitrarily Many Variables

A polynomial ring in an arbitrary number of variables with

coefficients in R is formed by taking finite sums of monomial terms
of the type above;

The variables are not restricted to just x1, . . . , xn.

Alternatively, we could define this ring as the union of all the
polynomial rings in a finite number of the variables being considered.
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Polynomial Rings Definitions and Basic Properties

In the polynomial ring Z[x , y ]

The polynomial ring Z[x , y ] in two variables x and y with integer
coefficients consists of all finite sums of monomial terms of the form
ax iy j (of degree i + j).
E.g., p(x , y) = 2x3 + xy − y2 and q(x , y) = −3xy + 2y2 + x2y3 are
both elements of Z[x , y ], of degrees 3 and 5, respectively. We have

p(x , y) + q(x , y) = 2x3 − 2xy + y2 + x2y3;
p(x , y)q(x , y) = − 6x4y + 4x3y2 + 2x5y3 − 3x2y2 +

5xy3 + x3y4 − 2y4 − x2y5;

The latter is a polynomial of degree 8. To view it as a polynomial in
y with coefficients in Z[x ], we write the polynomial in the form

(−6x4)y + (4x3 − 3x2)y2 + (2x5 + 5x)y3 + (x3 − 2)y4 − (x2)y5.

Its nonzero homogeneous components are
f4 = − 3x2y2 + 5xy3 − 2y4 (degree 4), f5 = − 6x4y + 4x3y2 (degree
5), f7 = x3y4 − x2y5 (degree 7), and f8 = 2x5y3 (degree 8).
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Polynomial Rings Polynomial Rings over Fields I

Subsection 2

Polynomial Rings over Fields I
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Polynomial Rings Polynomial Rings over Fields I

Division in Polynomial Rings Over Fields

Suppose the coefficient ring is a field F .

We can define a norm on F [x ] by defining N(p(x)) = degreep(x)
(where we set N(0) = 0).

Theorem

Let F be a field. The polynomial ring F [x ] is a Euclidean Domain.
Specifically, if a(x) and b(x) are two polynomials in F [x ] with b(x)
nonzero, then there are unique q(x) and r(x) in F [x ], such that
a(x) = q(x)b(x) + r(x), with r(x) = 0 or degreer(x) < degreeb(x).

If a(x) is the zero polynomial, then take q(x) = r(x) = 0.

We may assume a(x) 6= 0 and prove the existence of q(x) and r(x) by
induction on n = degreea(x). Let b(x) have degree m.

If n < m, take q(x) = 0 and r(x) = a(x).
If n ≥ m, write a(x) = anx

n + an−1x
n−1 + · · ·+ a1x + a0 and

b(x) = bmx
m + bm−1x

m−1 + · · ·+ b1x + b0.
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Polynomial Rings Polynomial Rings over Fields I

Division in Polynomial Rings Over Fields (Cont’d)

We assumed n ≥ m,

a(x) = anx
n + an−1x

n−1 + · · · + a1x + a0;
b(x) = bmx

m + bm−1x
m−1 + · · · + b1x + b0.

Then the polynomial a′(x) = a(x)− an
bm

xn−mb(x) is of degree less
than n (we have arranged to subtract the leading term from a(x)).

Note that this polynomial is well defined because the coefficients are
taken from a field and bm 6= 0.

By induction then, there exist polynomials q′(x) and r(x), with
a′(x) = q′(x)b(x) + r(x), with r(x) = 0 or degreer(x) < degreeb(x).

Let q(x) = q′(x) + an
bm

xn−m. Then, we have:

a(x) = a′(x) + an
bm
xn−mb(x) = (q′(x)b(x) + r(x)) + an

bm
xn−mb(x) =

(q′(x) + an
bm
xn−m)b(x) + r(x) = q(x)b(x) + r(x);

r(x) = 0 or degreer(x) < degreeb(x).
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Polynomial Rings Polynomial Rings over Fields I

Division: The Uniqueness Part

For uniqueness, suppose q1(x) and r1(x) also satisfied the conditions
of the theorem, that is

a(x) = q(x)b(x) + r(x) = q1(x)b(x) + r1(x),

where r1(x) = 0 or degreer1(x) < degreeb(x).

