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Line and Surface Integrals Vector Fields

Subsection 1

Vector Fields
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Line and Surface Integrals Vector Fields

Vector Fields

A vector field F in R3 assigns to each point P in a domain D a
vector F (P).

A vector field in R3 is represented by a vector whose components are
functions:

F (x , y , z) = 〈F1(x , y , z),F2(x , y , z),F3(x , y , z)〉.

To each point P = (a, b, c) is associated the vector F (a, b, c), which
is also denoted by F (P) = F1(P)i + F2(P)j + F3(P)k .

When drawing a vector field, we draw F (P) as a vector based at P
(rather than the origin).

The domain of F is the set of points P for which F (P) is defined.

Vector fields in the plane are written in a similar fashion:
F (x , y) = 〈F1(x , y),F2(x , y)〉 = F1i + F2j .

We will assume that the component functions Fj are smooth, i.e.,
that they have partial derivatives of all orders on their domains.

George Voutsadakis (LSSU) Advanced Calculus March 2018 4 / 135



Line and Surface Integrals Vector Fields

Example and Constant Vector Fields

Which vector is attached to the point P = (2, 4, 2) by the vector field
F = (y − z , x , z −√

y)?

The vector attached to P is F (2, 4, 2) = 〈4− 2, 2, 2−
√
4〉 = 〈2, 2, 0〉.

A constant vector field assigns the
same vector to every point in R3.
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Line and Surface Integrals Vector Fields

Describing a Vector Field I

Describe the vector field G(x , y) = i + x j .

The vector field assigns the vector 〈1, a〉
to the point (a, b). In particular, it as-
signs the same vector to all points with
the same x -coordinate.

Notice that 〈1, a〉 has slope a and length
√
1 + a2.

We may describe G as the vector field assigning a vector of slope a

and length
√
1 + a2 to all points with x = a.
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Line and Surface Integrals Vector Fields

Describing a Vector Field II

Describe the vector field F (x , y) = 〈−y , x〉.
To visualize F , observe that F (a, b) =
〈−b, a〉 has length r =

√
a2 + b2.

It is perpendicular to the radial vector
〈a, b〉 and points counterclockwise.

Thus F is the vector field with vectors along the circle of radius r all
having length r and being tangent to the circle, pointing
counterclockwise.
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Line and Surface Integrals Vector Fields

Unit and Radial Vector Fields

A unit vector field is a vector field F such that ‖F (P)‖ = 1, for all
points P .

A vector field F is called a radial vector field if F (P) = f (x , y , z)r ,
where f (x , y , z) is a scalar function.

We use the notation:

r = 〈x , y〉 and r = (x2 + y2)1/2 for n = 2;
r = 〈x , y , z〉 and r = (x2 + y2 + z2)1/2 for n = 3.
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Line and Surface Integrals Vector Fields

Examples

Two important examples are the unit radial vector fields in two and
three dimensions:

er =
〈x

r
,
y

r

〉

=

〈

x
√

x2 + y2
,

y
√

x2 + y2

〉

;

e r =
〈x

r
,
y

r
,
z

r

〉

=

〈

x
√

x2 + y2 + z2
,

y
√

x2 + y2 + z2
,

z
√

x2 + y2 + z2

〉

.
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Line and Surface Integrals Vector Fields

Conservative Vector Fields

Recall the gradient vector field of a differentiable function V (x , y , z):

F (x , y , z) = ∇V (x , y , z) =

〈
∂V

∂x
,
∂V

∂y
,
∂V

∂z

〉

.

A vector field of this type is called a conservative vector field.

The function V (x , y , z) is called a potential function (or scalar
potential function) for F (x , y , z).

Recall that the gradient vectors are orthogo-
nal to the level curves.
Thus in a conservative vector field, the vector
at every point P is orthogonal to the level
curve through P .
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Line and Surface Integrals Vector Fields

Example

Verify that V (x , y , z) = xy + yz2 is a potential function for the vector
field F (x , y , z) = 〈y , x + z2, 2yz〉.
We compute the gradient of V :

∂V

∂x
= y ,

∂V

∂y
= x + z2,

∂V

∂z
= 2yz .

Thus, ∇V = 〈y , x + z2, 2yz〉 = F , i.e., V is a potential function for
F .
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Line and Surface Integrals Vector Fields

Cross-Partial Property of a Conservative Vector Field

Theorem (Cross-Partial Property of a Conservative Vector Field)

If the vector field F (x , y , z) = 〈F1,F2,F3〉 is conservative, then

∂F1

∂y
=

∂F2

∂x
,

∂F2

∂z
=

∂F3

∂y
,

∂F3

∂x
=

∂F1

∂z
.

If F = ∇V , then F1 =
∂V
∂x , F2 =

∂V
∂y and F3 =

∂V
∂z . Now compute the

“cross”-partial derivatives:

∂F1
∂y = ∂

∂y (
∂V
∂x ) =

∂2V
∂y∂x ;

∂F2
∂x = ∂

∂x (
∂V
∂y ) =

∂2V
∂x∂y .

Clairaut’s Theorem tells us that ∂2V
∂y∂x = ∂2V

∂x∂y . Thus,
∂F1
∂y = ∂F2

∂x .

The other two equalities are proven similarly.
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Line and Surface Integrals Vector Fields

Example: A Non Conservative Function

Show that F (x , y , z) = 〈y , 0, 0〉 is not conservative.
We have

∂F1

∂y
=

∂

∂y
y = 1,

∂F2

∂x
=

∂

∂x
0 = 0.

Thus, ∂F1
∂y 6= ∂F2

∂x . By the theorem, F is not conservative, even though
the other cross-partials agree:

∂F3

∂x
=

∂F1

∂z
= 0 and

∂F2

∂z
=

∂F3

∂y
= 0.
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Line and Surface Integrals Vector Fields

Example

(a) Find by inspection a potential function for F (x , y) = 〈x , 0〉.
(b) Prove that G(x , y) = 〈y , 0〉 is not conservative.

(a) Suppose V (x , y) is a potential function for F (x , y).

Then,
∂V

∂x
= x ,

∂V

∂y
= 0.

Thus, we can take V (x , y) = 1
2x

2.

(b) We have
∂G1

∂y
= 1,

∂G2

∂x
= 0.

Since ∂G1
∂y 6= ∂G2

∂x , G is not conservative.
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Line and Surface Integrals Vector Fields

Example

Find a potential function for F (x , y) = 〈yexy , xexy 〉 by inspection.

Suppose that V (x , y) is a potential function for F .

Then we have
∂V

∂x
= yexy ,

∂V

∂y
= xexy .

Therefore, we may take

V (x , y) = exy .
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Line and Surface Integrals Vector Fields

Constant Vector Fields

Show that any constant vector function F (x , y , z) = 〈a, b, c〉 is
conservative.

Suppose that V (x , y , z) is a potential function for F .

Then we have

∂V

∂x
= a,

∂V

∂y
= b,

∂V

∂z
= c .

By integration,

V = ax + f1(y , z), V = by + f2(x , z), V = cz + f3(x , y).

Therefore, we can take

V (x , y , z) = ax + by + cz .
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Line and Surface Integrals Vector Fields

Connected Domains

A domain is “connected” if any two points can be joined by a path
within the domain.
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Line and Surface Integrals Vector Fields

Uniqueness of Potential Functions

Theorem (Uniqueness of Potential Functions)

If F is conservative on an open connected domain, then any two potential
functions of F differ by a constant.

If both V1 and V2 are potential functions of F , then

∇(V1 − V2) = ∇V1 −∇V2 = F − F = 0.

However, a function whose gradient is zero on an open connected
domain is a constant function (this generalizes the fact from
single-variable calculus that a function on an interval with zero
derivative is a constant function). Thus V1 − V2 = C , for some
constant C . Hence V1 = V2 + C .
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Line and Surface Integrals Vector Fields

Unit Radial Vector Fields Revisited

Show that
V (x , y , z) = r =

√

x2 + y2 + z2

is a potential function for e r . I.e., er = ∇r .

We have

∂r

∂x
=

∂

∂x

√

x2 + y2 + z2 =
x

√

x2 + y2 + z2
=

x

r
.

Similarly,
∂r

∂y
=

y

r
and

∂r

∂z
=

z

r
. Therefore, ∇r =

〈x

r
,
y

r
,
z

r

〉

= e r .
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Line and Surface Integrals Vector Fields

Inverse-Square Vector Field

Show that
er

r2
= ∇

(−1

r

)

.

Recall the Chain Rule for Gradients

∇F (r) = F ′(r)∇r .

Recall, also, from the preceding example that ∇r = er .

Thus, we get

∇
(

−1

r

)

=
1

r2
∇r =

1

r2
er .
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Line and Surface Integrals Vector Fields

Example

Let φ(x , y) = ln r , where r =
√

x2 + y2.

Express ∇φ in terms of e r in R
2.

Recall again that

∇F (r) = F ′(r)∇r and ∇r = e r .

Thus, we have

∇φ = ∇(ln r) = (ln r)′∇r =
1

r
e r .

George Voutsadakis (LSSU) Advanced Calculus March 2018 21 / 135



Line and Surface Integrals Line Integrals

Subsection 2

Line Integrals
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Line and Surface Integrals Line Integrals

Scalar Line Integrals

We begin by defining the scalar line integral
∫

C f (x , y , z)ds of a
function f over a curve C.
We divide C into N consecutive arcs C1, . . . , CN , and choose a sample
point Pi in each arc Ci .

We form the Riemann sum
∑N

i=1 f (Pi )length(Ci ) =
∑N

i=1 f (Pi )∆si ,
where ∆si is the length of Ci .
The line integral of f over C is the limit (if it exists) of these
Riemann sums as the maximum of the lengths ∆si approaches zero:

∫

C
f (x , y , z)ds = lim

{∆si}→0

N∑

i=1

f (Pi )∆si .
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Line and Surface Integrals Line Integrals

Line Integrals and Length of a Curve

The scalar line integral of the function f (x , y , z) = 1 is simply the
length of C.
In this case, all the Riemann sums have the same value:

∫

C
1ds = length(C).
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Line and Surface Integrals Line Integrals

Line Integrals Using Parametrizations

Suppose that C has a parametrization c(t) for a ≤ t ≤ b with
continuous derivative c ′(t). Recall that the derivative is the tangent
vector c ′(t) = 〈x ′(t), y ′(t), z ′(t)〉.
We divide C into N consecutive arcs
C1, . . . , Cn corresponding to a partition of
the interval [a, b]: a = t0 < t1 < · · · <
tN−1 < tN = b so that d is parametrized
by c(t) for ti−1 < t < ti .
Choose sample points Pi = c(t∗i ) with t∗i in [ti−1, ti ].
According to the arc length formula

length(Ci ) = ∆si =

∫ ti

ti−1

‖c ′(t)‖dt.

