Advanced Calculus

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 411

(1) Fourier Series and Orthogonal Functions

- Trigonometric Series
- Fourier Series
- Convergence of Fourier Series
- Examples. Minimizing of Square Error
- Generalizations. Fourier Sine and Cosine Series
- Uniqueness Theorem
- Fundamental Theorem: A Special Case
- Proof of Fundamental Theorem
- Orthogonal Functions

Subsection 1

Trigonometric Series

Trigonometric Series

- A trigonometric series is a series of form

$$
\frac{1}{2} a_{0}+a_{1} \cos x+b_{1} \sin x+\cdots+a_{n} \cos n x+b_{n} \sin n x+\cdots,
$$

where the coefficients a_{n} and b_{n} are constants.

- If these constants satisfy certain conditions, to be specified in the next section, then the series is called a Fourier series.
- Each term in the series has the property of repeating itself in intervals of 2π :

$$
\begin{aligned}
& \cos (x+2 \pi)=\cos x, \quad \sin (x+2 \pi)=\sin x, \ldots \\
& \cos [n(x+2 \pi)]=\cos (n x+2 n \pi)=\cos n x, \ldots
\end{aligned}
$$

- It follows that if the series converges for all x, then its sum $f(x)$ must also have this property:

$$
f(x+2 \pi)=f(x)
$$

We say $f(x)$ has period 2π.

Periodic Functions

- A function $f(x)$ such that, for some $p>0$,

$$
f(x+p)=f(x), \text { for all } x
$$

is said to be periodic and have period p.

- Note that $\cos 2 x$ has, in addition to the period 2π, the period π.
- In general, $\cos n x$ and $\sin n x$ have the periods $\frac{2 \pi}{n}$.
- However, 2π is the smallest period shared by all terms of the trigonometric series.
- If $f(x)$ has period p, then the substitution

$$
x=p \frac{t}{2 \pi}
$$

converts $f(x)$ into a function of t having period 2π. Indeed, note that when t increases by $2 \pi, x$ increases by p.

Periodic Functions as Trigonometric Series

- It can be shown that every periodic function of x satisfying certain very general conditions can be represented as a trigonometric series.
- This theorem reflects physical experience.
- In the case of sound, for example that of a violin string:
- The term $\frac{1}{2} a_{0}$ represents the neutral position;
- The terms $a_{1} \cos x+b_{1} \sin x$ the fundamental tone;
- The terms $a_{2} \cos 2 x+b_{2} \sin 2 x t$ the first overtone (octave);
- The other terms represent higher overtones.
- The variable x represents time and the function $f(x)$ the displacement of a point on the string.
- The musical tone heard is a combination of simple harmonic vibrations given by the terms $\left(a_{n} \cos n x+b_{n} \sin n x\right)$.

Rewriting the Simple Harmonic Vibrations

- Each simple harmonic vibration pair $\left(a_{n} \cos n x+b_{n} \sin n x\right)$ can be written in the form

$$
A_{n} \sin (n x+\alpha)
$$

where

$$
A_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}, \quad \sin \alpha=\frac{a_{n}}{A_{n}}, \quad \cos \alpha=\frac{b_{n}}{A_{n}} .
$$

- The "amplitude" A_{n+1} is a measure of the importance of the n-th overtone in the whole sound.
- The differences in the tones of different musical instruments can be ascribed mainly to the differences in the weights A_{n} of the overtones.

Subsection 2

Fourier Series

Coefficients of Trigonometric Series

- Suppose now that a periodic function $f(x)$ is the sum of a trigonometric series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

Multiply $f(x)$ by $\cos m x$ and integrate from $-\pi$ to π :

$$
\begin{aligned}
& \int_{-\pi}^{\pi} f(x) \cos m x d x \\
& =\int_{-\pi}^{\pi}\left[\frac{a_{0}}{2} \cos m x+\sum_{n=1}^{\infty}\left(a_{n} \cos n x \cos m x+b_{n} \sin n x \cos m x\right)\right] d x .
\end{aligned}
$$

If term-by-term integration of the series is allowed, then we find

$$
\begin{aligned}
& \int_{-\pi}^{\pi} f(x) \cos m x d x=\frac{a_{0}}{2} \int_{-\pi}^{\pi} \cos m x d x \\
& +\sum_{n=1}^{\infty}\left\{a_{n} \int_{-\pi}^{\pi} \cos n x \cos m x d x+b_{n} \int_{-\pi}^{\pi} \sin n x \cos m x d x\right\}
\end{aligned}
$$

Coefficients of Trigonometric Series (Cont'd)

- The integrals on the right are evaluated with the help of the identities

$$
\begin{aligned}
\cos x \cos y & =\frac{1}{2}[\cos (x+y)+\cos (x-y)] \\
\sin x \cos y & =\frac{1}{2}[\sin (x+y)+\sin (x-y)] \\
\sin x \sin y & =-\frac{1}{2}[\cos (x+y)-\cos (x-y)]
\end{aligned}
$$

- $\int_{-\pi}^{\pi} \cos m x d x=$
- If $m=0$,

$$
\int_{-\pi}^{\pi} \cos 0 d x=\int_{-\pi}^{\pi} d x=2 \pi
$$

- If $m \neq 0$,

$$
\int_{-\pi}^{\pi} \cos m x d x=\left.\frac{1}{m} \sin m x\right|_{-\pi} ^{\pi}=0 .
$$

Coefficients of Trigonometric Series (Cont'd)

- $\int_{-\pi}^{\pi} \cos n x \cos m x d x=\frac{1}{2} \int_{-\pi}^{\pi}(\cos (n+m) x+\cos (n-m) x) d x=$ - If $m=n \neq 0$,

$$
\frac{1}{2} \int_{-\pi}^{\pi}(\cos 2 n x+1) d x=\left.\frac{1}{2}\left(\frac{1}{2 n} \sin 2 n x+x\right)\right|_{-\pi} ^{\pi}=\pi
$$

- If $m \neq n$,

$$
\frac{1}{2}\left[\frac{1}{n+m} \sin (n+m) x+\frac{1}{n-m} \sin (n-m) x\right]_{-\pi}^{\pi}=0 .
$$

- $\int_{-\pi}^{\pi} \sin n x \cos m x d x=\frac{1}{2} \int_{-\pi}^{\pi}(\sin (n+m) x+\sin (n-m) x) d x=$
- If $m=n \neq 0$,

$$
\frac{1}{2} \int_{-\pi}^{\pi} \sin 2 n x d x=\left.\frac{1}{2}\left(-\frac{1}{2 n} \cos 2 n x\right)\right|_{-\pi} ^{\pi}=0 .
$$

- If $m \neq n$,

$$
\frac{1}{2}\left[-\frac{1}{n+m} \cos (n+m) x-\frac{1}{n-m} \cos (n-m) x\right]_{-\pi}^{\pi}=0 .
$$

Coefficients of Trigonometric Series (Cont'd)

- We found

$$
\begin{aligned}
\int_{-\pi}^{\pi} \cos m x d x & = \begin{cases}2 \pi, & \text { if } m=0 \\
0, & \text { if } m \neq 0\end{cases} \\
\int_{-\pi}^{\pi} \cos n x \cos m x d x & = \begin{cases}0, & n \neq m \\
\pi, & n=m \neq 0\end{cases} \\
\int_{-\pi}^{\pi} \sin n x \cos m x d x & =0
\end{aligned}
$$

Thus, we get:

$$
\begin{aligned}
& \int_{-\pi}^{\pi} f(x) \cos m x d x=\frac{a_{0}}{2} \int_{-\pi}^{\pi} \cos m x d x \\
& +\sum_{n=1}^{\infty}\left\{a_{n} \int_{-\pi}^{\pi} \cos n x \cos m x d x+b_{n} \int_{-\pi}^{\pi} \sin n x \cos m x d x\right\} \\
& = \begin{cases}\frac{a_{0}}{2} \cdot 2 \pi=a_{0} \pi, & \text { if } m=0 \\
a_{m} \pi, & \text { if } m \neq 0\end{cases}
\end{aligned}
$$

Coefficients of Trigonometric Series (Conclusion)

- Multiplying $f(x)$ by $\sin m x$ and proceeding in the same way, we find $\int_{-\pi}^{\pi} f(x) \sin m x d x=\pi b_{m}, m=1,2, \ldots$
We therefore obtain the following formulas:

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad n=0,1,2, \ldots \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x, \quad n=1,2, \ldots
\end{aligned}
$$

Fourier Series

- Let $f(x)$ be a function such that the integrals

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad n=0,1,2, \ldots \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x, \quad n=1,2, \ldots
\end{aligned}
$$

exist.

- The Fourier series of $f(x)$ is the trigonometric series

$$
\frac{1}{2} a_{0}+a_{1} \cos x+b_{1} \sin x+\cdots+a_{n} \cos n x+b_{n} \sin n x+\cdots
$$

in which the coefficients a_{n}, b_{n} are computed from the function $f(x)$ by the integrals above.