Then both a(x)− q(x)b(x) and a(x)− q1(x)b(x) are of degree less
than m = degreeb(x).

The difference of these two polynomials b(x)(q(x) − q1(x)) is also of
degree less than m.

But the degree of the product of two nonzero polynomials is the sum
of their degrees (since F is an integral domain), whence q(x)− q1(x)
must be 0, that is, q(x) = q1(x).

This implies r(x) = r1(x), completing the proof.
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Polynomial Rings Polynomial Rings over Fields I

The Coordinate Ring and the Ring of Polynomials

Corollary

If F is a field, then F [x ] is a Principal Ideal Domain and a Unique
Factorization Domain.

Recall, also, that if R is any commutative ring such that R [x ] is a
Principal Ideal Domain (or Euclidean Domain) then R must be a field.

We will see in the next section that R [x ] is a Unique Factorization
Domain whenever R itself is a Unique Factorization Domain.
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Polynomial Rings Polynomial Rings over Fields I

Examples

(1) The ring Z[x ] is not a Principal Ideal Domain.

The ideal (2, x) is not principal in this ring.

(2) Q[x ] is a Principal Ideal Domain since the coefficients lie in the field
Q.

The ideal generated in Z[x ] by 2 and x is not principal in the subring
Z[x ] of Q[x ].

However, the ideal generated in Q[x ] is principal; in fact it is the
entire ring (so has 1 as a generator) since 2 is a unit in Q[x ].
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Polynomial Rings Polynomial Rings over Fields I

Examples (Cont’d)

(3) If p is a prime, the ring Z/pZ[x ] obtained by reducing Z[x ] modulo
the prime ideal (p) is a Principal Ideal Domain, since the coefficients
lie in the field Z/pZ.

This example shows that the quotient of a ring which is not a
Principal Ideal Domain may be a Principal Ideal Domain.

To follow the ideal (2, x) above in this example, note that:
if p = 2, then the ideal (2, x) reduces to the ideal (x) in the quotient
Z/2Z[x ], which is a proper (maximal) ideal;
if p 6= 2, then 2 is a unit in the quotient, so the ideal (2, x) reduces to
the entire ring Z/pZ[x ].

(4) Q[x , y ] is not a Principal Ideal Domain since this ring is Q[x ][y ] and
Q[x ] is not a field (any element of positive degree is not invertible).

It is an exercise to see that the ideal (x , y) is not a principal ideal in
this ring.

We will see that Q[x , y ] is a Unique Factorization Domain.
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Polynomial Rings Polynomial Rings over Fields I

Quotient and Remainder in Field Extensions

The quotient and remainder in the Division Algorithm applied to
a(x), b(x) ∈ F [x ] are independent of field extensions:

Suppose the field F is contained in the field E and

a(x) = Q(x)b(x) + R(x),

for Q(x),R(x) ∈ E [x ], with R(x) = 0 or degreeR(x) < degreeb(x).

Write a(x) = q(x)b(x) + r(x), for some q(x), r(x) ∈ F [x ].

Apply uniqueness in the ring E [x ] to deduce that Q(x) = q(x) and
R(x) = r(x).

In particular, b(x) divides a(x) in the ring E [x ] if and only if b(x)
divides a(x) in F [x ].

Also, the greatest common divisor of a(x) and b(x) (which can be
obtained from the Euclidean Algorithm) is the same, once we make it
unique by specifying it to be monic, whether these elements are
viewed in F [x ] or in E [x ].
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Polynomial Rings Polynomial Rings that are U.F.D.s

Subsection 3

Polynomial Rings that are U.F.D.s
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Polynomial Rings Polynomial Rings that are U.F.D.s

Unique Factorization in R[x ]

If R is an integral domain, then R [x ] is also an integral domain:
R can be embedded in its field of fractions F so that R [x ] ⊆ F [x ] is a
subring;
F [x ] is a Euclidean Domain (hence a Principal Ideal Domain and a
Unique Factorization Domain).

