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Subsection 1

Trigonometric Series
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Fourier Series and Orthogonal Functions Trigonometric Series

Trigonometric Series

A trigonometric series is a series of form

1

2
a0 + a1 cos x + b1 sin x + · · ·+ an cos nx + bn sin nx + · · · ,

where the coefficients an and bn are constants.

If these constants satisfy certain conditions, to be specified in the
next section, then the series is called a Fourier series.
Each term in the series has the property of repeating itself in intervals
of 2π:

cos (x + 2π) = cos x , sin (x + 2π) = sin x , . . . ,
cos [n(x + 2π)] = cos (nx + 2nπ) = cos nx , . . . .

It follows that if the series converges for all x , then its sum f (x) must
also have this property:

f (x + 2π) = f (x).

We say f (x) has period 2π.
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Fourier Series and Orthogonal Functions Trigonometric Series

Periodic Functions

A function f (x) such that, for some p > 0,

f (x + p) = f (x), for all x ,

is said to be periodic and have period p.

Note that cos 2x has, in addition to the period 2π, the period π.

In general, cos nx and sin nx have the periods 2π
n
.

However, 2π is the smallest period shared by all terms of the
trigonometric series.

If f (x) has period p, then the substitution

x = p
t

2π

converts f (x) into a function of t having period 2π.

Indeed, note that when t increases by 2π, x increases by p.
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Fourier Series and Orthogonal Functions Trigonometric Series

Periodic Functions as Trigonometric Series

It can be shown that every periodic function of x satisfying certain
very general conditions can be represented as a trigonometric series.

This theorem reflects physical experience.

In the case of sound, for example that of a violin string:

The term 1
2a0 represents the neutral position;

The terms a1 cos x + b1 sin x the fundamental tone;
The terms a2 cos 2x + b2 sin 2x t the first overtone (octave);
The other terms represent higher overtones.

The variable x represents time and the function f (x) the
displacement of a point on the string.

The musical tone heard is a combination of simple harmonic
vibrations given by the terms (an cos nx + bn sin nx).
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Fourier Series and Orthogonal Functions Trigonometric Series

Rewriting the Simple Harmonic Vibrations

Each simple harmonic vibration pair (an cos nx + bn sin nx) can be
written in the form

An sin (nx + α),

where

An =
√

a2n + b2n, sinα =
an

An

, cosα =
bn

An

.

The “amplitude” An+1 is a measure of the importance of the n-th
overtone in the whole sound.

The differences in the tones of different musical instruments can be
ascribed mainly to the differences in the weights An of the overtones.
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Fourier Series and Orthogonal Functions Fourier Series

Subsection 2

Fourier Series

George Voutsadakis (LSSU) Advanced Calculus March 2018 8 / 88



Fourier Series and Orthogonal Functions Fourier Series

Coefficients of Trigonometric Series

Suppose now that a periodic function f (x) is the sum of a
trigonometric series

f (x) =
a0

2
+

∞
∑

n=1

(an cos nx + bn sin nx).

Multiply f (x) by cosmx and integrate from −π to π:

∫ π
−π f (x) cosmxdx

=
∫ π
−π [

a0
2 cosmx +

∑∞
n=1(an cos nx cosmx + bn sin nx cosmx)]dx .

If term-by-term integration of the series is allowed, then we find

∫ π
−π f (x) cosmxdx = a0

2

∫ π
−π cosmxdx

+
∑∞

n=1{an
∫ π
−π cos nx cosmxdx + bn

∫ π
−π sin nx cosmxdx}.
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Fourier Series and Orthogonal Functions Fourier Series

Coefficients of Trigonometric Series (Cont’d)

The integrals on the right are evaluated with the help of the identities

cos x cos y = 1
2 [cos (x + y) + cos (x − y)],

sin x cos y = 1
2 [sin (x + y) + sin (x − y)],

sin x sin y = −1
2 [cos (x + y)− cos (x − y)].

∫ π
−π cosmxdx =

If m = 0,
∫ π

−π

cos 0dx =

∫ π

−π

dx = 2π.

If m 6= 0,
∫ π

−π

cosmxdx =
1

m
sinmx |π

−π= 0.
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Fourier Series and Orthogonal Functions Fourier Series

Coefficients of Trigonometric Series (Cont’d)
∫ π
−π cos nx cosmxdx = 1

2

∫ π
−π (cos (n +m)x + cos (n −m)x)dx =

If m = n 6= 0,

1

2

∫ π

−π

(cos 2nx + 1)dx =
1

2
(
1

2n
sin 2nx + x) |π

−π= π.

If m 6= n,

1

2
[

1

n +m
sin (n +m)x +

1

n −m
sin (n −m)x ]π

−π = 0.

∫ π
−π sin nx cosmxdx = 1

2

∫ π
−π (sin (n +m)x + sin (n −m)x)dx =

If m = n 6= 0,

1

2

∫ π

−π

sin 2nxdx =
1

2
(−

1

2n
cos 2nx) |π

−π= 0.

If m 6= n,

1

2
[−

1

n +m
cos (n +m)x −

1

n −m
cos (n −m)x ]π

−π = 0.
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Fourier Series and Orthogonal Functions Fourier Series

Coefficients of Trigonometric Series (Cont’d)

We found

∫ π
−π cosmxdx =

{

2π, if m = 0
0, if m 6= 0

,

∫ π
−π cos nx cosmxdx =

{

0, n 6= m

π, n = m 6= 0
,

∫ π
−π sin nx cosmxdx = 0.

Thus, we get:

∫ π
−π f (x) cosmxdx = a0

2

∫ π
−π cosmxdx

+
∑∞

n=1{an
∫ π
−π cos nx cosmxdx + bn

∫ π
−π sin nx cosmxdx}

=

{

a0
2 · 2π = a0π, if m = 0
amπ, if m 6= 0
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Fourier Series and Orthogonal Functions Fourier Series

Coefficients of Trigonometric Series (Conclusion)

Multiplying f (x) by sinmx and proceeding in the same way, we find
∫ π
−π f (x) sinmxdx = πbm, m = 1, 2, . . ..

We therefore obtain the following formulas:

an =
1

π

∫ π

−π
f (x) cos nxdx , n = 0, 1, 2, . . . ,

bn =
1

π

∫ π

−π
f (x) sin nxdx , n = 1, 2, . . . .
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Fourier Series and Orthogonal Functions Fourier Series

Fourier Series

Let f (x) be a function such that the integrals

an = 1
π

∫ π
−π f (x) cos nxdx , n = 0, 1, 2, . . . ,

bn = 1
π

∫ π
−π f (x) sin nxdx , n = 1, 2, . . . ,

exist.

