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Line and Surface Integrals  Vector Fields

Subsection 1

Vector Fields
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Line and Surface Integrals ~ Vector Fields

Vector Fields

o A vector field F in R3 assigns to each point P in a domain D a
vector F(P).

@ A vector field in R3 is represented by a vector whose components are
functions:

F(x,y,z) = (A(x,y,2), Fa(x,y, 2), F3(x, y, 2)).
@ To each point P = (a, b, c) is associated the vector F(a, b, c), which
is also denoted by F(P) = F1(P)i + F2(P)j + F3(P)k.
@ When drawing a vector field, we draw F(P) as a vector based at P
(rather than the origin).
@ The domain of F is the set of points P for which F(P) is defined.
@ Vector fields in the plane are written in a similar fashion:
F(x,y) = (Fi(x,y), Fa(x,y)) = F1i + F2j.
@ We will assume that the component functions F; are smooth, i.e.,
that they have partial derivatives of all orders on their domains.
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Line and Surface Integrals ~ Vector Fields

Example and Constant Vector Fields

@ Which vector is attached to the point P = (2, 4,2) by the vector field
F=(y—Z,X,Z—\/_)_/)?
The vector attached to P is F(2,4,2) = (4 —2,2,2 — \/4) = (2,2,0).
@ A constant vector field assigns the
same vector to every point in R3.
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Line and Surface Integrals ~ Vector Fields

Describing a Vector Field |

@ Describe the vector field G(x,y) =i + xj.

The vector field assigns the vector (1, a)
to the point (a, b). In particular, it as-
signs the same vector to all points with
the same x -coordinate.

G=(1x)

Notice that (1,a) has slope a and length /1 + a2.

We may describe G as the vector field assigning a vector of slope a
and length v/1 + a2 to all points with x = a.
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Line and Surface Integrals ~ Vector Fields

Describing a Vector Field Il

@ Describe the vector field F(x,y) = (—y,x) (-2,0)
To visualize F, observe that F(a,b) =

(—b, a) has length r = /a2 + b2. / /\N
It is perpendicular to the radial vector / K\fzv{‘”
(a, b) and points counterclockwise.

F=(-yx)

0,2)
(0,2)

Thus F is the vector field with vectors along the circle of radius r all
having length r and being tangent to the circle, pointing
counterclockwise.
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Line and Surface Integrals ~ Vector Fields

Unit and Radial Vector Fields

@ A unit vector field is a vector field F such that ||[F(P)|| = 1, for all
points P.

@ A vector field F is called a radial vector field if F(P) = f(x,y, z)r,
where f(x,y, z) is a scalar function.

We use the notation:
o r=(x,y)and r = (x> + y?)'/2 for n = 2;
o r={(x,y,z) and r = (x*> + y? + z?)¥/2 for n = 3.
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Line and Surface Integrals ~ Vector Fields

Examples

@ Two important examples are the unit radial vector fields in two and
three dimensions:
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Line and Surface Integrals ~ Vector Fields

Conservative Vector Fields

@ Recall the gradient vector field of a differentiable function V(x,y, z):

oV oV oV
F(x,y,z) =VV(x,y,z) = <§’@’E>

@ A vector field of this type is called a conservative vector field.

@ The function V(x,y,z) is called a potential function (or scalar
potential function) for F(x,y, z).

@ Recall that the gradient vectors are orthogo-
nal to the level curves.
Thus in a conservative vector field, the vector
at every point P is orthogonal to the level
curve through P.
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Line and Surface Integrals ~ Vector Fields

Example

o Verify that V(x,y, z) = xy + yz? is a potential function for the vector
field F(x,y,z) = {y,x + z2,2yz).
We compute the gradient of V:

ov v

v ey 2
Ox . Oy

ov
X+ z5, — =2yz.
0z

Thus, VV = (y,x + z?,2yz) = F, i.e,, V is a potential function for
F.
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Line and Surface Integrals ~ Vector Fields

Cross-Partial Property of a Conservative Vector Field

Theorem (Cross-Partial Property of a Conservative Vector Field)

If the vector field F(x,y,z) = (F1, F2, F3) is conservative, then

O _0F 0F O0F 0Fs_0R
dy ox’ 0z 9y’ 0ox 0z

o If F=VV, then F; = 3—3 Fr =4 and F3 = 4%. Now compute the
“cross” -partial derivatives
oh = 2(9V)= PV
dy - dy \ Ox 8y8x’
0 = 9(8V)— v
2% - ox \ dy Ox0y *
8 V _ 9%V OF _ 0F
Clairaut’s Theorem tells us that = Sxay- Thus, 5y = Ox

The other two equalities are proven S|m||ar|y.
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Line and Surface Integrals ~ Vector Fields

Example: A Non Conservative Function

@ Show that F(x,y,z) = (y,0,0) is not conservative.

We have
0F; 0 B % 0

oy o) "l ax T oax

Thus, %’;1 ] 8F2 By the theorem, F is not conservative, even though
the other cross—partials agree:
oF, OFs

OF3 0F1 _OF
Ox 0Oz =0 and dz Oy =0

—0=0.
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Line and Surface Integrals ~ Vector Fields

Example

(a) Find by inspection a potential function for F(x,y) = (x,0).
(b) Prove that G(x,y) = (y,0) is not conservative.

(a) Suppose V(x,y) is a potential function for F(x,y).

Then,
v v,
ox 7 oy

Thus, we can take V(x,y) = 2x2.

(b) We have

0Gy 0G;
ca g E2_y
oy T Ox 0

Since 861 9% G is not conservative.
ox
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Line and Surface Integrals ~ Vector Fields

Example

o Find a potential function for F(x,y) = (ye’¥, xe’) by inspection.
Suppose that V/(x,y) is a potential function for F.