Suppose p(x) is a polynomial in R [x ]. Since F [x ] is a Unique
Factorization Domain we can factor p(x) uniquely into a product of
irreducibles in F [x ]. In general R [x ] is not a Unique Factorization
Domain, since the constant polynomials would have to be uniquely
factored into irreducible elements of R [x ] and R would have to be a
Unique Factorization Domain.

Thus if R is an integral domain which is not a Unique Factorization
Domain, R [x ] cannot be a Unique Factorization Domain.
On the other hand, it turns out that if R is a Unique Factorization
Domain, then R [x ] is also a Unique Factorization Domain.
The method of proving this is to first factor uniquely in F [x ] and, then,
“clear denominators” to obtain a unique factorization in R [x ].
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Polynomial Rings Polynomial Rings that are U.F.D.s

Gauss’ Lemma

Proposition (Gauss’ Lemma)

Let R be a Unique Factorization Domain with field of fractions F and let
p(x) ∈ R [x ]. If p(x) is reducible in F [x ] then p(x) is reducible in R [x ].
More precisely, if p(x) = A(x)B(x), for some nonconstant polynomials
A(x),B(x) ∈ F [x ], then there are nonzero elements r , s ∈ F , such that
rA(x) = a(x) and sB(x) = b(x) both lie in R [x ] and p(x) = a(x)b(x) is a
factorization in R [x ].

The coefficients of the polynomials on the right in the equation
p(x) = A(x)B(x) are elements in the field F . Hence, they are
quotients of elements from the Unique Factorization Domain R .
Multiply by a common denominator for all these coefficients. We get
an equation dp(x) = a′(x)b′(x), where a′(x) and b′(x) are in R [x ]
and d is a nonzero element of R .

If d is a unit in R , the proposition is true with a(x) = d−1a′(x) and
b(x) = b′(x).
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Polynomial Rings Polynomial Rings that are U.F.D.s

Gauss’ Lemma (Cont’d)

We obtained dp(x) = a′(x)b′(x), where a′(x) and b′(x) are elements
of R [x ] and d is a nonzero element of R .

Suppose d is not a unit. Write d as a product of irreducibles in R , say
d = p1 · · · pn. Since p1 is irreducible in R , the ideal (p1) is prime.
Thus, the ideal p1R [x ] is prime in R [x ]. Hence, (R/p1R)[x ] is an
integral domain. Reducing the equation dp(x) = a′(x)b′(x) modulo p1,
we obtain the equation 0 = a′(x)b′(x) in this integral domain. Hence
one of the two factors, say a′(x) must be 0. But this means all the
coefficients of a′(x) are divisible by p1. So

1
p1
a′(x) also has coefficients

in R . In other words, in the equation dp(x) = a′(x)b′(x) we can cancel
a factor of p1 from d (on the left) and from either a′(x) or b′(x) (on
the right) and still have an equation in R [x ]. But now the factor d on
the left hand side has one fewer irreducible factors.
Proceeding similarly with each of the remaining factors of d , we can
cancel all of the factors of d into the two polynomials on the right hand
side. This gives an equation p(x) = a(x)b(x), with a(x), b(x) ∈ R [x ]
and with a(x), b(x) being F -multiples of A(x),B(x), respectively.
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Polynomial Rings Polynomial Rings that are U.F.D.s

Additional Comments

We cannot prove that a(x) and b(x) are necessarily R-multiples of
A(x), B(x), respectively:

Example: Consider x2 in Q[x ].

It factors as x2 = A(x)B(x), with A(x) = 2x and B(x) = 1
2x ;

However, no integer multiples of A(x) and B(x) give a factorization of
x2 in Z[x ].

The elements of the ring R become units in the Unique Factorization
Domain F [x ] (the units in F [x ] being the nonzero elements of F ).