The Fourier series of f (x) is the trigonometric series

1

2
a0 + a1 cos x + b1 sin x + · · ·+ an cos nx + bn sin nx + · · ·

in which the coefficients an, bn are computed from the function f (x)
by the integrals above.

For the integrals defining an, bn to exist it is sufficient that f (x) be
continuous except for a finite number of jumps between −π and π

No parentheses are used in the general definition of a Fourier series.

If the series converges, then insertion of parentheses is permissible.
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Fourier Series and Orthogonal Functions Fourier Series

Uniformly Convergent Trigonometric Series

Theorem

Every uniformly convergent trigonometric series is a Fourier series. More
precisely, if the series

1

2
a0 + a1 cos x + b1 sin x + · · ·+ an cos nx + bn sin nx + · · ·

converges uniformly for all x to f (x), then f (x) is continuous for all x ,
f (x) has period 2π, and the series is the Fourier series of f (x).

Since the series converges uniformly for all x , its sum f (x) is
continuous, for all x .

The series remains uniformly convergent if all terms are multiplied by
cosmx or by sinmx .

Therefore, the term-by-term integration of the series is justified.
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Fourier Series and Orthogonal Functions Fourier Series

Uniformly Convergent Trigonometric Series (Cont’d)

The formulas

an =
1

π

∫ π

−π
f (x) cos nxdx , n = 0, 1, 2, . . . ,

bn =
1

π

∫ π

−π
f (x) sin nxdx , n = 1, 2, . . . ,

now follow as previously so that the series is the Fourier series of f (x).

The periodicity of f (x) is a consequence of the periodicity of the
terms of the series.
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Fourier Series and Orthogonal Functions Fourier Series

Uniform Convergence and Uniqueness

Corollary

If two trigonometric series converge uniformly for all x and have the same
sum for all x :

1

2
a0 +

∞
∑

n=1

x(an cos nx + bn sin nx) ≡
1

2
a′0 +

∞
∑

n=1

(a′n cos nx + b′n sin nx),

then the series are identical: a0 = a′0, an = a′n, bn = b′n, for n = 1, 2, . . ..
In particular, if a trigonometric series converges uniformly to 0 for all x ,
then all coefficients are 0.

Let f (x) denote the sum of both series. Then by the preceding
theorem, an = a′n = 1

π

∫ π
−π f (x) cos nxdx , n = 0, 1, 2, . . ., and similarly

bn = b′n, for all n. If f (x) ≡ 0, then all coefficients are 0.
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Fourier Series and Orthogonal Functions Convergence of Fourier Series

Subsection 3

Convergence of Fourier Series
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Fourier Series and Orthogonal Functions Convergence of Fourier Series

Continuity and Smoothness

We term a function f (x), defined for a ≤ x ≤ b, piecewise
continuous in this interval if the interval can be subdivided into a
finite number of subintervals, inside each of which f (x) is continuous
and has finite limits at the left and right ends of the interval.

Accordingly, inside the i -th subinterval the function f (x) coincides
with a function fi(x) that is continuous in the closed subinterval.

If, in addition, the functions fi (x) have continuous first derivatives, we
term f (x) piecewise smooth.

If, in addition, the functions fi(x) have continuous second derivatives,
we term f (x) piecewise very smooth.
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Fourier Series and Orthogonal Functions Convergence of Fourier Series

The Fundamental Theorem

Fundamental Theorem

Let f (x) be piecewise very smooth in the interval −π ≤ x ≤ π. Then the
Fourier series of f (x):

a0
2 +

∑∞
n=1(an cos nx + bn sin nx),

an = 1
π

∫ π
−π f (x) cos nxdx , bn = 1

π

∫ π
−π f (x) sin nxdx .

converges to f (x) wherever f (x) is continuous inside the interval.
The series converges to 1

2 [ lim
x→x−1

f (x) + lim
x→x+1

f (x)] at each point of

discontinuity x1 inside the interval, and to 1
2 [ lim

x→π−

f (x) + lim
x→−π+

f (x)] at

x = ±π.
The convergence is uniform in each closed interval containing no
discontinuity.

The proof of the fundamental theorem will be given later.
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Subsection 4

Examples. Minimizing of Square Error
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Example

Consider f (x) =

{

−1, if − π ≤ x < 0
1, if 0 ≤ x ≤ π

.

The periodic extension of f (x) gives a “square wave”.
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Example (Cont’d)

If n = 0, then
a0 =

1
π

∫ π
−π f (x)dx = 1

π [
∫ 0
−π −dx +

∫ π
0 dx ] = 1

π [−π + π] = 0.

If n 6= 0:

an = 1
π

∫ π
−π f (x) cos nxdx

= − 1
π [
∫ 0
−π − cos nxdx +

∫ π
0 cos nxdx ]

= 1
π [−

1
n
sin nx |0−π + 1

n
sin nx |π0 ]

= 1
π · 0 = 0;

bn = 1
π

∫ π
−π f (x) sin nxdx

= 1
π [
∫ 0
−π − sin nxdx +

∫ π
0 sin nxdx ]

= 1
π [

1
n
cos nx |0−π − 1

n
cos nx |π0 ]

= 1
π [

1
n
− 1

n
cos (nπ)− 1

n
cos (nπ) + 1

n
]

=

{

0, if n is even
4
nπ , if n is odd
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Example (Cont’d)

We computed

an = 0, n = 0, 1, 2, . . . ,

bn =

{

0, if n = 2, 4, . . .
4
nπ , if n = 1, 3, 5, . . .

Hence for −π < x < π,

f (x) =
4

π
sin x +

4

3π
sin 3x + · · · =

4

π

∞
∑

n=1

sin (2n − 1)x

2n − 1
.
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Example (Cont’d): Illustration of Partial Sums

We have

S1 =
4

π
sin x , S2 = S1 +

4

3π
sin 3x , S3 = S2 +

4

5π
sin 5x .
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Example

Let f (x) =

{

1
2π + x , if − π ≤ x ≤ 0
1
2π − x , if 0 ≤ x ≤ π

.

The periodic extension of f (x) is a triangular wave.