Because c ′(t) is continuous, the function ‖c ′(t)‖ is nearly constant
on [ti−1, ti ] if the length ∆ti = ti − ti−1 is small.
Thus,

∫ ti
ti−1

‖c ′(t)‖dt ≈ ‖c ′(t∗i )‖∆ti .
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Line and Surface Integrals Line Integrals

Line Integrals Using Parametrizations (Cont’d)

This gives us the approximation

N∑

i=1

f (Pi )∆si ≈
N∑

i=1

f (c(t∗i ))‖c ′(t∗i )‖∆ti .

By definition, the sum on the left converges to
∫

C f (x , y , z)ds when
the maximum of the lengths ∆ti tends to zero.

The sum on the right is a Riemann sum that converges to the integral
∫ b

a
f (c(t))‖c ′(t)‖dt as the maximum of the lengths ∆ti tends to zero.

By estimating the errors in this approximation, we can show that the
two sums approach the same value.
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Line and Surface Integrals Line Integrals

Computing a Scalar Line Integral

Our work in the preceding two slides gives:

Theorem (Computing a Scalar Line Integral)

Let c(t) be a parametrization of a curve C for a ≤ t <≤ b. If f (x , y , z)
and c ′(t) are continuous, then

∫

C
f (x , y , z)ds =

∫ b

a

f (c(t))‖c ′(t)‖dt.

The symbol ds is intended to suggest arc length s and is often
referred to as the line element or arc length differential.

In terms of a parametrization, we have the symbolic equation
ds = ‖c ′(t)‖dt, where ‖c ′(t)‖ =

√

x ′(t)2 + y ′(t)2 + z ′(t)2.
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Line and Surface Integrals Line Integrals

Example: Integrating Along the Helix

Calculate
∫

C (x + y + z)ds where C is the helix
c(t) = 〈cos t, sin t, t〉, for 0 ≤ t ≤ π.
We compute ds:

c ′(t) = 〈− sin t, cos t, 1〉;
‖c ′(t)‖ =

√

(− sin t)2 + cos2 t + 1 =
√
2;

ds = ‖c ′(t)‖dt =
√
2dt.

∫

C f (x , y , z)ds =
∫ π
0 f (c(t))‖c ′(t)‖dt

=
∫ π
0 (cos t + sin t + t)

√
2dt

=
√
2(sin t − cos t + 1

2t
2) |π0

=
√
2(0 + 1 + 1

2π
2)−

√
2(0− 1 + 0)

= 2
√
2 +

√
2
2 π2.
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Line and Surface Integrals Line Integrals

Example: Arc Length

Calculate
∫

C 1ds for the helix c(t) = 〈cos t, sin t, t〉, for 0 ≤ t ≤ π.
What does the integral represent?

We found ds =
√
2dt.

It follows ∫

C
1ds =

∫ π

0

√
2dt = π

√
2.

This is the length of the helix for 0 ≤ t ≤ π.
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Line and Surface Integrals Line Integrals

Example: Arc Length

Calculate
∫

C 1ds, where C is parameterized by c(t) = 〈4t,−3t, 12t〉,
for 2 ≤ t ≤ 5.

What does the integral represent?

We have

c ′(t) = 〈4,−3, 12〉;
‖c ′(t)‖ =

√

42 + (−3)2 + 122 =
√
169 = 13;

ds = ‖c ′(t)‖dt = 13dt;
∫

C 1ds =
∫ 5
2 1 · 13dt

= 13t |52
= 39.

This is the length of the line segment from the point
c(2) = (8,−6, 24) to the point c(5) = (20,−15, 60).
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Line and Surface Integrals Line Integrals

Calculating Mass

The general principle that “the integral of a density is the total
quantity” applies to scalar line integrals.

For example, we can view the curve C as a wire with continuous mass
density ρ(x , y , z), given in units of mass per unit length.

The total mass is defined as the integral of mass density:

Total mass of C =

∫

C
ρ(x , y , z)ds .
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Line and Surface Integrals Line Integrals

Justification of the Total Mass Formula

We justify the formulas for the total mass by dividing C into N arcs Ci
of length ∆si with N large.

The mass density is nearly constant on Ci . There-
fore, the mass of Ci is approximately ρ(Pi )∆si ,
where Pi is any sample point on Ci .

The total mass is the sum

Total mass of C =
N∑

i=1

mass of Ci ≈
N∑

i=1

ρ(Pi )∆si .

As the maximum of the lengths ∆si tends to zero, the sums on the
right approach the line integral.
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Line and Surface Integrals Line Integrals

Example: Scalar Line Integral as Total Mass

Find the total mass of a wire in the shape of the parabola y = x2, for
1 ≤ x ≤ 4 (in cm), with mass density given by ρ(x , y) = y

x
g/cm.

The arc of the parabola is parametrized by c(t) = 〈t, t2〉 for
1 ≤ t ≤ 4.

We compute ds:

c ′(t) = 〈1, 2t〉;
ds = ‖c ′(t)‖dt =

√
1 + 4t2dt.

We write out the integrand and evaluate:
∫

C ρ(x , y)ds =
∫ 4
1 ρ(c(t))‖c ′(t)‖dt

=
∫ 4
1

t2

t

√
1 + 4t2dt

u=1+4t2
= 1

8

∫ 65
5

√
udu

= 1
12u

3/2 |655
= 1

12(65
3/2 − 53/2) g.

George Voutsadakis (LSSU) Advanced Calculus March 2018 33 / 135



Line and Surface Integrals Line Integrals

Calculating Electric Potential

Scalar line integrals are also used to compute electric potentials.

When an electric charge is distributed continuously along a curve C,
with charge density ρ(x , y , z), the charge distribution sets up an
electrostatic field E that is a conservative vector field.

Coulomb’s Law tells us that E = ∇V , where

V (P) = k

∫

C

ρ(x , y , z)ds

rP(x , y , x)
.

In this integral,

rP(x , y , z) denotes the distance from (x , y , z) to P ;
The constant k has the value k = 8.99x109 N·m2/C2.

The function V is called the electric potential. It is defined for all
points P that do not lie on C and has units of volts (one volt is one
N·m/C).
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Line and Surface Integrals Line Integrals

Example: Electric Potential

A charged semicircle of radius R cen-
tered at the origin in the xy -plane has
charge density ρ(x , y , 0) = 10−8(2− x

R
)

C/m.
Find the electric potential at a point
P = (0, 0, a) if R = 0.1 m.
Parametrize the semicircle by c(t) =
〈R cos t,R sin t, 0〉, −π

2 ≤ t ≤ π
2 .

‖c ′(t)‖ = ‖〈−R sin t,R cos t, 0〉‖ = R ;
ds = ‖c ′(t)‖dt = Rdt;

ρ(c(t)) = 10−8(2− R cos t
R

) = 10−8(2− cos t).

In our case, the distance rP from P to a point (x , y , 0) on the
semicircle has the constant value rP =

√
R2 + a2.
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Line and Surface Integrals Line Integrals

Example: Electric Potential (Cont’d)

Thus, we obtain

V (P) = k
∫

C
ρ(x ,y ,z)ds
rP(x ,y ,z)

= k
∫

C
10−8(2−cos t)Rdt√

R2+a2

= 10−8kR√
R2+a2

∫ π/2
−π/2 (2− cos t)dt

= 10−8kR√
R2+a2

(2t − sin t) |π/2−π/2

= 10−8kR√
R2+a2

(2π − 2).

With R = 0.1 m and k ≈ 9× 109, we then obtain
10−8kR(2π − 2) ≈ 9(2π − 2). Hence V (P) ≈ 9(2π−2)√

0.01+a2
volts.
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Line and Surface Integrals Line Integrals

Oriented Curves

A specified direction along a path curve C is called an orientation.

We refer to this direction as the positive direction along C.
The opposite direction is the negative direction.

C provided with an orientation is called an oriented curve.

In the left figure, if we reversed the orientation, the positive direction
would become the direction from Q to P .
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Line and Surface Integrals Line Integrals

Tangential Component of Vector Field

Let T = T (P) denote the unit tangent vector at a point P on C
pointing in the positive direction.

The tangential component of F at P is
the dot product

F (P) · T (P) = ‖F (P)‖‖T (P)‖ cos θ
= ‖F (P)‖ cos θ,

where θ is the angle between F (P) and
T (P).
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Line and Surface Integrals Line Integrals

Vector Line Integral

The vector line integral of F is the scalar line integral of the scalar
function F · T .

We make the standing assumption that C is piece-wise smooth (it
consists of finitely many smooth curves joined together with possible
corners).

Definition (Vector Line Integral)

The line integral of a vector field F along an oriented curve C is the
integral of the tangential component of F :

∫

C
F · ds =

∫

C
(F · T )ds.
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Line and Surface Integrals Line Integrals

Parametrizing Line Integrals

We use parametrizations to evaluate vector line integrals.

The parametrization c(t) must be:

positively oriented, i.e., c(t) must trace C in the positive direction;
regular, i.e., c ′(t) 6= 0, for a ≤ t ≤ b.

Then c ′(t) is a nonzero tangent vector pointing in the positive

direction, and T = c ′(t)
‖c ′(t)‖ .

In terms of the arc length differential ds = ‖c ′(t)‖dt, we have

(F · T )ds =

(

F (c(t)) · c ′(t)
‖c ′(t)‖

)

‖c ′(t)‖dt = F (c(t)) · c ′(t)dt.
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Line and Surface Integrals Line Integrals

Evaluating Line Integrals

Therefore, the integral
∫

C (F · T )ds can be rewritten
∫ b

a
F (c(t)) · c ′(t)dt:

Theorem (Computing a Vector Line Integral)

If c(t) is a regular parametrization of an oriented curve C for a ≤ t ≤ b,
then ∫

C
F · ds =

∫ b

a

F (c(t)) · c ′(t)dt.

It is useful to think of ds as a “vector line element” or “vector
differential” that is related to the parametrization by the symbolic
equation

ds = c ′(t)dt.
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Line and Surface Integrals Line Integrals

Example

Evaluate
∫

C F · ds, where F = 〈z , y2, x〉 and C is parametrized (in the
positive direction) by c(t) = 〈t + 1, et , t2〉, for 0 ≤ t ≤ 2.

We calculate the integrand:

c(t) = 〈t + 1, et , t2〉;
F (c(t)) = 〈z , y2, x〉 = 〈t2, e2t , t + 1〉;

c ′(t) = 〈1, et , 2t〉.
The integrand (as a differential) is the dot product:

F (c(t)) · c ′(t)dt = 〈t2, e2t , t + 1〉 · 〈1, et , 2t〉dt = (e3t + 3t2 + 2t)dt.