- For the integrals defining a_{n}, b_{n} to exist it is sufficient that $f(x)$ be continuous except for a finite number of jumps between $-\pi$ and π
- No parentheses are used in the general definition of a Fourier series. If the series converges, then insertion of parentheses is permissible.

Uniformly Convergent Trigonometric Series

Theorem

Every uniformly convergent trigonometric series is a Fourier series. More precisely, if the series

$$
\frac{1}{2} a_{0}+a_{1} \cos x+b_{1} \sin x+\cdots+a_{n} \cos n x+b_{n} \sin n x+\cdots
$$

converges uniformly for all x to $f(x)$, then $f(x)$ is continuous for all x, $f(x)$ has period 2π, and the series is the Fourier series of $f(x)$.

- Since the series converges uniformly for all x, its sum $f(x)$ is continuous, for all x.

The series remains uniformly convergent if all terms are multiplied by $\cos m x$ or by $\sin m x$.
Therefore, the term-by-term integration of the series is justified.

Uniformly Convergent Trigonometric Series (Cont'd)

- The formulas

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad n=0,1,2, \ldots \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x, \quad n=1,2, \ldots
\end{aligned}
$$

now follow as previously so that the series is the Fourier series of $f(x)$. The periodicity of $f(x)$ is a consequence of the periodicity of the terms of the series.

Uniform Convergence and Uniqueness

Corollary

If two trigonometric series converge uniformly for all x and have the same sum for all x :

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} x\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \frac{1}{2} a_{0}^{\prime}+\sum_{n=1}^{\infty}\left(a_{n}^{\prime} \cos n x+b_{n}^{\prime} \sin n x\right)
$$

then the series are identical: $a_{0}=a_{0}^{\prime}, a_{n}=a_{n}^{\prime}, b_{n}=b_{n}^{\prime}$, for $n=1,2, \ldots$ In particular, if a trigonometric series converges uniformly to 0 for all x, then all coefficients are 0.

- Let $f(x)$ denote the sum of both series. Then by the preceding theorem, $a_{n}=a_{n}^{\prime}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, n=0,1,2, \ldots$, and similarly $b_{n}=b_{n}^{\prime}$, for all n. If $f(x) \equiv 0$, then all coefficients are 0 .

Subsection 3

Convergence of Fourier Series

Continuity and Smoothness

- We term a function $f(x)$, defined for $a \leq x \leq b$, piecewise continuous in this interval if the interval can be subdivided into a finite number of subintervals, inside each of which $f(x)$ is continuous and has finite limits at the left and right ends of the interval.
- Accordingly, inside the i-th subinterval the function $f(x)$ coincides with a function $f_{i}(x)$ that is continuous in the closed subinterval.
- If, in addition, the functions $f_{i}(x)$ have continuous first derivatives, we term $f(x)$ piecewise smooth.
- If, in addition, the functions $f_{i}(x)$ have continuous second derivatives, we term $f(x)$ piecewise very smooth.

The Fundamental Theorem

Fundamental Theorem

Let $f(x)$ be piecewise very smooth in the interval $-\pi \leq x \leq \pi$. Then the Fourier series of $f(x)$:

$$
\begin{gathered}
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{gathered}
$$

converges to $f(x)$ wherever $f(x)$ is continuous inside the interval. The series converges to $\frac{1}{2}\left[\lim _{x \rightarrow x_{1}^{-}} f(x)+\lim _{x \rightarrow x_{1}^{+}} f(x)\right]$ at each point of discontinuity x_{1} inside the interval, and to $\frac{1}{2}\left[\lim _{x \rightarrow \pi^{-}} f(x)+\lim _{x \rightarrow-\pi^{+}} f(x)\right]$ at $x= \pm \pi$.
The convergence is uniform in each closed interval containing no discontinuity.

- The proof of the fundamental theorem will be given later.

Subsection 4

Examples. Minimizing of Square Error

Example

- Consider $f(x)=\left\{\begin{aligned}-1, & \text { if }-\pi \leq x<0 \\ 1, & \text { if } 0 \leq x \leq \pi\end{aligned}\right.$.

The periodic extension of $f(x)$ gives a "square wave".

Example (Cont'd)

- If $n=0$, then

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi}\left[\int_{-\pi}^{0}-d x+\int_{0}^{\pi} d x\right]=\frac{1}{\pi}[-\pi+\pi]=0
$$

- If $n \neq 0$:

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& =-\frac{1}{\pi}\left[\int_{-\pi}^{0}-\cos n x d x+\int_{0}^{\pi} \cos n x d x\right] \\
& =\frac{1}{\pi}\left[-\left.\frac{1}{n} \sin n x\right|_{-\pi} ^{0}+\left.\frac{1}{n} \sin n x\right|_{0} ^{\pi}\right] \\
& =\frac{1}{\pi} \cdot 0=0 ; \\
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \\
& =\frac{1}{\pi}\left[\int_{-\pi}^{0}-\sin n x d x+\int_{0}^{\pi} \sin n x d x\right] \\
& =\frac{1}{\pi}\left[\left.\frac{1}{n} \cos n x\right|_{-\pi} ^{0}-\left.\frac{1}{n} \cos n x\right|_{0} ^{\pi}\right] \\
& =\frac{1}{\pi}\left[\frac{1}{n}-\frac{1}{n} \cos (n \pi)-\frac{1}{n} \cos (n \pi)+\frac{1}{n}\right] \\
& = \begin{cases}0, & \text { if } n \text { is even } \\
\frac{4}{n \pi}, & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

Example (Cont'd)

- We computed

$$
\begin{aligned}
& a_{n}=0, \quad n=0,1,2, \ldots \\
& b_{n}= \begin{cases}0, & \text { if } n=2,4, \ldots \\
\frac{4}{n \pi}, & \text { if } n=1,3,5, \ldots\end{cases}
\end{aligned}
$$

Hence for $-\pi<x<\pi$,

$$
f(x)=\frac{4}{\pi} \sin x+\frac{4}{3 \pi} \sin 3 x+\cdots=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) x}{2 n-1}
$$

Example (Cont'd): Illustration of Partial Sums

- We have

$$
S_{1}=\frac{4}{\pi} \sin x, \quad S_{2}=S_{1}+\frac{4}{3 \pi} \sin 3 x, \quad S_{3}=S_{2}+\frac{4}{5 \pi} \sin 5 x .
$$

Example

- Let $f(x)=\left\{\begin{array}{ll}\frac{1}{2} \pi+x, & \text { if }-\pi \leq x \leq 0 \\ \frac{1}{2} \pi-x, & \text { if } 0 \leq x \leq \pi\end{array}\right.$.

The periodic extension of $f(x)$ is a triangular wave.

The extension is continuous for all x.

Example (Cont'd)

- For $n=0$:

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
& =\frac{1}{\pi} \int_{-\pi}^{0}\left(\frac{1}{2} \pi+x\right) d x+\frac{1}{\pi} \int_{0}^{\pi}\left(\frac{1}{2} \pi-x\right) d x \\
& =\frac{1}{\pi}\left[\frac{1}{2} x^{2}+\frac{1}{2} \pi x\right]_{-\pi}^{0}+\frac{1}{\pi}\left[-\frac{1}{2} x^{2}+\frac{1}{2} \pi x\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left(-\frac{1}{2} \pi^{2}+\frac{1}{2} \pi^{2}\right)+\frac{1}{\pi}\left(-\frac{1}{2} \pi^{2}+\frac{1}{2} \pi^{2}\right) \\
& =0
\end{aligned}
$$

Example (Cont'd)

- If $n \neq 0$:

$$
\begin{aligned}
a_{n}= & \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
= & \frac{1}{\pi} \int_{-\pi}^{0}\left(\frac{\pi}{2}+2\right) \cos n x d x+\frac{1}{\pi} \int_{0}^{\pi}\left(\frac{\pi}{2}-x\right) \cos n x d x \\
= & \frac{1}{\pi} \int_{-\pi}^{0}\left(\frac{1}{2} \pi+x\right)\left(\frac{1}{n} \sin n x\right)^{\prime} d x+\frac{1}{\pi} \int_{0}^{\pi}\left(\frac{1}{2} \pi-x\right)\left(\frac{1}{n} \sin n x\right)^{\prime} d x \\
= & \frac{1}{\pi}\left[\left[\left(\frac{1}{2} \pi+x\right)\left(\frac{1}{n} \sin n x\right)\right]_{-\pi}^{0}-\int_{-\pi}^{0} \frac{1}{n} \sin n x d x\right] \\
& \quad+\frac{1}{\pi}\left[\left[\left(\frac{1}{2} \pi-x\right)\left(\frac{1}{n} \sin n x\right)\right]_{0}^{\pi}+\int_{0}^{\pi} \frac{1}{n} \sin n x d x\right] \\
= & \frac{1}{\pi}\left[\left[\left(\frac{1}{2} \pi+x\right)\left(\frac{1}{n} \sin n x\right)\right]_{-\pi}^{0}+\left.\frac{1}{n^{2}} \cos n x\right|_{0} ^{\pi}\right] \\
& +\frac{1}{\pi}\left[\left[\left(\frac{1}{2} \pi-x\right)\left(\frac{1}{n} \sin n x\right)\right]_{0}^{\pi}-\left.\frac{1}{n^{2}} \cos n x\right|_{0} ^{\pi}\right] \\
= & \frac{1}{\pi}\left(\frac{1}{n^{2}}-\frac{1}{n^{2}} \cos (n \pi)\right)-\frac{1}{\pi}\left(\frac{1}{n^{2}} \cos (n \pi)-\frac{1}{n^{2}}\right) \\
= & \frac{2}{\pi n^{2}}-\frac{2}{\pi n^{2}} \cos (n \pi) \\
= & \begin{cases}0, & \text { if } n \text { is even } \\
\frac{4}{\pi n^{2}}, & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