The extension is continuous for all x .
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Example (Cont’d)

For n = 0:

a0 = 1
π

∫ π
−π f (x)dx

= 1
π

∫ 0
−π (

1
2π + x)dx + 1

π

∫ π
0 (12π − x)dx

= 1
π [

1
2x

2 + 1
2πx ]

0
−π + 1

π [−
1
2x

2 + 1
2πx ]

π
0

= 1
π (−

1
2π

2 + 1
2π

2) + 1
π (−

1
2π

2 + 1
2π

2)

= 0.
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Example (Cont’d)

If n 6= 0:

an = 1
π

∫ π
−π f (x) cos nxdx

= 1
π

∫ 0
−π (

π
2 + 2) cos nxdx + 1

π

∫ π
0 (π2 − x) cos nxdx

= 1
π

∫ 0
−π (

1
2π + x)( 1

n
sin nx)′dx + 1

π

∫ π
0 (12π − x)( 1

n
sin nx)′dx

= 1
π [[(

1
2π + x)( 1

n
sin nx)]0−π −

∫ 0
−π

1
n
sin nxdx ]

+ 1
π [[(

1
2π − x)( 1

n
sin nx)]π0 +

∫ π
0

1
n
sin nxdx ]

= 1
π [[(

1
2π + x)( 1

n
sin nx)]0−π + 1

n2
cos nx |π0 ]

+ 1
π [[(

1
2π − x)( 1

n
sin nx)]π0 − 1

n2
cos nx |π0 ]

= 1
π (

1
n2

− 1
n2

cos (nπ))− 1
π (

1
n2

cos (nπ)− 1
n2
)

= 2
πn2

− 2
πn2

cos (nπ)

=

{

0, if n is even
4

πn2
, if n is odd
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Example (Cont’d)

If n 6= 0:

bn = 1
π

∫ π
−π f (x) sin nxdx

= 1
π

∫ 0
−π (

π
2 + 2) sin nxdx + 1

π

∫ π
0 (π2 − x) sin nxdx

= 1
π

∫ 0
−π (

1
2π + x)(− 1

n
cos nx)′dx

+ 1
π

∫ π
0 (12π − x)(− 1

n
cos nx)′dx

= 1
π [[(

1
2π + x)(− 1

n
cos nx)]0−π +

∫ 0
−π

1
n
cos nxdx ]

+ 1
π [[(

1
2π − x)(− 1

n
cos nx)]π0 −

∫ π
0

1
n
cos nxdx ]

= 1
π [[(

1
2π + x)(− 1

n
cos nx)]0−π + 1

n2
sin nx |0−π]

+ 1
π [[(

1
2π − x)(− 1

n
cos nx)]π0 − 1

n2
sin nx |π0 ]

= 1
π (−

π
2n − π

2n cos (nπ)) +
1
π (

π
2n cos (nπ) +

π
2n )

= 0.
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Example (Cont’d): Illustration of Partial Sums

We conclude

f (x) =
4

π
cos x +

4

9π
cos 3x + · · · =

4

π

∞
∑

n=1

cos (2n − 1)x

(2n − 1)2
.
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

The Value a0/2

The constant term a0
2 of the series is given by the formula

a0

2
=

1

2π

∫ π

−π
f (x)dx .

The right-hand member is simply the average or arithmetic mean of
f (x) over the interval −π ≤ x ≤ π.

So the line y = a0
2 must be such that the area between the line and

the curve y = f (x) lying above the line equals the area between the
line and the curve y = f (x) lying below the line.

The line y = a0
2 is a sort of symmetry line for the graph of y = f (x).

Taking either of these points of view in the two examples considered,
one must have a0

2 = 0. The average of f (x) is 0, and there is as much
area above the x-axis as below.
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Minimizing Total Square Error

We define the total square error of a function g(x) relative to f (x)
as the integral

E =

∫ π

−π
[f (x) − g(x)]2dx .

This error is 0 when g = f (or when g = f except for a finite number
of points), and is otherwise positive.

We seek a constant function y = g0 that minimizes this error.

The error is

E (g0) =
∫ π
−π [f (x)− g0]

2dx =
∫ π
−π [f (x)]

2dx

− 2g0
∫ π
−π f (x)dx + g2

0 · 2π

= A− 2Bg0 + 2πg2
0 ,

where A and B are constants. Thus E (g0) is a quadratic function of
g0, having a minimum when dE

dg0
= 0: −2B + 4πg0 = 0. Hence the

error is minimized when g0 =
B
2π = 1

2π

∫ π
−π f (x)dx = a0

2 .
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Lemma for Minimization of Square Error

Lemma

The following hold, for all n,m 6= 0:

(a)
∫ π
−π sin nxdx =

∫ π
−π cos nxdx = 0;

(b)
∫ π
−π sin

2 (nx)dx =
∫ π
−π cos

2 (nx)dx = π;

(c)
∫ π
−π sin nx sinmxdx =

∫ π
−π sin nx cosmxdx =

∫ π
−π cos nx cosmxdx =

0.

We prove one of each. The rest are handled similarly.
(a)

∫ π

−π
sin nxdx = − 1

n
cos nx |π

−π= − 1
n
(cos (nπ) − cos (nπ)) = 0.

(b)
∫ π

−π
sin2 (nx)dx = 1

2

∫ π

−π
(1 − cos (2nx))dx = 1

2 (x − 1
2n sin (2nx)) |

π
−π=

1
2 · 2π = π.

(c)
∫ π

−π
sin nx sinmxdx = − 1

2

∫ π

−π
(cos (n +m)x − cos (n −m)x)dx =

{

− 1
2

∫ π

−π
(cos 2nx − 1)dx = − 1

2 [
1
2n sin 2nx − x ]π

−π = 0, if n = m

− 1
2 [

1
n+m

sin (n +m)x − 1
n−m

sin (n −m)x ]π
−π = 0, if n 6= m
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Generalization of the Minimization of Square Error

Theorem

Let f (x) be piecewise continuous for −π ≤ x ≤ π. The coefficients of the
partial sum

1

2
a0 + a1 cos x + b1 sin x + · · · + an cos nx + bn sin nx

of the Fourier series of f (x) are precisely those among all coefficients of
the function gn(x) = p0 + p1 cos x + q1 sin x + · · ·+ pn cos nx + qn sin nx
that minimize the square error

∫ π

−π
[f (x)− gn(x)]

2dx .

Furthermore, the minimum square error En satisfies the equation:

En =

∫ π

−π
[f (x)]2dx − π

[

1

2
a20 +

n
∑

k=1

(a2k + b2k)

]

.
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Proof of the Theorem

Suppose gn(x) = p0 + p1 cos x + q1 sin x + · · ·+ pn cos nx + qn sin nx .