Then we have
ov ov _

dy

xe™.

Therefore, we may take

V(x,y)=¢€".
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Line and Surface Integrals ~ Vector Fields

Constant Vector Fields

@ Show that any constant vector function F(x,y,z) = (a, b, c) is
conservative.
Suppose that V/(x,y, z) is a potential function for F.
Then we have
ov ov b ov

> b e

By integration,
V:3X+f1(yvz)a V:by-i-fz(X,Z), V:CZ+f3(X7y)'

Therefore, we can take

V(x,y,z) = ax + by + cz.
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Line and Surface Integrals ~ Vector Fields

Connected Domains

@ A domain is “connected” if any two points can be joined by a path
within the domain.

- -
L4 = 3 -~
4 ~
4 \
y: Q .
4 \
4 \
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1
P 1
1 '
1 ,l
v ¢
1 4
\ P ' <4
b e
N TR -
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Line and Surface Integrals ~ Vector Fields

Uniqueness of Potential Functions

Theorem (Uniqueness of Potential Functions)

If F is conservative on an open connected domain, then any two potential
functions of F differ by a constant.

o If both V; and V5 are potential functions of F, then
V(Vi— Vo) =VV; —VV,=F—-F=0.

However, a function whose gradient is zero on an open connected
domain is a constant function (this generalizes the fact from
single-variable calculus that a function on an interval with zero
derivative is a constant function). Thus Vj; — V, = C, for some
constant C. Hence V; = Vb + C.
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Line and Surface Integrals ~ Vector Fields

Unit Radial Vector Fields Revisited

@ Show that

V(x,y,z) =r=+/x2+y2+ 22

is a potential function for e,. l.e.,, e, = Vr.

We have
or 0 5 _ X X
8X_8X X“tyttz _'/X2+y2-|-22_r.

. or vy or z /Xy zZ\
Similarly, 3_y =7 and %7 Therefore, Vr = <— = —> =e,.

y
r
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Line and Surface Integrals ~ Vector Fields

Inverse-Square Vector Field

@ Show that 1
e, _ -1
2 v ( r ) ’
Recall the Chain Rule for Gradients
VF(r)=F'(r)Vr.

Recall, also, from the preceding example that Vr = e,.

Thus, we get
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Line and Surface Integrals ~ Vector Fields

Example

o Let ¢(x,y) =Inr, where r = \/x2% + y2.
Express V¢ in terms of e, in R2.

Recall again that
VF(r)=F'(r)Vr and Vr=e,.

Thus, we have

Vo=V(Inr)=(Inr)Vr= %e,.
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Line and Surface Integrals Line Integrals

Subsection 2

Line Integrals
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Line and Surface Integrals  Line Integrals

Scalar Line Integrals

@ We begin by defining the scalar line integral [.f(x,y,z)ds of a
function f over a curve C.

@ We divide C into N consecutive arcs Cq,...,Cp, and choose a sample
point P; in each arc C;.

C, Py

)

BN
~
>

C Py

@ We form the Riemann sum Z,N:l f(P;j)length(C;) = Z,N:l f(P)As;,
where As; is the length of C;.

@ The line integral of f over C is the limit (if it exists) of these
Riemann sums as the maximum of the Iengths As; approaches zero:

f = | F(P;)As;.
[ fxy.2)es {A;IT%Z( e
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Line and Surface Integrals  Line Integrals

Line Integrals and Length of a Curve

@ The scalar line integral of the function f(x,y,z) =1 is simply the
length of C.

In this case, all the Riemann sums have the same value:

/lds = length(C).
c

George Voutsadakis (LSSU) Advanced Calculus March 2018 24 /135



Line and Surface Integrals  Line Integrals

Line Integrals Using Parametrizations

@ Suppose that C has a parametrization ¢(t) for a < t < b with
continuous derivative ¢’(t). Recall that the derivative is the tangent
vector c/(t) = (xX'(t),y'(t),Z'(t)).

@ We divide C into N consecutive arcs

Cy,...,C, corresponding to a partition of o 7“ ) ey
the interval [a,b]: a=th < t; < - < W
ty_1 < ty = b so that d is parametrized : '

by c(t) for tji_1 < t < t;. €t

@ Choose sample points P; = c(t}) with t* in [ti_1, t;].
@ According to the arc length formula
£
length(C;) = As; = / /()|
ti—1
@ Because ¢/(t) is continuous, the function ||c’(t)|| is nearly constant
on [ti_1, tj] if the length At; = t; — tj_1 is small.
@ Thus, t?l—l ' (t)||dt = || (tF)||At;.
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Line and Surface Integrals  Line Integrals

Line Integrals Using Parametrizations (Cont'd)

@ This gives us the approximation

N N
D f(P)As =Y f(e(e)e(t)l| At
i=1 i=1

o By definition, the sum on the left converges to fc f(x,y,z)ds when
the maximum of the lengths At; tends to zero.

@ The sum on the right is a Riemann sum that converges to the integral
fab f(c(t))||c’(t)||dt as the maximum of the lengths At; tends to zero.

@ By estimating the errors in this approximation, we can show that the
two sums approach the same value.
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Line and Surface Integrals  Line Integrals

Computing a Scalar Line Integral

@ Our work in the preceding two slides gives:

Theorem (Computing a Scalar Line Integral)

Let c(t) be a parametrization of a curve C for a < t << b. If f(x,y, z)
and c/(t) are continuous, then

b
/Cf(x,y,z)ds=/a f(c(t))|c'(t)]|dt.