Example (Cont'd)

- If $n \neq 0$:

$$
\begin{aligned}
b_{n}= & \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \\
= & \frac{1}{\pi} \int_{-\pi}^{0}\left(\frac{\pi}{2}+2\right) \sin n x d x+\frac{1}{\pi} \int_{0}^{\pi}\left(\frac{\pi}{2}-x\right) \sin n x d x \\
= & \frac{1}{\pi} \int_{-\pi}^{0}\left(\frac{1}{2} \pi+x\right)\left(-\frac{1}{n} \cos n x\right)^{\prime} d x \\
& +\frac{1}{\pi} \int_{0}^{\pi}\left(\frac{1}{2} \pi-x\right)\left(-\frac{1}{n} \cos n x\right)^{\prime} d x \\
= & \frac{1}{\pi}\left[\left[\left(\frac{1}{2} \pi+x\right)\left(-\frac{1}{n} \cos n x\right)\right]_{-\pi}^{0}+\int_{-\pi}^{0} \frac{1}{n} \cos n x d x\right] \\
& \quad+\frac{1}{\pi}\left[\left[\left(\frac{1}{2} \pi-x\right)\left(-\frac{1}{n} \cos n x\right)\right]_{0}^{\pi}-\int_{0}^{\pi} \frac{1}{n} \cos n x d x\right] \\
= & \frac{1}{\pi}\left[\left[\left(\frac{1}{2} \pi+x\right)\left(-\frac{1}{n} \cos n x\right)\right]_{-\pi}^{0}+\left.\frac{1}{n^{2}} \sin n x\right|_{-\pi} ^{0}\right] \\
& \quad+\frac{1}{\pi}\left[\left[\left(\frac{1}{2} \pi-x\right)\left(-\frac{1}{n} \cos n x\right)\right]_{0}^{\pi}-\left.\frac{1}{n^{2}} \sin n x\right|_{0} ^{\pi}\right] \\
= & \frac{1}{\pi}\left(-\frac{\pi}{2 n}-\frac{\pi}{2 n} \cos (n \pi)\right)+\frac{1}{\pi}\left(\frac{\pi}{2 n} \cos (n \pi)+\frac{\pi}{2 n}\right) \\
= & 0 .
\end{aligned}
$$

Example (Cont'd): Illustration of Partial Sums

- We conclude

$$
f(x)=\frac{4}{\pi} \cos x+\frac{4}{9 \pi} \cos 3 x+\cdots=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}
$$

The Value $a_{0} / 2$

- The constant term $\frac{a_{0}}{2}$ of the series is given by the formula

$$
\frac{a_{0}}{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x
$$

- The right-hand member is simply the average or arithmetic mean of $f(x)$ over the interval $-\pi \leq x \leq \pi$.
- So the line $y=\frac{a_{0}}{2}$ must be such that the area between the line and the curve $y=f(x)$ lying above the line equals the area between the line and the curve $y=f(x)$ lying below the line.
- The line $y=\frac{a 0}{2}$ is a sort of symmetry line for the graph of $y=f(x)$.
- Taking either of these points of view in the two examples considered, one must have $\frac{a_{0}}{2}=0$. The average of $f(x)$ is 0 , and there is as much area above the x-axis as below.

Minimizing Total Square Error

- We define the total square error of a function $g(x)$ relative to $f(x)$ as the integral

$$
E=\int_{-\pi}^{\pi}[f(x)-g(x)]^{2} d x
$$

- This error is 0 when $g=f$ (or when $g=f$ except for a finite number of points), and is otherwise positive.
- We seek a constant function $y=g_{0}$ that minimizes this error.
- The error is

$$
\begin{aligned}
E\left(g_{0}\right) & =\quad \int_{-\pi}^{\pi}\left[f(x)-g_{0}\right]^{2} d x=\int_{-\pi}^{\pi}[f(x)]^{2} d x \\
& -2 g_{0} \int_{-\pi}^{\pi} f(x) d x+g_{0}^{2} \cdot 2 \pi \\
& =A-2 B g_{0}+2 \pi g_{0}^{2}
\end{aligned}
$$

where A and B are constants. Thus $E\left(g_{0}\right)$ is a quadratic function of g_{0}, having a minimum when $\frac{d E}{d g_{0}}=0:-2 B+4 \pi g_{0}=0$. Hence the error is minimized when $g_{0}=\frac{B}{2 \pi}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=\frac{a_{0}}{2}$.

Lemma for Minimization of Square Error

Lemma

The following hold, for all $n, m \neq 0$:
(a) $\int_{-\pi}^{\pi} \sin n x d x=\int_{-\pi}^{\pi} \cos n x d x=0$;
(b) $\int_{-\pi}^{\pi} \sin ^{2}(n x) d x=\int_{-\pi}^{\pi} \cos ^{2}(n x) d x=\pi$;
(c) $\int_{-\pi}^{\pi} \sin n x \sin m x d x=\int_{-\pi}^{\pi} \sin n x \cos m x d x=\int_{-\pi}^{\pi} \cos n x \cos m x d x=$ 0.

- We prove one of each. The rest are handled similarly.
(a) $\int_{-\pi}^{\pi} \sin n x d x=-\left.\frac{1}{n} \cos n x\right|_{-\pi} ^{\pi}=-\frac{1}{n}(\cos (n \pi)-\cos (n \pi))=0$.
(b) $\int_{-\pi}^{\pi} \sin ^{2}(n x) d x=\frac{1}{2} \int_{-\pi}^{\pi}(1-\cos (2 n x)) d x=\left.\frac{1}{2}\left(x-\frac{1}{2 n} \sin (2 n x)\right)\right|_{-\pi} ^{\pi}=$
$\frac{1}{2} \cdot 2 \pi=\pi$.
(c) $\int_{-\pi}^{\pi} \sin n x \sin m x d x=-\frac{1}{2} \int_{-\pi}^{\pi}(\cos (n+m) x-\cos (n-m) x) d x=$

$$
\left\{\begin{array}{l}
-\frac{1}{2} \int_{-\pi}^{\pi}(\cos 2 n x-1) d x=-\frac{1}{2}\left[\frac{1}{2 n} \sin 2 n x-x\right]_{-\pi}^{\pi}=0, \quad \text { if } n=m \\
-\frac{1}{2}\left[\frac{1}{n+m} \sin (n+m) x-\frac{1}{n-m} \sin (n-m) x\right]_{-\pi}^{\pi}=0, \quad \text { if } n \neq m
\end{array}\right.
$$

Generalization of the Minimization of Square Error

Theorem

Let $f(x)$ be piecewise continuous for $-\pi \leq x \leq \pi$. The coefficients of the partial sum

$$
\frac{1}{2} a_{0}+a_{1} \cos x+b_{1} \sin x+\cdots+a_{n} \cos n x+b_{n} \sin n x
$$

of the Fourier series of $f(x)$ are precisely those among all coefficients of the function $g_{n}(x)=p_{0}+p_{1} \cos x+q_{1} \sin x+\cdots+p_{n} \cos n x+q_{n} \sin n x$ that minimize the square error

$$
\int_{-\pi}^{\pi}\left[f(x)-g_{n}(x)\right]^{2} d x
$$

Furthermore, the minimum square error E_{n} satisfies the equation:

$$
E_{n}=\int_{-\pi}^{\pi}[f(x)]^{2} d x-\pi\left[\frac{1}{2} a_{0}^{2}+\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)\right]
$$