Compute the square error of approximating f by gn:
∫ π
−π (f − gn)

2dx

=
∫ π
−π (f − p0 − p1 cos x − q1 sin x − · · · − pn cos nx − qn sin nx)

2dx

=
∫ π
−π[f

2 + p20 + p21 cos
2 x + q21 sin

2 x + · · ·+ p2n cos
2 nx + q2n sin

2 nx

− 2fp0 − 2fp1 cos x − 2fq1 sin x − · · · − 2fpn cos nx − 2fqn sin nx
+ 2p0p1 cos x + 2p0q1 sin x + · · ·+ 2p0pn cos nx + 2p0qn sin nx
+

∑

n,m 2pnpm cos nx cosmx +
∑

n,m 2pnqm cos nx sinmx

+
∑

n,m 2qnqm sin nx sinmx ]dx
Lemma
=

∫ π
−π f

2dx + 2πp20 + πp21 + πq21 + · · ·+ πp2n + πq2n
− 2p0

∫ π
−π fdx − 2p1

∫

f cos xdx − 2q1
∫ π
−π f sin xdx − · · ·

− 2pn
∫ π
−π f cos nxdx − 2qn

∫ π
−π f sin nxdx

=
∫ π
−π f

2dx + (2πp20 − 2p0
∫ π
−π fdx)

+ (πp21 − 2p1
∫ π
−π f cos xdx) + · · ·+ (πq2n − 2qn

∫ π
−π f sin nxdx)
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

Proof of the Theorem (Cont’d)

We found that the square error is given by:
∫ π
−π f

2dx + (2πp20 − 2p0
∫ π
−π fdx)

+(πp21 − 2p1
∫ π
−π f cos xdx) + · · ·+ (πq2n − 2qn

∫ π
−π f sin nxdx)

To minimize it, we minimize each of the parentheses:
4π0 − 2

∫ π

−π
fdx = 0 ⇒ p0 =

1
2π

∫ π

−π
fdx ⇒ p0 =

a0
2 .

2πp1 − 2
∫ π

−π
f cos xdx = 0 ⇒ p1 =

1
π

∫ π

π
f cos xdx ⇒ p1 = a1.

...
2πqn − 2

∫ π

−π
f sin nxdx = 0 ⇒ qn = 1

π

∫ π

−π
f sin nxdx ⇒ qn = bn.

Now for the minimun square error we get
∫ π
−π f

2dx + (2π
a20
4 − 2a0

2 πa0)+

+(πa21 − 2a1πa1) + · · ·+ (πb2n − 2bnπbn)

=
∫ π
−π f

2dx − π
a20
2 − πa21 − πb21 − · · · − πa2n − πb2n

=
∫ π
−π f

2dx − π[
a20
2 +

∑n
k=1(a

2
k + b2k)].
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Fourier Series and Orthogonal Functions Examples. Minimizing of Square Error

An Inequality Based on the Square-Error Minimization

Corollary

If f (x) is piecewise continuous for −π ≤ x ≤ π and a0, a1, . . . , b1, b2, . . .
are the Fourier coefficients of f (x), then

1

2
a20 +

n
∑

k=1

(a2k + b2k) ≤
1

π

∫ π

−π
[f (x)]2dx .

So the series
∑∞

n=1(a
2
n + b2n) converges. Furthermore, limn→∞ an = 0,

limn→∞ bn = 0.

Since the square error
∫

(f − g)2dx is always positive or 0, the
minimum square error En is always positive or 0. So the inequality
follows from the preceding theorem.

By the inequality established, the series converges. It then follows
that the n-th term of the series converges to 0.
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Subsection 5

Generalizations. Fourier Sine and Cosine Series
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Using a Nonstandard Interval

If f (x) is a function of period 2π, one can use as basic interval any
interval c ≤ x ≤ c + 2π, i.e., any interval of length 2π.

For such an interval the same reasoning as previously leads to a
Fourier series

a0

2
+

∞
∑

n=1

(an cos nx + bn sin nx),

where
an = 1

π

∫ c+2π
c

f (x) cos nxdx ,

bn = 1
π

∫ 2π
c

f (x) sin nxdx .

If f (x) is given for all x , with period 2π, this is merely another way of
computing the coefficients an, bn.

If f (x) is given only for c ≤ x ≤ c + 2π, the series can be used to
represent f in this interval. It will then (if convergent) represent the
periodic extension of f outside this interval.
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Even and Odd Functions

Let f (x) be defined in −π ≤ x ≤ π.

f is called an even function if f (−x) = f (x), for all −π ≤ x ≤ π.

f is called an odd function if f (−x) = −f (x), for all −π ≤ x ≤ π.

Note that:

The product of two even functions or of two odd functions is even;
The product of an odd function and an even function is odd.

Furthermore,

∫ a

−a

f (x)dx =

{

0, if f is odd
2
∫ a

0 f (x)dx , if f is even
.
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

The Fourier Cosine Series of an Even Function

Let f be even in the interval −π ≤ x ≤ π.

Then f (x) cos nx is even (product of two even functions).

Moreover, f (x) sin nx is odd (product of odd function and even
function).

Hence
an = 2

π

∫ π
0 f (x) cos nxdx , n = 0, 1, 2, . . . ,

bn = 0, n = 1, 2, . . . .

We have thus the expansion (for a function piecewise very smooth):

f (x) = a0
2 +

∑∞
n=1 an cos nx , f even,

an = 2
π

∫ π
0 f (x) cos nxdx .

This is called the Fourier cosine series of f (x).

It follows from the fundamental theorem that the series will converge
to f (x) for 0 ≤ x ≤ π and outside this interval to the even periodic
function that coincides with f (x) for 0 ≤ x ≤ π.
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

The Fourier Sine Series of an Odd Function

Similarly, if f is odd,

an = 0, bn =
2

π

∫ π

0
f (x) sin nxdx .

So we have the expansion

f (x) =
∑∞

n=1 bn sin nx , f odd,

bn = 2
π

∫ π
0 f (x) sin nxdx .

This defines the Fourier sine series of a function f (x) defined only
between 0 and π.

The series represents an odd periodic function that coincides with
f (x) for 0 ≤ x ≤ π.
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Example

Let f (x) = π − x .

Then one can represent f (x) by a Fourier series over the interval
−π < x < π.

We have
a0 = 1

π

∫ π
−π f (x)dx

= 1
π

∫ π
−π (π − x)dx

= 1
π [−

1
2x

2 + πx ]π−π

= 1
π [−

1
2π

2 + π2 + 1
2π

2 + π2]

= 2π.
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Example (Cont’d)

Next we compute an for n 6= 0.

an = 1
π

∫ π
−π f (x) cos nxdx

= 1
π

∫ π
−π (π − x) cos nxdx

= 1
π

∫ π
−π (π − x)( 1

n
sin nx)′dx

= 1
π

[

[(π − x)( 1
n
sin nx)]π−π +

∫ π
−π

1
n
sin nxdx

]

= 1
π

[

[(π − x)( 1
n
sin nx)]π−π − 1

n2
cos nx |π−π

]

= 0.
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Example (Cont’d)

Finally we compute bn, n 6= 0.

bn = 1
π

∫ π
−π f (x) sin nxdx

= 1
π

∫ π
−π (π − x) sin nxdx

= 1
π

∫ π
−π (π − x)(− 1

n
cos nx)′dx

= 1
π

[

[(π − x)(− 1
n
cos nx)]π−π −

∫ π
−π

1
n
cos nxdx

]

= 1
π

[

[(π − x)(− 1
n
cos nx)]π−π − 1

n2
sin nx |π−π

]

= 1
π (−2π)(− 1

n
cos nπ)

= 2
n
cos nπ = 2(−1)n

n
.
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Example (Conclusion)

Hence we have

π − x = π + 2
∞
∑

n=1

(−1)n sin nx

n
, − π < x < π.
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Example (Cosine Series)

The same function f (x) = π − x can be represented by a Fourier
cosine series over the interval 0 ≤ x ≤ π.