Example:

7x factors in Z[x ] into a product of two irreducibles: 7 and x ;
So 7x is not irreducible in Z[x ];
7x is the unit 7 times the irreducible x in Q[x ];
So 7x is irreducible in Q[x ].
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Polynomial Rings Polynomial Rings that are U.F.D.s

Irreducibility in R[x ] and in F [x ]

Corollary

Let R be a Unique Factorization Domain, let F be its field of fractions and
let p(x) ∈ R [x ]. Suppose the greatest common divisor of the coefficients
of p(x) is 1. Then p(x) is irreducible in R [x ] if and only if it is irreducible
in F [x ]. In particular, if p(x) is a monic polynomial that is irreducible in
R [x ], then p(x) is irreducible in F [x ].

By Gauss’ Lemma above, if p(x) is reducible in F [x ], then it is
reducible in R [x ]. Conversely, the assumption on the greatest
common divisor of the coefficients of p(x) implies that, if it is
reducible in R [x ], then p(x) = a(x)b(x), where neither a(x) nor b(x)
are constant polynomials in R [x ]. This same factorization shows that
p(x) is reducible in F [x ].
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Polynomial Rings Polynomial Rings that are U.F.D.s

U.F. Property for R and R[x ]

Theorem

R is a Unique Factorization Domain if and only if R [x ] is a Unique
Factorization Domain.

We have indicated above that R [x ] a Unique Factorization Domain
forces R to be a Unique Factorization Domain.

Suppose conversely that R is a Unique Factorization Domain, F is its
field of fractions and p(x) is a nonzero element of R [x ]. Let d be the
greatest common divisor of the coefficients of p(x). Then
p(x) = dp′(x), where the g.c.d. of the coefficients of p′(x) is 1. Such
a factorization of p(x) is unique up to a change in d (so up to a unit
in R). d can be factored uniquely into irreducibles in R which are also
irreducibles in R [x ]. So, it suffices to prove that p′(x) can be factored
uniquely into irreducibles in R [x ]. Thus we may assume:

The greatest common divisor of the coefficients of p(x) is 1;
p(x) is not a unit in R [x ], i.e., degree p(x) > 0.
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U.F. Property for R and R[x ] (Cont’d)

Since F [x ] is a Unique Factorization Domain, p(x) can be factored
uniquely into irreducibles in F [x ]. By Gauss’ Lemma, such a
factorization implies there is a factorization of p(x) in R [x ] whose
factors are F -multiples of the factors in F [x ]. But the greatest
common divisor of the coefficients of p(x) is 1. Hence, the g.c.d. of
the coefficients in each of these factors in R [x ] must be 1. By the
corollary, each of these factors is an irreducible in R [x ]. This shows
that p(x) can be written as a finite product of irreducibles in R [x ].
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Polynomial Rings Polynomial Rings that are U.F.D.s

U.F. Property for R and R[x ] (Uniqueness)

Suppose
p(x) = q1(x) · · · qr (x) = q′1(x) · · · q

′

s(x)

are two factorizations of p(x) into irreducibles in R [x ]. Since the
g.c.d. of the coefficients of p(x) is 1, the same is true for each of the
irreducible factors above. In particular, each has positive degree.

By the corollary, each qi (x) and q′j(x) is an irreducible in F [x ].

By unique factorization in F [x ], r = s and, possibly after
rearrangement, qi(x) and q′j(x) are associates in F [x ], for all
i ∈ {1, . . . , r}.

It remains to show they are associates in R [x ].
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Polynomial Rings Polynomial Rings that are U.F.D.s

U.F. Property for R and R[x ] (Uniqueness Cont’d)

qi(x) and q′j(x) are associates in F [x ].

We want to show they are associates in R [x ].

The units of F [x ] are precisely the elements of F×.

Thus, we need to consider the case q(x) = a
b
q′(x), for some

q(x), q′(x) ∈ R [x ] and nonzero elements a, b of R , where the greatest
common divisor of the coefficients of each of q(x) and q′(x) is 1.

In this case bq(x) = aq′(x); the g.c.d. of the coefficients on the left
hand side is b and on the right hand side is a.