Proof of the Theorem

- Suppose $g_{n}(x)=p_{0}+p_{1} \cos x+q_{1} \sin x+\cdots+p_{n} \cos n x+q_{n} \sin n x$. Compute the square error of approximating f by g_{n} :
$\int_{-\pi}^{\pi}\left(f-g_{n}\right)^{2} d x$
$=\int_{-\pi}^{\pi}\left(f-p_{0}-p_{1} \cos x-q_{1} \sin x-\cdots-p_{n} \cos n x-q_{n} \sin n x\right)^{2} d x$
$=\int_{-\pi}^{\pi}\left[f^{2}+p_{0}^{2}+p_{1}^{2} \cos ^{2} x+q_{1}^{2} \sin ^{2} x+\cdots+p_{n}^{2} \cos ^{2} n x+q_{n}^{2} \sin ^{2} n x\right.$
$-2 f p_{0}-2 f p_{1} \cos x-2 f q_{1} \sin x-\cdots-2 f p_{n} \cos n x-2 f q_{n} \sin n x$
$+2 p_{0} p_{1} \cos x+2 p_{0} q_{1} \sin x+\cdots+2 p_{0} p_{n} \cos n x+2 p_{0} q_{n} \sin n x$
$+\sum_{n, m} 2 p_{n} p_{m} \cos n x \cos m x+\sum_{n, m} 2 p_{n} q_{m} \cos n x \sin m x$
$\left.+\sum_{n, m} 2 q_{n} q_{m} \sin n x \sin m x\right] d x$
$\stackrel{\text { Lemma }}{=} \int_{-\pi}^{\pi} f^{2} d x+2 \pi p_{0}^{2}+\pi p_{1}^{2}+\pi q_{1}^{2}+\cdots+\pi p_{n}^{2}+\pi q_{n}^{2}$
$-2 p_{0} \int_{-\pi}^{\pi} f d x-2 p_{1} \int f \cos x d x-2 q_{1} \int_{-\pi}^{\pi} f \sin x d x-\cdots$
$-2 p_{n} \int_{-\pi}^{\pi} f \cos n x d x-2 q_{n} \int_{-\pi}^{\pi} f \sin n x d x$
$=\int_{-\pi}^{\pi} f^{2} d x+\left(2 \pi p_{0}^{2}-2 p_{0} \int_{-\pi}^{\pi} f d x\right)$
$+\left(\pi p_{1}^{2}-2 p_{1} \int_{-\pi}^{\pi} f \cos x d x\right)+\cdots+\left(\pi q_{n}^{2}-2 q_{n} \int_{-\pi}^{\pi} f \sin n x d x\right)$

Proof of the Theorem (Cont'd)

- We found that the square error is given by:

$$
\begin{aligned}
& \int_{-\pi}^{\pi} f^{2} d x+\left(2 \pi p_{0}^{2}-2 p_{0} \int_{-\pi}^{\pi} f d x\right) \\
& +\left(\pi p_{1}^{2}-2 p_{1} \int_{-\pi}^{\pi} f \cos x d x\right)+\cdots+\left(\pi q_{n}^{2}-2 q_{n} \int_{-\pi}^{\pi} f \sin n x d x\right)
\end{aligned}
$$

To minimize it, we minimize each of the parentheses:

- $4 \pi_{0}-2 \int_{-\pi}^{\pi} f d x=0 \Rightarrow p_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f d x \Rightarrow p_{0}=\frac{a_{0}}{2}$.
- $2 \pi p_{1}-2 \int_{-\pi}^{\pi} f \cos x d x=0 \Rightarrow p_{1}=\frac{1}{\pi} \int_{\pi}^{\pi} f \cos x d x \Rightarrow p_{1}=a_{1}$.
- $2 \pi q_{n}-2 \int_{-\pi}^{\pi} f \sin n x d x=0 \Rightarrow q_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f \sin n x d x \Rightarrow q_{n}=b_{n}$. Now for the minimun square error we get

$$
\begin{aligned}
& \int_{-\pi}^{\pi} f^{2} d x+\left(2 \pi \frac{a_{0}^{2}}{4}-2 \frac{a_{0}}{2} \pi a_{0}\right)+ \\
& +\left(\pi a_{1}^{2}-2 a_{1} \pi a_{1}\right)+\cdots+\left(\pi b_{n}^{2}-2 b_{n} \pi b_{n}\right) \\
& =\int_{-\pi}^{\pi} f^{2} d x-\pi \frac{a_{0}^{2}}{2}-\pi a_{1}^{2}-\pi b_{1}^{2}-\cdots-\pi a_{n}^{2}-\pi b_{n}^{2} \\
& =\int_{-\pi}^{\pi} f^{2} d x-\pi\left[\frac{a_{0}^{2}}{2}+\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)\right] .
\end{aligned}
$$

An Inequality Based on the Square-Error Minimization

Corollary

If $f(x)$ is piecewise continuous for $-\pi \leq x \leq \pi$ and $a_{0}, a_{1}, \ldots, b_{1}, b_{2}, \ldots$ are the Fourier coefficients of $f(x)$, then

$$
\frac{1}{2} a_{0}^{2}+\sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right) \leq \frac{1}{\pi} \int_{-\pi}^{\pi}[f(x)]^{2} d x
$$

So the series $\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right)$ converges. Furthermore, $\lim _{n \rightarrow \infty} a_{n}=0$, $\lim _{n \rightarrow \infty} b_{n}=0$.

- Since the square error $\int(f-g)^{2} d x$ is always positive or 0 , the minimum square error E_{n} is always positive or 0 . So the inequality follows from the preceding theorem.
By the inequality established, the series converges. It then follows that the n-th term of the series converges to 0 .

Subsection 5

Generalizations. Fourier Sine and Cosine Series

Using a Nonstandard Interval

- If $f(x)$ is a function of period 2π, one can use as basic interval any interval $c \leq x \leq c+2 \pi$, i.e., any interval of length 2π.
- For such an interval the same reasoning as previously leads to a Fourier series

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

where

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{c}^{c+2 \pi} f(x) \cos n x d x \\
& b_{n}=\frac{1}{\pi} \int_{c}^{2 \pi} f(x) \sin n x d x
\end{aligned}
$$

- If $f(x)$ is given for all x, with period 2π, this is merely another way of computing the coefficients a_{n}, b_{n}.
- If $f(x)$ is given only for $c \leq x \leq c+2 \pi$, the series can be used to represent f in this interval. It will then (if convergent) represent the periodic extension of f outside this interval.

Even and Odd Functions

- Let $f(x)$ be defined in $-\pi \leq x \leq \pi$.
- f is called an even function if $f(-x)=f(x)$, for all $-\pi \leq x \leq \pi$.
- f is called an odd function if $f(-x)=-f(x)$, for all $-\pi \leq x \leq \pi$. Note that:
- The product of two even functions or of two odd functions is even;
- The product of an odd function and an even function is odd.
- Furthermore,

$$
\int_{-a}^{a} f(x) d x=\left\{\begin{array}{ll}
0, & \text { if } f \text { is odd } \\
2 \int_{0}^{a} f(x) d x, & \text { if } f \text { is even }
\end{array} .\right.
$$

The Fourier Cosine Series of an Even Function

- Let f be even in the interval $-\pi \leq x \leq \pi$.
- Then $f(x) \cos n x$ is even (product of two even functions).
- Moreover, $f(x) \sin n x$ is odd (product of odd function and even function).
- Hence

$$
\begin{aligned}
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x, \quad n=0,1,2, \ldots, \\
& b_{n}=0, \quad n=1,2, \ldots
\end{aligned}
$$

- We have thus the expansion (for a function piecewise very smooth):

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x, \quad f \text { even } \\
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x
\end{aligned}
$$

- This is called the Fourier cosine series of $f(x)$.
- It follows from the fundamental theorem that the series will converge to $f(x)$ for $0 \leq x \leq \pi$ and outside this interval to the even periodic function that coincides with $f(x)$ for $0 \leq x \leq \pi$.

The Fourier Sine Series of an Odd Function

- Similarly, if f is odd,

$$
a_{n}=0, \quad b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x
$$

- So we have the expansion

$$
\begin{aligned}
f(x) & =\sum_{n=1}^{\infty} b_{n} \sin n x, \quad f \text { odd } \\
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

- This defines the Fourier sine series of a function $f(x)$ defined only between 0 and π.
- The series represents an odd periodic function that coincides with $f(x)$ for $0 \leq x \leq \pi$.

Example

- Let $f(x)=\pi-x$.

Then one can represent $f(x)$ by a Fourier series over the interval $-\pi<x<\pi$.

We have

$$
\begin{aligned}
a_{0} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi}(\pi-x) d x \\
& =\frac{1}{\pi}\left[-\frac{1}{2} x^{2}+\pi x\right]_{-\pi}^{\pi} \\
& =\frac{1}{\pi}\left[-\frac{1}{2} \pi^{2}+\pi^{2}+\frac{1}{2} \pi^{2}+\pi^{2}\right] \\
& =2 \pi .
\end{aligned}
$$

Example (Cont'd)

- Next we compute a_{n} for $n \neq 0$.