Now we get
a0 = 2

π

∫ π
0 f (x)dx

= 2
π

∫ π
0 (π − x)dx

= 2
π [−

1
2x

2 + πx ]π0

= 2
π (−

1
2π

2 + π2)

= π.
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Example (Cont’d)

For n 6= 0,

an = 2
π

∫ π
0 f (x) cos nxdx

= 2
π

∫ π
0 (π − x) cos nxdx

= 2
π

∫ π
0 (π − x)( 1

n
sin nx)′dx

= 2
π

[

[(π − x)( 1
n
sin nx)]π0 +

∫ π
0

1
n
sin nxdx

]

= 2
π

[

[(π − x)( 1
n
sin nx)]π0 − 1

n2
cos nx |π0

]

= 2
π (−

1
n2

cos (nπ) + 1
n2
)

=

{

0, if n is even
4

πn2
, if n is odd
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Example (Conclusion)

We have, for 0 ≤ x ≤ π:

π − x = π
2 + 2

π (
2
12

cos x + 2
32

cos 3x + 2
52

cos 5x + · · · ).
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Example (Sine Series)

Finally, the same function, f (x) = π − x , can be represented by a
Fourier sine series over the interval 0 < x < π.

We have, for n ≥ 1,

bn = 2
π

∫ π
0 f (x) sin nxdx

= 2
π

∫ π
0 (π − x) sin nxdx

= 2
π

∫ π
0 (π − x)(− 1

n
cos nx)′dx

= 2
π

[

[(π − x)(− 1
n
cos nx)]π0 −

∫ π
0

1
n
cos nxdx

]

= 2
π

[

[(π − x)(− 1
n
cos nx)]π0 − 1

n2
sin nx |π0

]

= 2
π (

π
n
) = 2

n
.
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Example (Conclusion)

We get, for 0 < x < π,

π − x = 2
∞
∑

n=1

1

n
sin nx .
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Change of Period

If f (x) has period p, i.e., f (x + p) = f (x), p > 0, then the
substitution x = p

2π t transforms f (x) into a function g(t) = f ( p
2π t)

that has period 2π.

We have

g(t + 2π) = f [ p
2π (t + 2π)]

= f ( p
2π t + p) = f ( p

2π t) = g(t).

Since g has period 2π, one has a Fourier series for g (assumed
piecewise very smooth):

g(t) =
a0

2
+

∞
∑

n=1

(an cos nt + bn sin nt),

where an = 1
π

∫ π
−π g(t) cos ntdt, bn = 1

π

∫ π
−π g(t) sin ntdt.
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Change of Period (Cont’d)

We have

g(t) =
a0

2
+

∞
∑

n=1

(an cos nt + bn sin nt),

where an = 1
π

∫ π
−π g(t) cos ntdt, bn = 1

π

∫ π
−π g(t) sin ntdt.

If now t is replaced by 2π
p
x , one finds a Fourier series for f (x):

f (x) =
a0

2
+

∞
∑

n=1

[

an cos

(

n ·
2π

p
x

)

+ bn sin

(

n ·
2π

p
x

)]

.

The coefficients an, bn can be expressed directly in terms of f (x):

an = 1
p/2

∫ p/2
−p/2 f (x) cos (n · 2π

p
x)dx ,

bn = 1
p/2

∫ p/2
−p/2 f (x) sin (n · 2π

p
x)dx .
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Change of Period: Cosine and Sine Series

The Fourier cosine series can also be used in this case:

f (x) =
a0

2
+

∞
∑

n=1

an cos (n · 2π
p
x), 0 ≤ x ≤ p

2 ,

an =
2

p/2

∫ p/2

0
f (x) cos (n · 2π

p
x)dx .

Similarly, f (x) has a Fourier sine series:

f (x) =
∞
∑

n=1

bn sin (n · 2π
p
x), 0 < x < p

2 ,

bn =
2

p/2

∫ p/2

0
f (x) sin (n · 2π

p
x)dx .
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Example

Let f (x) = 2x + 1.

Then f (x) can be represented by a Fourier series over the interval
0 < x < 2.

With p = 2, we get:

a0 =
∫ 2
0 f (x)dx

=
∫ 2
0 (2x + 1)dx

= (x2 + x) |20

= 6.
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Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Example (Cont’d)

For n 6= 0,

an =
∫ 2
0 f (x) cos (n 2π

2 x)dx

=
∫ 2
0 (2x + 1) cos (nπx)dx

=
∫ 2
0 (2x + 1)( 1

nπ sin (nπx))′dx

= [(2x + 1)( 1
nπ sin (nπx))]20 −

∫ 2
0

2
nπ sin (nπx)dx

= [(2x + 1)( 1
nπ sin (nπx))]20 +

2
n2π2 cos (nπx) |

2
0

= 0.

George Voutsadakis (LSSU) Advanced Calculus March 2018 56 / 88



Fourier Series and Orthogonal Functions Generalizations. Fourier Sine and Cosine Series

Example (Cont’d)

Finally, for n ≥ 1,

bn =
∫ 2
0 f (x) sin (n 2π

2 x)dx

=
∫ 2
0 (2x + 1) sin (nπx)dx

=
∫ 2
0 (2x + 1)(− 1

nπ cos (nπx))′dx

= [(2x + 1)(− 1
nπ cos (nπx))]20 +

∫ 2
0

2
nπ cos (nπx)dx

= [(2x + 1)(− 1
nπ cos (nπx))]20 +

2
n2π2 sin (nπx) |

2
0

= − 5
nπ + 1

nπ = − 4
nπ .

We get

f (x) = 3−
4

π

∞
∑

n=1

1

n
sin (nπx).
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Fourier Series and Orthogonal Functions Uniqueness Theorem

Subsection 6

Uniqueness Theorem

George Voutsadakis (LSSU) Advanced Calculus March 2018 58 / 88



Fourier Series and Orthogonal Functions Uniqueness Theorem

Example

Show that sin3 x = 3
4 sin x − 1

4 sin 3x and cos3 x = 3
4 cos x + 1

4 cos 3x .