Since in a Unique Factorization Domain the g.c.d. of the coefficients
of a nonzero polynomial is unique up to units, a = ub, for some unit
u in R . Thus q(x) = uq′(x). So q(x) and q′(x) are associates in R as
well.

George Voutsadakis (LSSU) Abstract Algebra II September 2020 30 / 51



Polynomial Rings Polynomial Rings that are U.F.D.s

Rings of Polynomials of Many Variables and U.F.D.s

Corollary

If R is a Unique Factorization Domain, then a polynomial ring in an
arbitrary number of variables with coefficients in R is also a Unique
Factorization Domain.

Recall that a polynomial ring in n variables can be considered as a
polynomial ring in one variable with coefficients in a polynomial ring
in n − 1 variables. So, for finitely many variables, the conclusion
follows by induction from the theorem.
The general case follows from the definition of a polynomial ring in an
arbitrary number of variables as the union of polynomial rings in
finitely many variables.
Examples:
(1) Z[x ],Z[x , y ], etc. are Unique Factorization Domains.

The ring Z[x ] gives an example of a Unique Factorization Domain that
is not a Principal Ideal Domain.

(2) Similarly, Q[x ],Q[x , y ], etc. are Unique Factorization Domains.
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Irreducibility in Integral Domains and Fields of Fractions

We saw that if R is a Unique Factorization Domain with field of
fractions F and p(x) ∈ R [x ], then we can factor out the greatest
common divisor d of the coefficients of p(x) to obtain p(x) = dp′(x),
where p′(x) is irreducible in both R [x ] and F [x ].

Let R be an arbitrary integral domain with field of fractions F .
In R the notion of greatest common divisor may not make sense, but
we may ask if, say, a monic polynomial which is irreducible in R [x ] is
still irreducible in F [x ].

If a monic polynomial p(x) is reducible, it must have a factorization
p(x) = a(x)b(x) in R [x ], with both a(x) and b(x) monic, nonconstant
polynomials.
So, a nonconstant monic polynomial p(x) is irreducible if and only if it
cannot be factored as a product of two monic polynomials of smaller
degree.
We are now able to see that it is not true that if R is an arbitrary
integral domain and p(x) is a monic irreducible polynomial in R [x ],
then p(x) is irreducible in F [x ].
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The Integral Domain Z[2i ]

Example: Consider

R = Z[2i ] = {a + 2bi : a, b ∈ Z}.

Let p(x) = x2 + 1.

The fraction field of R is F = {a + bi : a, b ∈ Q}.

The polynomial p(x) factors uniquely into a product of two linear
factors in F [x ]:

x2 + 1 = (x − i)(x + i).

In particular, p(x) is reducible in F [x ].

Neither of these factors lies in R [x ].

So p(x) is irreducible in R [x ].

By the corollary, Z[2i ] is not a Unique Factorization Domain.
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Subsection 4

Irreducibility Criteria
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Investigating Irreducibility in R[x ]

If R is a Unique Factorization Domain, then a polynomial ring in any
number of variables with coefficients in R is also a Unique
Factorization Domain.

It is of interest to determine the irreducible elements in such a
polynomial ring, particularly in the ring R [x ].

In the one-variable case, a non constant monic polynomial is
irreducible in R [x ] if it cannot be factored as the product of two other
polynomials of smaller degrees.

Determining whether a polynomial has factors is frequently difficult to
check, particularly for polynomials of large degree in several variables.

The purpose of irreducibility criteria is to give an easier mechanism
for determining when some types of polynomials are irreducible.

For polynomials in one variable where the coefficient ring is a Unique
Factorization Domain, it suffices, by Gauss’ Lemma, to consider
factorizations in F [x ] where F is the field of fractions of R .
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Existence of Linear Factors in F [x ]

Proposition

Let F be a field and let p(x) ∈ F [x ]. Then p(x) has a factor of degree one
if and only if p(x) has a root in F , i.e., there is an α ∈ F , with p(α) = 0.