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi}(\pi-x) \cos n x d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi}(\pi-x)\left(\frac{1}{n} \sin n x\right)^{\prime} d x \\
& =\frac{1}{\pi}\left[\left[(\pi-x)\left(\frac{1}{n} \sin n x\right)\right]_{-\pi}^{\pi}+\int_{-\pi}^{\pi} \frac{1}{n} \sin n x d x\right] \\
& =\frac{1}{\pi}\left[\left[(\pi-x)\left(\frac{1}{n} \sin n x\right)\right]_{-\pi}^{\pi}-\left.\frac{1}{n^{2}} \cos n x\right|_{-\pi} ^{\pi}\right] \\
& =0 .
\end{aligned}
$$

Example (Cont'd)

- Finally we compute $b_{n}, n \neq 0$.

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi}(\pi-x) \sin n x d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi}(\pi-x)\left(-\frac{1}{n} \cos n x\right)^{\prime} d x \\
& =\frac{1}{\pi}\left[\left[(\pi-x)\left(-\frac{1}{n} \cos n x\right)\right]_{-\pi}^{\pi}-\int_{-\pi}^{\pi} \frac{1}{n} \cos n x d x\right] \\
& =\frac{1}{\pi}\left[\left[(\pi-x)\left(-\frac{1}{n} \cos n x\right)\right]_{-\pi}^{\pi}-\left.\frac{1}{n^{2}} \sin n x\right|_{-\pi} ^{\pi}\right] \\
& =\frac{1}{\pi}(-2 \pi)\left(-\frac{1}{n} \cos n \pi\right) \\
& =\frac{2}{n} \cos n \pi=\frac{2(-1)^{n}}{n} .
\end{aligned}
$$

Example (Conclusion)

- Hence we have

$$
\pi-x=\pi+2 \sum_{n=1}^{\infty} \frac{(-1)^{n} \sin n x}{n}, \quad-\pi<x<\pi
$$

Example (Cosine Series)

- The same function $f(x)=\pi-x$ can be represented by a Fourier cosine series over the interval $0 \leq x \leq \pi$.
Now we get

$$
\begin{aligned}
a_{0} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) d x \\
& =\frac{2}{\pi}\left[-\frac{1}{2} x^{2}+\pi x\right]_{0}^{\pi} \\
& =\frac{2}{\pi}\left(-\frac{1}{2} \pi^{2}+\pi^{2}\right) \\
& =\pi
\end{aligned}
$$

Example (Cont'd)

- For $n \neq 0$,

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) \cos n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}(\pi-x)\left(\frac{1}{n} \sin n x\right)^{\prime} d x \\
& =\frac{2}{\pi}\left[\left[(\pi-x)\left(\frac{1}{n} \sin n x\right)\right]_{0}^{\pi}+\int_{0}^{\pi} \frac{1}{n} \sin n x d x\right] \\
& =\frac{2}{\pi}\left[\left[(\pi-x)\left(\frac{1}{n} \sin n x\right)\right]_{0}^{\pi}-\left.\frac{1}{n^{2}} \cos n x\right|_{0} ^{\pi}\right] \\
& =\frac{2}{\pi}\left(-\frac{1}{n^{2}} \cos (n \pi)+\frac{1}{n^{2}}\right) \\
& = \begin{cases}0, & \text { if } n \text { is even } \\
\frac{4}{\pi n^{2}}, & \text { if } n \text { is odd }\end{cases}
\end{aligned}
$$

Example (Conclusion)

- We have, for $0 \leq x \leq \pi$:

$$
\pi-x=\frac{\pi}{2}+\frac{2}{\pi}\left(\frac{2}{1^{2}} \cos x+\frac{2}{3^{2}} \cos 3 x+\frac{2}{5^{2}} \cos 5 x+\cdots\right)
$$

Example (Sine Series)

- Finally, the same function, $f(x)=\pi-x$, can be represented by a Fourier sine series over the interval $0<x<\pi$.
We have, for $n \geq 1$,

$$
\begin{aligned}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}(\pi-x) \sin n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}(\pi-x)\left(-\frac{1}{n} \cos n x\right)^{\prime} d x \\
& =\frac{2}{\pi}\left[\left[(\pi-x)\left(-\frac{1}{n} \cos n x\right)\right]_{0}^{\pi}-\int_{0}^{\pi} \frac{1}{n} \cos n x d x\right] \\
& =\frac{2}{\pi}\left[\left[(\pi-x)\left(-\frac{1}{n} \cos n x\right)\right]_{0}^{\pi}-\left.\frac{1}{n^{2}} \sin n x\right|_{0} ^{\pi}\right] \\
& =\frac{2}{\pi}\left(\frac{\pi}{n}\right)=\frac{2}{n} .
\end{aligned}
$$

Example (Conclusion)

- We get, for $0<x<\pi$,

$$
\pi-x=2 \sum_{n=1}^{\infty} \frac{1}{n} \sin n x
$$

Change of Period

- If $f(x)$ has period p, i.e., $f(x+p)=f(x), p>0$, then the substitution $x=\frac{p}{2 \pi} t$ transforms $f(x)$ into a function $g(t)=f\left(\frac{p}{2 \pi} t\right)$ that has period 2π.
- We have

$$
\begin{aligned}
g(t+2 \pi) & =f\left[\frac{p}{2 \pi}(t+2 \pi)\right] \\
& =f\left(\frac{p}{2 \pi} t+p\right)=f\left(\frac{p}{2 \pi} t\right)=g(t)
\end{aligned}
$$

- Since g has period 2π, one has a Fourier series for g (assumed piecewise very smooth):

$$
g(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)
$$

where $a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \cos n t d t, b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \sin n t d t$.

Change of Period (Cont'd)

- We have

$$
g(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)
$$

where $a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \cos n t d t, b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \sin n t d t$.

- If now t is replaced by $\frac{2 \pi}{p} x$, one finds a Fourier series for $f(x)$:

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(n \cdot \frac{2 \pi}{p} x\right)+b_{n} \sin \left(n \cdot \frac{2 \pi}{p} x\right)\right] .
$$

- The coefficients a_{n}, b_{n} can be expressed directly in terms of $f(x)$:

$$
\begin{aligned}
& a_{n}=\frac{1}{p / 2} \int_{-p / 2}^{p / 2} f(x) \cos \left(n \cdot \frac{2 \pi}{p} x\right) d x \\
& b_{n}=\frac{1}{p / 2} \int_{-p / 2}^{p / 2} f(x) \sin \left(n \cdot \frac{2 \pi}{p} x\right) d x
\end{aligned}
$$

Change of Period: Cosine and Sine Series

- The Fourier cosine series can also be used in this case:

$$
\begin{aligned}
f(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \cdot \frac{2 \pi}{p} x\right), \quad 0 \leq x \leq \frac{p}{2} \\
a_{n} & =\frac{2}{p / 2} \int_{0}^{p / 2} f(x) \cos \left(n \cdot \frac{2 \pi}{p} x\right) d x
\end{aligned}
$$

- Similarly, $f(x)$ has a Fourier sine series:

$$
\begin{aligned}
f(x) & =\sum_{n=1}^{\infty} b_{n} \sin \left(n \cdot \frac{2 \pi}{p} x\right), \quad 0<x<\frac{p}{2} \\
b_{n} & =\frac{2}{p / 2} \int_{0}^{p / 2} f(x) \sin \left(n \cdot \frac{2 \pi}{p} x\right) d x
\end{aligned}
$$

Example

- Let $f(x)=2 x+1$.

Then $f(x)$ can be represented by a Fourier series over the interval $0<x<2$.

With $p=2$, we get:

$$
\begin{aligned}
a_{0} & =\int_{0}^{2} f(x) d x \\
& =\int_{0}^{2}(2 x+1) d x \\
& =\left.\left(x^{2}+x\right)\right|_{0} ^{2} \\
& =6 .
\end{aligned}
$$

Example (Cont'd)

- For $n \neq 0$,

$$
\begin{aligned}
a_{n} & =\int_{0}^{2} f(x) \cos \left(n \frac{2 \pi}{2} x\right) d x \\
& =\int_{0}^{2}(2 x+1) \cos (n \pi x) d x \\
& =\int_{0}^{2}(2 x+1)\left(\frac{1}{n \pi} \sin (n \pi x)\right)^{\prime} d x \\
& =\left[(2 x+1)\left(\frac{1}{n \pi} \sin (n \pi x)\right)\right]_{0}^{2}-\int_{0}^{2} \frac{2}{n \pi} \sin (n \pi x) d x \\
& =\left[(2 x+1)\left(\frac{1}{n \pi} \sin (n \pi x)\right)\right]_{0}^{2}+\left.\frac{2}{n^{2} \pi^{2}} \cos (n \pi x)\right|_{0} ^{2} \\
& =0
\end{aligned}
$$

Example (Cont'd)