Finally, we evaluate the integral:
∫

C F · ds =
∫ 2
0 F (c(t)) · c ′(t)dt

=
∫ 2
0 (e3t + 3t2 + 2t)dt = (13e

3t + t3 + t2) |20
= (13e

6 + 8 + 4)− 1
3 = 1

3(e
6 + 35).
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Line and Surface Integrals Line Integrals

Example

Let F (x , y , z) = 〈z2, x , y〉 and C be the path
c(t) = 〈3 + 5t2, 3− t2, t〉, 0 ≤ t ≤ 2.
Evaluate the line integral

∫

C F · ds.

c(t) = 〈3 + 5t2, 3− t2, t〉, 0 ≤ t ≤ 2;
F (c(t)) = 〈z2, x , y〉 = 〈t2, 3 + 5t2, 3− t2〉;

c ′(t) = 〈10t,−2t, 1〉;
F (c(t)) · c ′(t)dt = 〈t2, 3 + 5t2, 3− t2〉 · 〈10t,−2t, 1〉dt

= (10t3 − 2t(3 + 5t2) + 3− t2)dt
= (10t3 − 10t3 − 6t + 3− t2)dt
= (−t2 − 6t + 3)dt;

∫

C F · ds =
∫ 2
0 F (c(t)) · c ′(t)dt

=
∫ 2
0 (−t2 − 6t + 3)dt

= (−1
3t

3 − 3t2 + 3t) |20
= − 8

3 − 12 + 6 = −26
3 .
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Line and Surface Integrals Line Integrals

Alternative Notation

Another standard notation for the line integral
∫

C F · ds is
∫

C
F1dx + F2dy + F3dz .

In this notation, we write ds as a vector differential ds = 〈dx , dy , dz〉
so that F · ds = 〈F1,F2,F3〉 · 〈dx , dy , dz〉 = F1dx + F2dy + F3dz .

In terms of a parametrization c(t) = 〈x(t), y(t), z(t)〉,

ds = 〈dx , dy , dz〉 = 〈dx
dt
, dy
dt
, dz
dt
〉dt;

F · ds = (F1(c(t))
dx
dt

+ F2(c(t))
dy
dt

+ F3(c(t))
dz
dt
)dt.

So we have the following formula:
∫

C F1dx + F2dy + F3dz

=
∫ b

a
(F1(c(t))

dx
dt

+ F2(c(t))
dy
dt

+ F3(c(t))
dz
dt
)dt.
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Line and Surface Integrals Line Integrals

Example

Consider the ellipse C with counterclockwise orientation
parameterized by c(θ) = 〈5 + 4 cos θ, 3 + 2 sin θ〉 for 0 ≤ θ ≤ 2π.

Calculate
∫

C 2ydx − 3dy .

We have x(θ) = 5 + 4 cos θ and y(θ) = 3 + 2 sin θ. So dx
dθ = − 4 sin θ

and dy
dθ = 2cos θ. The integrand of the line integral is

2ydx − 3dy = (2y dx
dθ − 3dy

dθ )dθ
= (2(3 + 2 sin θ)(−4 sin θ)− 3(2 cos θ))dθ
= − (24 sin θ + 16 sin2 θ + 6cos θ)dθ.

Since the integrals of cos θ and sin θ over [0, 2π] are zero,

∫

C 2ydx − 3dy = −
∫ 2π
0 (24 sin θ + 16 sin2 θ + 6cos θ)dθ

= − 16
∫ 2π
0 sin2 θdθ = − 16

∫ 2π
0 (12 − 1

2 cos 2θ)dθ
= − 16(12θ − 1

4 sin 2θ) |2π0 = − 16π.
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Line and Surface Integrals Line Integrals

Example

Evaluate the line integral
∫

C zdx + x2dy + ydz, where C is
parameterized by c(t) = 〈cos t, tan t, t〉, with 0 ≤ t ≤ π

4 .

We have
x(t) = cos t, y(t) = tan t, z(t) = t;
dx
dt

= − sin t, dy
dt

= sec2 t, dz
dt

= 1.

Thus, we get

zdx + x2dy + ydz = (z dx
dt

+ x2 dy
dt

+ y dz
dt
)dt

= (−t sin t + cos2 t sec2 t + tan t)dt
= (−t sin t + 1 + tan t)dt.

Therefore, ∫

C zdx + x2dy + ydz

=
∫ π/4
0 (−t sin t + 1 + tan t)dt

= (t cos t − sin t + t − ln (cos t)) |π/40

=
√
2π
8 −

√
2
2 + π

4 − ln
√
2
2 .
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Line and Surface Integrals Line Integrals

Reversing Orientation and Additivity

Given an oriented curve C, we write −C to denote the curve C with
the opposite orientation. The unit tangent vector changes sign from
T to −T when we change orientation. So the tangential component
of F and the line integral also change sign:

∫

−C
F · ds = −

∫

C
F · ds.

If we are given n oriented curves C1, . . . , Cn, we write
C = C1 + · · ·+ Cn to indicate the union of the paths.

We define the line integral over C as the sum
∫

C
F · ds =

∫

C1
F · ds + · · · +

∫

Cn
F · ds.

We use this formula to define the line integral when C is piecewise
smooth, meaning that C is a union of smooth curves C1, . . . , Cn.
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Properties of Vector Line Integrals

Theorem (Properties of Vector Line Integrals)

Let C be a smooth oriented curve and let F and G be vector fields.

(i) Linearity:
∫

C
(F + G) · ds =

∫

C
F · ds +

∫

C
G · ds;

∫

C
kF · ds = k

∫

C
F · ds (k a constant)

(ii) Reversing Orientation:
∫

−C
F · ds = −

∫

C
F · ds

(iii) Additivity: If C is a union of n smooth curves C1 + · · ·+ Cn, then
∫

C
F · ds =

∫

C1
F · ds + · · · +

∫

Cn
F · ds.
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Line and Surface Integrals Line Integrals

Example

Compute
∫

C F · ds, where

F = 〈ez , ey , x + y〉
and C is the triangle joining (1, 0, 0),
(0, 1, 0), and (0, 0, 1) oriented counter-
clockwise when viewed from above.

The line integral is the sum of the line integrals over the edges of the
triangle: ∫

C
F · ds =

∫

AB

F · ds +

∫

BC

F · ds +

∫

CA

F · ds.

Segment AB is parametrized by c(t) = 〈1− t, t, 0〉, for 0 ≤ t ≤ 1.
We have

F (c(t)) · c ′(t) = 〈e0, et , 1〉 · 〈−1, 1, 0〉 = − 1 + et ;
∫

AB
F · ds =

∫ 1
0 (et − 1)dt = (et − t) |10= e − 2.
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Line and Surface Integrals Line Integrals

Example (Cont’d)

BC is parametrized by c(t) = 〈0, 1 − t, t〉, for 0 ≤ t ≤ 1. We have

F (c(t)) · c ′(t) = 〈et , e1−t , 1− t〉 · 〈0,−1, 1〉 = − e1−t + 1− t;
∫

BC
F · ds =

∫ 1
0 (−e1−t + 1− t)dt

= (e1−t + t − 1
2t

2) |10= 3
2 − e.

Finally, CA is parametrized by c(t) = 〈t, 0, 1− t〉 < for 0 ≤ t ≤ 1.
We have

F (c(t)) · c ′(t) = 〈e1−t , 1, t〉 · 〈1, 0,−1〉 = e1−t − t;
∫

CA
F · ds =

∫ 1
0 (e1−t − t)dt

= (−e1−t − 1
2t

2) |10= − 3
2 + e.

The total line integral is the sum
∫

C
F · ds = (e − 2) + (

3

2
− e) + (−3

2
+ e) = e − 2.
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Line and Surface Integrals Line Integrals

Example

Calculate the line integral of

F = 〈ez , ex−y , ey 〉
over the blue path from P to Q.

The line integral is the sum of the line integrals over the three edges
of the cube:∫

C
F · ds =

∫

PA

F · ds +

∫

AB

F · ds +

∫

BQ

F · ds.

Segment PA is parametrized by c(t) = 〈0, 0, t〉, for 0 ≤ t ≤ 1. We
have

F (c(t)) · c ′(t) = 〈et , 1, 1〉 · 〈0, 0, 1〉 = 1;
∫

PA
F · ds =

∫ 1
0 1dt = t |10= 1.
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Line and Surface Integrals Line Integrals

Example (Cont’d)

AB is parametrized by c(t) = 〈0, t, 1〉, for 0 ≤ t ≤ 1. We have

F (c(t)) · c ′(t) = 〈e, e−t , et〉 · 〈0, 1, 0〉 = − et ;
∫

AB
F · ds =

∫ 1
0 e−tdt

= (−e−t) |10= 1− 1
e
.

Finally, BQ is parametrized by c(t) = 〈−t, 1, 1〉 < for 0 ≤ t ≤ 1. We
have

F (c(t)) · c ′(t) = 〈e, e−t−1, e〉 · 〈−1, 0, 0〉 = − e;
∫

BQ
F · ds =

∫ 1
0 −edt

= − et |10= − e.

The total line integral is the sum
∫

C
F · ds = 1 + (1− 1

e
)− e = 2− 1

e
− e.
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Work Along a Straight Segment by a Constant Force

In physics, “work” refers to the energy expended when a force is
applied to an object as it moves along a path.

By definition, the work W performed along the straight segment from
P to Q by applying a constant force F at an angle θ

is given by

W = (tangential component of F )× distance = (‖F‖ cos θ)× PQ.
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Line and Surface Integrals Line Integrals

Work Along a Curve by a Force

When the force acts on the object along
a curved path C, it makes sense to de-
fine the work W performed as the line
integral

W =

∫

C
F · ds.

We can divide C into a large number of short consecutive arcs
C1, . . . , Cn, where Ci has length ∆si . The work Wi performed along Ci
is approximately equal to the tangential component F (Pi ) · T (Pi )
times the length ∆si , where Pi is a sample point in Ci . Thus we have

W =
N∑

i=1

Wi ≈
N∑

i=1

(F (Pi ) · T (Pi ))∆si .

The right side approaches
∫

C F · ds as the lengths ∆si tend to zero.
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Line and Surface Integrals Line Integrals

Work Moving an Object in a Force Field

Often, we are interested in calculating the work required to move an
object along a path in the presence of a force field F (such as an
electrical or gravitational field).

In this case, F acts on the object and we must work against the force
field to move the object.

The work required is the negative of the line integral giving the work
expended by the field force:

(Work performed against F ) = −
∫

C
F · ds.
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Example: Calculating Work

Calculate the work performed moving a particle from P = (0, 0, 0) to
Q = (4, 8, 1) along the path c(t) = (t2, t3, t) (in meters), for
1 ≤ t ≤ 2, in the presence of a force field F = 〈x2,−z ,− y

z
〉 in

newtons.

We have

F (c(t)) = F (t2, t3, t) = 〈t4,−t,−t2〉;
c ′(t) = 〈2t, 3t2, 1〉;

F (c(t)) · c ′(t) = 〈t4,−t,−t2〉 · 〈2t, 3t2, 1〉 = 2t5 − 3t3 − t2.

The work performed against the force field in joules is

W = −
∫

C F · ds = −
∫ 2
1 (2t5 − 3t3 − t2)dt

= − (13t
6 − 3

4 t
4 − 1

3t
3) |21= − (643 − 12− 8

3 − 1
3 + 3

4 +
1
3)

= − (563 + 3
4 − 12) = − 89

12 .
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Example

Calculate the work done by the force field F = 〈x , y , z〉 along the
path 〈cos t, sin t, t〉, for 0 ≤ t ≤ 3π.