Suppose p(x) has a factor of degree one. Since F is a field, we may
assume the factor is monic, i.e., is of the form (x − α), for some
α ∈ F . But then p(α) = 0.

Conversely, suppose p(α) = 0. By the Division Algorithm in F [x ], we
may write p(x) = q(x)(x − α) + r , where r is a constant. Since
p(α) = 0, r must be 0. Hence p(x) has (x − α) as a factor.

Proposition

A polynomial of degree two or three over a field F is reducible if and only
if it has a root in F .

A polynomial of degree two or three is reducible if and only if it has
at least one linear factor.
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A Divisibility Criterion

Proposition

Let p(x) = anx
n + an−1x

n−1 + · · ·+ a0 be a polynomial of degree n with
integer coefficients. If r

s
∈ Q is in lowest terms (i.e., r and s are relatively

prime integers) and r
s
is a root of p(x), then r divides the constant term

and s divides the leading coefficient of p(x): r | a0 and s | an.
In particular, if p(x) is a monic polynomial with integer coefficients and
p(d) 6= 0, for all integers d dividing the constant term of p(x), then p(x)
has no roots in Q.

By hypothesis, 0 = p( r
s
) = an(

r
s
)n + an−1(

r
s
)n−1 + · · ·+ a0. Multiply

by sn. We get 0 = anr
n + an−1r

n−1s + · · ·+ a0s
n. Thus

anr
n = s(−an−1r

n−1 − · · · − a0s
n−1). So s divides anr

n. By
assumption, s is relatively prime to r . Hence, s | an. Similarly, solving
the equation for a0s

n, we get r | a0.

The last assertion of the proposition follows from the previous ones.
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Examples

(1) The polynomial x3 − 3x − 1 is irreducible in Z[x ]. To prove this, by
Gauss’ Lemma and a preceding proposition, it suffices to show it has
no rational roots. By the last proposition, the only candidates are
integers which divide the constant term 1, namely ±1. Substituting
both 1 and −1 into the polynomial shows that these are not roots.

(2) For p any prime the polynomials x2 − p and x3 − p are irreducible in
Q[x ]. This is because they have degrees ≤ 3, so it suffices to show
they have no rational roots. The only candidates for roots are ±1 and
±p. None of these give 0 when they are substituted into the
polynomial.

(3) The polynomial x2 + 1 is reducible in Z/2Z[x ], since it has 1 as a
root. It factors as (x + 1)2.

(4) The polynomial x2 + x + 1 is irreducible in Z/2Z[x ] since it does not
have a root in Z/2Z: 02 + 0 + 1 = 1 and 12 + 1 + 1 = 1.

(5) Similarly, the polynomial x3 + x + 1 is irreducible in Z/2Z[x ].
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Reducibility in R[x ] and in (R/I )[x ]

Proposition

Let I be a proper ideal in the integral domain R and let p(x) be a
nonconstant monic polynomial in R [x ]. If the image of p(x) in (R/I )[x ]
cannot be factored in (R/I )[x ] into two polynomials of smaller degree,
then p(x) is irreducible in R [x ].

Suppose p(x) cannot be factored in (R/I )[x ] but that p(x) is
reducible in R [x ]. As noted at the end of the preceding section, this
means there are monic, nonconstant polynomials a(x) and b(x) in
R [x ], such that p(x) = a(x)b(x). Reducing the coefficients modulo I

gives a factorization in (R/I )[x ] with nonconstant factors, a
contradiction.

Thus, if it is possible to find a proper ideal I , such that the reduced
polynomial cannot be factored, then the polynomial is itself
irreducible.
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Limitations of the Reduction Technique

Unfortunately, there are examples of polynomials even in Z[x ] which
are irreducible but whose reductions modulo every ideal are reducible.

So their irreducibility is not detectable by this technique.

Example:

The polynomial x4 + 1 is irreducible in Z[x ] but is reducible modulo
every prime.
The polynomial x4 − 72x2 + 4 is irreducible in Z[x ] but is reducible
modulo every integer.
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Examples

(1) Consider the polynomial p(x) = x2 + x + 1 in Z[x ]. Reducing modulo
2, we see from Example 4 above that p(x) is irreducible in Z[x ].
Similarly, x3 + x + 1 is irreducible in Z[x ] because it is irreducible in
Z/2Z[x ].

