
Advanced Calculus

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 411

George Voutsadakis (LSSU) Advanced Calculus March 2018 1 / 77



Outline

1 Fundamental Theorems of Vector Analysis
Green’s Theorem
Stokes’ Theorem
Divergence Theorem
The Fundamental Theorems of Calculus

George Voutsadakis (LSSU) Advanced Calculus March 2018 2 / 77



Fundamental Theorems of Vector Analysis Green’s Theorem

Subsection 1

Green’s Theorem
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Fundamental Theorems of Vector Analysis Green’s Theorem

Simple Closed Curves and Boundary Orientation

Consider a domain D whose boundary C is
a simple closed curve, i.e., a closed curve
that does not intersect itself.
We follow standard usage and denote the
boundary curve C by ∂D.

The counterclockwise orientation of ∂D is called the boundary

orientation.

When you traverse the boundary in this direction, the domain lies to
your left as in the figure.
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Fundamental Theorems of Vector Analysis Green’s Theorem

Line Integrals: A Reminder

Recall the two notations for the line integral of F = 〈F1,F2〉:
∫

C
F · ds and

∫

C
F1dx + F2dy .

If C is parametrized by c(t) = (x(t), y(t)), for a ≤ t ≤ b, then

dx = x ′(t)dt, dy = y ′(t)dt.

So we get that
∫

C
F1dx + F2dy =

∫ b

a

(F1(x(t), y(t))x
′(t) + F2(x(t), y(t))y

′(t))dt.

We will assume that:
The components of all vector fields have continuous partial derivatives;
C is smooth (C has a parametrization with derivatives of all orders) or
piece wise smooth (a finite union of smooth curves joined together at
corners).
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Fundamental Theorems of Vector Analysis Green’s Theorem

Green’s Theorem

Theorem (Green’s Theorem)

Let D be a domain whose boundary ∂D is a simple closed curve, oriented
counterclockwise. Then

∮

∂D
F1dx + F2dy =

∫∫

D
(
∂F2

∂x
− ∂F1

∂y
)dA.

We only prove the case in which ∂D can be described as:
the union of two graphs y = g(x) and y = f (x) with g(x) ≤ f (x) and
the union of two graphs x = g1(y) and x = f1(y), with g1(y) ≤ f1(y).
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Fundamental Theorems of Vector Analysis Green’s Theorem

Green’s Theorem (Cont’d)

Green’s Theorem is obtained by adding the two equations
∮

∂D
F1dx = −

∫∫

D

∂F1

∂y
dA,

∮

∂D
F2dy =

∫∫

D

∂F2

∂x
dA.

To prove the first, we write
∮

∂D F1dx =
∫

C1 F1dx +
∫

C2 F1dx , where C1 is the graph
of y = g(x) and C2 is the graph of y = f (x).
To compute these line integrals, we parame-
terize the graphs from left to right using t as
parameter: c1(t) = (t, g(t)), a ≤ t ≤ b, and
c2(t) = (t, f (t)), a ≤ t ≤ b.

Since C2 is oriented from right to left, the line integral over ∂D is the
difference

∮

∂D F1dx =
∫

c1
F1dx −

∫

c 2
F1dx .
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Fundamental Theorems of Vector Analysis Green’s Theorem

Green’s Theorem (Conclusion)

In both parametrizations, x = t, so dx = dt. So we get
∮

∂D
F1dx =

∫ b

a

F1(t, g(t))dt −
∫ b

a

F1(t, f (t))dt.

Now, the key step is to apply the Fundamental Theorem of Calculus
to ∂F1

∂y (t, y) as a function of y with t held constant:

F1(t, f (t))− F1(t, g(t)) =

∫ f (t)

g(t)

∂F1

∂y
(t, y)dy .

Substituting the integral on the right in the preceding equation, we
get

∮

∂D
F1dx = −

∫ b

a

∫ f (t)

g(t)

∂F1

∂y
(t, y)dydt = −

∫∫

D

∂F1

∂y
dA.

The other equation is proved in a similar fashion, by expressing ∂D as
the union of the graphs of x = f1(y) and x = g1(y).
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Fundamental Theorems of Vector Analysis Green’s Theorem

Green’s Theorem: Conservative Vector Fields

Recall that if F = ∇V , then the cross-partial condition is satisfied:

∂F2

∂x
− ∂F1

∂y
= 0.

In this case, Green’s Theorem merely confirms what we already know:

The line integral of a conservative vector field around any closed
curve is zero.
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Fundamental Theorems of Vector Analysis Green’s Theorem

Example: Verifying Green’s Theorem

Verify Green’s Theorem for the line integral along the unit circle C,
oriented counterclockwise:

∮

C xy
2dx + xdy .

We evaluate the line integral directly. We use the standard
parametrization of the unit circle: x = cos θ, y = sin θ. Then
dx = − sin θdθ, dy = cos θdθ. The integrand in the line integral is

xy2dx + xdy = cos θ sin2 θ(− sin θdθ) + cos θ(cos θdθ)
= (− cos θ sin3 θ + cos2 θ)dθ.

So we get

∮

C xy
2dx + xdy =

∫ 2π
0 (− cos θ sin3 θ + cos2 θ)dθ

=
∫ 2π
0 (− cos θ sin3 θ + 1

2(1 + cos 2θ))dθ

= − sin4 θ
4 |2π0 +1

2(θ +
1
2 sin 2θ) |2π0

= 0 + 1
2 (2π + 0) = π.
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Fundamental Theorems of Vector Analysis Green’s Theorem

Example: Verifying Green’s Theorem (Cont’d)

We now evaluate the line integral using Green’s Theorem.

We have F1 = xy2, F2 = x . So ∂F2
∂x − ∂F1

∂y = ∂
∂x x − ∂

∂y xy
2 = 1− 2xy .

According to Green’s Theorem,
∮

C
xy2dx + xdy =

∫∫

D
(
∂F2

∂x
− ∂F1

∂y
)dA =

∫∫

D
(1− 2xy)dA,

where D is the disk x2 + y2 ≤ 1 enclosed by C. The integral of 2xy
over D is zero:

∫∫

D (−2xy)dA = − 2
∫ 1
−1

∫ √
1−x2

−
√
1−x2

xydydx

= −
∫ 1
−1 xy

2 |
√
1−x2

−
√
1−x2

dx = 0.

Therefore,
∫∫

D
(
∂F2

∂x
− ∂F1

∂y
)dA =

∫∫

D
1dA = Area(D) = π.
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Fundamental Theorems of Vector Analysis Green’s Theorem

Example

Verify Green’s Theorem for the line integral along the unit circle C,
oriented counterclockwise:

∮

C xydx + ydy .

We evaluate the line integral directly. We use the standard
parametrization of the unit circle: x = cos θ, y = sin θ. Then
dx = − sin θdθ, dy = cos θdθ. The integrand in the line integral is

xydx + ydy = cos θ sin θ(− sin θdθ) + sin θ(cos θdθ)
= (− cos θ sin2 θ + sin θ cos θ)dθ
= (− sin2 θ + sin θ) cos θdθ.