We have

F (c(t)) = 〈cos t, sin t, t〉;
c ′(t) = 〈− sin t, cos t, 1〉;

F (c(t)) · c ′(t) = 〈cos t, sin t, t〉 · 〈− sin t, cos t, 1〉 = t.

The work performed by the force field is

W =
∫

C F · ds

=
∫ 3π
0 F (c(t)) · c ′(t)dt

=
∫ 3π
0 tdt = 1

2t
2 |3π0 = 9

2π
2.
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Line and Surface Integrals Line Integrals

Flux Across a Plane Curve

Line integrals are also used to compute the
“flux across a plane curve”, defined as the
integral of the normal component of a vector
field, rather than the tangential component.
Suppose that a plane curve C is parametrized
by c(t), for a ≤ t ≤ b. Let n = n(t) =

〈y ′(t),−x ′(t)〉, en(t) =
n(t)

‖n(t)‖ .
These vectors are normal to C and point to the right as you follow the
curve in the direction of c. The flux across C is the integral of the
normal component F · en , obtained by integrating F (c(t)) · n(t):

Flux across C =

∫

C
(F · en)ds =

∫ b

a

F (c(t)) · n(t)dt.

If F is the velocity field of a fluid (a two-dimensional fluid), then the
flux is the quantity of water flowing across the curve per unit time.
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Example: Flux across a Curve

Calculate the flux of the velocity vector field v =

〈3+2y− y2

3 , 0〉 (in centimeters per second) across
the quarter ellipse c(t) = 〈3 cos t, 6 sin t〉, for 0 ≤
t ≤ π

2 .

The vector field along the path is

v(c(t)) = 〈3 + 2(6 sin t)− (6 sin t)2

3
, 0〉 = 〈3 + 12 sin t − 12 sin2 t, 0〉.

The tangent vector is

c ′(t) = 〈−3 sin t, 6 cos t〉.
Thus

n(t) = 〈6 cos t, 3 sin t〉.
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Example: Flux across a Curve (Cont’d)

We found

v(c(t)) = 〈3 + 12 sin t − 12 sin2 t, 0〉;
n(t) = 〈6 cos t, 3 sin t〉.

Compute the dot product

v(c(t)) · n(t) = 〈3 + 12 sin t − 12 sin2 t, 0〉 · 〈6 cos t, 3 sin t〉
= (3 + 12 sin t − 12 sin2 t)(6 cos t)
= 18 cos t + 72 sin t cos t − 72 sin2 t cos t.

Integrate to obtain the flux:
∫ b

a
v(c(t)) · n(t)dt

=
∫ π/2
0 (18 cos t + 72 sin t cos t − 72 sin2 t cos t)dt

= (18 sin t + 36 sin2 t − 24 sin3 t) |π/20

= 18 + 36− 24 = 30 cm2/s.
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Line and Surface Integrals Conservative Vector Fields

Subsection 3

Conservative Vector Fields
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Line and Surface Integrals Conservative Vector Fields

Notation

For convenience, when a particular parametrization c(t) of an oriented
curve C is specified, we will denote the line integral

∫

C F · ds by

∫

c
F · ds.

When the curve C is closed, we often refer
to the line integral as the circulation of F

around C.
Then, we denote the integral with the sym-
bol ∮

C
F · ds .
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Line and Surface Integrals Conservative Vector Fields

Fundamental Theorem for Conservative Vector Fields

Our first result establishes the fundamental
path independence of conservative vector
fields, which means that the line integral
of F along a path from P to Q depends
only on the endpoints P and Q, not on the
particular path followed.

Theorem (Fundamental Theorem for Conservative Vector Fields)

Assume that F = ∇V on a domain D.

1. If c is a path from P to Q in D, then

∫

c
F · ds = V (Q) − V (P).

In particular, F is path-independent.

2. The circulation around a closed path c (P = Q) is zero:
∮

c F · ds = 0.
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Line and Surface Integrals Conservative Vector Fields

Fundamental Theorem (Cont’d)

Let c(t) be a path in D for a ≤ t ≤ b, with c(a) = P and c(b) = Q.
Then

∫

c
F · ds =

∫

c
∇V · ds =

∫ b

a

∇V (c(t)) · c ′(t)dt.

However, by the Chain Rule for Paths,

d

dt
V (c(t)) = ∇V (c(t)) · c ′(t).

Thus we can apply the Fundamental Theorem of Calculus:
∫

c F · ds =
∫ b

a
d
dt
V (c(t))dt = V (c(t)) |ba

= V (c(b))− V (c(a)) = V (Q)− V (P).

This proves both the equation and path independence, because the
quantity V (Q)− V (P) depends only on P ,Q, not on the path c.

If c is a closed path, then P = Q and V (Q)− V (P) = 0.
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Line and Surface Integrals Conservative Vector Fields

Example I

Let F = 〈2xy + z , x2, x〉.
(a) Verify that V (x , y , z) = x2y + xz is a potential

function.

(b) Evaluate
∫

c F · ds, where c is a path from
P = (1,−1, 2) to Q = (2, 2, 3).

(a) The partial derivatives of V (x , y , z) = x2y + xz are the components
of F : ∂V

∂x
= 2xy + z ,

∂V

∂y
= x2,

∂V

∂z
= x .

Therefore, ∇V = 〈2xy + z , x2, x〉 = F .
(b) By the theorem, the line integral over any path c(t) from

P = (1,−1, 2) to Q = (2, 2, 3) has the value
∫

c F · ds = V (Q)− V (P) = V (2, 2, 3) − V (1,−1, 2)
= (22(2) + 2(3)) − (12(−1) + 1(2)) = 13.
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Line and Surface Integrals Conservative Vector Fields

Example II

Find a potential function for F = 〈2x + y , x〉
and use it to evaluate

∫

c F · ds, where c is any
path from (1, 2) to (5, 7).
We will develop later a general method for find-
ing potential functions.

At this point we can see by inspection that V (x , y) = x2 + xy

satisfies ∇V = F :

∂V

∂x
= 2x + y ,

∂V

∂y
= x .

Therefore, for any path c from (1, 2) to (5, 7),
∫

c F · ds = V (5, 7) − V (1, 2)
= (52 + 5(7)) − (12 + 1(2)) = 57.
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Line and Surface Integrals Conservative Vector Fields

Example III: Integral around a Closed Path

Let V (x , y , z) = xy sin (yz). Evaluate

∮

C
∇V · ds,

where C is the closed curve shown.

By the theorem, the integral of a gradient vector around any closed
path is zero. So we have

∮

C
∇V · ds = 0.
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Line and Surface Integrals Conservative Vector Fields

Example

Consider the vector field F = z
x
i + j + ln xk and the function

V (x , y , z) = y + z ln x .

Verify that V is a potential function for F and evaluate the line
integral of F over the circle (x − 4)2 + y2 = 1 in the clockwise
direction.

We have
∂V

∂x
=

z

x
,

∂V

∂y
= 1,

∂V

∂z
= ln x .

Therefore ∇V = F .

Since C is a closed curve and F is a conservative vector field, we get
∮

C
F · ds = 0.
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Line and Surface Integrals Conservative Vector Fields

Characterization of Conservativeness

Theorem

A vector field F on an open connected domain D is path-independent if
and only if it is conservative.

We have already shown that conservative vector fields are
path-independent. So we assume that F is path-independent and
prove that F has a potential function. To simplify the notation, we
treat the case of a planar vector field F = 〈F1,F2〉.

Choose a point P0 in D. For any
point P = (x , y) ∈ D, define V (P) =
V (x , y) =

∫

c F · ds, where c is any
path in V from P0 to P .

Note that this definition of V (P) is meaningful only because we are
assuming that the line integral does not depend on the path c.
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Line and Surface Integrals Conservative Vector Fields

Characterization of Conservativeness (Cont’d)

We prove that F = ∇V , which involves showing that ∂V
∂x = F1 and

∂V
∂y = F2. We will only verify the first equation, as the second can be
checked in a similar manner.

Let c1 be the horizontal path c1(t) = 〈x + t, y〉, for 0 ≤ t ≤ h. For
|h| small enough, c1 lies inside D. Let c + c1 denote the path c

followed by c1. It begins at P0 and ends at (x + h, y). So

V (x + h, y)− V (x , y) =
∫

c+c1
F · ds −

∫

c F · ds

= (
∫

c F · ds +
∫

c 1
F · ds)−

∫

c F · ds

=
∫

c 1
F · ds.

The path c1 has tangent vector c ′
1(t) = 〈1, 0〉. So

F (c1(t)) · c ′
1(t) = 〈F1(x + t, y),F2(x + t, y)〉 · 〈1, 0〉

= F1(x + t, y);

V (x + h, y)− V (x , y) =
∫

c1
F · ds =

∫ h

0 F1(x + t, y)dt.
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Line and Surface Integrals Conservative Vector Fields

Characterization of Conservativeness (Conclusion)

Using the substitution u = x + t, we have

V (x + h, y)− V (x , y)

h
=

1

h

∫ h

0
F1(x + h, y)dt =

1

h

∫ x+h

x

F1(u, y)du.

The integral on the right is the average value of F1(u, y) over the
interval [x , x + h]. It converges to the value F1(x , y) as h → 0. This
yields the desired result:

∂V

∂x
= lim

h→0

V (x + h, y)− V (x , y)

h

= lim
h→0

1

h

∫ x+h

x

F1(u, y)du

= F1(x , y).
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Line and Surface Integrals Conservative Vector Fields

Total Energy

The Conservation of Energy principle says that the sum KE + PE of
kinetic and potential energy remains constant in an isolated system.

We show now that conservation of energy is valid for the motion of a
particle of mass m under a force field F if F has a potential function.

This explains why the term “conservative” is used to describe vector
fields that have a potential function.

We follow the convention in physics of writing the potential function
with a minus sign: F = −∇V .

When the particle is located at P = (x , y , z), it is said to have
potential energy V (P).

Suppose that the particle moves along a path c(t).

The particle’s velocity is v = c ′(t), and its kinetic energy is
KE = 1

2m‖v‖2 = 1
2mv · v .

By definition, the total energy at time t is the sum
E = KE + PE = 1

2mv · v + V (c(t)).

George Voutsadakis (LSSU) Advanced Calculus March 2018 72 / 135



Line and Surface Integrals Conservative Vector Fields

Conservation of Energy

Theorem (Conservation of Energy)

The total energy E of a particle moving under the influence of a
conservative force field F = −∇V is constant in time. That is, dE

dt
= 0.

Let a = v ′(t) be the particle’s acceleration and let m be its mass.
According to Newton’s Second Law of Motion, F (c(t)) = ma(t).
Thus,

dE
dt

= d
dt
(12mv · v + V (c(t)))

= mv · a +∇V (c(t)) · c ′(t) (Product and Chain Rules)
= v ·ma − F · v (since F = −∇V and c ′(t) = v)
= v · (ma − F )
= 0. (since F = ma)
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Conservativeness and Cross-Partials

We showed that every conservative vector field satisfies the
cross-partials condition:

∂F1

∂y
=

∂F2

∂x
,

∂F2

∂z
=

∂F3

∂y
,

∂F3

∂x
=

∂F1

∂z
.