@ The symbol ds is intended to suggest arc length s and is often
referred to as the line element or arc length differential.

@ In terms of a parametrization, we have the symbolic equation
ds = ||c'(t)]|dt, where ||c'(t)]| = /x'(t)? + y/(t)2 + 2/(¢)2.
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Line and Surface Integrals  Line Integrals

Example: Integrating Along the Helix

o Calculate [,(x+y+ z)ds where C is the helix
c(t) = (cost,sint,t), for 0 < t <.
We compute ds:

c'(t) = (—sint,cost,1);
I'(t)]l = +/(=sint)2+cos?t+1=+/2;
ds = | c'(t)|dt = 2dt.
Jeflay,2)ds = [ f(e(®))le'(t)]dt

Jo (cost +sint + t)v/2dt
V2(sint — cos t + %t2) 5

V2(0+ 1+ i7?) —v2(0 -1 +0)
22 + 4772.
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Line and Surface Integrals  Line Integrals

Example: Arc Length

o Calculate [, 1ds for the helix ¢(t) = (cos t,sint, t), for 0 < t < m.
What does the integral represent?

We found ds = v/2dt.

It follows

/Clds: /Oﬂx/idtzwx/z

This is the length of the helix for 0 < t < 7.
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Line and Surface Integrals  Line Integrals

Example: Arc Length

o Calculate [, 1ds, where C is parameterized by c(t) = (4t,—3t,12t),

for 2 <t <5.
What does the integral represent?
We have
c(t) = (4,-3, 12)
I'(t)] = V#+ 2 1122 = /169 = 13;
ds = |c(t )||dt = 13dt,
[o1lds = [)1-13dt
= 13t)3
= 39

This is the length of the line segment from the point
c(2) = (8,—6,24) to the point ¢(5) = (20, —15, 60).
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Line and Surface Integrals  Line Integrals

Calculating Mass

@ The general principle that “the integral of a density is the total
quantity” applies to scalar line integrals.

@ For example, we can view the curve C as a wire with continuous mass
density p(x, y, z), given in units of mass per unit length.

@ The total mass is defined as the integral of mass density:

Total mass of C = /p(x,y,z)ds.
@
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Line and Surface Integrals  Line Integrals

Justification of the Total Mass Formula

@ We justify the formulas for the total mass by dividing C into N arcs C;
of length As; with N large.

The mass density is nearly constant on C;. There- y:%@/
fore, the mass of C; is approximately p(P;)As;, N
where P; is any sample point on C;. T

The total mass is the sum Mass =P NS
N N
Total mass of C = Z mass of C; ~ Z p(Pi)As;.
=i i=1

As the maximum of the lengths As; tends to zero, the sums on the
right approach the line integral.
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Line and Surface Integrals  Line Integrals

Example: Scalar Line Integral as Total Mass

o Find the total mass of a wire in the shape of the parabola y = x2, for
1 < x <4 (in cm), with mass density given by p(x,y) = £ g/cm.
The arc of the parabola is parametrized by ¢(t) = (t, t2) for
1<t <4
We compute ds:

cd(t) = (1,2t);
ds = |[c(t)]|dt = V1+ 4t3dt.

We write out the integrand and evaluate:

Jepbey)ds = [Fp(e(t)le(t)]dt
- [ V1T 4e2dt

— 2
Gy
= ﬁU/ ’5

(6532 —5%/2) g,
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Line and Surface Integrals  Line Integrals

Calculating Electric Potential

@ Scalar line integrals are also used to compute electric potentials.

@ When an electric charge is distributed continuously along a curve C,
with charge density p(x,y, z), the charge distribution sets up an
electrostatic field E that is a conservative vector field.

@ Coulomb’s Law tells us that E = V'V, where

_ p(x,y,z)ds
V(P) = k/cirp(x,y,x) .

In this integral,

e rp(x,y,z) denotes the distance from (x, y, z) to P;
o The constant k has the value k = 8.99x10° N-m?/C2.

@ The function V is called the electric potential. It is defined for all

points P that do not lie on C and has units of volts (one volt is one
N-m/C).
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Line and Surface Integrals  Line Integrals

Example: Electric Potential

@ A charged semicircle of radius R cen-
tered at the origin in the xy-plane has
charge density p(x,y,0) = 1078(2 — %)
C/m.

Find the electric potential at a point
P =(0,0,a) if R=0.1 m.

Parametrize the semicircle by c(t) = x (R cost, R sin 1)
(Rcost,Rsint,0), —5 <t < 7.

' (D) [(=Rsint, Rcost,0)[| = R;
ds |lc’(t)||dt = Rdt;
p(c(t)) = 1078(2 — Beest)y =1078(2 — cos t).
In our case, the distance rp from P to a point (x,y,0) on the
semicircle has the constant value rp = V' R? + 22.
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Line and Surface Integrals  Line Integrals

Example: Electric Potential (Cont'd)

@ Thus, we obtain

e 10-8(2—cos t)Rdt
V(P) = k[ Sorsle — [, 2 -Coree JRet

8 /2
= \1/%] 7/T/2(2—cost)dt

10-8kR . /2
= Jro (2t —sint) [w/z

—8
= (-2

With R = 0.1 m and k ~ 9 x 109, we then obtain

10-8kR(2r — 2) ~ 9(21 — 2). Hence V(P) ~ j% volts.
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Line and Surface Integrals  Line Integrals

Oriented Curves

@ A specified direction along a path curve C is called an orientation.
@ We refer to this direction as the positive direction along C.

@ The opposite direction is the negative direction.