So we get

∮

C xydx + ydy =
∫ 2π
0 (− sin2 θ + sin θ) cos θdθ

= (−1
3 sin

3 θ + 1
2 sin

2 θ) |2π0
= 0.
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Fundamental Theorems of Vector Analysis Green’s Theorem

Example (Cont’d)

We now evaluate the line integral using Green’s Theorem.

We have F1 = xy , F2 = y . So ∂F2
∂x − ∂F1

∂y = ∂
∂x y − ∂

∂y xy = − x .

According to Green’s Theorem,
∮

C
xydx + yxdy =

∫∫

D
(
∂F2

∂x
− ∂F1

∂y
)dA =

∫∫

D
−xdA,

where D is the disk x2 + y2 ≤ 1 enclosed by C. We calculate:

∫∫

D −xdA =
∫ 1
−1

∫ √
1−x2

−
√
1−x2

−xdydx

=
∫ 1
−1−xy |

√
1−x2

−
√
1−x2

dx

=
∫ 1
−1 (−x

√
1− x2 − x

√
1− x2)dx

=
∫ 1
−1−2x

√
1− x2dx

= 2
3(1− x2)3/2 |1−1= 0.
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Fundamental Theorems of Vector Analysis Green’s Theorem

Example: Line Integral Using Green’s Theorem

Compute the circulation of F = 〈sin x , x2y3〉
around the triangular path C in the figure.
To compute the line integral directly, we would
have to parametrize all three sides.
Instead, we apply Green’s Theorem to the do-
main D enclosed by the triangle.

This domain is described by 0 ≤ x ≤ 2, 0 ≤ y ≤ x . Applying Green’s
Theorem, we obtain

∂F2
∂x − ∂F1

∂y = ∂
∂x x

2y3 − ∂
∂y sin x = 2xy3;

∮

C sin xdx + x2y3dy =
∫∫

D 2xy3dA =
∫ 2
0

∫ x

0 2xy3dydx

=
∫ 2
0 (12xy

4 |x0)dx = 1
2

∫ 2
0 x5dx

= 1
12x

6 |20= 16
3 .
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Fundamental Theorems of Vector Analysis Green’s Theorem

Example

Apply Green’s Theorem to evaluate
∮

C e
2x+ydx + e−ydy , where C is the triangle

with vertices (0, 0), (1, 0) and (1, 1) oriented
counterclockwise.
To compute the line integral directly, we would
have to parametrize all three sides.
We apply Green’s Theorem to the domain D enclosed by the triangle.

This domain is described by 0 ≤ x ≤ 1, 0 ≤ y ≤ x . Applying Green’s
Theorem, we obtain

∂F2
∂x − ∂F1

∂y = ∂
∂x e

−y − ∂
∂y e

2x+y = − e2x+y ;
∮

C e
2x+ydx + e−ydy = −

∫∫

D e2x+ydA = −
∫ 1
0

∫ x

0 e2x+ydydx

= −
∫ 1
0 e2x+y |x0 dx =

∫ 1
0 (e2x − e3x)dx

= (12e
2x − 1

3e
3x ) |10= 1

2e
2 − 1

3e
3 − 1

6 .
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Fundamental Theorems of Vector Analysis Green’s Theorem

Example

Apply Green’s Theorem to evaluate
∮

C F · ds, where
F = 〈x + y , x2 − y〉 and C is the boundary of the region enclosed by
y = x2, y =

√
x , 0 ≤ x ≤ 1.

We apply Green’s Theorem to the domain D enclosed by the given
curves. This domain is described by 0 ≤ x ≤ 1, x2 ≤ y ≤ √

x .
Applying Green’s Theorem, we obtain

∂F2
∂x − ∂F1

∂y = ∂
∂x (x

2 − y)− ∂
∂y (x + y) = 2x − 1;

∮

C F · ds =
∫∫

D (2x − 1)dA =
∫ 1
0

∫√
x

x2
(2x − 1)dydx

=
∫ 1
0 (2xy − y) |

√
x

x2
dx

=
∫ 1
0 (2x3/2 − x1/2 − 2x3 + x2)dx

= (45x
5/2 − 2

3x
3/2 − 1

2x
4 + 1

3x
3) |10

= 4
5 − 2

3 − 1
2 +

1
3

= − 1
30 .
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Fundamental Theorems of Vector Analysis Green’s Theorem

Example

Evaluate I =
∫

C (sin x + y)dx + (3x + y)dy
for the nonclosed path ABCD.
We apply Green’s Theorem to the quadrangle
D enclosed by the path ABCDA.

Note that ∂F2
∂x − ∂F1

∂y = ∂
∂x (3x + y)− ∂

∂y (sin x + y) = 3− 1 = 2.

So we have
∮

C+DA
(sin x + y)dx + (3x + y)dy =

∫∫

D (∂F2
∂x − ∂F1

∂y )dA∫

C (sin x + y)dx + (3x + y)dy +
∫

DA
(sin x + y)dx + (3x + y)dy

=
∫∫

D (∂F2
∂x − ∂F1

∂y )dA

I =
∫∫

D (∂F2
∂x − ∂F1

∂y )dA +
∫

AD
(sin x + y)dx + (3x + y)dy

I =
∫∫

D 2dA+
∫ 6
0 [(sin 0 + y)dx

dy
+ (3 · 0 + y)]dy

I = 2Area(D) +
∫ 6
0 ydy = 2 · 8 + 1

2y
2 |60= 16 + 18 = 34.
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Fundamental Theorems of Vector Analysis Green’s Theorem

Area Enclosed by a Curve

Green’s Theorem applied to F = 〈−y , x〉 leads
to a formula for the area of the domain D en-
closed by a simple closed curve C.
We have

∂F2

∂x
− ∂F1

∂y
=

∂

∂x
x − ∂

∂y
(−y) = 2.

By Green’s Theorem,
∮

C −ydx + xdy =
∫∫

D 2dxdy = 2Area(D).

We obtain

Area enclosed by C =
1

2

∮

C
xdy − ydx .
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Fundamental Theorems of Vector Analysis Green’s Theorem

Planimeter

The formula

Area enclosed by C =
1

2

∮

C
xdy − ydx

tells us how to compute an enclosed area by making measurements
only along the boundary.

It is the mathematical basis of the planimeter, a device that
computes the area of an irregular shape when you trace the boundary
with a pointer at the end of a movable arm.
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Fundamental Theorems of Vector Analysis Green’s Theorem

Example: Computing Area via Green’s Theorem

Compute the area of the ellipse (x
a
)2 + (y

b
)2 = 1 using a line integral.

We parametrize the boundary of the ellipse by

x = a cos θ, y = b sin θ, 0 ≤ θ ≤ 2π.