Does this condition guarantee that F is conservative?

The answer is a qualified yes:

The cross-partials condition does guarantee that F is conservative, but
only on domains D with a property called simple-connectedness.
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Simple-Connectedness

Roughly speaking, a domain D in the plane is simply-connected if it
does not have any “holes”.

More precisely, D is simply-connected if every loop in D can be drawn
down, or “contracted”, to a point while staying within D.

Example: Disks, rectangles and the entire plane are simply-connected
regions in R2. The disk with a point removed as in the third figure is
not simply-connected. In R3, the interiors of balls and boxes are
simply-connected, as is the entire space R3.
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Existence of a Potential Function

Theorem (Existence of a Potential Function)

Let F be a vector field on a simply-connected domain D. If F satisfies the
cross-partials condition, then F is conservative.

Example (Finding a Potential Function): Show that
F = 〈2xy + y3, x2 + 3xy2 + 2y〉 is conservative and find a potential
function.

First we observe that the cross-partial derivatives are equal:

∂F1
∂y = ∂

∂y (2xy + y3) = 2x + 3y2;
∂F2
∂x = ∂

∂x (x
2 + 3xy2 + 2y) = 2x + 3y2.

Furthermore, F is defined on all of R2, which is a simply-connected
domain. Therefore, a potential function exists.
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Finding a Potential Function (Cont’d)

The potential function V satisfies ∂V
∂x = F1(x , y) = 2xy + y3. This

tells us that V is an antiderivative of F1(x , y), regarded as a function
of x alone:

V (x , y) =
∫
F1(x , y)dx =

∫
(2xy + y3)dx = x2y − xy3 + g(y).

(To obtain the general antiderivative of F1(x , y) with respect to x ,
we must add on an arbitrary function g(y) depending on y alone.)

Similarly,
V (x , y) =

∫
F2(x , y)dy =

∫
(x2 + 3xy2 + 2y)dy

= x2y + xy3 + y2 + h(x).

The two expressions for V (x , y) must be equal:

x2y + xy3 + g(y) = x2y + xy3 + y2 + h(x).

This tells us that g(y) = y2 and h(x) = 0, up to the addition of an
arbitrary numerical constant C . Thus we obtain the general potential
function V (x , y) = x2y + xy3 + y2 + C .
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Example (Finding a Potential Function)

Find a potential function for F = 〈2xy
z
, z + x2

z
, y − x2y

z2
〉.

If a potential function V exists, then it satisfies

V (x , y , z) =
∫ 2xy

z
dx = x2y

z
+ f (y , z);

V (x , y , z) =
∫
(z + x2

z
)dy = zy + x2y

z
+ g(x , z);

V (x , y , z) =
∫
(y − x2y

z2
)dz = yz + x2y

z
+ h(x , y).

These three ways of writing V (x , y , z) must be equal:

x2y

z
+ f (y , z) = zy +

x2y

z
+ g(x , z) = yz +

x2y

z
+ h(x , y).

These equalities hold if f (y , z) = yz , g(x , z) = 0, and h(x , y) = 0.
Thus F is conservative and, for any constant C , a potential function

is V (x , y , z) = x2y
z

+ yz + C .
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Example

Evaluate the circulation
∮

C sin xdx + z cos ydy + sin ydz , where C is
the ellipse 4x2 + 9y2 = 36 oriented clockwise.
We have

∮

C
sin xdx + z cos ydy + sin ydz =

∮

C
F · ds,

where F (x , y , z) = 〈sin x , z cos y , sin y〉.
Since

∂F1

∂y
= 0 =

∂F2

∂x
,

∂F1

∂z
= 0 =

∂F3

∂x
,

∂F2

∂z
= cos y =

∂F3

∂y
,

and F is defined on R3, which is simply connected, we conclude by
the theorem that F is conservative.
Thus, since C is a closed curve, we have

∮

C
sin xdx + z cos ydy + sin ydz =

∮

C
F · ds = 0.
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Example

Calculate the work expedited when a
particle is moved from O to Q along
OP and PQ in the presence of the force
field F (x , y) = 〈x2, y2〉.

Note that ∂F1
∂y = 0 = ∂F2

∂x .

Moreover F is defined on R2, which is simply connected.

Thus, F is conservative.

It is easy to see that a potential function for F is V (x , y) = x3

3 + y3

3 .

Hence we have

W = −
∫

C
F · ds = −

∫

C
∇V · ds = V (Q)− V (O) =

1

3
+

1

3
=

2

3
.
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Assumptions Matter

We cannot expect the method for finding a potential function to work
if F does not satisfy the cross-partials condition (because in this case,
no potential function exists).

Example: Consider F = 〈y , 0〉. If we attempted to find a potential
function, we would calculate

V (x , y) =
∫
ydx = xy + g(y);

V (x , y) =
∫
0dy = 0 + h(x).

There is no choice of g(y) and h(x) for which xy + g(y) = h(x).

If there were, we could differentiate this equation twice, once with
respect to x and once with respect to y . This would yield 1 = 0,
which is a contradiction.
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The Vortex Field

Consider the vortex field

F = 〈 −y

x2 + y2
,

x

x2 + y2
〉.

Claim: The vortex field satisfies the cross-
partials condition but is not conservative.

We check the cross-partials condition directly:

∂
∂x (

x
x2+y2 ) =

(x2+y2)−x ∂

∂x
(x2+y2)

(x2+y2)2
= y2−x2

(x2+y2)2
;

∂
∂y (

−y
(x2+y2)2

) =
−(x2+y2)+y ∂

∂y
(x2+y2)

(x2+y2)2
= y2−x2

(x2+y2)2
.
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The Vortex Field (Cont’d)

Now consider the line integral of F around the unit circle C
parametrized by c(t) = 〈cos t, sin t〉. We have
F (c(t)) · c ′(t) = 〈− sin t, cos t〉 · 〈− sin t, cos t〉 = sin2 t + cos2 t = 1.
So, we get

∮

c
F · ds =

∫ 2π

0
F (c(t)) · c ′(t)dt =

∫ 2π

0
dt = 2π 6= 0.

If F were conservative, its circulation around every closed curve would
be zero.

Note that the domain D = {(x , y) 6= (0, 0)} of F does not satisfy the
simply-connected condition of the theorem.
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Subsection 4

Parametrized Surfaces and Surface Integrals
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Parametrized Surfaces

Just as parametrized curves are a key ingredient in the discussion of
line integrals, surface integrals require the notion of a parametrized
surface.

A parametrized surface is a surface S whose points are described in
the form

G (u, v) = (x(u, v), y(u, v), z(u, v)).

The variables u, v (called parameters) vary in a region D called the
parameter domain.

Two parameters u and v are needed to parametrize a surface because
the surface is two-dimensional.
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Example

The figure below shows a plot of the surface S with the
parametrization

G (u, v) = (u + v , u3 − v , v3 − u).

This surface consists of all points (x , y , z) in R3, such that

x = u + v , y = u3 − v , z = v3 − u,

for (u, v) in D = R2.
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Parametrization of a Cone

Find a parametrization of the portion S of the
cone with equation x2 + y2 = z2 lying above or
below the disk x2 + y2 ≤ 4. Specify the domain
D of the parametrization.
This surface x2 + y2 = z2 is a cone whose hori-
zonal cross section at height z = u is the circle
x2 + y2 = u2 of radius u.

So a point on the cone at height u has coordinates (u cos v , u sin v , u)
for some angle v . Thus, the cone has the parametrization

G (u, v) = (u cos v , u sin v , u).

Since we are interested in the portion of the cone where
x2 + y2 = u2 ≤ 4, the height variable u satisfies −2 ≤ u ≤ 2. The
angular variable v varies in the interval [0, 2π). Therefore, the
parameter domain is D = [−2, 2] × [0, 2π).
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Parametrization of a Cylinder

The cylinder of radius R with equation x2 + y2 = R2 is conveniently
parametrized in cylindrical coordinates.

Points on the cylinder have cylindrical coordinates (R , θ, z).

So we use θ and z as parameters (with fixed R). We obtain the
Parametrization of a Cylinder:

G (θ, z) = (R cos θ,R sin θ, z),

0 ≤ θ < 2π, −∞ < z < ∞.
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Parametrization of a Sphere

The sphere of radius R with center at the origin is parametrized
conveniently using spherical coordinates (ρ, θ, φ), with ρ = R .

Parametrization of a Sphere:

G (θ, φ) = (R cos θ sinφ,R sin θ sinφ,R cos θ),

0 ≤ θ < 2π, 0 ≤ φ ≤ π.

The North and South Poles correspond to φ = 0 and φ = π with any
value of θ (the map G fails to be one-to-one at the poles).
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Parametrization of a Sphere (Cont’d)

We gave the parametrization

G (θ, φ) = (R cos θ sinφ,R sin θ sinφ,R cos θ),

0 ≤ θ < 2π, 0 ≤ φ ≤ π.
G maps each horizontal segment φ = c (0 < c < π) to a latitude (a
circle parallel to the equator);
G maps each vertical segment θ = c to a longitudinal arc from the the
North Pole to the South Pole.
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Parametrization of a Graph

The graph of a function z = f (x , y) always has the following simple
parametrization:

Parametrization of a Graph:

G (x , y) = (x , y , f (x , y)).

In this case the parameters are x , y .
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Grid Curves on a Surface

Suppose that a surface S has a parametrization

G (u, v) = (x(u, v), y(u, v), z(u, v))

that is one-to-one on a domain D. We shall always assume that G is
continuously differentiable, meaning that the functions x(u, v),
y(u, v) and z(u, v) have continuous partial derivatives.

In the uv -plane, we can form a
grid of lines parallel to the co-
ordinates axes. These grid lines
correspond under G to a system
of grid curves on the surface.

More precisely, the horizontal and vertical lines through (u0, v0) in the
domain correspond to the grid curves G (u, v0) and G (u0, v) that
intersect at the point P = G (u0, v0).
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Tangent and Normal Vectors to the Surface

Consider the tangent vectors to these grid curves:

T u(P) = ∂G
∂u (u0, v0) = 〈∂x∂u (u0, v0),

∂y
∂u (u0, v0),

∂z
∂u (u0, v0)〉;

T v (P) = ∂G
∂v (u0, v0) = 〈∂x∂v (u0, v0),

∂y
∂v (u0, v0),

∂z
∂v (u0, v0)〉.

The parametrization G is called regular at P if the following cross
product is nonzero:

n(P) = n(u0, v0) = T u(P)× T v (P).

In this case, T u and T v span the tangent plane to S at P and n(P)
is a normal vector to the tangent plane. We call n(P) a normal to

the surface S.
We often write n instead of n(P) or n(u, v), but it is understood that
the vector n varies from point to point on the surface.

Similarly, we often denote the tangent vectors by T u and T v .