@ C provided with an orientation is called an oriented curve.

y y
0=ct) N
c'(t) c(n)
<0 = V)

PEcla) P=0

In the left figure, if we reversed the orientation, the positive direction
would become the direction from Q@ to P.
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Line and Surface Integrals  Line Integrals

Tangential Component of Vector Field

o Let T = T(P) denote the unit tangent vector at a point P on C

pointing in the positive direction.
y
@ The tangential component of F at P is <o)

the dot product | £
/7
FENTE st |4~
IF(P)]| cos®, .

F(P)-T(P)

7 E~T is the length
/-"0f the projection
,," of F along T.

where 6 is the angle between F(P) and
T(P).
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Line and Surface Integrals  Line Integrals

Vector Line Integral

@ The vector line integral of F is the scalar line integral of the scalar
function F - T.

@ We make the standing assumption that C is piece-wise smooth (it
consists of finitely many smooth curves joined together with possible
corners).

Definition (Vector Line Integral)

The line integral of a vector field F along an oriented curve C is the
integral of the tangential component of F:

/CF~ds:/C(F~T)ds.
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Line and Surface Integrals  Line Integrals

Parametrizing Line Integrals

@ We use parametrizations to evaluate vector line integrals.
The parametrization ¢(t) must be:
o positively oriented, i.e., ¢(t) must trace C in the positive direction;
o regular, ie., c’(t) #0, fora<t < b.
Then ¢/(t) is a nonzero tangent vector pointing in the positive

direction, and T = %

@ In terms of the arc length differential ds = ||c/(t)||dt, we have

c'(t)
le' ()l

(F-T)ds = (F(c(t)) . ) |l '(t)|ldt = F(e(t)) - c'(t)dt.
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Line and Surface Integrals  Line Integrals

Evaluating Line Integrals

@ Therefore, the integral [, (F - T)ds can be rewritten
[P F(e(t)) - €(t)dt:

a

Theorem (Computing a Vector Line Integral)

If ¢(t) is a regular parametrization of an oriented curve C for a < t < b,
then

/C F.ds= /ab F(c(t)) - c/(¢)dt.

@ It is useful to think of ds as a “vector line element” or “vector
differential” that is related to the parametrization by the symbolic
equation

ds = c/(t)dt.
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Line and Surface Integrals  Line Integrals

Example

o Evaluate [, F - ds, where F = (z,y?,x) and C is parametrized (in the
positive direction) by c(t) = (t + 1,et,t?), for 0 < t < 2.
We calculate the integrand:

c(t) = (t+1le, %),
Fc(t)) = (z,y%x) = (t%,e¥ t+1);
c(t) = (1,€,2t).

The integrand (as a differential) is the dot product:
F(c(t))- c'(t)dt = (t?,e*, t +1) - (1, €', 2t)dt = (3 4 3t% + 2t)dt.

Finally, we evaluate the integral:

JoF-ds = fo F(c(t))- c'(t)dt
= f{) e3f+3t2+2t)dt (§ et + 13+ t2) |2
= 3e6-|-8-|-4)—— 3(e + 35).

George Voutsadakis (LSSU) Advanced Calculus March 2018 42 /135



Line and Surface Integrals  Line Integrals

Example

o Let F(x,y,z) = (z?,x,y) and C be the path
c(t)=(3+5t2,3-t2t),0<t <2
Evaluate the line integral [, F - ds.

c(t) = (+5t23—t2 t), 0<t<2
F(c(t)) = (Z%,x,y) = (t?,3+5t2,3 — t?);
c(t) = (10t,—2t,1);
F(c(t))-c'(t)dt = (2, 3+5t2 3 — t2) . (10t, —2t,1)dt
= (0P — 2B =5 £ G = tz)dt
= (10t3 —10t3 — 6t + 3 — t2)dt
= (—t*—6t+3)dt;
JeF-ds = [F(ew) e
=[S (~t*—6t+3)dt

(——t3 3t2 +3t) |3
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Line and Surface Integrals  Line Integrals

Alternative Notation

@ Another standard notation for the line integral fc F -dsis
/ Fidx + Fpdy + F3dz.
c

@ In this notation, we write ds as a vector differential ds = (dx, dy, dz)
so that F - ds = (Fy, Fp, F3) - (dx, dy, dz) = Fidx + Fady + F3dz.
@ In terms of a parametrization c(t) = (x(t), y(t), z(t)),

ds = (dx,dy,dz) = (%, %, &)dt:
F-ds = (Fi(c(t)% + Fa(e(t)% + Fs(c(t))%)dt.

So we have the following formula:

fC Fidx + Fody + F3dz
= [, (Fu(e(0)) % + Fac() % + Fa(c(t) %) dt
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Line and Surface Integrals  Line Integrals

Example

@ Consider the ellipse C with counterclockwise orientation
parameterized by ¢(0) = (5 + 4cos 6,3 + 2sinf) for 0 < 6 < 27.
Calculate [, 2ydx — 3dy.

We have x(0) =5+ 4cosf and y(0) = 3+ 2sinf. So & = — 4sin¢
and & 75 = 2cos . The integrand of the line integral is

2ydx —3dy = (2y% —3%)dd
= (2(3 —|— 2sin 6)(—4sin0) — 3(2cos 6))do
= —(24sin0 +16sin%6 + 6cos0)d6.