Now we get

xdy − ydx = (a cos θ)(b cos θdθ)− (b sin θ)(−a sin θdθ)
= ab(cos2 θ + sin2 θ)dθ = abdθ;

Enclosed area = 1
2

∮

C xdy − ydx

= 1
2

∫ 2π
0 abdθ = πab.

This is the standard formula for the area of an ellipse.
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Fundamental Theorems of Vector Analysis Green’s Theorem

Additivity of Circulation

Claim: Circulation around a closed curve has an additivity property:

If we decompose a domain D into two (or more) non-overlapping
domains D1 and D2 that intersect only on part of their boundaries,
then ∮

∂D
F · ds =

∮

∂D1

F · ds +

∮

∂D2

F · ds .
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Fundamental Theorems of Vector Analysis Green’s Theorem

Additivity of Circulation (Cont’d)

We verify the equation
∮

∂D F · ds =
∮

∂D1
F · ds +

∮

∂D2
F · ds.

Note first that
∮

∂D F · ds =
∫

Ctop F · ds +
∫

Cbot F · ds, with Ctop and

Cbot as shown. Then observe that the dashed segment Cmid occurs in
both ∂D1 and ∂D2 but with opposite orientations. If Cmid is oriented
right to left, then

∮

∂D1
F · ds =

∫

Ctop F · ds −
∫

Cmid
F · ds;

∫

∂D2
F · ds =

∫

Cbot F · ds +
∫

Cmid
F · ds.

We add these two equations to get
∮

∂D1
F · ds +

∮

∂D2
F · ds =

∫

Ctop F · ds +
∫

Cbot F · ds =
∮

∂D F · ds.
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Fundamental Theorems of Vector Analysis Green’s Theorem

More General Domains and Boundary Orientations

We consider domains whose boundary consists of more than one
simple closed curve.

As before, ∂D denotes the boundary of D with its boundary
orientation. Recall this means that the region lies to the left as the
curve is traversed in the direction specified by the orientation.

For the domains in the figures, ∂D1 = C1 + C2, ∂D2 = C3 + C4 − C5.
Here the curve C5 occurs with a minus sign because it is oriented
counterclockwise, but the boundary orientation requires a clockwise
orientation.
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Fundamental Theorems of Vector Analysis Green’s Theorem

Green’s Theorem for General Domains

Green’s Theorem remains valid for more general domains of this type:
∮

∂D
F · ds =

∫∫

D
(
∂F2

∂x
− ∂F1

∂y
)dA.

This equality is proved by decompos-
ing D into smaller domains each of
which is bounded by a simple closed
curve. Consider, for instance, the re-
gion D in the figure. We decompose
D into domains D1 and D2.
Then ∂D = ∂D1 + ∂D2 because the edges common to ∂D1, ∂D2

occur with opposite orientation and therefore cancel. The previous
version of Green’s Theorem applies to both D1 and D2:

∮

∂D F · ds =
∫

∂D1
F · ds +

∫

∂D2
F · ds

=
∫∫

D1
(∂F2
∂x − ∂F1

∂y )dA+
∫∫

D2
(∂F2
∂x − ∂F1

∂y )dA

=
∫∫

D (∂F2
∂x − ∂F1

∂y )dA.
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Fundamental Theorems of Vector Analysis Green’s Theorem

Example

Calculate
∮

C1 F · ds, where F = 〈x − y , x +

y3〉 and C1 is the outer boundary curve ori-
ented counterclockwise. Assume that the do-
main D in the figure has area 8.
We cannot compute the line integral over C1
directly because the curve C1 is not specified.

However, ∂D = C1 − C2. So Green’s Theorem yields
∮

C1
F · ds −

∮

C2
F · ds =

∫∫

D
(
∂F2

∂x
− ∂F1

∂y
)dA.

We have
∂F2
∂x − ∂F1

∂y = ∂
∂x (x + y3)− ∂

∂y (x − y) = 1− (−1) = 2;
∫∫

D (∂F2
∂x − ∂F1

∂y )dA =
∫∫

D 2dA = 2Area(D) = 2 · 8 = 16.

Thus we get
∮

C1 F · ds −
∮

C2 F · ds = 16.
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Fundamental Theorems of Vector Analysis Green’s Theorem

Example (Cont’d)

We showed that
∮

C1 F · ds =
∮

C2 F · ds + 16.

To compute the second integral, parametrize the unit circle C2 by
c(t) = 〈cos θ, sin θ〉. Then

F · c ′(t) = 〈x − y , x + y3〉 · 〈− sin θ, cos θ〉
= 〈cos θ − sin θ, cos θ + sin3 θ〉 · 〈− sin θ, cos θ〉
= − sin θ cos θ + sin2 θ + cos2 θ + sin3 θ cos θ
= 1− sin θ cos θ + sin3 θ cos θ.

The integrals of sin θ cos θ and sin3 θ cos θ over [0, 2π] are both zero.
So, we get

∮

C2
F · ds =

∫ 2π

0
(1− sin θ cos θ + sin3 θ cos θ)dθ =

∫ 2π

0
dθ = 2π.

Finally, we obtain
∮

C1 F · ds = 16 + 2π.
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Fundamental Theorems of Vector Analysis Green’s Theorem

Example

Calculate
∮

C1 F · ds , if
∮

C2 F · ds = 3π,
∮

C3 F · ds = 4π and ∂F2
∂x − ∂F1

∂y = 9.
We apply the genral version of Green’s The-
orem.

∫

∂D F · ds =
∫∫

D (∂F2
∂x − ∂F1

∂y )dA
∫

C1 F · ds −
∫

C2 F · ds −
∫

C3 F · ds =
∫∫

D (∂F2
∂x − ∂F1

∂y )dA
∫

C1 F · ds =
∫

C2 F · ds +
∫

C3 F · ds +
∫∫

D (∂F2
∂x − ∂F1

∂y )dA
∫

C1 F · ds = 3π + 4π +
∫∫

D 9dA
∫

C1 F · ds = 3π + 4π + 9Area(D)
∫

C1 F · ds = 3π + 4π + 9(25π − π − π)
∫

C1 F · ds = 214π.
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Fundamental Theorems of Vector Analysis Stokes’ Theorem

Subsection 2

Stokes’ Theorem
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Fundamental Theorems of Vector Analysis Stokes’ Theorem

Closed Surfaces

The figure shows three surfaces with different types of boundaries.

The boundary of a surface is denoted ∂S.
Observe that:

The boundary in (A) is a single, simple closed curve;
The boundary in (B) consists of three closed curves;
The surface in (C) is called a closed surface because its boundary is
empty. In this case, we write ∂S = ∅.
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Fundamental Theorems of Vector Analysis Stokes’ Theorem

Boundary Orientation

An orientation is a continuously varying choice of unit normal vector
at each point of a surface S.
When S is oriented, we can specify an orientation of ∂S, called the
boundary orientation:

Imagine that you are a unit normal vector walking along the boundary
curve. The boundary orientation is the direction for which the surface
is on your left as you walk.