Note that T u , T v and n need not be unit vectors.
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Example

Consider the parametrization

G (θ, z) = (2 cos θ, 2 sin θ, z)

of the cylinder x2 + y2 = 4:

(a) Describe the grid curves.

(b) Compute T θ, T z , and n(θ, z).

(c) Find an equation of the tangent
plane at P = G(π4 , 5).

(a) The grid curves on the cylinder through P = (θ0, z0) are

G (θ, z0) = (2 cos θ, 2 sin θ, z0) (circle of radius 2 at height z = z0)
G (θ0, z) = (2 cos θ0, 2 sin θ0, z) (vertical line through P with θ = θ0)
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Example (Part (b))

(b) The partial derivatives of G (θ, z) = (2 cos θ, 2 sin θ, z) give us the
tangent vectors

T θ = ∂G
∂θ = ∂

∂θ (2 cos θ, 2 sin θ, z) = 〈−2 sin θ, 2 cos θ, 0〉;
T z = ∂G

∂z = ∂
∂z (2 cos θ, 2 sin θ, z) = 〈0, 0, 1〉.

Observe that T θ is tangent to the θ-grid curve and T z is tangent to
the z-grid curve.

The normal vector is

n(θ, z) = T θ × T z =

∣
∣
∣
∣
∣
∣

i j k

−2 sin θ 2 cos θ 0
0 0 1

∣
∣
∣
∣
∣
∣

= 2cos θi + 2 sin θj .

The coefficient of k is zero, so n points directly out of the cylinder.
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Example (Part (c))

(c) We have G (θ, z) = (2 cos θ, 2 sin θ, z) and
n(θ, z) = 〈2 cos θ, 2 sin θ, 0〉.
For θ = π

4 , z = 5,

P = G (
π

4
, 5) = 〈

√
2,
√
2, 5〉, n = n(

π

4
, 5) = 〈

√
2,
√
2, 0〉.

The tangent plane through P has normal vector n. Thus it has
equation √

2(x −
√
2) +

√
2(y −

√
2) = 0.

Equivalently,
x + y = 2

√
2.

The tangent plane is vertical (because z does not appear in the
equation).
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Example

Calculate the tangent vectors and the normal to the surface

G (θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ)

at θ = π
2 and φ = π

4 .

We have

T θ =
∂G
∂θ = 〈− sin θ sinφ, cos θ sinφ, 0〉;

Tφ = ∂G
∂φ = 〈cos θ cosφ, sin θ cosφ,− sinφ〉.

Therefore,

T θ(
π
2 ,

π
4 ) = 〈− sin π

2 sin
π
4 , cos

π
2 sin

π
4 , 0〉 = 〈−

√
2
2 , 0, 0〉;

Tφ = 〈cos π
2 cos

π
4 , sin

π
2 cos

π
4 ,− sin π

4 〉 = 〈0,
√
2
2 ,−

√
2
2 〉;

n(π2 ,
π
4 ) =

∣
∣
∣
∣
∣
∣
∣

i j k

−
√
2
2 0 0

0
√
2
2 −

√
2
2

∣
∣
∣
∣
∣
∣
∣

= − 1
2 j − 1

2k .
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Example: Helicoid Surface

Describe the surface S with parametrization
G (u, v) = (u cos v , u sin v , v), −1 ≤ u ≤ 1, 0 ≤ v < 2π. Compute
n(u, v) at u = 1

2 , v = π
2 .

For each fixed value u = a, the curve
G (a, v) = (a cos v , a sin v , v) is a helix
of radius a. Therefore, as u varies from
−1 to 1, G (u, v) describes a family of
helices of radius u. The resulting sur-
face is a “helical ramp”.
The tangent and normal vectors are

T u = ∂G
∂u = 〈cos v , sin v , 0〉; T v = ∂G

∂v = 〈−u sin v , u cos v , 1〉;

n(u, v) = T u × T v =

∣
∣
∣
∣
∣
∣

i j k

cos v sin v 0
−u sin v u cos v 1

∣
∣
∣
∣
∣
∣

= (sin v)i − (cos v)j + uk .

At u = 1
2 , v = π

2 , we have n = i + 1
2k .
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Normal Vector of the Parametrization of the Sphere

Consider the standard parametrization of the sphere of radius R
centered at the origin C (θ, φ) = (R cos θ sinφ,R sin θ sinφ,R cosφ).

Since the distance from G (θ, φ) to the origin is R , the unit radial
vector at G (θ, φ) is obtained by dividing by R :

er = 〈cos θ sinφ, sin θ sinφ, cos φ〉.
Furthermore,

T θ = 〈−R sin θ sinφ,R cos θ sinφ, 0〉;
Tφ = 〈R cos θ cosφ,R sin θ cosφ,−R sinφ〉;

n = T θ × Tφ =

∣
∣
∣
∣
∣
∣

i j k

−R sin θ sinφ R cos θ sinφ 0
R cos θ cosφ R sin θ cosφ −R sinφ

∣
∣
∣
∣
∣
∣

= − R2 cos θ sin2 φi − R2 sin θ sin2 φj − R2 cosφ sinφk

= − R2 sinφ〈cos θ sinφ, sin θ sinφ, cosφ〉
= − (R2 sinφ)e r .

The outward-pointing normal vector is n = Tφ × T θ = (R2 sinφ)er .
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Area of a Surface Element

Assume, for simplicity, that D is a
rectangle (the argument also applies
to more general domains). Divide D
into a grid of small rectangles Rij of
size ∆u ×∆v . Compare the area of
Rij with the area of its image under
G . This image is a “curved” paral-
lelogram Sij = G (Rij).

First, we note that if ∆u and ∆v are small, then the curved
parallelogram Sij has approximately the same area as the “genuine”

parallelogram with sides
−→
PQ and

−→
PS .

Recall that the area of the parallelogram spanned by two vectors is

the length of their cross product Area(Sij ) ≈ ‖−→PQ ×−→
PS‖.
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Area of a Surface Element (Cont’d)

Use linear approximation to estimate the vectors
−→
PQ and

−→
PS :

−→
PQ = G (uij +∆u, vij)− G (uij , vij) ≈ ∂G

∂u (uij , vij)∆u = T u∆u;−→
PS = G (uij , vij +∆v)− G (uij , vij) ≈ ∂G

∂v (uij , vij)∆v = T v∆v .

Thus we have

Area(Sij ) ≈ ‖T u∆u × T v∆v‖ = ‖T u ×T v‖∆u∆v .

Since n(uij , vij ) = T u × T v and Area(Rij) = ∆u∆v , we obtain

Area(Sij) ≈ ‖n(uij , vij)‖Area(Rij ).

Conclusion: ‖n‖ is a distortion factor that measures how the area of a
small rectangle Rij is altered under the map G .
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Area of a Surface

To compute the surface area of S, we assume:
G is one-to-one, except possibly on the boundary of D;
G is regular, except possibly on the boundary of D.
Recall that “regular” means that n(u, v) is nonzero.

The entire surface S is the union of the small patches Sij . So we can
apply the approximation on each patch to obtain

Area(S) =
∑

i ,j

Area(Sij ) ≈
∑

i ,j

‖n(uij , vij)‖∆u∆v .

The sum on the right is a Riemann sum for the double integral of
‖n(u, v)‖ over the parameter domain D. As ∆u and ∆v tend to
zero, these Riemann sums converge to a double integral, which we
take as the definition of surface area:

Area(S) =
∫∫

D
‖n(u, v)‖dudv .
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Example

Use spherical coordinates to compute the surface area of a sphere of
radius R .

The parametrization using spherical coordinates is

G (θ, φ) = (R cos θ sinφ,R sin θ sinφ,R cosφ).

So we have

T θ = 〈−R sin θ sinφ,R cos θ sinφ, 0〉;
Tφ = 〈R cos θ cosφ,R sin θ cosφ,−R sinφ〉;

n =

∣
∣
∣
∣
∣
∣

i j k

−R sin θ sinφ R cos θ sinφ 0
R cos θ cosφ R sin θ cosφ −R sinφ

∣
∣
∣
∣
∣
∣

= 〈−R2 cos θ sin2 φ,−R sin θ sin2 φ,−R2 sinφ cosφ〉;

George Voutsadakis (LSSU) Advanced Calculus March 2018 103 / 135



Line and Surface Integrals Parametrized Surfaces and Surface Integrals

Example (Cont’d)

Now we get

‖n‖
=

√

(−R2 cos θ sin2 φ)2 + (−R sin θ sin2 φ)2 + (−R2 sinφ cosφ〉)2

=
√

R4[(cos2 θ + sin2 θ) sin4 φ+ sin2 φ cos2 φ]

= R2
√

sin2 φ(sin2 φ+ cos2 φ)

= R2| sinφ|;
Therefore

Area =
∫ 2π
0

∫ π
0 ‖n‖dφdθ

= R2
∫ 2π
0

∫ π
0 | sinφ|dφdθ

= R2
∫ 2π
0

∫ π
0 sinφdφdθ

= R2
∫ 2π
0 − cosφ |π0 dθ

= R2
∫ 2π
0 2dθ = R22 · 2π = 4πR2.
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Surface Integral

We define the surface integral of a function f (x , y , z):

∫∫

S
f (x , y , z)dS .

Choose a sample point Pij = G (uij , vij) in each small patch Sij and
form the sum:

∑

i ,j f (Pij)Area(Sij ).

The limit of these sums as ∆u and ∆v tend to zero (if it exists) is
the surface integral:

∫∫

S
f (x , y , z)dS = lim

∆u,∆v→0

∑

i ,j

f (Pij )Area(Sij).
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Evaluating Surface Integrals

To evaluate the surface integral
∫∫

S f (x , y , z)dS , we write
∑

i ,j

f (Pij)Area(Sij) ≈
∑

i ,j

f (G (uij , vij))‖n(uij , vij)‖∆u∆v .

On the right we have a Riemann sum for the double integral of
f (G (u, v))‖n(u, v)‖ over the parameter domain D.

If G is continuously differentiable, we can show the two sums in the
displayed equation approach the same limit:

Theorem (Surface Integrals and Surface Area)

Let G (u, v) be a parametrization of a surface S with parameter domain D.
Assume that G is continuously differentiable, one-to-one, and regular
(except possibly at the boundary of D). Then

∫∫

S
f (x , y , z)dS =

∫∫

D
f (G (u, v))‖n(u, v)‖dudv .

For f (x , y , z) = 1, we get Area(S) =
∫∫

D ‖n(u, v)‖dudv .
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Example

Calculate the surface area of the portion S
of the cone x2 + y2 = z2 lying above the
disk x2+y2 ≤ 4. Then calculate

∫∫

S x2zdS .

A parametrization of the cone is G (θ, t) =
(t cos θ, t sin θ, t), 0 ≤ t ≤ 2, 0 ≤ θ < 2π.

Compute the tangent and normal vectors:

T θ =
∂G
∂θ = 〈−t sin θ, t cos θ, 0〉, T t =

∂G
∂t = 〈cos θ, sin θ, 1〉,

n = T θ ×T t =

∣
∣
∣
∣
∣
∣

i j k

−t sin θ t cos θ 0
cos θ sin θ 1

∣
∣
∣
∣
∣
∣

= t cos θi + t sin θj − tk.