- Finally, for $n \geq 1$,

$$
\begin{aligned}
b_{n} & =\int_{0}^{2} f(x) \sin \left(n \frac{2 \pi}{2} x\right) d x \\
& =\int_{0}^{2}(2 x+1) \sin (n \pi x) d x \\
& =\int_{0}^{2}(2 x+1)\left(-\frac{1}{n \pi} \cos (n \pi x)\right)^{\prime} d x \\
& =\left[(2 x+1)\left(-\frac{1}{n \pi} \cos (n \pi x)\right)\right]_{0}^{2}+\int_{0}^{2} \frac{2}{n \pi} \cos (n \pi x) d x \\
& =\left[(2 x+1)\left(-\frac{1}{n \pi} \cos (n \pi x)\right)\right]_{0}^{2}+\left.\frac{2}{n^{2} \pi^{2}} \sin (n \pi x)\right|_{0} ^{2} \\
& =-\frac{5}{n \pi}+\frac{1}{n \pi}=-\frac{4}{n \pi} .
\end{aligned}
$$

We get

$$
f(x)=3-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin (n \pi x) .
$$

Subsection 6

Uniqueness Theorem

Example

- Show that $\sin ^{3} x=\frac{3}{4} \sin x-\frac{1}{4} \sin 3 x$ and $\cos ^{3} x=\frac{3}{4} \cos x+\frac{1}{4} \cos 3 x$. We show the first equation (the other can be proved similarly):

$$
\begin{aligned}
\sin ^{3} x & =\left[\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)\right]^{3} \\
& =-\frac{1}{8 i}\left(e^{3 i x}-3 e^{2 i x} e^{-i x}+3 e^{i x} e^{-2 i x}-e^{-3 i x}\right) \\
& =-\frac{1}{8 i}\left(-3\left(e^{i x}-e^{-i x}\right)+\left(e^{3 i x}-e^{-3 i x}\right)\right) \\
& =-\frac{1}{4}\left(-3 \frac{e^{i x}-e^{-i x}}{2 i}+\frac{e^{i(3 x)}-e^{-i(3 x)}}{2 i}\right) \\
& =-\frac{1}{4}(-3 \sin x+\sin 3 x) \\
& =\frac{3}{4} \sin x-\frac{1}{4} \sin 3 x .
\end{aligned}
$$

Preliminary Lemma

Lemma

Both $\sin ^{n} x$ and $\cos ^{n} x$ are expressible as trigonometric polynomials, for all $n \geq 0$.

- We only deal with $\cos ^{n} x$. Moreover, we restrict to n odd.

For n even, we can then use $\cos x \cos y=\frac{1}{2}[\cos (x+y)+\cos (x-y)]$.
We have

$$
\begin{aligned}
\cos ^{n} x & =\left(\frac{1}{2}\left(e^{i x}+e^{-i x}\right)\right)^{n}=\frac{1}{2^{n}}\left(e^{i x}+e^{-i x}\right)^{n} \\
& =\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k}\left(e^{i x}\right)^{k}\left(e^{-i x}\right)^{n-k} \\
& =\frac{1}{2^{n}} \sum_{k=0}^{n}\binom{n}{k} e^{i k x} e^{-i(n-k) x} \\
& =\frac{1}{2^{n}} \sum_{k=0}^{\frac{n-1}{2}}\left[\binom{n}{k} e^{i k x} e^{-i(n-k) x}+\binom{n}{n-k} e^{i(n-k) x} e^{-i k x}\right] \\
& =\frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}}\binom{n}{k} \frac{1}{2}\left(e^{i(n-2 k) x}+e^{-i(n-2 k) x}\right) \\
& =\frac{1}{2^{n-1}} \sum_{k=0}^{\frac{n-1}{2}}\binom{n}{k} \cos (n-2 k) x .
\end{aligned}
$$

Uniqueness Theorem

Theorem (Uniqueness Theorem)

Let $f(x)$ and $f_{1}(x)$ be piecewise continuous in the interval $-\pi \leq x \leq \pi$ and have the same Fourier coefficients

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \cos n x d x & =\int_{-\pi}^{\pi} f_{1}(x) \cos n x d x, \quad n=0,1,2, \ldots, \\
\int_{-\pi}^{\pi} f(x) \sin n x d x & =\int_{-\pi}^{\pi} f_{1}(x) \sin n x d x, \quad n=1,2, \ldots
\end{aligned}
$$

Then $f(x)=f_{1}(x)$ except perhaps at points of discontinuity.

- Let $h(x)=f(x)-f_{1}(x)$. Then $h(x)$ is piecewise continuous, and from hypothesis it follows that all Fourier coefficients of $h(x)$ are 0 . We then show that $h(x)=0$ except perhaps at discontinuity points. Suppose $h\left(x_{0}\right) \neq 0$ at a point of continuity x_{0}, for example, $h\left(x_{0}\right)=2 c>0$. Then, by continuity, $h(x)>c$ for $\left|x-x_{0}\right|<\delta$ and δ sufficiently small. We can assume $-\pi<x_{0}<\pi$.

Uniqueness Theorem (Idea)

- We now achieve a contradiction by showing that there exists a "trigonometric polynomial"

$$
\begin{aligned}
P(x)= & p_{0}+p_{1} \cos x+p_{2} \sin x+\cdots \\
& +p_{2 k-1} \cos k x+p_{2 k} \sin k x
\end{aligned}
$$

that represents a "pulse" at x_{0} of arbitrarily large amplitude and arbitrarily small width.
If such a pulse can be constructed, then one has a contradiction: On one hand,

$$
\int_{-\pi}^{\pi} h(x) P(x) d x=p_{0} \int_{-\pi}^{\pi} h(x) d x+p_{1} \int_{-\pi}^{\pi} h(x) \cos x d x+\cdots=0
$$

On the other hand, the major portion of the integral $\int h(x) P(x) d x$ is concentrated in the interval in which the pulse occurs, where $h(x)$ is positive, and $P(x)$ is large and positive. Hence the integral is positive and cannot be 0 .

Uniqueness Theorem (Argument)

- Take $P(x)=[\psi(x)]^{N}, \psi(x)=1+\cos \left(x-x_{0}\right)-\cos \delta$ for an appropriate positive integer N.
Since the functions $\sin ^{n} x$ and $\cos ^{n} x$ are expressible as trigonometric polynomials, the function $P(x)$ is a trigonometric polynomial.
Let $k=\psi\left(x_{0}+\frac{\delta}{2}\right)=1+\cos \frac{\delta}{2}-\cos \delta$.
Note $\cos \frac{\delta}{2}>\cos \delta$. So, $k>1$.
We estimate P :
- If $x_{0}-\frac{1}{2} \delta \leq x \leq x_{0}+\frac{1}{2} \delta,\left|x-x_{0}\right| \leq \frac{1}{2} \delta$, whence $\cos \left(x-x_{0}\right) \geq \cos \frac{\delta}{2}$, and $\psi(x) \geq k>1$ giving $P \geq k^{N}$.
- If $-\pi \leq x<x_{0}-\delta$ or $x_{0}+\delta<x \leq \pi$, then $x-x_{0}<-\delta$ or $x-x_{0}>\delta$, whence $\cos \left(x-x_{0}\right)<\cos \delta$, and $-1<\psi(x)<1$, giving $|P|<1$.
Since $h(x)$, being piecewise continuous, is bounded by a constant M for $-\pi \leq x \leq \pi$: $|h(x)| \leq M$.

Uniqueness Theorem (Argument Cont'd)

- It follows from the properties of $P(x)$ of the preceding slide that

$$
\begin{aligned}
& P(x) h(x)>-M, \quad-\pi \leq x \leq x_{0}-\frac{1}{2} \delta \text { and } x_{0}+\frac{1}{2} \delta \leq x \leq \pi, \\
& P(x) h(x) \geq c k^{N}, \quad x_{0}-\frac{1}{2} \delta \leq x \leq x_{0}+\frac{1}{2} \delta .
\end{aligned}
$$

Accordingly, we get

$$
\begin{aligned}
\int_{-\pi}^{\pi} p(x) h(x) d x= & \int_{-\pi}^{x_{0}-\frac{1}{2} \delta} p(x) h(x) d x+\int_{x_{0}+\frac{1}{2} \delta}^{\pi} P(x) h(x) d x \\
& +\int_{x_{0}-\frac{1}{2} \delta}^{x_{0}+\frac{1}{2} \delta} P(x) h(x) d x>-M(2 \pi-\delta)+c k^{N} \delta
\end{aligned}
$$

Since $k^{N} \rightarrow+\infty$ as $N \rightarrow \infty$, the right-hand member of the inequality is surely positive when N is sufficiently large. Accordingly, the left-hand member is positive for appropriate choice of N.
This contradicts the fact that the left-hand member is 0 .
Thus, $h(x)=f(x)-f_{1}(x)=0$ wherever $f(x)$ and $f_{1}(x)$ are continuous.

Remarks

- The uniqueness theorem can be looked at as asserting that the system of functions

$$
1, \cos x, \sin x, \ldots, \cos n x, \sin n x, \ldots
$$

is "large enough", that is, that there are enough functions in this system to construct series for all the periodic functions envisaged.