Since the integrals of cos§ and sin 6 over [0, 27| are zero,

Jo2ydx —3dy = (24sm¢9+16sm ¢9+6c059)d¢9
_ f(f“ sin 20d6 = — 16 fz” — 1 cos20)dg
= —16(560 — %sin20) |3 167r
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Example

@ Evaluate the line integral fc zdx + x?dy + ydz, where C is
parameterized by c(t) = (cos t,tant,t), with 0 <t < 7

We have
x(t) = cost, y(t)=tant, z(t)=1t;
& — —sint, Z}t’—sect 9 -1
Thus, we get
zdx + x°dy + ydz = (zdt +x2dy +y¢:/§)dt
= (—tsint+ cos?tsec? t + tant)dt
= (—tsint+ 1+ tant)dt.
Therefore, 5
Jo zdx + x*dy + ydz

— [T (—tsint+ 1+ tant)dt

= (tcost —sint +t—In(cost)) g /4
—Vor _ V2w \2
3 2 T3 7
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Reversing Orientation and Additivity

@ Given an oriented curve C, we write —C to denote the curve C with
the opposite orientation. The unit tangent vector changes sign from
T to — T when we change orientation. So the tangential component
of F and the line integral also change sign:

/ F-ds:—/F-ds.
-C c

@ If we are given n oriented curves Cy,...,C,, we write
C=C1+---+C, to indicate the union of the paths.

We define the line integral over C as the sum

/F-ds:/ F-ds+---+/ F - ds.
€ C1 n

We use this formula to define the line integral when C is piecewise
smooth, meaning that C is a union of smooth curves Cy,...,Cp.
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Properties of Vector Line Integrals

Theorem (Properties of Vector Line Integrals)

Let C be a smooth oriented curve and let F and G be vector fields.

(i) Linearity: /C(F-l-G)'dSZ/

F-ds-l—/G-ds;
c c

/kF-ds:k/F-ds (k a constant)
c c

(i) Reversing Orientation:

/ F'ds=—/F'ds
-C c

(iii) Additivity: If C is a union of n smooth curves C; + - - - + Cp,, then

/F-ds:/ F-ds-l—----l—/ F - ds.
C C1 n

George Voutsadakis (LSSU) Advanced Calculus March 2018 48 / 135



Line and Surface Integrals  Line Integrals

Example

o Compute [, F - ds, where
F=(e*,e,x+y)

and C is the triangle joining (1,0,0),
(0,1,0), and (0,0,1) oriented counter-
clockwise when viewed from above.

The line integral is the sum of the line integrals over the edges of the

triangle:
/F-ds:/ F-ds-i—/ F-ds-l—/ F - ds.
C AB BC CA

@ Segment AB is parametrized by c(t) = (1 —t,t,0), for 0 < t < 1.
We have
F(c(t)) - c'(t) (€% et 1) - (—1,1,0) = — 1+ ef;
FsF-ds = [i(et—1)dt=(ef—t)[f=e—2.
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Example (Cont'd)

o BC is parametrized by c(t) = (0,1 — t,t), for 0 < t < 1. We have
Fle(t))-c'(t) = (et el 1 —1)-(0,-1,1) = —el7t+1—1¢
fseF-ds = [l (—e"t+1—t)dt
N Y
o Finally, CA is parametrized by c(t) = (t,0,1 —t) < for 0 < t < 1.
We have
F(c(t)) - c(t) (e 1—’*,1, t) (1,0,—1) = el=t — t;

feaF-ds = [5(et —t)dt
= (—elf- t2)\0_—%+e.

The total line integral is the sum

3 3
/CF'ds=(e—2)+(§—e)+(—§+e)=e—2.
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Example

@ Calculate the line integral of 2=CLLD

F= (e, ¢e)

over the blue path from P to Q.

0,0, 1)

P=(0,0,0) II

The line integral is the sum of the line integrals over the three edges
of the cube:

/F-ds:/ F-ds-i—/ F-ds-i—/ F -ds.
€ PA AB BQ

@ Segment PA is parametrized by c(t) = (0,0, t), for 0 < t < 1. We

have
F(c(t))-c'(t) = (e'1,1)-(0,0,1) =1;

[z F-ds = [ildt=t]i=1.
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Example (Cont'd)

@ AB is parametrized by c(t) = (0,t,1), for 0 < t < 1. We have

F(C(t)) . C/(t) = <e, e—t7 et> . <0, 170> - _ et;
fagF-ds = [yetdt
= (=e7) |1— 1=
o Finally, BQ is parametrized by ¢(t) = (—t,1,1) < for 0 < t < 1. We
have
F(c(t))-c'(t) = (e,e L e)-(~1,0,0)= —e;
fogFds = [y —edt
= —et !(1)= —e.

The total line integral is the sum

/F-ds:1+(1—l)—e:2—1—e.
C e e

George Voutsadakis (LSSU) Advanced Calculus March 2018 52 / 135



Line and Surface Integrals  Line Integrals

Work Along a Straight Segment by a Constant Force

@ In physics, “work” refers to the energy expended when a force is
applied to an object as it moves along a path.

@ By definition, the work W performed along the straight segment from
P to Q by applying a constant force F at an angle 6

is given by

W = (tangential component of F) X distance = (||F|| cos ) x PQ.
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Work Along a Curve by a Force

@ When the force acts on the object along Py
a curved path C, it makes sense to de-
fine the work W performed as the line

integral /
W= / F - ds.
c i FP)

We can divide C into a large number of short consecutive arcs
Ci,...,Cn, where C; has length As;. The work W; performed along C;
is approximately equal to the tangential component F(P;) - T(P;)
times the length As;, where P; is a sample point in C;. Thus we have

N N
W=> Wi~ (F(P)- T(P))As;.
i=1 i=1

The right side approaches fc F - ds as the lengths As; tend to zero.

George Voutsadakis (LSSU) Advanced Calculus March 2018 54 / 135



Line and Surface Integrals  Line Integrals

Work Moving an Object in a Force Field

o Often, we are interested in calculating the work required to move an
object along a path in the presence of a force field F (such as an
electrical or gravitational field).