We show the first equation (the other can be proved similarly):

sin3 x = [ 12i (e
ix − e−ix)]3

= − 1
8i (e

3ix − 3e2ixe−ix + 3e ixe−2ix − e−3ix)

= − 1
8i (−3(e ix − e−ix) + (e3ix − e−3ix))

= − 1
4(−3 e ix−e−ix

2i + e i(3x)−e−i(3x)

2i )

= − 1
4(−3 sin x + sin 3x)

= 3
4 sin x − 1

4 sin 3x .
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Fourier Series and Orthogonal Functions Uniqueness Theorem

Preliminary Lemma

Lemma

Both sinn x and cosn x are expressible as trigonometric polynomials, for all
n ≥ 0.

We only deal with cosn x . Moreover, we restrict to n odd.

For n even, we can then use cos x cos y = 1
2 [cos (x + y)+ cos (x − y)].

We have

cosn x = (12 (e
ix + e−ix))n = 1

2n (e
ix + e−ix)n

= 1
2n

∑n
k=0

(

n
k

)

(e ix )k(e−ix )n−k

= 1
2n

∑n
k=0

(

n
k

)

e ikxe−i(n−k)x

= 1
2n

∑

n−1
2

k=0[
(

n
k

)

e ikxe−i(n−k)x +
(

n
n−k

)

e i(n−k)x e−ikx ]

= 1
2n−1

∑

n−1
2

k=0

(

n
k

)

1
2(e

i(n−2k)x + e−i(n−2k)x )

= 1
2n−1

∑

n−1
2

k=0

(

n
k

)

cos (n − 2k)x .
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Fourier Series and Orthogonal Functions Uniqueness Theorem

Uniqueness Theorem

Theorem (Uniqueness Theorem)

Let f (x) and f1(x) be piecewise continuous in the interval −π ≤ x ≤ π
and have the same Fourier coefficients

∫ π
−π f (x) cos nxdx =

∫ π
−π f1(x) cos nxdx , n = 0, 1, 2, . . . ,

∫ π
−π f (x) sin nxdx =

∫ π
−π f1(x) sin nxdx , n = 1, 2, . . . .

Then f (x) = f1(x) except perhaps at points of discontinuity.

Let h(x) = f (x)− f1(x). Then h(x) is piecewise continuous, and from
hypothesis it follows that all Fourier coefficients of h(x) are 0. We
then show that h(x) = 0 except perhaps at discontinuity points.

Suppose h(x0) 6= 0 at a point of continuity x0, for example,
h(x0) = 2c > 0. Then, by continuity, h(x) > c for |x − x0| < δ and δ
sufficiently small. We can assume −π < x0 < π.
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Fourier Series and Orthogonal Functions Uniqueness Theorem

Uniqueness Theorem (Idea)

We now achieve a contradiction by showing
that there exists a “trigonometric polynomial”

P(x) = p0 + p1 cos x + p2 sin x + · · ·
+p2k−1 cos kx + p2k sin kx

that represents a “pulse” at x0 of arbitrarily large amplitude and
arbitrarily small width.

If such a pulse can be constructed, then one has a contradiction: On
one hand,
∫ π

−π
h(x)P(x)dx = p0

∫ π

−π
h(x)dx + p1

∫ π

−π
h(x) cos xdx + · · · = 0.

On the other hand, the major portion of the integral
∫

h(x)P(x)dx is
concentrated in the interval in which the pulse occurs, where h(x) is
positive, and P(x) is large and positive. Hence the integral is positive
and cannot be 0.
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Fourier Series and Orthogonal Functions Uniqueness Theorem

Uniqueness Theorem (Argument)

Take P(x) = [ψ(x)]N , ψ(x) = 1 + cos (x − x0)− cos δ for an
appropriate positive integer N.

Since the functions sinn x and cosn x are expressible as trigonometric
polynomials, the function P(x) is a trigonometric polynomial.

Let k = ψ(x0 +
δ
2) = 1 + cos δ

2 − cos δ.

Note cos δ
2 > cos δ. So, k > 1.

We estimate P :

If x0 −
1
2δ ≤ x ≤ x0 +

1
2δ, |x − x0| ≤

1
2δ, whence cos (x − x0) ≥ cos δ

2 ,
and ψ(x) ≥ k > 1 giving P ≥ kN .
If −π ≤ x < x0 − δ or x0 + δ < x ≤ π, then x − x0 < −δ or x − x0 > δ,
whence cos (x − x0) < cos δ, and −1 < ψ(x) < 1, giving |P | < 1.

Since h(x), being piecewise continuous, is bounded by a constant M
for −π ≤ x ≤ π: |h(x)| ≤ M.
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Fourier Series and Orthogonal Functions Uniqueness Theorem

Uniqueness Theorem (Argument Cont’d)

It follows from the properties of P(x) of the preceding slide that

P(x)h(x) > −M, −π ≤ x ≤ x0 −
1
2δ and x0 +

1
2δ ≤ x ≤ π,

P(x)h(x) ≥ ckN , x0 −
1
2δ ≤ x ≤ x0 +

1
2δ.

Accordingly, we get

∫ π
−π p(x)h(x)dx =

∫ x0− 1
2
δ

−π p(x)h(x)dx +
∫ π
x0+

1
2
δ P(x)h(x)dx

+
∫ x0+

1
2
δ

x0− 1
2
δ
P(x)h(x)dx > −M(2π − δ) + ckNδ.

Since kN → +∞ as N → ∞, the right-hand member of the inequality
is surely positive when N is sufficiently large. Accordingly, the
left-hand member is positive for appropriate choice of N.

This contradicts the fact that the left-hand member is 0.

Thus, h(x) = f (x)− f1(x) = 0 wherever f (x) and f1(x) are
continuous.
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Fourier Series and Orthogonal Functions Uniqueness Theorem

Remarks

The uniqueness theorem can be looked at as asserting that the
system of functions

1, cos x , sin x , . . . , cos nx , sin nx , . . .

is “large enough”, that is, that there are enough functions in this
system to construct series for all the periodic functions envisaged.
It should be noted that omission of any one function of the system
would destroy this property.
Thus if cos x were omitted, one could still form a series

1

2
a0 + b1 sin x + a2 cos 2x + b2 sin 2x + · · · .

But there are very smooth periodic functions whose Fourier series in
this deficient form could never converge to the function, namely, ail
functions A cos x for A = const. 6= 0. For each such function would
have all coefficients 0. So the series reduces to 0 and cannot
represent the function.
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Fourier Series and Orthogonal Functions Uniqueness Theorem

Convergence of Fourier Series

Theorem

Let the function f (x) be continuous for −π ≤ x ≤ π and let the Fourier
series of f (x) converge uniformly in this interval. Then the series
converges to f (x) for −π ≤ x ≤ π.

Let the sum of the Fourier series of f (x) be denoted by f1(x):

f1(x) =
1

2
a0 +

∞
∑

n=1

(an cos nx + bn sin nx).