- It should be noted that omission of any one function of the system would destroy this property.
Thus if $\cos x$ were omitted, one could still form a series

$$
\frac{1}{2} a_{0}+b_{1} \sin x+a_{2} \cos 2 x+b_{2} \sin 2 x+\cdots
$$

But there are very smooth periodic functions whose Fourier series in this deficient form could never converge to the function, namely, ail functions $A \cos x$ for $A=$ const. $\neq 0$. For each such function would have all coefficients 0 . So the series reduces to 0 and cannot represent the function.

Convergence of Fourier Series

Theorem

Let the function $f(x)$ be continuous for $-\pi \leq x \leq \pi$ and let the Fourier series of $f(x)$ converge uniformly in this interval. Then the series converges to $f(x)$ for $-\pi \leq x \leq \pi$.

- Let the sum of the Fourier series of $f(x)$ be denoted by $f_{1}(x)$:

$$
f_{1}(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) .
$$

Since the series converges uniformly, it follows from a previous theorem that $f_{1}(x)$ is continuous and that a_{n}, b_{n} are the Fourier coefficients of $f_{1}(x)$. But the series was given as the Fourier series of $f(x)$. Hence $f(x)$ and $f_{1}(x)$ have the same Fourier coefficients. By the preceding theorem, $f(x)=f_{1}(x)$. So $f(x)$ is the sum of its Fourier series for $-\pi \leq x \leq \pi$.

Subsection 7

Fundamental Theorem: A Special Case

Fundamental Theorem: A Special Case

Theorem

Let $f(x)$ be continuous and piecewise very smooth for all x. Let $f(x)$ have period 2π. Then the Fourier series of $f(x)$ converges uniformly to $f(x)$ for all x.

- We only prove the case in which $f(x)$ has continuous first and second derivatives for all x.
For $n \neq 0$, using integration by parts,

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\left.\frac{f(x) \sin n x}{n \pi}\right|_{-\pi} ^{\pi}-\frac{1}{n \pi} \int_{-\pi}^{\pi} f^{\prime}(x) \sin n x d x
$$

The first term on the right is zero.
A second integration by parts gives

$$
\begin{array}{rll}
a_{n} & = & \left.\frac{f^{\prime}(x) \cos n x}{n^{2} \pi}\right|_{-\pi} ^{\pi}-\frac{1}{n^{2} \pi} \int_{-\pi}^{\pi} f^{\prime \prime}(x) \cos n x d x \\
& \stackrel{f^{\prime} \text { periodic }}{=} & -\frac{1}{n^{2} \pi} \int_{-\pi}^{\pi} f^{\prime \prime}(x) \cos n x d x
\end{array}
$$

Fundamental Theorem: A Special Case (Cont'd)

- The function $f^{\prime \prime}(x)$ is continuous in the interval $-\pi \leq x \leq \pi$. Hence $\left|f^{\prime \prime}(x)\right| \leq M$ for an appropriate constant M. One concludes that

$$
\left|a_{n}\right|=\left|\frac{1}{n^{2} \pi} \int_{-\pi}^{\pi} f^{\prime \prime}(x) \cos n x d x\right| \leq \frac{2 M}{n^{2}}, \quad n=1,2, \ldots
$$

In exactly the same way we prove that $\left|b_{n}\right| \leq \frac{2 M}{n^{2}}$, for all n. Hence each term of the Fourier series of $f(x)$ is in absolute value at most equal to the corresponding term of the convergent series
$\frac{1}{2}\left|a_{0}\right|+\frac{2 M}{1}+\frac{2 M}{1}+\frac{2 M}{2^{2}}+\frac{2 M}{2^{2}}+\cdots$.
Application of the Weierstrass M-test establishes that the Fourier series converges uniformly for all x.
By the preceding theorem, the sum is $f(x)$.

Subsection 8

Proof of Fundamental Theorem

Example

- Consider the function $G(x)=\left\{\begin{array}{lc}\frac{\pi}{2}-\frac{x}{2}-\frac{x^{2}}{4 \pi}, & \text { if }-\pi \leq x \leq 0 \\ \frac{\pi}{2}+\frac{x}{2}-\frac{x^{2}}{4 \pi}, & \text { if } 0 \leq x \leq \pi\end{array}\right.$

Let G be repeated periodically outside this interval.

- The resulting function $G(x)$ is continuous for all x and is piecewise smooth.
- Its Fourier series is the series

$$
\frac{2 \pi}{3}-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}
$$

- Hence $\left|a_{n}\right| \leq \frac{M}{n^{2}}$ as asserted, with $M=\frac{1}{\pi}$. The b_{n} happens to be 0 .
- By the preceding theorem, this series converges uniformly to $G(x)$.

Example (Cont'd)

- Is term-by-term differentiation of the series permissible, in other words, is

$$
G^{\prime}(x)=\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin n x}{n}
$$

wherever $G^{\prime}(x)$ is defined?

- By a theorem on infinite series, this is correct if x lies within an interval within which the differentiated series converges uniformly.
- It turns out that the series $\sum \frac{\sin n x}{n}$ converges uniformly for $a \leq|x| \leq \pi$, provided that $a>0$.
- So the formula above for $G^{\prime}(x)$ is correct for $-\pi \leq x \leq \pi$, except for $x=0$.

Example (Conclusion)

- Now let $F(x)$ be the periodic function of period 2π, such that $F(0)=0$ and

$$
\begin{aligned}
& F(x)=G^{\prime}(x) \\
& =\left\{\begin{array}{cl}
-\frac{1}{2}-\frac{x}{2 \pi}, & \text { if }-\pi \leq x<0 \\
\frac{1}{2}-\frac{x}{2 \pi}, & \text { if } 0<x \leq \pi
\end{array}\right.
\end{aligned}
$$

- We have stated that $F(x)=\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin n x}{n}$, for all x, the convergence being uniform for $0<a \leq|x| \leq \pi$.
- The series on the right was computed as the Fourier series of $F(x)$.
- So $F(x)$ is represented by its Fourier series for all x.
- The remarkable feature of this result is that $F(x)$ has a jump, from $-\frac{1}{2}$ to $\frac{1}{2}$ at $x=0$.
- The series converges to the average value $F(0)=0$.

The Fundamental Theorem

Theorem

Let $f(x)$ be defined and piecewise very smooth for $-\pi \leq x \leq \pi$ and let $f(x)$ be defined outside this interval in such a manner that $f(x)$ has period 2π. Then the Fourier series of $f(x)$ converges uniformly to $f(x)$ in each closed interval containing no discontinuity of $f(x)$. At each discontinuity x_{0} the series converges to $\frac{1}{2}\left[\lim _{x \rightarrow x_{0}^{+}} f(x)+\lim _{x \rightarrow x_{0}^{-}} f(x)\right]$.

- For convenience we redefine $f(x)$ at each discontinuity x_{0} as the average of left and right limit values. Let us suppose, for example, that the only discontinuity is at $x=0$ (and the points $2 k \pi, k= \pm 1, \pm 2, \ldots)$. Let $\lim _{x \rightarrow 0^{+}} f(x)-\lim _{x \rightarrow 0^{-}} f(x)=$ s. So s is precisely the "jump".

The Fundamental Theorem (Cont'd)

- We proceed to eliminate the discontinuity by subtracting from $f(x)$ the function $s F(x)$, where $F(x)$ is the function defined earlier. Since $s F(x)$ has also the jump s at $x=0$ (and $x=2 k \pi$), $g(x)=f(x)-s F(x)$ has jump 0 at $x=0$ and is continuous for all x : For

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} g(x) & =\lim _{x \rightarrow 0^{-}} f(x)-s \lim _{x \rightarrow 0^{-}} F(x) \\
& =\left[f(0)-\frac{1}{2} s\right]+\frac{1}{2} s=f(0)=g(0)
\end{aligned}
$$

A similar statement applies to the right-hand limit.
Since $F(x)$ is piecewise linear, $g(x)$ is continuous and piecewise very smooth for all x and has period 2π. Hence by the preceding theorem, $g(x)$ is representable by a uniformly convergent Fourier series for all x :

$$
g(x)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos n x+B_{n} \sin n x\right)
$$

The Fundamental Theorem (Cont'd)

- Now we have

$$
\begin{aligned}
f(x) & =g(x)+s F(x) \\
& =\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos n x+B_{n} \sin n x\right)+\frac{s}{\pi} \sum_{n=1}^{\infty} \frac{\sin n x}{n} \\
& =\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left[A_{n} \cos n x+\left(B_{n}+\frac{s}{n \pi}\right) \sin n x\right] .
\end{aligned}
$$

So $f(x)$ is represented by a trigonometric series for all x.
The series is the Fourier series of $f(x)$:

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{1}{\pi} \int_{-\pi}^{\pi}[g(x)+s F(x)] \sin n x d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} g(x) \sin n x d x+\frac{s}{\pi} \int_{-\pi}^{\pi} F(x) \sin n x d x=B_{n}+\frac{s}{n \pi}
\end{aligned}
$$

Similarly, $a_{n}=A_{n}$.
Therefore the Fourier series of $f(x)$ converges to $f(x)$ for all x. At $x=0$ the series converges to $f(0)$, which was defined to be the average of left and right limits at $x=0$.