@ In this case, F acts on the object and we must work against the force
field to move the object.

@ The work required is the negative of the line integral giving the work
expended by the field force:

(Work performed against F) = —/ F - ds.
c
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Example: Calculating Work

o Calculate the work performed moving a particle from P = (0,0, 0) to
= (4,8, 1) along the path c(t) = (t2, t3,t) (in meters), for
1 <t <2, in the presence of a force field F = (x?, —z, — %) in

newtons.
We have
Fle(t) = F(2.6,0) = (¢ —t,—t2);
ity = (2t 3t2 >-
F(c(t))-c'(t) = (t' —t,—t2)-(2t,3t%,1) = 2t°> — 3¢3 — ¢2.
The work performed against the force field in joules is
W = —[,F-ds= — [7(2t5 -3t t?)dt
= (383 -_1p = (B -_12-8-143. 1

= —(2+3-12)=-
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Example

o Calculate the work done by the force field F = (x, y, z) along the
path (cos t,sint,t), for 0 < t < 3.

We have
F(c(t)) = (cost,sint,t);
c'(t) = (—sint,cost,1);
F(c(t))-c'(t) = (cost,sint,t)-(—sint,cost, 1) =t.

The work performed by the force field is
W = [.F-ds

= [TF(c(t))- c/(t)dt
= [T tdt = 32 |37= 3n2.
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Flux Across a Plane Curve

@ Line integrals are also used to compute the
“flux across a plane curve’, defined as the
integral of the normal component of a vector
field, rather than the tangential component.
Suppose that a plane curve C is parametrized

by ¢(t), for a < t < b. Let n = n(t) =
n

(/(£), =X (), en(t) = rd.

These vectors are normal to C and point to the right as you follow the

curve in the direction of c. The flux across C is the integral of the

normal component F - ep, obtained by integrating F(c(t)) - n(t):

Flux across C = / (F -en)ds = /b F(c(t)) - n(t)dt.
c

a

o If F is the velocity field of a fluid (a two-dimensional fluid), then the
flux is the quantity of water flowing across the curve per unit time.
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Example: Flux across a Curve

=

o Calculate the flux of the velocity vector field v =
(3+2y— y;, 0) (in centimeters per second) across
the quarter ellipse ¢(t) = (3cos t,6sin t), for 0 <
i

The vector field along the path is
6sin t)?
(65sint) 0

3 0) = (3+12sint —12sin’ £, 0).

v(c(t)) = (3+2(6sint) —

The tangent vector is
c'(t) = (—3sint,6cost).

Thus
n(t) = (6cos t,3sin t).
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Example: Flux across a Curve (Cont'd)

o We found

v(c(t)) = (3+12sint—12sin?t,0);
n(t) = (6cost,3sint).

Compute the dot product
v(c(t))-n(t) = (3+12sint—12sin?t,0)- (6cost,3sint)

= (3+12sint — 12sin?t)(6cos t)
= 18cost+ 72sintcost — 72sin? tcos t.

Integrate to obtain the flux:
b
Jiv(e ()) n(t)dt

= fo (18cos t + 72sin tcos t — 72sin? t cos t)dt

— (18sin t + 36sin? t — 24sin3t) |7/°
=18 +36 — 24 = 30 cm?/s.
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Subsection 3

Conservative Vector Fields
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Notation

@ For convenience, when a particular parametrization c(t) of an oriented
curve C is specified, we will denote the line integral fc F - ds by

/F-ds.
c

@ When the curve C is closed, we often refer ()
to the line integral as the circulation of F
around C. )

Then, we denote the integral with the sym-

bol
%F'ds. P=0Q
@
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Fundamental Theorem for Conservative Vector Fields

@ Our first result establishes the fundamental
path independence of conservative vector c
fields, which means that the line integral
of F along a path from P to @ depends
only on the endpoints P and @, not on the
particular path followed.

€

Theorem (Fundamental Theorem for Conservative Vector Fields)
Assume that F = V'V on a domain D.
1. If ¢ is a path from P to @ in D, then

/ F-ds=V(Q) - V(P).
(o

In particular, F is path-independent.
2. The circulation around a closed path ¢ (P = Q) is zero: fc F -ds=0.
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Fundamental Theorem (Cont'd)

o Let c(t) be a path in D for a < t < b, with ¢(a) = P and ¢(b) = Q.
Then

b
/F-ds:/VV-ds:/ VV(c(t)) - ¢(t)dt.
(o} C a
However, by the Chain Rule for Paths,

d /
< V(€(®) = VV(e(1) - /(t).

Thus we can apply the Fundamental Theorem of Calculus:

[eF-ds = [2dv(c(t))dt = V(e(t)) |5

a

= V(e(b)) — V(e(a)) = V(Q) — V(P).

This proves both the equation and path independence, because the
quantity V(Q) — V(P) depends only on P, Q, not on the path c.
If ¢ is a closed path, then P = Q and V(Q) — V(P) = 0.
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Conservative Vector Fields

Line and Surface Integrals

Example |
o Let F = (2xy + z,x?, x). i
o)
(a) Verify that V(x,y,z) = x?y + xz is a potential
function. P12 0=2.23
| i

(b) Evaluate [, F - ds, where c is a path from
P=(1,-1,2) to Q = (2,2,3).