Since the series converges uniformly, it follows from a previous
theorem that f1(x) is continuous and that an, bn are the Fourier
coefficients of f1(x). But the series was given as the Fourier series of
f (x). Hence f (x) and f1(x) have the same Fourier coefficients. By
the preceding theorem, f (x) = f1(x). So f (x) is the sum of its
Fourier series for −π ≤ x ≤ π.
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Fourier Series and Orthogonal Functions Fundamental Theorem: A Special Case

Subsection 7

Fundamental Theorem: A Special Case
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Fourier Series and Orthogonal Functions Fundamental Theorem: A Special Case

Fundamental Theorem: A Special Case

Theorem

Let f (x) be continuous and piecewise very smooth for all x . Let f (x) have
period 2π. Then the Fourier series of f (x) converges uniformly to f (x) for
all x .

We only prove the case in which f (x) has continuous first and second
derivatives for all x .
For n 6= 0, using integration by parts,

an =
1

π

∫ π

−π
f (x) cos nxdx =

f (x) sin nx

nπ

∣

∣

∣

∣

π

−π

−
1

nπ

∫ π

−π
f ′(x) sin nxdx .

The first term on the right is zero.
A second integration by parts gives

an = f ′(x) cos nx
n2π

|π−π − 1
n2π

∫ π
−π f

′′(x) cos nxdx

f ′ periodic
= − 1

n2π

∫ π
−π f

′′(x) cos nxdx .
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Fourier Series and Orthogonal Functions Fundamental Theorem: A Special Case

Fundamental Theorem: A Special Case (Cont’d)

The function f ′′(x) is continuous in the interval −π ≤ x ≤ π. Hence
|f ′′(x)| ≤ M for an appropriate constant M. One concludes that

|an| =

∣

∣

∣

∣

1

n2π

∫ π

−π
f ′′(x) cos nxdx

∣

∣

∣

∣

≤
2M

n2
, n = 1, 2, . . . .

In exactly the same way we prove that |bn| ≤
2M
n2

, for all n.

Hence each term of the Fourier series of f (x) is in absolute value at
most equal to the corresponding term of the convergent series
1
2 |a0|+

2M
1 + 2M

1 + 2M
22

+ 2M
22

+ · · · .

Application of the Weierstrass M-test establishes that the Fourier
series converges uniformly for all x .

By the preceding theorem, the sum is f (x).
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Subsection 8

Proof of Fundamental Theorem

George Voutsadakis (LSSU) Advanced Calculus March 2018 70 / 88



Fourier Series and Orthogonal Functions Proof of Fundamental Theorem

Example

Consider the function

G (x) =

{

π
2 − x

2 − x2

4π , if − π ≤ x ≤ 0

π
2 + x

2 − x2

4π , if 0 ≤ x ≤ π

Let G be repeated periodically outside this interval.

The resulting function G (x) is continuous for all x and is piecewise
smooth.

Its Fourier series is the series

2π

3
−

1

π

∞
∑

n=1

cos nx

n2
.

Hence |an| ≤
M
n2

as asserted, with M = 1
π . The bn happens to be 0.

By the preceding theorem, this series converges uniformly to G (x).
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Example (Cont’d)

Is term-by-term differentiation of the series permissible, in other
words, is

G ′(x) =
1

π

∞
∑

n=1

sin nx

n
,

wherever G ′(x) is defined?

By a theorem on infinite series, this is correct if x lies within an
interval within which the differentiated series converges uniformly.

It turns out that the series
∑ sin nx

n
converges uniformly for

a ≤ |x | ≤ π, provided that a > 0.

So the formula above for G ′(x) is correct for −π ≤ x ≤ π, except for
x = 0.
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Example (Conclusion)

Now let F (x) be the periodic function
of period 2π, such that F (0) = 0 and

F (x) = G ′(x)

=

{

−1
2 −

x
2π , if − π ≤ x < 0

1
2 − x

2π , if 0 < x ≤ π.

We have stated that F (x) = 1
π

∑∞
n=1

sin nx
n

, for all x , the convergence
being uniform for 0 < a ≤ |x | ≤ π.

The series on the right was computed as the Fourier series of F (x).

So F (x) is represented by its Fourier series for all x .

The remarkable feature of this result is that F (x) has a jump, from
−1

2 to 1
2 at x = 0.

The series converges to the average value F (0) = 0.
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The Fundamental Theorem

Theorem

Let f (x) be defined and piecewise very smooth for −π ≤ x ≤ π and let
f (x) be defined outside this interval in such a manner that f (x) has period
2π. Then the Fourier series of f (x) converges uniformly to f (x) in each
closed interval containing no discontinuity of f (x). At each discontinuity
x0 the series converges to 1

2 [ lim
x→x+0

f (x) + lim
x→x−0

f (x)].

For convenience we redefine f (x) at each discontinuity x0 as the
average of left and right limit values.

Let us suppose, for example, that the
only discontinuity is at x = 0 (and
the points 2kπ, k = ±1,±2, . . .).
Let limx→0+ f (x) − limx→0− f (x) =
s. So s is precisely the “jump”.
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The Fundamental Theorem (Cont’d)

We proceed to eliminate the discontinuity by subtracting from f (x)
the function sF (x), where F (x) is the function defined earlier.

Since sF (x) has also the jump s at x = 0 (and x = 2kπ),
g(x) = f (x)− sF (x) has jump 0 at x = 0 and is continuous for all x :

For

limx→0− g(x) = limx→0− f (x)− s limx→0− F (x)
= [f (0) − 1

2s] +
1
2s = f (0) = g(0).

A similar statement applies to the right-hand limit.

Since F (x) is piecewise linear, g(x) is continuous and piecewise very
smooth for all x and has period 2π. Hence by the preceding theorem,
g(x) is representable by a uniformly convergent Fourier series for all x :

g(x) =
1

2
A0 +

∞
∑

n=1

(An cos nx + Bn sin nx).
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The Fundamental Theorem (Cont’d)

Now we have

f (x) = g(x) + sF (x)

= 1
2A0 +

∑∞
n=1(An cos nx + Bn sin nx) +

s
π

∑∞
n=1

sin nx
n

= 1
2A0 +

∑∞
n=1[An cos nx + (Bn +

s
nπ ) sin nx ].

So f (x) is represented by a trigonometric series for all x .

The series is the Fourier series of f (x):

bn = 1
π

∫ π
−π f (x) sin nxdx = 1

π

∫ π
−π [g(x) + sF (x)] sin nxdx

= 1
π

∫ π
−π g(x) sin nxdx + s

π

∫ π
−π F (x) sin nxdx = Bn +

s
nπ .

Similarly, an = An.

Therefore the Fourier series of f (x) converges to f (x) for all x .

At x = 0 the series converges to f (0), which was defined to be the
average of left and right limits at x = 0.