Example: The boundary of the surface con-
sists of two curves, C1 and C2. On the left,
the normal vector points to the outside. The
woman (normal vector) is walking along C1
and has the surface to her left, so she is
walking in the positive direction.

The boundary orientations on the right are reversed because the
opposite normal has been selected to orient the surface.
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Fundamental Theorems of Vector Analysis Stokes’ Theorem

The Curl

The curl of the vector field F = 〈F1,F2,F3〉 is the vector field defined
by the symbolic determinant

curl(F ) =

∣
∣
∣
∣
∣
∣

i j k
∂
∂x

∂
∂y

∂
∂z

F1 F2 F3

∣
∣
∣
∣
∣
∣

= (∂F3
∂y − ∂F2

∂z )i − (∂F3
∂x − ∂F1

∂z )j + (∂F2
∂x − ∂F1

∂y )k .

In more compact form, the curl is the symbolic cross product

curl(F ) = ∇× F ,

where ∇ is the del “operator” (or “nabla”): ∇ = 〈 ∂
∂x ,

∂
∂y ,

∂
∂z 〉.

In terms of components, curl(F ) is the vector field

curl(F ) = 〈∂F3
∂y

− ∂F2

∂z
,
∂F3

∂x
− ∂F1

∂z
,
∂F2

∂x
− ∂F1

∂y
〉.
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Fundamental Theorems of Vector Analysis Stokes’ Theorem

Linearity of the Curl

The curl obeys the linearity rules:

curl(F + G) = curl(F ) + curl(G)

and
curl(cF ) = c curl(F ), c any constant.

These can be checked directly or, alternatively, follow by the
multilinearity of the determinant.
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Fundamental Theorems of Vector Analysis Stokes’ Theorem

Example: Calculating the Curl

Calculate the curl of F = 〈xy , ex , y + z〉.
We compute the curl as a symbolic determinant:

curl(F ) =

∣
∣
∣
∣
∣
∣

i j k
∂
∂x

∂
∂y

∂
∂z

xy ex y + z

∣
∣
∣
∣
∣
∣

= ( ∂
∂y (y + z)− ∂

∂z e
x)i − ( ∂

∂x (y + z)− ∂
∂z xy)j

+ ( ∂
∂x e

x − ∂
∂y xy)k

= i + (ex − x)k .
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Fundamental Theorems of Vector Analysis Stokes’ Theorem

Example: Conservative Vector Fields Have Zero Curl

Verify the following:

If F = ∇V , then curl(F ) = 0. That is, curl(∇V ) = 0.

The curl of a vector field is zero if

∂F3

∂y
− ∂F2

∂z
= 0,

∂F1

∂z
− ∂F3

∂x
= 0,

∂F2

∂x
− ∂F1

∂y
= 0.

But these equations are equivalent to the cross-partials condition that
is satisfied by every conservative vector field F = ∇V .
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Stokes’ Theorem

Assume that S is an oriented surface with parametrization
G : D → S, where D is a domain in the plane bounded by smooth,
simple closed curves, and G is one-to-one and regular, except possibly
on the boundary of D.

More generally, S may be a finite union of surfaces of this type.

Theorem (Stokes’ Theorem)

For surfaces S as described above,
∮

∂S
F · ds =

∫∫

S
curl(F ) · dS.

The integral on the left is defined relative to the boundary orientation of
∂S. If S is closed (∂S = ∅), then the surface integral on the right is zero.
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Fundamental Theorems of Vector Analysis Stokes’ Theorem

Proof of Stokes’ Theorem

Each side of the equation is equal to a sum over the components of F :

∮

C F · ds =
∮

C F1dx + F2dy + F3dz∫∫

S curl(F ) · dS =
∫∫

S curl(F1i ) · dS +
∫∫

S curl(F2j ) · dS

+
∫∫

S curl(F3k) · dS.

The proof consists of showing that the F1-, F2- and F3-terms are
separately equal.

We will prove only the case of S being the graph of a function
z = f (x , y) lying over a domain D in the xy -plane. Furthermore, we
will carry the details only for the F1-terms. The calculation for
F2-components is similar, and so is that of the F3-terms.

Claim:
∮

C F1dx =
∫∫

S curl(F1(x , y , z)i ) · dS.
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Stokes’ Theorem: Proof of the Claim

Claim:
∮

C F1dx =
∫∫

S curl(F1(x , y , z)i ) · dS.

Orient S with upward-pointing normal. Let
C = ∂S be the boundary curve. Let C0 be
the boundary of D in the xy -plane. Let c0 =
(x(t), y(t)), a ≤ t ≤ b be a counterclockwise
parametrization of C0. The boundary curve C
projects onto C0. So C has parametrization
c(t) = (x(t), y(t), f (x(t), y(t))).

Thus
∮

C F1(x , y , z)dx =
∫ b

a
F1(x(t), y(t), f (x(t), y(t)))

dx
dt
dt. The

integral on the right is precisely the integral we obtain by integrating
F1(x , y , f (x , y))dx over the curve C0 in the plane R2. In other words,
∮

C F1(x , y , z)dx =
∫

C0 F1(x , y , f (x , y))dx . By Green’s Theorem
applied to the integral on the right,

∮

C
F1(x , y , z)dx = −

∫∫

D

∂

∂y
F1(x , y , f (x , y))dA.
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Stokes’ Theorem: Proof of the Claim (Cont’d)

We have
∮

C F1(x , y , z)dx = −
∫∫

D
∂
∂y F1(x , y , f (x , y))dA. By the

Chain Rule,
∂
∂y F1(x , y , f (x , y)) = F1y (x , y , f (x , y)) + F1z(x , y , f (x , y))fy (x , y).
So finally we obtain
∮

C
F1dx = −

∫∫

D
(F1y (x , y , f (x , y)) + F1z(x , y , f (x , y))fy (x , y))dA.

To finish the proof, we compute the surface integral of curl(F1i ) using
the parametrization G (x , y) = (x , y , f (x , y)) of S:

n = 〈−fx(x , y),−fy (x , y), 1〉 (upward normal)
curl(F1i ) · n = 〈0,F1z ,−F1y 〉 · 〈−fx(x , y),−fy (x , y), 1〉

= − F1z(x , y , f (x , y))fy (x , y)− F1y (x , y , f (x , y))∫∫

S curl(F1i ) · dS = −
∫∫

D (F1z(x , y , z)fy (x , y)
+ F1y (x , y , f (x , y)))dA.
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Fundamental Theorems of Vector Analysis Stokes’ Theorem

Example: Verifying Stokes’ Theorem

Verify Stokes’ Theorem for F = 〈−y , 2x , x +
z〉 and the upper hemisphere with outward-
pointing normal vectors S = {(x , y , z) : x2 +
y2 + z2 = 1, z ≥ 0}.
We will show that both the line integral and
the surface integral in Stokes’ Theorem are
equal to 3π.
Compute the line integral around the boundary curve. The boundary
of S is the unit circle oriented in the counterclockwise direction with
parametrization c(t) = (cos t, sin t, 0). Thus,

c ′(t) = 〈− sin t, cos t, 0〉;
F (c(t)) = 〈− sin t, 2 cos t, cos t〉;