(a) The partial derivatives of V/(x,y,z) = x?y + xz are the components
il oV v, v

—:2 — = — =
Ox X+ 2, dy X0 a2

Therefore, VV = (2xy + z,x?,x) = F.
(b) By the theorem, the line integral over any path c(t) from

P=(1,-1,2) to Q = (2,2,3) has the value
JcF-ds = V(Q)-V(P)=V(2,2,3)—-V(1,-1,2)
= () +2(3) - (1(-1) +1(2)) = 13
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Example Il

o Find a potential function for F = (2x + y, x)
and use it to evaluate [ F - ds, where c is any

path from (1,2) to (5,7). oo
We will develop later a general method for find-
ing potential functions. P =(1.2)

At this point we can see by inspection that V(x,y) = x% + xy
satisfies VV = F:

v _ 2x + v _ X
ox 4 oy
Therefore, for any path ¢ from (1,2) to (5,7),
JF-ds = V(5,7)—V(1,2)

= (62+5(7) - (12+1(2)) = 57.
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Example Ill: Integral around a Closed Path

o Let V(x,y,z) = xysin(yz). Evaluate <

%Vv-ds,
c

where C is the closed curve shown.

X Y
By the theorem, the integral of a gradient vector around any closed
path is zero. So we have

%Vv-ds:o.
c
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Example

@ Consider the vector field F = Zi + j + Inxk and the function
V(x,y,z) =y+zlnx.
Verify that V is a potential function for F and evaluate the line
integral of F over the circle (x — 4)? + y? = 1 in the clockwise
direction.

We have
ov _ z ov ov

IV _Z 2% _ 4 2 nx
Ox x' Oy " 0z nx

Therefore VV = F.
Since C is a closed curve and F is a conservative vector field, we get

7{F-ds=0.
C
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Characterization of Conservativeness

A vector field F on an open connected domain D is path-independent if
and only if it is conservative.

@ We have already shown that conservative vector fields are
path-independent. So we assume that F is path-independent and
prove that F has a potential function. To simplify the notation, we
treat the case of a planar vector field F

@ =G+4y)

P=(xy1 \
/

Py

Choose a point Py in D. For any
point P = (x,y) € D, define V(P) =
V(x,y) = [cF-ds, where c is any
path in V from Py to P.

e (x+h,y)

Domain D

Note that this definition of V/(P) is meaningful only because we are
assuming that the line integral does not depend on the path c.
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Characterization of Conservativeness (Cont'd)

@ We prove that F = V'V, which involves showing that % = F; and
%—y = F>. We will only verify the first equation, as the second can be
checked in a similar manner.

Let c; be the horizontal path ¢1(t) = (x + t,y), for 0 < t < h. For
|h| small enough, c; lies inside D. Let ¢ + ¢1 denote the path ¢

followed by c;. It begins at Py and ends at (x + h,y). So

Vix+hy)—Vixy) = fc+c1F'd5_ch'd5
= (JcF-ds+ [c F-ds)— [cF-ds
= J¢ F-ds.
The path ¢ has tangent vector ¢(t) = (1,0). So
F(ci(t)) - ci(t) = (RA(x+ty), Fa(x+t,y))-(1,0)
= F]_(X + tay);
V(x+hy) = V(xy) = [¢ F-ds= [} Fi(x+ty)dt.
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Characterization of Conservativeness (Conclusion)

@ Using the substitution u = x + t, we have

(X + ’yi)7 (X’y) = Z/ Fl(X + hay)dt = E/ Fl(”’-y)du'
o X

The integral on the right is the average value of Fi(u,y) over the
interval [x, x + h]. It converges to the value Fi(x,y) as h — 0. This
yields the desired result:

oV . V(x+hy)—V(xy)
— = lim
Ox h—0 h
1 X+hF y
= lim =
hTOh[( l(uay) u
— Fl(va)‘
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Total Energy

@ The Conservation of Energy principle says that the sum KE + PE of
kinetic and potential energy remains constant in an isolated system.

@ We show now that conservation of energy is valid for the motion of a
particle of mass m under a force field F if F has a potential function.
This explains why the term “conservative” is used to describe vector
fields that have a potential function.

@ We follow the convention in physics of writing the potential function
with a minus sign: F = -V V.

@ When the particle is located at P = (x,y, z), it is said to have
potential energy V(P).

@ Suppose that the particle moves along a path c(t).
The particle's veIocity is v = c/(t), and its kinetic energy is
KE=1im|v|?=1imv . v.

@ By definition, the total energy at time t is the sum
E = KE + PE = 2mv v+ V(c(t)).
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Conservation of Energy

Theorem (Conservation of Energy)

The total energy E of a particle moving under the influence of a

conservative force field F = —V V is constant in time. That is, € = 0.

1 E -
o Let a = v/(t) be the particle’s acceleration and let m be its mass.

According to Newton's Second Law of Motion, F(c(t)) = ma(t).
Thus,

% = %(%mv v+ V(c(t)))
= mv-a+VV(c(t)) c(t) (Product and Chain Rules)
= v-ma—F-v (since F=-VV and c'(t)=v)
= v-(ma—F)
= 0. (since F = ma)
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Conservativeness and Cross-Partials

@ We showed that every conservative vector field satisfies the
cross-partials condition:

OF _0F 0F _0F 0F _0R
dy ox' 0z 9y’ Ox 0z
@ Does this condition guarantee that F is conservative?

The answer is a qualified yes:

The cross-partials condition does guarantee that F is conservative, but
only on domains D with a property called simple-connectedness.
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Simple-Connectedness

@ Roughly speaking, a domain D in the plane is simply-connected if it
does not have any “holes”.

@ i 9%

Simply-connected regions
- D o~
@ @

<(:/ _ g |

Nonsimply-connected regions

@ More precisely, D is simply-connected if every loop in D can be drawn
down, or “contracted”, to a point while staying within D.
Example: Disks, rectangles and the entire plane are simply-connected
regions in R?. The disk with a point removed as in the third figure is
not simply-connected. In R3, the interiors of balls and boxes are
simply-connected, as is the entire space R3.
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Existence of a Potential Function

Theorem (Existence of a Potential Function)

Let F be a vector field on a simply-connected domain D. If F satisfies the
cross-partials condition, then F is conservative.