George Voutsadakis (LSSU) Advanced Calculus March 2018 76 / 88



Fourier Series and Orthogonal Functions Proof of Fundamental Theorem

The Fundamental Theorem (Conclusion)

Since the series for g(x) is uniformly convergent for all x , while the
series for F (x) converges uniformly in each closed interval not
containing x = 0 (or x = 2kπ), the Fourier series of f (x) converges
uniformly in each such closed interval.

The theorem has now been proved for the case of just one jump
discontinuity. If there are several jumps, at points x1, x2, . . ., we
simply remove them by subtracting from f (x) the function

s1F (x − x1) + s2F (x − x2) + · · · .

The resulting function g(x) is again continuous and piecewise very
smooth, so that the same conclusion holds.
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Remark: The Principle of Superposition

The proof just given uses the Principle of Superposition:

The Fourier series of a linear combination of two functions is the same
linear combination of the corresponding two series.

The idea of subtracting off the series corresponding to a jump
discontinuity also has a practical significance:

If a function f (x) is defined by its Fourier series and is not otherwise
explicitly known, one can, of course, use the series to tabulate the
function.
If f (x) has a jump discontinuity, the convergence will be poor near the
discontinuity; this will reveal itself in the presence of terms having
coefficients approaching 0 like 1

n
.

If the discontinuity x1 and jump s1 are known, one can subtract the
corresponding function s1F (x − x1) as before; the new series will
converge much more rapidly.
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Subsection 9

Orthogonal Functions
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Replacing Sine and Cosine by More General Functions

Let f (x) be given in a fixed interval a ≤ x ≤ b.

Let φ1(x), φ2(x), . . . , φn(x), . . . be functions all piecewise continuous
in this interval intended to replace the system of sines and cosines.

We then postulate a development, f (x) =
∑∞

n=1 cnφn(x) just as in
the case of Fourier series.

We multiply both sides by φm(x) and integrate term by term:

∫ b

a

f (x)φm(x)dx =
∞
∑

n=1

cn

∫ b

a

φm(x)φn(x)dx .

In order to achieve a result analogous to that for Fourier series, we
must postulate that

∫ b

a

φm(x)φn(x)dx = 0, m 6= n.
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Replacing Sine and Cosine (cont’d)

The series on the right then reduces to one term:
∫ b

a

f (x)φm(x)dx = cm

∫ b

a

[φm(x)]
2dx .

The integral on the right is a certain constant:
∫ b

a
[φm(x)]

2dx = Bm.

Bm will be positive unless φm(x) ≡ 0 (except at a finite number of
points); to avoid this case, we assume that no Bm is 0. Then

cm =
1

Bm

∫ b

a

f (x)φm(x)dx .

Thus, under the simple conditions
∫ b

a
φm(x)φn(x)dx = 0, m 6= n,
∫ b

a
[φm(x)]

2dx = Bm 6= 0, for all m,

we have a rule for the formation of a series.
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Orthogonal System of Functions

Definition

Two functions p(x), q(x), which are piecewise continuous for
a ≤ x ≤ b, are orthogonal in this interval if

∫ b

a

p(x)q(x)dx = 0.

A system of functions {φn(x) : n = 1, 2, . . .} is termed an orthogonal

system in the interval a ≤ x ≤ b if φn and φm are orthogonal for
each pair of distinct indices m, n:

∫ b

a

φm(x)φn(x)dx = 0, m 6= n,

and no φn(x) is identically 0 except at a finite number of points.
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Example

The trigonometric system in the interval −π ≤ x ≤ π:

1, cos x , sin x , . . . , cos nx , sin nx , . . . .

φ1 is the constant 1;
φ2 is the function cos x ;
φ3 is the function sin x ;
...
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Fourier Series

If f (x) is piecewise continuous in the interval a ≤ x ≤ b and {φn(x)}
is an orthogonal system in this interval, then the series

∞
∑

n=1

cnφn(x),

where

cn =
1

Bn

∫ b

a

f (x)φn(x)dx , Bn =

∫ b

a

[φn(x)]
2dx ,

is called the Fourier series of f with respect to the system

{φn(x)}.

The numbers c1, c2, . . . are called the Fourier coefficients of f (x)
with respect to the system {φn(x)}.
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Orthonormal Systems of Functions

The preceding formulas can be simplified if one assumes that the
constant Bn is always 1, i.e., that

∫ b

a

[φn(x)]
2dx = 1, n = 1, 2, . . . .

This can always be achieved by dividing the original φn(x) by
appropriate constants.

When the condition Bn = 1 is satisfied for all n, the system of
functions φn(x) is called normalized.

A system that is both normalized and orthogonal is called
orthonormal.

Example: The following system of functions is orthonormal
1√
2π
, cos x√

π
, sin x√

π
, . . . , cos nx√

π
, sin nx√

π
, . . ..

The general theory is simpler for normalized systems, but the
advantages for the applications are slight.
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The Vector Space Formalism

We can consider the piecewise continuous functions for a ≤ x ≤ b as
a kind of vector space: For f (x), g(x) piecewise continuous,

the sum or difference is again piecewise continuous;
the product cf by a scalar c is also piecewise continuous.

We define an inner product (or scalar product):

(f , g) =

∫ b

a

f (x)g(x)dx .

One can then define a norm (or absolute value):

‖f ‖ =
√

(f , f ) =

{
∫ b

a

[f (x)]2dx

}

1
2

.

The zero function 0∗ is a function that is 0 except at a finite number
of points.

In general, in this vector theory of functions we consider two functions
that differ only at a finite number of points to be the same function.
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Orthogonal and Orthonormal Systems in a Vector Space

In the space V of piece-wise continuous functions on [a, b], two
functions f (x) and g(x) are orthogonal if

(f , g) = 0.

An orthogonal system is a system {φn(x)}
∞
n=1 of functions in V ,

such that

(φm, φn) = 0, if m 6= n;
(φn, φn) = ‖φn‖

2 = Bn > 0, for all n ≥ 1.

The system is orthonornal if Bn = 1, for all n ≥ 1, i.e., if the φn are
unit vectors in V .
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The Fourier Formalism in a Vector Space

The Fourier serier of a function f (x) in V with respect to the

orthogonal system {φn(x)} is the series
∞
∑

n=1

cnφn(x), cn =
1

‖φn‖2
(f , φn).

If the system {φn(x)} is orthonormal, then we get
∞
∑

n=1

cnφn(x), cn = (f , φn).

Compare this with the expressions of vectors in terms of the canonical
orthonormal basis {e1, . . . , en} of an n-dimensional vector space:

v = v1e1 + · · ·+ vnen, vi = v · e i .

Since the series above is infinite, convergence questions arise.
Theorems similar to the one proven for the trigonometric Fourier
series are proven to address these issues.
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