F (c(t)) · c ′(t) = 〈− sin t, 2 cos t, cos t〉 · 〈− sin t, cos t, 0〉
= sin2 t + 2cos2 t = 1 + cos2 t;

∮

∂S F · ds =
∫ 2π
0 (1 + cos2 t)dt = 2π + π = 3π.
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Example: Verifying Stokes’ Theorem (Cont’d)

Compute the curl.

curl(F ) =

∣
∣
∣
∣
∣
∣

i j , k
∂
∂x

∂
∂y

∂
∂z

−y 2x x + z

∣
∣
∣
∣
∣
∣

= ( ∂
∂y (x + z)− ∂

∂z 2x)i − ( ∂
∂x (x + z)− ∂

∂z (−y))j

+ ( ∂
∂x 2x − ∂

∂y (−y))k

= 〈0,−1, 3〉.
Use spherical coordinates: G (θ, φ) = (cos θ sinφ, sin θ sinφ, cosφ).
Then n = sinφ〈cos θ sinφ, sin θ sinφ, cosφ〉. Therefore,
curl(F ) · n = sinφ〈0,−1, 3〉 · 〈cos θ sinφ, sin θ sinφ, cosφ〉 =
− sin θ sin2 φ+ 3cos θ sinφ. So
∫∫

S curl(F ) · dS =
∫ π/2
0

∫ 2π
0 (− sin θ sin2 φ+ 3cos φ sinφ)dθdφ

= 0 + 2π
∫ π/2
0 3 cosφ sinφdφ =

= 2π(32 sin
2 φ) |π/20 = 3π.
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Example

Verify Stokes’ Theorem for F = 〈2xy ,
x , y + z〉 and the surface S = {(x , y , z) :
z = 1−x2−y2, x2+y2 ≤ 1}, with upward
pointing normals.
The boundary of S is the unit circle ori-
ented in the counterclockwise direction:
c(t) = (cos t, sin t, 0).
Thus,

c ′(t) = 〈− sin t, cos t, 0〉;
F (c(t)) = 〈2 sin t cos t, cos t, sin t〉;

F (c(t)) · c ′(t) = 〈2 sin t cos t, cos t, sin t〉 · 〈− sin t, cos t, 0〉
= − 2 sin2 t cos t + cos2 t;

∮

∂S F · ds =
∫ 2π
0 (−2 sin2 t cos t + cos2 t)dt

= [−2
3 sin

3 t + 1
2 (t +

1
2 sin 2t)]

2π
0

= 1
2 · 2π = π.
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Example (Cont’d)

Compute the curl.

curl(F ) =

∣
∣
∣
∣
∣
∣

i j , k
∂
∂x

∂
∂y

∂
∂z

2xy x y + z

∣
∣
∣
∣
∣
∣

= ( ∂
∂y (y + z)− ∂

∂z x)i − ( ∂
∂x (y + z)− ∂

∂z 2xy)j

+ ( ∂
∂x x − ∂

∂y 2xy)k
= 〈1, 0, 1 − 2x〉.

Use cylindrical coordinates: G (r , θ) = (r cos θ, r sin θ, 1− r2),
0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. Then

n =

∣
∣
∣
∣
∣
∣

i j k

cos θ sin θ −2r
−r sin θ r cos θ 0

∣
∣
∣
∣
∣
∣

= 〈2r2 cos θ, 2r2 sin θ, r〉. Therefore,

curl(F ) · n = 〈1, 0, 1 − 2r cos θ〉 · 〈2r2 cos θ, 2r2 sin θ, r〉 = r . So
∫∫

S curl(F ) · dS =
∫ 2π
0

∫ 1
0 rdrdθ =

∫ 2π
0 dθ

∫ 1
0 rdr = 2π · r2

2 |10= π.
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Example

Use Stokes’ Theorem to compute the flux of curl(F ), where
F = 〈ez2 − y , ez

3
+ x , cos (xz)〉 through the upper hemisphere

x2 + y2 + z2 = 1, z ≥ 0, with outward pointing normal.

We have

c(t) = (cos t, sin t, 0);
c ′(t) = 〈− sin t, cos t, 0〉;

F(c(t)) = 〈1− sin t, 1 + cos t, 1〉;
F(c(t)) · c ′(t) = 〈1− sin t, 1 + cos t, 1〉 · 〈− sin t, cos t, 0〉

= − sin t + sin2 t + cos t + cos2 t
= 1 + cos t − sin t.

So
∫∫

S curl(F ) · dS =
∮

∂S F · ds

=
∫ 2π
0 F (c(t)) · c ′(t)dt

=
∫ 2π
0 (1 + cos t − sin t)dt

= (t + sin t + cos t) |2π0 = 2π.
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Fundamental Theorems of Vector Analysis Stokes’ Theorem

A Special Case

curl(F ) contains the partial derivatives ∂F1
∂y and ∂F1

∂z but not the

partial ∂F1
∂x .

So if F1 = F1(x) is a function of x alone, then ∂F1
∂y = ∂F1

∂z = 0, and F1
does not contribute to the curl.

The same holds for the other components.

In summary, if each of F1, F2, and F3 depends only on its
corresponding variable x , y , or z , then

curl(〈F1(x),F2(y),F3(z)〉) = 0.
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Fundamental Theorems of Vector Analysis Stokes’ Theorem

Example

Use Stokes’ Theorem to show that
∮

C
F · ds = 0,

where F = 〈sin (x2), ey2
+ x2, z4 + 2x2〉

and C is the boundary of the triangle
shown with the indicated orientation.

We apply Stokes’ Theorem
∮

C F · ds =
∫∫

S curl(F ) · dS. We show
that the integral on the right is zero.

By the preceding slide, the first component sin (x2) does not
contribute to the curl since it depends only on x . Similarly, ey

2
and

z4 drop out of the curl. So we have

curl(〈sin x2, ey2
+ x2, z4 + 2x2〉)

= curl(〈sin x2, ey2
, z4〉) + curl(〈0, x2, 2x2〉)

= 〈0,− ∂
∂x 2x

2, ∂
∂x x

2〉 = 〈0,−4x , 2x〉.
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Fundamental Theorems of Vector Analysis Stokes’ Theorem

Example (Cont’d)

Now we see that C is the boundary of the triangular surface S
contained in the plane x

3 + y
2 + z = 1. Therefore, u = 〈13 , 12 , 1〉 is a

normal vector to this plane. But u and curl(F ) are orthogonal:
curl(F ) · u = 〈0,−4x , 2x〉 · 〈13 , 12 , 1〉 = − 2x + 2x = 0. In other words,
the normal component of curl(F ) along S is zero. Since the surface
integral of a vector field is equal to the surface integral of the normal
component, we conclude that

∫∫

S curl(F ) · dS = 0.
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Example

Let F = 〈−z2, 2zx , 4y − x2〉 and C be the
simple closed curve in the plane x+y+z = 4
that encloses a region of area 16.
Calculate

∮

C F · ds, where C is oriented in
the counterclockwise direction viewed from
above.

curl(F ) =

∣
∣
∣
∣
∣
∣

i j k
∂
∂x

∂
∂y

∂
∂z

−z2 2zx 4y − x2

∣
∣
∣
∣
∣
∣

= ( ∂
∂y (4y − x2)− ∂

∂z 2zx)i

− ( ∂
∂x (4y − x2)− ∂

∂z (−z2))j + ( ∂
∂x 2zx − ∂

∂y (−z2))k

= 〈4− 2x , 2x − 2z , 2z〉;
n = 〈1, 1, 1〉;

curl(F ) · en = 〈4− 2x , 2x − 2z , 2z〉 · 1√
3
〈1, 1, 1〉 = 4√

3
.
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Example

We obtained

curl(F ) · en =
4√
3
.