Example (Finding a Potential Function): Show that

F = (2xy + y3,x? 4+ 3xy? + 2y) is conservative and find a potential
function.

First we observe that the cross-partial derivatives are equal:

%_? = L2y +y?) =2x+3y%
% = Z(x®+3xy% +2y) = 2x + 3y2.

Furthermore, F is defined on all of R?, which is a simply-connected
domain. Therefore, a potential function exists.
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Finding a Potential Function (Cont'd)

o The potential function V satisfies 2¥ = Fi(x,y) = 2xy + y3. This
tells us that V is an antiderivative of F1(x, y), regarded as a function
of x alone:

V(x,y) = [ Filx,y)dx = [ (2xy +y®)dx = X%y — xy* + g(y).
(To obtain the general antiderivative of Fi(x,y) with respect to x,

we must add on an arbitrary function g(y) depending on y alone.)

Similarly,
Vix,y) = [Falx.y)dy = [(x*+3xy*+2y)dy
= X2y +xy3+y?+ h(x).

The two expressions for V(x,y) must be equal:
Xy +xv° +g(y) = Py +x7° + ¥ + h(x).

This tells us that g(y) = y? and h(x) = 0, up to the addition of an
arbitrary numerical constant C. Thus we obtain the general potential
function V(x,y) = x?y 4+ xy3 + y2 + C.
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Example (Finding a Potential Function)

2 2 2
(Thzt Ty =3
If a potential function V exists, then it satisfies

@ Find a potential function for F =

Vix,y,2) = [Zdx=%¥+f(y,z);
2
V(ix,y,z) = f(z—l—X;)dy—zy—i- y—i—g(xz)
2
Vix,y,z) = [(y— Xy)dz—yz-i-xy-i-h(x)/)

These three ways of writing V/(x, y, z) must be equal:

2 2 2
X X X
ot fly.2) =z + L +g(x2) = yz+ L+ h(x,).
These equalities hold if f(y,z) = yz, g(x,z) =0, and h(x,y) = 0.
Thus F is conservative and, for any constant C, a potential function

is V(x,y,z) = X27y—|—yz+ C.
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Example

o Evaluate the circulation fc sin xdx + z cos ydy + sin ydz, where C is
the ellipse 4x? 4 9y? = 36 oriented clockwise.
We have

j{sinxdx—i-zcosydy—i-sinydz = % F - ds,
c c

where F(x,y,z) = (sinx,zcosy,siny).
Since
O _,_0R OR _ . _OF OF OF3
Oy ox’ 0Oz ox’ 0Oz
and F is defined on R3, which is simply connected, we conclude by
the theorem that F is conservative.
Thus, since C is a closed curve, we have

j{sinxdx-l—zcosydy—l—sinydz:]{F-ds:O.
© ©
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Example

o Calculate the work expedited when a Y
particle is moved from O to Q along
pEdES 1B 1 R=(0,1 =(1,1
OP and PQ in the presence of the force ©.1 ¢=1
field F(x,y) = (x2,y?). )

> X
o P=(1,0)

0h _g— 9k
Note that 3y =0= 5 -

Moreover F is defined on R?, which is simply connected.
Thus, F is conservative.

w

5 o o 5 3
It is easy to see that a potential function for F is V(x,y) = % + %

Hence we have

W = _/Cl:.dsz —/CVV'ds=V(Q)—V(O):

_l’_

Wi N

W~
W~
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Assumptions Matter

@ We cannot expect the method for finding a potential function to work
if F does not satisfy the cross-partials condition (because in this case,
no potential function exists).

Example: Consider F = (y,0). If we attempted to find a potential
function, we would calculate

Vix,y) = [ydx=xy+g(y);
V(x,y) = [0dy =0+ h(x).

There is no choice of g(y) and h(x) for which xy + g(y) = h(x).

If there were, we could differentiate this equation twice, once with
respect to x and once with respect to y. This would yield 1 =0,
which is a contradiction.

George Voutsadakis (LSSU) Advanced Calculus March 2018 81 /135



Line and Surface Integrals Conservative Vector Fields

The Vortex Field

@ Consider the vortex field

= ) N
~ ey 22

Claim: The vortex field satisfies the cross-

partials condition but is not conservative.

We check the cross-partials condition directly:

o) X _ (X2+y2)—x%(x2+y2) o yrx?

&(Xz_ﬂ,z) - (x2+y?)? = )2

( ) _ —(X2+y2)+y%(xz+y2) _ y2—X2
(X2—|-y2)2 (X2—|-y2)2 (X2—|-y2)2 o
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The Vortex Field (Cont'd)

@ Now consider the line integral of F around the unit circle C
parametrized by c(t) = (cos t,sin t). We have
F(c(t))-c/(t) = (—sint,cost) - (—sint,cost) = sin®t 4 cos’>t = 1.
So, we get

2w

21
fF-ds:/ F(c(t)- ¢(t)dt = [  dt=2m #0.
(o) 0

0

If F were conservative, its circulation around every closed curve would
be zero.

Note that the domain D = {(x, y) # (0,0)} of F does not satisfy the
simply-connected condition of the theorem.
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Subsection 4

Parametrized Surfaces and Surface Integrals
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Parametrized Surfaces

@ Just as parametrized curves are a key ingredient in the discussion of
line integrals, surface integrals require the notion of a parametrized
surface.

@ A parametrized surface is a surface S whose points are described in
the form