(2) The polynomial x2 + 1 is irreducible in Z[x ] since it is irreducible in
Z/3Z[x ] (no root in Z/3Z), but is reducible mod 2.

This shows that the converse to Proposition 12 does not hold.
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Examples in Several Variables

(3) The idea of reducing modulo an ideal to determine irreducibility can
be used in several variables with some care:

x2 + xy + 1 in Z[x , y ] is irreducible since modulo the ideal (y) it is
x2 + 1 in Z[x ], which is irreducible and of the same degree.

In general, we must be careful about “collapsing”:
The polynomial xy + x + y + 1 (which is (x + 1)(y + 1)) is reducible,
but appears irreducible modulo both (x) and (y). The reason is that
non unit polynomials in Z[x , y ] can reduce to units in the quotient.
To take account of this, it is necessary to determine which elements
in the original ring become units in the quotient.

The elements in Z[x , y ] which are units modulo (y), for example, are
the polynomials in Z[x , y ] with constant term ±1 and all nonconstant
terms divisible by y .

The fact that x2 + xy + 1 and its reduction mod (y) have the same
degree therefore eliminates the possibility of a factor which is a unit
modulo (y), but not a unit in Z[x , y ] and proves irreducibility.
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The Eisenstein-Schönemann Criterion

Proposition (Eisenstein’s Criterion)

Let P be a prime ideal of the integral domain R and let

f (x) = xn + an−1x
n−1 + · · ·+ a1x + a0

be a polynomial in R [x ] (here n ≥ 1). If an−1, . . . , a1, a0 are all elements
of P and a0 is not an element of P2, then f (x) is irreducible in R [x ].

Suppose f (x) were reducible, say f (x) = a(x)b(x) in R [x ], where
a(x) and b(x) are nonconstant polynomials. Reduce modulo P , using
the assumptions on the coefficients. We get xn = a(x) b(x) in
(R/P)[x ], where the bar denotes the polynomials with coefficients
reduced mod P . Since P is a prime ideal, R/P is an integral domain.
Thus, both a(x) and b(x) have 0 constant term. So, the constant
terms of both a(x) and b(x) are elements of P . But then the
constant term a0 of f (x) is an element of P2, a contradiction.
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Eisenstein’s Criterion for Z[x ]

Corollary (Eisenstein’s Criterion for Z[x ])

Let p be a prime in Z and let

f (x) = xn + an−1x
n−1 + · · · + a1x + a0 ∈ Z[x ], n ≥ 1.

Suppose p divides ai , for all i ∈ {0, 1, . . . , n − 1}, but that p2 does not
divide a0. Then f (x) is irreducible in both Z[x ] and Q[x ].

Examples:

(1) The polynomial x4 + 10x + 5 in Z[x ] is irreducible by Eisenstein’s
Criterion applied for the prime 5.

(2) If a is any integer which is divisible by some prime p but not divisible
by p2, then xn − a is irreducible in Z[x ] by Eisenstein’s Criterion.
In particular, xn − p is irreducible for all positive integers n.
So, for n ≥ 2, the n-th roots of p are not rational numbers,
i.e., this polynomial has no root in Q.
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Indirect Application of Eisenstein’s Criterion

(3) Eisenstein’s Criterion does not apply directly to f (x) = x4 + 1.

Consider
g(x) = f (x + 1)

= (x + 1)4 + 1
= x4 + 4x3 + 6x2 + 4x + 2.

Eisenstein’s Criterion for the prime 2 shows that this polynomial is
irreducible. It follows that f (x) must also be irreducible, since any
factorization for f (x) would provide a factorization for g(x) just by
replacing x by x + 1 in each of the factors.