The Fundamental Theorem (Conclusion)

- Since the series for $g(x)$ is uniformly convergent for all x, while the series for $F(x)$ converges uniformly in each closed interval not containing $x=0$ (or $x=2 k \pi$), the Fourier series of $f(x)$ converges uniformly in each such closed interval.
The theorem has now been proved for the case of just one jump discontinuity. If there are several jumps, at points x_{1}, x_{2}, \ldots, we simply remove them by subtracting from $f(x)$ the function

$$
s_{1} F\left(x-x_{1}\right)+s_{2} F\left(x-x_{2}\right)+\cdots
$$

The resulting function $g(x)$ is again continuous and piecewise very smooth, so that the same conclusion holds.

Remark: The Principle of Superposition

- The proof just given uses the Principle of Superposition:

The Fourier series of a linear combination of two functions is the same linear combination of the corresponding two series.

- The idea of subtracting off the series corresponding to a jump discontinuity also has a practical significance:
- If a function $f(x)$ is defined by its Fourier series and is not otherwise explicitly known, one can, of course, use the series to tabulate the function.
- If $f(x)$ has a jump discontinuity, the convergence will be poor near the discontinuity; this will reveal itself in the presence of terms having coefficients approaching 0 like $\frac{1}{n}$.
- If the discontinuity x_{1} and jump s_{1} are known, one can subtract the corresponding function $s_{1} F\left(x-x_{1}\right)$ as before; the new series will converge much more rapidly.

Subsection 9

Orthogonal Functions

Replacing Sine and Cosine by More General Functions

- Let $f(x)$ be given in a fixed interval $a \leq x \leq b$.
- Let $\phi_{1}(x), \phi_{2}(x), \ldots, \phi_{n}(x), \ldots$ be functions all piecewise continuous in this interval intended to replace the system of sines and cosines.
- We then postulate a development, $f(x)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x)$ just as in the case of Fourier series.
- We multiply both sides by $\phi_{m}(x)$ and integrate term by term:

$$
\int_{a}^{b} f(x) \phi_{m}(x) d x=\sum_{n=1}^{\infty} c_{n} \int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d x
$$

- In order to achieve a result analogous to that for Fourier series, we must postulate that

$$
\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d x=0, \quad m \neq n
$$

Replacing Sine and Cosine (cont'd)

- The series on the right then reduces to one term:

$$
\int_{a}^{b} f(x) \phi_{m}(x) d x=c_{m} \int_{a}^{b}\left[\phi_{m}(x)\right]^{2} d x
$$

- The integral on the right is a certain constant: $\int_{a}^{b}\left[\phi_{m}(x)\right]^{2} d x=B_{m}$.
- B_{m} will be positive unless $\phi_{m}(x) \equiv 0$ (except at a finite number of points); to avoid this case, we assume that no B_{m} is 0 . Then

$$
c_{m}=\frac{1}{B_{m}} \int_{a}^{b} f(x) \phi_{m}(x) d x
$$

- Thus, under the simple conditions

$$
\begin{aligned}
\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d x & =0, \quad m \neq n \\
\int_{a}^{b}\left[\phi_{m}(x)\right]^{2} d x & =B_{m} \neq 0, \text { for all } m
\end{aligned}
$$

we have a rule for the formation of a series.

Orthogonal System of Functions

Definition

- Two functions $p(x), q(x)$, which are piecewise continuous for $a \leq x \leq b$, are orthogonal in this interval if

$$
\int_{a}^{b} p(x) q(x) d x=0
$$

- A system of functions $\left\{\phi_{n}(x): n=1,2, \ldots\right\}$ is termed an orthogonal system in the interval $a \leq x \leq b$ if ϕ_{n} and ϕ_{m} are orthogonal for each pair of distinct indices m, n :

$$
\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d x=0, \quad m \neq n
$$

and no $\phi_{n}(x)$ is identically 0 except at a finite number of points.

Example

- The trigonometric system in the interval $-\pi \leq x \leq \pi$:

$$
1, \cos x, \sin x, \ldots, \cos n x, \sin n x, \ldots
$$

- ϕ_{1} is the constant 1 ;
- ϕ_{2} is the function $\cos x$;
- ϕ_{3} is the function $\sin x$;

Fourier Series

- If $f(x)$ is piecewise continuous in the interval $a \leq x \leq b$ and $\left\{\phi_{n}(x)\right\}$ is an orthogonal system in this interval, then the series

$$
\sum_{n=1}^{\infty} c_{n} \phi_{n}(x)
$$

where

$$
c_{n}=\frac{1}{B_{n}} \int_{a}^{b} f(x) \phi_{n}(x) d x, \quad B_{n}=\int_{a}^{b}\left[\phi_{n}(x)\right]^{2} d x
$$

is called the Fourier series of f with respect to the system $\left\{\phi_{n}(x)\right\}$.

- The numbers c_{1}, c_{2}, \ldots are called the Fourier coefficients of $f(x)$ with respect to the system $\left\{\phi_{n}(x)\right\}$.

Orthonormal Systems of Functions

- The preceding formulas can be simplified if one assumes that the constant B_{n} is always 1 , i.e., that

$$
\int_{a}^{b}\left[\phi_{n}(x)\right]^{2} d x=1, \quad n=1,2, \ldots
$$

- This can always be achieved by dividing the original $\phi_{n}(x)$ by appropriate constants.
- When the condition $B_{n}=1$ is satisfied for all n, the system of functions $\phi_{n}(x)$ is called normalized.
- A system that is both normalized and orthogonal is called orthonormal.
Example: The following system of functions is orthonormal $\frac{1}{\sqrt{2 \pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \ldots, \frac{\cos n x}{\sqrt{\pi}}, \frac{\sin n x}{\sqrt{\pi}}, \ldots$
- The general theory is simpler for normalized systems, but the advantages for the applications are slight.

The Vector Space Formalism

- We can consider the piecewise continuous functions for $a \leq x \leq b$ as a kind of vector space: For $f(x), g(x)$ piecewise continuous,
- the sum or difference is again piecewise continuous;
- the product cf by a scalar c is also piecewise continuous.
- We define an inner product (or scalar product):

$$
(f, g)=\int_{a}^{b} f(x) g(x) d x
$$

- One can then define a norm (or absolute value):

$$
\|f\|=\sqrt{(f, f)}=\left\{\int_{a}^{b}[f(x)]^{2} d x\right\}^{\frac{1}{2}}
$$

- The zero function 0^{*} is a function that is 0 except at a finite number of points.
- In general, in this vector theory of functions we consider two functions that differ only at a finite number of points to be the same function.

Orthogonal and Orthonormal Systems in a Vector Space

- In the space V of piece-wise continuous functions on [a, b], two functions $f(x)$ and $g(x)$ are orthogonal if

$$
(f, g)=0
$$

- An orthogonal system is a system $\left\{\phi_{n}(x)\right\}_{n=1}^{\infty}$ of functions in V, such that

$$
\begin{aligned}
& -\left(\phi_{m}, \phi_{n}\right)=0 \text {, if } m \neq n \text {; } \\
& -\left(\phi_{n}, \phi_{n}\right)=\left\|\phi_{n}\right\|^{2}=B_{n}>0, \text { for all } n \geq 1 .
\end{aligned}
$$

- The system is orthonornal if $B_{n}=1$, for all $n \geq 1$, i.e., if the ϕ_{n} are unit vectors in V.

The Fourier Formalism in a Vector Space

- The Fourier serier of a function $f(x)$ in V with respect to the orthogonal system $\left\{\phi_{n}(x)\right\}$ is the series

$$
\sum_{n=1}^{\infty} c_{n} \phi_{n}(x), \quad c_{n}=\frac{1}{\left\|\phi_{n}\right\|^{2}}\left(f, \phi_{n}\right)
$$

- If the system $\left\{\phi_{n}(x)\right\}$ is orthonormal, then we get

$$
\sum_{n=1}^{\infty} c_{n} \phi_{n}(x), \quad c_{n}=\left(f, \phi_{n}\right)
$$

- Compare this with the expressions of vectors in terms of the canonical orthonormal basis $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right\}$ of an n-dimensional vector space:

$$
\boldsymbol{v}=v_{1} \boldsymbol{e}_{1}+\cdots+v_{n} \boldsymbol{e}_{n}, \quad v_{i}=\boldsymbol{v} \cdot \boldsymbol{e}_{i}
$$

- Since the series above is infinite, convergence questions arise.
- Theorems similar to the one proven for the trigonometric Fourier series are proven to address these issues.