So we get

∮

C F · ds =
∫∫

S curl(F ) · dS =
∫∫

S (curl(F ) · en)dS

=
∫∫

S
4√
3
dS = 4√

3
Area(S) = 64√

3
.
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Surface Independence for Curl Vector Fields

Theorem (Surface Independence for Curl Vector Fields)

If F = curl(A), then the flux of F through a surface
S depends only on the oriented boundary ∂S and
not on the surface itself:

∫∫

S
F · dS =

∮

∂S
A · ds.

In particular, if S is closed (∂S = ∅), then
∫∫

S F · dS = 0.
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Example

Let F = curl(A), where

A = 〈y + z , sin (xy), exyz〉.
Find the flux of F through the surfaces S1 and
S2 in the figure, whose common boundary C is
the unit circle in the xz-plane.

With C oriented in the direction of the arrow, S1 lies to the left. By
the preceding theorem,

∫∫

S1
F · dS =

∮

C A · ds. We compute the line
integral on the right. Note that c(t) = 〈cos t, 0, sin t〉 traces C in the
direction of the arrow. We have

A(c(t)) = 〈0 + sin t, sin (0), e0〉 = 〈sin t, 0, 1〉;
A(c(t)) · c ′(t) = 〈sin t, 0, 1〉 · 〈− sin t, 0, cos t〉 = − sin2 t + cos t;

∮

C A · ds =
∫ 2π
0 (− sin2 t + cos t)dt

= − 1
2 (t − 1

2 sin 2t) |2π0 = − π.
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Fundamental Theorems of Vector Analysis Stokes’ Theorem

Example (Cont’d)

We have
∫∫

S1
F · dS =

∮

C A · ds and
∮

C A · ds = −π.

We conclude that
∫∫

S1
F · dS = −π. On the other hand, S2 lies on

the right as you traverse C. Therefore S2 has oriented boundary −C.
So ∫∫

S2

F · dS =

∮

−C
A · ds = −

∮

C
A · ds = π.
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Subsection 3

Divergence Theorem

George Voutsadakis (LSSU) Advanced Calculus March 2018 52 / 77



Fundamental Theorems of Vector Analysis Divergence Theorem

The Divergence of a Vector Field

The divergence of a vector field F = 〈F1,F2,F3〉 is defined by

div(F ) =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

We often write the divergence as a symbolic dot product:

∇ · F = 〈 ∂

∂x
,
∂

∂y
,
∂

∂z
〉 · 〈F1,F2,F3〉 =

∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
.

Unlike the gradient and curl, the divergence is a scalar function.

Like the gradient and curl, the divergence obeys the linearity rules:

div(F + G) = div(F ) + div(G);
div(cF ) = cdiv(F ), c any constant.
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Fundamental Theorems of Vector Analysis Divergence Theorem

Example

(a) Find the divergence of F = sin (x + z)i − yexzk .

(b) Evaluate the divergence of F = 〈exy , xy , z4〉 at P = (1, 0, 2).

(a) We have

div(F ) =
∂

∂x
sin (x + z) +

∂

∂y
0 +

∂

∂z
(−yexz) = cos (x + z)− xyexz .

(b) We have

div(F ) =
∂

∂x
exy +

∂

∂y
xy +

∂

∂z
z4 = yexy + x + 4z3.

Therefore

div(F )(P) = div(F )(1, 0, 2) = 0 · e0 + 1 + 4 · 23 = 33.

George Voutsadakis (LSSU) Advanced Calculus March 2018 54 / 77



Fundamental Theorems of Vector Analysis Divergence Theorem

The Divergence Theorem

Theorem (Divergence Theorem)

Let S be a closed surface that encloses a region W in R3. Assume that S
is piecewise smooth and is oriented by normal vectors pointing to the
outside of W. Let F be a vector field whose domain contains W. Then

∫∫

S
F · dS =

∫∫∫

W
div(F )dV .

We prove the Divergence Theorem in the
special case that W is a box [a, b]× [c , d ]×
[e, f ].
We write each side as a sum over compo-
nents.
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The Divergence Theorem (Cont’d)

We have, by linearity,
∫∫

∂W (F1i + F2j + F3k) · dS

=
∫∫

∂W F1i · dS +
∫∫

∂W F2j · dS +
∫∫

∂W F3k · dS;
∫∫∫

W div(F1i + F2j + F3k)dV
=

∫∫∫

W div(F1i )dV +
∫∫∫

W div(F2j )dV +
∫∫∫

W div(F3k)dV .

We show that corresponding terms are equal. We do the
i -component. Assume F = F1i . The surface integral over boundary
S of the box is the sum of the integrals over the six faces.

However, F = F1i is orthogonal to the
normal vectors to the top and bottom as
well as the two side faces because F · j =
F · k = 0. Therefore, the surface integrals
over these faces are zero. Nonzero contri-
butions come only from the front and back
faces, which we denote Sf and Sb.
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The Divergence Theorem (Conclusion)

So we get
∫∫

S F · dS =
∫∫

Sf
F · dS +

∫∫

Sb
F · dS.

To evaluate these integrals, we parametrize Sf and Sb by
Gf (y , z) = (b, y , z), c ≤ y ≤ d , e ≤ z ≤ f , Gb(y , z) = (a, y , z),
c ≤ y ≤ d , e ≤ z ≤ f . The normal vectors for these parametrizations
are ∂Gf

∂y × ∂Gf

∂z = j × k = i , ∂Gb

∂y × ∂Gb

∂z = j × k = i . The
outward-pointing normal for Sb is −i . So we have

∫∫

Sf
F · dS +

∫∫

Sb
F · dS

=
∫ f

e

∫ d

c
F1(b, y , z)dydz −

∫ f

e

∫ d

c
F1(a, y , z)dydz

=
∫ f

e

∫ d

c
(F1(b, y , z)− F1(a, y , z))dydz .