Thus, Eisenstein’s Criterion can sometimes be used to verify the
irreducibility of a polynomial to which it does not immediately apply.
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More Examples

(4) Let p be a prime and consider the polynomial

Φp(x) =
xp − 1

x − 1
= xp−1 + xp−2 + · · ·+ x + 1,

an example of a cyclotomic polynomial. Consider
Φp(x + 1) = (x+1)p−1

x
= xp−1 + pxp−2 + · · ·+ p(p−1)

2 x + p ∈ Z[x ].

Eisenstein’s Criterion applies for the prime p, since all the coefficients
except the first are divisible by p by the Binomial Theorem. As
before, this shows Φp(x) is irreducible in Z[x ].

(5) Let R = Q[x ] and let n be any positive integer.

Consider X n − x in the ring R [X ].

R/(x) = Q[x ]/(x) is the integral domain Q. Hence, the ideal (x) is
prime in the coefficient ring R . Eisenstein’s Criterion for the ideal (x)
of R applies directly to show that X n − x is irreducible in R [X ].
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Subsection 5

Polynomial Rings over Fields II
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Quotients by Ideals Generated by Irreducible Polynomials

Let F be a field.

Proposition

The maximal ideals in F [x ] are the ideals (f (x)) generated by irreducible
polynomials f (x). In particular, F [x ]/(f (x)) is a field if and only if f (x) is
irreducible.

A previous proposition applied to the Principal Ideal Domain F [x ].

Proposition

Let g(x) be nonconstant in F [x ] and let g(x) = f1(x)
n1 f2(x)

n2 · · · fk(x)
nk

be its factorization into irreducibles, with fi(x) distinct. Then as rings:
F [x ]/(g(x)) ∼= F [x ]/(f1(x)

n1)× F [x ]/(f2(x)
n2)× · · · × F [x ]/(fk (x)

nk ).

Suppose fi(x) and fj(x) are distinct and irreducible. Then, the ideals
(fi(x)

ni ) and (fj(x)
nj ) are comaximal in F [x ]. The conclusion now

follows from the Chinese Remainder Theorem.
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Roots and Factorization

We look at the number of roots of a polynomial over a field F .

A root a corresponds to a linear factor (x − α) of f (x).

If f (x) is divisible by (x − α)m but not by (x − α)m+1, then α is said
to be a root of multiplicity m.

Proposition

If the polynomial f (x) has roots a1, a2, . . . , ak in F (not necessarily
distinct), then f (x) has (x − a1) · · · (x − αk) as a factor. In particular, a
polynomial of degree n in one variable over a field F has at most n roots
in F , even counted with multiplicity.

The first statement follows easily by induction from a preceding
proposition.

Since linear factors are irreducible, the second statement follows since
F [x ] is a Unique Factorization Domain.
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Finite Subgroups of Multiplicative Group of Fields

Proposition

A finite subgroup of the multiplicative group of a field is cyclic. In
particular, if F is a finite field, then the multiplicative group F× of
nonzero elements of F is a cyclic group.

We use the Fundamental Theorem of Finitely Generated Abelian
Groups. By the Fundamental Theorem, the finite subgroup can be
written as the direct product of cyclic groups

Z/n1Z×Z/n2Z× · · · ×Z/nkZ,

where nk | nk−1 | · · · | n2 | n1.
In general, if G is a cyclic group and d | |G |, then G contains
precisely d elements of order dividing d .
Since nk divides the order of each of the cyclic groups in the direct
product, it follows that each direct factor contains nk elements of
order dividing nk .
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Subgroups of Multiplicative Group of Fields (Cont’d)

We wrote
Z/n1Z×Z/n2Z× · · · ×Z/nkZ,

where nk | nk−1 | · · · | n2 | n1.

If k were greater than 1, there would therefore be a total of more
than nk elements of order dividing nk .

But then there would be more than nk roots of the polynomial xnk − 1
in the field F , a contradiction. Hence k = 1 and the group is cyclic.

Corollary

Let p be a prime. The multiplicative group (Z/pZ)× of nonzero residue
classes mod p is cyclic.

This is the multiplicative group of the finite field Z/pZ.
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