The normal vector has length

‖n‖ =
√

t2 cos2 θ + t2 sin2 θ + (−t)2 =
√
2t2 =

√
2|t|.

Thus, dS = ‖n‖dθdt =
√
2|t|dθdt t≥0

=
√
2tdθdt.
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Example (Cont’d)

Calculate the surface area:

Area(S) =
∫∫

D ‖n‖dudv =
∫ 2
0

∫ 2π
0

√
2tdθdt

=
∫ 2
0 2

√
2πtdt =

√
2πt2 |20= 4

√
2π.

Calculate the surface integral. We express f (x , y , z) = x2z in terms
of the parameters t and θ:
f (G (θ, t)) = f (t cos θ, t sin θ, t) = (t cos θ)2t = t3 cos2 θ. Now we
have

∫∫

S f (x , y , z)dS =
∫ 2
0

∫ 2π
0 f (G (θ, t))‖n(θ, t)‖dθdt

=
∫ 2
0

∫ 2π
0 (t3 cos2 θ)(

√
2t)dθdt

=
√
2(
∫ 2
0 t4dt)(

∫ 2π
0 cos2 θdθ)

=
√
2(
∫ 2
0 t4dt)(

∫ 2π
0 (12 + 1

2 cos 2θ)dθ)

=
√
2(325 )(π) =

32
√
2π

5 .
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Example

Let S = G (D), where D = {(u, v) : u2 + v2 ≤ 1, u ≥ 0, v ≥ 0} and
G (u, v) = (2u + 1, u − v , 3u + v).

Calculate the surface area of S.
We have

T u = ∂G
∂u = 〈2, 1, 3〉; T v = ∂G

∂v = 〈0,−1, 1〉;

n =

∣
∣
∣
∣
∣
∣

i j k

2 1 3
0 −1 1

∣
∣
∣
∣
∣
∣

= 〈4,−2,−2〉; ‖n‖ =
√
24 = 2

√
6.

So we get

Area =
∫∫

D ‖n‖dudv =
∫ 1
0

∫√
1−v2

0 2
√
6dudv

= 2
√
6
∫ 1
0

√
1− v2dv

v = sin θ

= 2
√
6
∫ π/2
0 cos2 θdθ

= 2
√
6
∫ π/2
0

1
2(1 + cos 2θ)dθ

=
√
6(θ + 1

2 sin 2θ) |
π/2
0 =

√
6π
2 .
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Total Mass of and Total Charge on a Surface

A surface with mass density ρ(x , y , z) (in units of mass per area) is
the surface integral of the mass density:

(Mass of S) =
∫∫

S
ρ(x , y , z)dS .

Similarly, if an electric charge is distributed over S with charge
density ρ(x , y , z), then the surface integral of ρ(x , y , z) is the total
charge on S,

(Total Charge on S) =
∫∫

S
ρ(x , y , z)dS .
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Computing Total Charge on a Surface

Find the total charge (in coulombs) on a sphere S of radius 5 cm
whose charge density in spherical coordinates is ρ(θ, φ) = 0.003 cos2 φ
C/cm2.

We parametrize S in spherical coordinates:

G (θ, φ) = (5 cos θ sinφ, 5 sin θ sinφ, 5 cos φ).

We have shown that ‖n‖ = 52 sinφ. Now we have

Total Charge =
∫∫

S ρ(θ, φ)dS =
∫ 2π
0

∫ π
0 ρ(θ, φ)‖n‖dφdθ

=
∫ 2π
0

∫ π
0 (0.003 cos2 φ)(25 sin φ)dφdθ

= (0.075)(2π)
∫ π
0 cos2 φ sinφdφ

= 0.15π(− cos3 φ
3 ) |π0= 0.15π(23 ) = 0.1π C.

George Voutsadakis (LSSU) Advanced Calculus March 2018 111 / 135



Line and Surface Integrals Parametrized Surfaces and Surface Integrals

Surface Integral Over a Graph

When a graph z = g(x , y) is parametrized by
G (x , y) = (x , y , g(x , y)), the tangent and normal vectors are

T x = (1, 0, gx ), T y = (0, 1, gy ),

n = T x × T y =

∣
∣
∣
∣
∣
∣

i j k

1 0 gx
0 1 gy

∣
∣
∣
∣
∣
∣

= − gx i − gy j + k .

‖n‖ =
√

1 + g2
x + g2

y .

The surface integral over the portion of a graph lying over a domain
D in the xy -plane is

Surface integral
over a graph

=

∫∫

D
f (x , y , g(x , y))

√

1 + g2
x + g2

y dxdy .
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Example

Calculate
∫

S (z − x)dS , where S is the portion
of the graph of z = x + y2 where 0 ≤ x ≤ y ,
0 ≤ y ≤ 1.
Let z = g(x , y) = x + y2. Then gx = 1 and

gy = 2y . We get dS =
√

1 + g2
x + g2

y dxdy =
√

1 + 1 + 4y2dxdy =
√

2 + 4y2dxdy .
On the surface S, we have z = x + y2. Thus
f (x , y , z) = z − x = (x + y2)− x = y2. Now we get

∫∫

S f (x , y , z)dS =
∫ 1
0

∫ y

0 y2
√

2 + 4y2dxdy

=
∫ 1
0 (y2

√

2 + 4y2)x |y0 dy =
∫ 1
0 y3

√

2 + 4y2dy .

Substitute u = 2 + 4y2, du = 8ydy . Then y2 = 1
4 (u − 2). We get

∫ 1
0 y3

√

2 + 4y2dy = 1
8

∫ 6
2

1
4(u − 2)

√
udu = 1

32

∫ 6
2 (u3/2 − 2u1/2)du

= 1
32 (

2
5u

5/2 − 4
3u

3/2) |62 = 1
30(6

√
6 +

√
2).
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Example

Calculate
∫

S (xy + ez)dS , where S is the
triangle with vertices (0, 0, 3), (1, 0, 2) and
(0, 4, 1).
The plane contains the vectors 〈1, 0,−1〉 and
〈0, 4,−2〉.
Therefore a normal to the plane is given by

∣
∣
∣
∣
∣
∣

i j k

1 0 −1
0 4 −2

∣
∣
∣
∣
∣
∣

= 〈4, 2, 4〉.

Thus, the plane has equation 4x + 2y + 4(z − 3) = 0 or
z = g(x , y) = 3− x − 1

2y . So gx = − 1, gy = − 1
2 ,

dS =
√

1 + g2
x + g2

y dxdy =
√

1 + (−1)2 + (−1
2 )

2dxdy

=
√

9
4dxdy = 3

2dxdy ; f (x , y , z) = xy + ez = xy + e3−x− 1
2
y .
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Example (Cont’d)

Finally, we get

∫∫

S f (x , y , z)dS

=
∫ 4
0

∫ 1− 1
4
y

0 (xy + e3−x− y
2 )32dxdy

= 3
2

∫ 4
0 [12x

2y − e3−x− y
2 ]

1− y
4

0 dy

= 3
2

∫ 4
0 [12 (1−

y
4 )

2y − e3−(1− y
4
)− y

2 + e3−
y
2 ]dy

= 3
2

∫ 4
0 (y2 − y2

4 + y3

32 − e2−
y
4 + e3−

y
2 )dy

= 3
2 [

y2

4 − y3

12 + y4

128 + 4e2−
y
4 − 2e3−

y
2 ]40

= 3
2 [4− 16

3 + 2 + 4e − 2e − 4e2 + 2e3]

= 3
2 [

2
3 + 2e − 4e2 + 2e3]

= 1 + 3e − 6e2 + 3e3.
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Subsection 5

Surface Integrals of Vector Fields
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Orientation of a Surface

Flux through a surface goes from one side of the surface to the other.

To compute flux we need to specify a positive direction of flow.

This is done by means of an orientation, which is a choice of unit
normal vector en(P) at each point P of S, chosen in a continuously
varying manner.

The unit vectors −en(P) define the opposite orientation.

If en are outward-pointing unit normal vectors on a sphere, then a
flow from the inside of the sphere to the outside is a positive flux.
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Vector Surface Integrals

The normal component of a vector field F at
a point P on an oriented surface S is the dot
product

Normal component at P
= F (P) · en(P) = ‖F (P)‖ cos θ,

where θ is the angle between F (P) and en(P).
Often, we write en instead of en(P), but it is understood that en
varies from point to point on the surface.

The vector surface integral, denoted
∫∫

S F · dS is defined as the
integral of the normal component:

Vector surface integral:

∫∫

S
F · dS =

∫∫

S
(F · en)dS .

This quantity is also called the flux of F across or through S.
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Computing Vector Surface Integrals

An oriented parametrization G (u, v) is a regular parametrization
(meaning that n(u, v) is nonzero for all u, v) whose unit normal

vector defines the orientation: en = en(u, v) =
n(u,v)

‖n(u,v)‖ .
Applying the formula for the scalar surface integral to the function
F · en , we obtain

∫∫

S F · dS =
∫∫

D (F · en)‖n(u, v)‖dudv
=

∫∫

D F (G (u, v)) · ( n(u,v)
‖n(u,v)‖ )‖n(u, v)‖dudv

=
∫∫

D F (G (u, v)) · n(u, v)dudv .
This formula remains valid even if n(u, v) is zero at points on the
boundary of the parameter domain D.

If we reverse the orientation of S in a vector surface integral, n(u, v)
is replaced by −n(u, v) and the integral changes sign.

We can think of dS as a “vector surface element” that is related to a
parametrization by the symbolic equation dS = n(u, v)dudv .
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The Vector Surface Integral Theorem

Summarizing the work on the previous slide:

Theorem (Vector Surface Integral)

Let G (u, v) be an oriented parametrization of an oriented surface S with
parameter domain D. Assume that G is one-to-one and regular, except
possibly at points on the boundary of D. Then

∫∫

S
F · dS =

∫∫

D
F (G (u, v)) · n(u, v)dudv .

If the orientation of S is reversed, the surface integral changes sign.
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Example

Calculate
∫∫

S F · dS, where F = 〈0, 0, x〉 and S is the surface with
parametrization G (u, v) = (u2, v , u3 − v2), for 0 ≤ u ≤ 1, 0 ≤ v ≤ 1
and oriented by upward-pointing normal vectors.

Compute the tangent and normal vectors.

T u = 〈2u, 0, 3u2〉, T v = 〈0, 1,−2v〉,

n(u, v) = T u × T v =

∣
∣
∣
∣
∣
∣

i j k

2u 0 3u2

0 1 −2v

∣
∣
∣
∣
∣
∣

= − 3u2i + 4uv j + 2uk = 〈−3u2, 4uv , 2u〉.

The z-component of n is positive on the domain 0 ≤ u ≤ 1. So n is
the upward-pointing normal.
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Example (Cont’d)

We found n(u, v) = 〈−3u2, 4uv , 2u〉.
We now evaluate F · n.