By the FTC, F1(b, y , z)− F1(a, y , z) =
∫ b

a
∂F1
∂x (x , y , z)dx . Since

div(F ) = div(F1i ) =
∂F1
∂x , we obtain:

∫∫

S
F · dS =

∫ f

e

∫ d

c

∫ b

a

∂F1

∂x
(x , y , z)dxdydz =

∫∫∫

W
div(F )dv .
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Example: Verifying the Divergence Theorem

Verify the Divergence Theorem for F = 〈y , yz ,
z2〉 and the cylinder in the figure.
We must verify that the flux

∫∫

S F · dS, where
S is the boundary of the cylinder, is equal to the
integral of div(F ) over the cylinder. We compute
the flux through S first: It is the sum of three
surface integrals over the side, top and bottom.

To integrate over the side, we use the standard parametrization of the
cylinder: G (θ, z) = (2 cos θ, 2 sin θ, z), 0 ≤ θ < 2π, 0 ≤ z ≤ 5. Then
n = T θ × T z = 〈−2 sin θ, 2 cos θ, 0〉 × 〈0, 0, 1〉 = 〈2 cos θ, 2 sin θ, 0〉.
Moreover, F (G (θ, z)) = 〈y , yz , z2〉 = 〈2 sin θ, 2z sin θ, z2〉. So

F · dS = 〈2 sin θ, 2z sin θ, z2〉 · 〈2 cos θ, 2 sin θ, 0〉dθdz
= (4 cos θ sin θ + 4z sin2 θ)dθdz ;

∫∫

side
F · dS =

∫ 5
0

∫ 2π
0 (4 cos θ sin θ + 4z sin2 θ)dθdz

=
∫ 5
0 [2 sin2 θ + 2z(θ − 1

2 sin 2θ)]
2π
0 dz = 4π z2

2 |50= 50π.
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Example: Verifying the Divergence Theorem (Cont’d)

We next integrate over the top and bottom of the cylinder. The top
of the cylinder is at height z = 5. So we can parametrize the top by
G (x , y) = (x , y , 5) for (x , y) in the disk D of radius 2:
D = {(x , y) : x2 + y2 ≤ 4}. Then
n = T x × T y = 〈1, 0, 0〉 × 〈0, 1, 0〉 = 〈0, 0, 1〉. Note that
F (G (x , y)) = F (x , y , 5) = 〈y , 5y , 52〉. So
F (G (x , y)) · n = 〈y , 5y , 52〉 · 〈0, 0, 1〉 = 25. Finally,

∫∫

top

F · dS =

∫∫

D
25dA = 25Area(D) = 25(4π) = 100π.

Along the bottom disk of the cylinder, we have z = 0 and
F (x , y , 0) = 〈y , 0, 0〉. Thus, F is orthogonal to the vector −k normal
to the bottom disk. So the integral along the bottom is zero.
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Example: Verifying the Divergence Theorem (Conclusion)

The total flux is
∫∫

S F · dS = 50π + 100π + 0 = 150π.

We finally compute the integral of divergence:

div(F ) = div(〈y , yz , z2〉)
= ∂

∂x y + ∂
∂y (yz) +

∂
∂z z

2

= 0 + z + 2z = 3z .

The cylinder W consists of all points (x , y , z) for 0 ≤ z ≤ 5 and
(x , y) in the disk D. So the integral of the divergence is:

∫∫∫

W div(F )dV =
∫∫

D
∫ 5
0 3zdzdA

=
∫∫

D
75
2 dA

= (752 )(Area(D))
= (752 )(4π)
= 150π.
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Example: Using the Divergence Theorem

Use the Divergence Theorem to evaluate
∫∫

S 〈x2, z4, ez 〉 · dS, where S is the bound-
ary of the box W in the figure.
First, compute the divergence:

div(〈x2, z4, ez 〉) = ∂
∂x x

2 + ∂
∂y z

4 + ∂
∂z e

z = 2x + ez .

Then apply the Divergence Theorem and use Fubini’s Theorem:
∫∫

S 〈x2, z4, ez 〉 · dS =
∫∫∫

W (2x + ez)dV

=
∫ 2
0

∫ 3
0

∫ 1
0 (2x + ez)dzdydx

= 3
∫ 2
0 2xdx + 6

∫ 1
0 ezdz

= 3x2 |20 +6ez |10
= 12 + 6(e − 1) = 6e + 6.
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Example

Use the Divergence Theorem to evaluate the flux
∫∫

S F · dS, where

F = 〈0, 0, z3

3 〉 and S is the sphere x2 + y2 + z2 = 1.

We have div(F ) = z2.

Now apply the Divergence Theorem using spherical coordinates:

∫∫

S F · dS =
∫∫∫

B div(F )dV

=
∫ 2π
0

∫ π
0

∫ 1
0 (ρ cosφ)2ρ2 sinφdρdφdθ

=
∫ 2π
0 dθ

∫ π
0 cos2 φ sinφdφ

∫ 1
0 ρ4dρ

= θ |2π0 (−1
3 cos

3 φ) |π0 1
5ρ

5 |10
= 2π · 2

3 · 1
5 = 4π

15 .
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Example

Let S1 be the closed surface consisting of S
together with the unit disk. If

∫∫

S1

〈x , 2y , 3z〉 · dS = 72,

find the volume enclosed by S1.
The key is to notice that

div(F ) =
∂

∂x
x +

∂

∂y
2y +

∂

∂z
3z = 1 + 2 + 3 = 6.

Thus, using the Divergence Theorem, we get:

Volume =
∫∫∫

W dV = 1
6

∫∫∫

W 6dV

= 1
6

∫∫∫

W div(〈x , 2y , 3z〉)dV
= 1

6

∫∫

S1
〈x , 2y , 3z〉 · dS = 1

6 · 72 = 12.
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Example

(a) Show that if W ia a region in R3 with a smooth boundary S, then

Volume(W) =
1

3

∫∫

S
F · dS,

where F = 〈x , y , z〉.
(b) Use Part (a) to calculate the volume of the unit ball as a surface

integral over the unit sphere.

(a) Note that div(F ) = ∂
∂x x + ∂

∂y y + ∂
∂z z = 1 + 1 + 1 = 3.

Thus, we have

Volume(W) =
∫∫∫

W 1dV = 1
3

∫∫∫

W 3dV

= 1
3

∫∫∫

W div(〈x , y , z〉)dV
= 1

3

∫∫

S 〈x , y , z〉 · dS

= 1
3

∫∫

S F · dS.
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Example (Part (b))

(b) We use spherical coordinates x = r sinφ cos θ, y = r sinφ sin θ,
z = r sinφ.

G (θ, φ) = (sinφ cos θ, sinφ sin θ, cosφ);
F (G (θ, φ)) = 〈sinφ cos θ, sinφ sin θ, cosφ〉;

n = sinφ〈sinφ cos θ, sinφ sin θ, cosφ〉;
F (G (θ, φ)) · n = sinφ〈x , y , z〉 · 〈x , y , z〉

= R2 sinφ = sinφ.

Now we get

Volume(B) = 1
3

∫∫

S 〈x , y , z〉 · dS

= 1
3

∫∫

D F (G (θ, φ)) · ndA
= 1

3

∫ 2π
0

∫ π
0 sinφdφdθ

= 1
3

∫ 2π
0 dθ

∫ π
0 sinφdφ

= 1
3 · 2π · 2 = 4π

3 .
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Example: A Vector Field with Zero Divergence

Compute the flux of

F = 〈z2 + xy2, cos (x + z), e−y − zy2〉

through the boundary of the surface S in the
figure.
Although F is rather complicated, its diver-
gence is zero:

div(F ) = ∂
∂x (z

2 + xy2) + ∂
∂y cos (x + z) + ∂

∂z (e
−y − zy2)

= y2 − y2 = 0.

The Divergence Theorem shows that the flux is zero.

Letting W be the region enclosed by S, we have
∫∫

S
F · dS =

∫∫∫

W
div(F )dV =

∫∫∫

W
0dV = 0.
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The Inverse Square Field

The Divergence Theorem is a powerful tool for computing the flux of
electrostatic fields.

This is due to the special properties of the inverse-square vector field

F isq =
e r

r2
,

where

er =
〈x , y , z〉

r
=

〈x , y , z〉
√

x2 + y2 + z2
.
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Divergence of the Inverse-Square Field

The inverse-square vector field F isq = e r

r2
has zero divergence

div(e r

r2
) = 0.

Write the field as

F isq = 〈F1,F2,F3〉 =
1

r2
〈x
r
,
y

r
,
z

r
〉 = 〈 x

r3
,
y

r3
,
z

r3
〉.

We have
∂F1
∂x = ∂

∂x
x
r3

= 1
r3

+ x ∂
∂x (x

2 + y2 + z2)−3/2

= 1
r3

− 3x2√
(x2+y2+z2)5/2

= 1
r3

− 3x2

r5
= r2−3x2

r5
.

Similarly, ∂F2
∂y = r2−3y2

r5
and ∂F3

∂z = r2−3z2

r5
.

Thus, we compute

div(F isq) = r2−3x2

r5
+ r2−3y2

r5
+ r2−3z2

r5

= 3r2−3(x2+y2+z2)
r5

= 3r2−3r2

r5
= 0.
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Flux of the Inverse Square Field

The next theorem shows that the flux of F isq through a closed surface
S depends only on whether S contains the origin.

Theorem (Flux of the Inverse-Square Field)

The flux of F isq = e r

r2
through closed surfaces is given by

∫∫

S
(
er

r2
) · dS =

{
4π, if S encloses the origin
0, if S does not enclose the origin

First, suppose S does not contain the origin.
Then the region W enclosed by S is contained in
the domain of F isq. So we can apply the Diver-
gence Theorem. We know that div(F isq) = 0.
Therefore

∫∫

S (e r

r2
) · dS =

∫∫∫

W div(F isq)dV =
∫∫∫

W 0dV = 0.
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Flux of the Inverse Square Field (Cont’d)

Next, let SR be the sphere of radius R centered
at the origin.
We cannot use the Divergence Theorem because
SR contains a point (the origin) where F isq is
not defined.
However, we can compute the flux of F isq

through SR using spherical coordinates.
Recall that the outward-pointing normal vector in spherical
coordinates is n = Tφ × T θ = (R2 sinφ)er . The inverse-square field
on SR is simply F isq = e r

R2 . Thus,

F isq · n = e r

R2 · (R2 sinφer ) = sinφ(e r · er ) = sinφ;
∫∫

SR
F isq · dS =

∫ 2π
0

∫ π
0 F isq · ndφdθ

=
∫ 2π
0

∫ π
0 sinφdφdθ

= 2π
∫ π
0 sinφdφ = 4π.
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Flux of the Inverse Square Field (Conclusion)

To extend this result to any surface S containing
the origin, choose a sphere SR whose radius R >

0 is so small that SR is contained inside S.
Let W be the region between SR and S. The
oriented boundary of W is the difference ∂W =
S − SR . This means that S is oriented by
outward-pointing normals and SR by inward-
pointing normals.

By the Divergence Theorem (in a more general form than previously
stated),

∫∫

∂W F isq · dS =
∫∫

S F isq · dS −
∫∫

SR
F isq · dS

=
∫∫∫

W div(F isq)dV
=

∫∫∫

W 0dV = 0.

So the fluxes through S and SR are equal. Hence they both equal 4π.
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Subsection 4

The Fundamental Theorems of Calculus
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The Fundamental Theorem of Calculus

We have studied several “Fundamental Theorems”.

Each of these is a relation of the type

Integral of a derivative
on an oriented domain

=
Integral over the oriented
boundary of the domain

In single-variable calculus, the Fundamental Theorem of Calculus

(FTC) relates the integral of f ′(x) over an interval [a, b] to the
“integral” of f (x) over the boundary of [a, b] consisting of two points
a and b:

∫ b

a

f ′(x)dx

︸ ︷︷ ︸

Integral of derivative over [a, b]

= f (b)− f (a)
︸ ︷︷ ︸

“Integral” over the boundary of [a, b]

The boundary of [a, b] is oriented by assigning a plus sign to b and a
minus sign to a.
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The Fundamental Theorem of Line Integrals

The Fundamental Theorem for Line Integrals generalizes the
Fundamental Theorem of Calculus:

Instead of an interval [a, b] (a path from a to b along the x-axis), we
take any path from points P to Q in R3.

Instead of f ′(x) we use the gradient:
∫

C
∇V · ds

︸ ︷︷ ︸

Integral of derivative over a curve

= V (Q)− V (P)
︸ ︷︷ ︸

“Integral” over the

boundary ∂C = Q − P
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Green’s Theorem

Green’s Theorem is a two-dimensional version of the Fundamental
Theorem of Calculus that relates the integral of a derivative over a
domain D in the plane to an integral over its boundary curve C = ∂D:

∫∫

D
(
∂F2

∂x
− ∂F1

∂y
)dA

︸ ︷︷ ︸

Integral of derivative over domain

=

∫

C
F · ds

︸ ︷︷ ︸

Integral over boundary curve
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Stokes’ Theorem

Stokes’ Theorem extends Green’s Theorem:

Instead of a domain in the plane (a flat
surface), we allow any surface in R3.
The appropriate derivative is the curl.

∫∫

S
curl(F ) · dS

︸ ︷︷ ︸

Integral of derivative over surface

=

∫

C
F · ds

︸ ︷︷ ︸

Integral over boundary curve
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The Divergence Theorem

The Divergence Theorem follows the same pattern.

For S a closed surface that encloses a 3D region W, i.e., S the
boundary of W,

∫∫∫

W
div(F )dV

︸ ︷︷ ︸

Integral of derivative over 3D region

=

∫∫

S
F · dS

︸ ︷︷ ︸

Integral over boundary surface
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