F (G (u, v)) = 〈0, 0, x〉 = 〈0, 0, u2〉,
F (G (u, v)) · n(u, v) = 〈0, 0, u2〉 · 〈−3u2, 4uv , 2u〉 = 2u3.

Finally, we evaluate the surface integral.

∫∫

S F · dS =
∫ 1
0

∫ 1
0 F (G (u, v)) · n(u, v)dvdu

=
∫ 1
0

∫ 1
0 2u3dvdu

=
∫ 1
0 2u3du

= 1
2u

4 |10= 1
2 .
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Example: Integral over a Hemisphere

Calculate the flux of F = 〈z , x , 1〉 across the
upper hemisphere S of the sphere x2 + y2 +
z2 = 1, oriented with outward-pointing normal
vectors.
Parametrize the hemisphere by G (θ, φ) =
(cos θ sinφ, sin θ sinφ, cos φ), 0 ≤ φ ≤ π

2 , 0 ≤
θ ≤ 2π.

We have computed the outward-pointing normal vector
n = Tφ × Tφ = (R2 sinφ)e r = sinφ〈cos θ sinφ, sin θ sinφ, cosφ〉.
We now evaluate F · n:

F (G (θ, φ)) = 〈z , x , 1〉 = 〈cosφ, cos θ sinφ, 1〉;
F (G (θ, φ)) · n(θ, φ)
= 〈cosφ, cos θ sinφ, 1〉 · 〈cos θ sin2 φ, sin θ sin2 φ, cosφ sinφ〉
= cos θ sin2 φ cosφ+ cos θ sin θ sin3 φ+ cosφ sinφ.
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Example: Integral over a Hemisphere (Cont’d)

Finally, we evaluate the surface integral.

∫∫

S F · dS =
∫ π/2
0

∫ 2π
0 F (G (θ, φ)) · n(θ, φ)dθdφ

=
∫ π/2
0

∫ 2π
0 (cos θ sin2 φ cosφ+ cos θ sin θ sin3 φ

︸ ︷︷ ︸
Integral over θ is zero

+cosφ sinφ)dθdφ.

The integrals of cos θ and cos θ sin θ over [0, 2n] are both zero. So we
are left with

∫ π/2
0

∫ 2π
0 cosφ sinφdθdφ = 2π

∫ π/2
0 cosφ sinφdφ

= 2π sin2 φ
2 |π/20

= π.
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Example

Compute the integral
∫∫

S F · dS, where F = 〈x , y , ez 〉 and S is the
cylinder x2 + y2 = 4, 1 ≤ z ≤ 5, with the outward-pointing normal.

We use cylindrical coordinates x = r cos θ, y = r sin θ and z = z .

The cylinder in expressed as G (θ, z) = (2 cos θ, 2 sin θ, z),
0 ≤ θ ≤ 2π, 1 ≤ z ≤ 5. So we have:

T θ =
∂G
∂θ = 〈−2 sin θ, 2 cos θ, 0〉, T z = ∂G

∂θ = 〈0, 0, 1〉;

n = T θ × T z =

∣
∣
∣
∣
∣
∣

i j k

−2 sin θ 2 cos θ 0
0 0 1

∣
∣
∣
∣
∣
∣

= 〈2 cos θ, 2 sin θ, 0〉;

F = 〈x , y , ez 〉 = 〈2 cos θ, 2 sin θ, ez〉;
F · n = 〈2 cos θ, 2 sin θ, ez〉 · 〈2 cos θ, 2 sin θ, 0〉 = 4.

Now we get
∫∫

D F · dS =
∫ 2π
0

∫ 5
1 F · ndzdθ

=
∫ 2π
0

∫ 5
1 4dzdθ =

∫ 2π
0 16dθ = 32π.
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Example

Compute the integral
∫∫

S F · dS, where F = 〈xy , y , 0〉 and S is the
cone z2 = x2 + y2, x2 + y2 ≤ 4, z ≥ 0, with the downward-pointing
normal.

We use cylindrical coordinates x = r cos θ, y = r sin θ and z = z .

The cone in expressed as

G (r , θ) = (r cos θ, r sin θ, r), 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π.

So we have:

T θ =
∂G
∂θ = 〈−r sin θ, r cos θ, 0〉, T r =

∂G
∂r = 〈cos θ, sin θ, 1〉;

n = T θ ×T r =

∣
∣
∣
∣
∣
∣

i j k

−r sin θ r cos θ 0
cos θ sin θ 1

∣
∣
∣
∣
∣
∣

= 〈r cos θ, r sin θ,−r〉;

F = 〈xy , y , 0〉 = 〈r2 sin θ cos θ, r sin θ, 0〉;
F · n = 〈r2 sin θ cos θ, r sin θ, 0〉 · 〈r cos θ, r sin θ,−r〉 =

r3 sin θ cos2 θ + r2 sin2 θ.
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Example (Cont’d)

Now we get

∫∫

D F · dS =
∫ 2π
0

∫ 2
0 F · ndrdθ

=
∫ 2π
0

∫ 2
0 (r3 sin θ cos2 θ + r2 sin2 θ)dzdθ

=
∫ 2π
0 (14 r

4 sin θ cos2 θ + 1
3 r

3 sin2 θ) |20 dθ
=

∫ 2π
0 (4 sin θ cos2 θ + 8

3 sin
2 θ)dθ

= − 4
3 cos

3 θ |2π0 +8
3
1
2(θ − 1

2 sin 2θ) |2π0
= 8π

3 .
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Example: Integral over a Graph

Calculate the flux of F = x2j through the
surface S defined by y = 1 + x2 + z2 for
1 ≤ y ≤ 5. Orient S with normal pointing in
the negative y -direction.
This surface is the graph of y = 1+ x2 + z2,
where x and z are the independent variables.

We find a parametrization. Using x and z , because y is given
explicitly as a function of x and z , G (x , z) = (x , 1 + x2 + z2, z). The
condition 1 ≤ y ≤ 5 is equivalent to 1 ≤ 1 + x2 + z2 ≤ 5 or
0 ≤ x2 + z2 ≤ 4. Therefore, the parameter domain is the disk of
radius 2 in the xz-plane. I.e., we have D = {(x , z) : x2 + z2 ≤ 4}.
Because the parameter domain is a disk, it makes sense to use the
polar variables r and θ in the xz-plane. So we write x = r cos θ,
z = r sin θ. Then y = 1 + x2 + z2 = 1 + r2 and
G (r , θ) = (r cos θ, 1 + r2, r sin θ), 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2.
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Example: Integral over a Graph (Cont’d)

We compute the tangent and normal vectors.

T r = 〈cos θ, 2r , sin θ〉, T θ = 〈−r sin θ, 0, r cos θ〉,

n = T r × T θ =

∣
∣
∣
∣
∣
∣

i j k

cos θ 2r sin θ
−r sin θ 0 r cos θ

∣
∣
∣
∣
∣
∣

= 2r2 cos θi − r j + 2r2 sin θk .

The coefficient of j is −r . Because it is negative, n points in the
negative y -direction, as required.

We now evaluate F · n.
F (G (r , θ)) = x2i = r2 cos2 θj = 〈0, r2 cos2 θ, 0〉,
F (G (r , θ)) · n = 〈0, r2 cos2 θ, 0〉 · 〈2r2 cos θ,−r , 2r2 sin θ〉
= − r3 cos2 θ.

For the integral
∫∫

S F · dS =
∫∫

D F (G (r , θ)) · ndrdθ =
∫ 2π
0

∫ 2
0 (−r3 cos2 θ)drdθ

= − (
∫ 2π
0 cos2 θdθ)(

∫ 2
0 r3dr) = − (π)(2

4

4 ) = − 4π.
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The Flow Rate Through a Surface

Imagine dipping a net into a stream of
flowing water.
The flow rate is the volume of water that
flows through the net per unit time.
To compute the flow rate, let v be the ve-
locity vector field. At each point P , v(P)
is the velocity vector of the fluid particle
located at the point P .

Claim: The flow rate through a surface S is equal to the surface
integral of v over S.
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Perpendicular Flow Through a Rectangular Surface

Suppose first that S is a rectangle of area A and that v is a constant
vector field with value v0 perpendicular to the rectangle.

The particles travel at speed ‖v0‖, say in meters per second. So a
given particle flows through S within a one-second time interval if its
distance to S is at most ‖v0‖ meters, i.e., if its velocity vector passes
through S.

Thus the block of fluid passing through S in a one-second interval is
a box of volume ‖v0‖A: Flow rate = (velocity)(area) = ‖v0‖A.
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Flow Through a Rectangular Surface

If the fluid flows at an angle θ relative to S, then the block of water is
a parallelepiped (rather than a box) of volume A‖v0‖ cos θ.

If n is a vector normal to S of length equal to the area A, then we
can write the flow rate as a dot product:

Flow rate = A‖v0‖ cos θ = v0 · n.
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Flow: The General Case

In the general case, the velocity field v is not constant, and the
surface S may be curved. Choose a parametrization G (u, v).
Consider a small rectangle of size ∆u × ∆v

mapped by G to a small patch S0 of S.
For any sample point G (u0, v0) in S0, the
vector n(u0, v0)∆u∆v is a normal vector of
length approximately equal to the area of S0.

This patch is nearly rectangular, so we have the approximation

Flow rate through S0 ≈ v(u0, v0) · n(u0, v0)∆u∆v .

The total flow per second is the sum of the flows through the small
patches. The limit of the sums as ∆u and ∆v tend to zero is the
integral of v(u, v) · n(u, v), which is the surface integral of v over S:

Flow Rate across S =

∫∫

S
v · dS.
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Example

Let v = 〈x2 + y2, 0, z2〉 be the velocity field (in centimeters per
second) of a fluid in R3. Compute the flow rate through the upper
hemisphere S of the unit sphere centered at the origin.

We use spherical coordinates: x = cos θ sinφ, y = sin θ sinφ,
z = cosφ. The upper hemisphere corresponds to the ranges
0 ≤ φ ≤ π

2 and 0 ≤ θ ≤ 2π.

We know that the upward-pointing normal is

n = (R2 sinφ)e r = sinφ〈cos θ sinφ, sin θ sinφ, cosφ〉.

Now we compute:

v = 〈x2 + y2, 0, z2〉 = 〈sin2 φ, 0, cos2 φ〉;
v · n = sinφ〈sin2 φ, 0, cos2 φ〉 · 〈cos θ sinφ, sin θ sinφ, cos φ〉

= sin4 φ cos θ + sinφ cos3 φ.
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Example (Cont’d)

Finally, for the integral, we have

∫∫

S v · dS =
∫ π/2
0

∫ 2π
0 (sin4 φ cos θ + sinφ cos3 φ)dθdφ

=
∫ π/2
0

∫ 2π
0 sinφ cos3 φdθdφ

= 2π
∫ π/2
0 cos3 φ sinφdφ

= 2π(− cos4 φ
4 ) |π/20

= π
2 cm3/s.

Since n is an upward-pointing normal, this is the rate at which fluid
flows across the hemisphere from below to above.
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