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Affine Varieties

o Denote by
A:=k[x1,..., xn]

the polynomial ring in n variables over the field k.
o We defined the zero set of an ideal Jc A,

V(J):={PeA]:f(P)=0, forall feJ}.
o We showed that this gives rise to a surjective map

V :{ideals in A} — {algebraic sets in A7},
J - V().
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o In the reverse direction, consider a subset X cAJ.

o Define an ideal

I(X):={f € A: f(P)=0, for all PeX]}.

o We now have a map

| : {subsets of A} — {ideals in A},
X — I(X).
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o The map V is not injective.

: For all k=1, we have

V(X1yeeerxn) = V(XK ..., x5).

n
o The map / is neither injective nor surjective.
: In the case of Ai, we have

(Z)=1(A}) = (0).

For n=2, the ideal (x") is not in the image of /.

o As a corollary of Hilbert's Nullstellensatz, we will see that, when
restricted to certain subclasses of ideals and algebraic sets,
respectively, V and | become mutually inverse bijections.
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Lemma

The map V satisfies the following:
V(0)=A7, V(A)=g;
led=V(J)c V()
V(hnhk)=V(h)uV(h);
V(Xaeada) =Mrea V().

o The only nontrivial statement is (3).
Let Pe V(J1)u V(J2). We may assume that Pe V/(Jy).
Then, for any g€ J1nJo, we have g(P)=0.
It follows that P € V(J1 nJb).
Take P¢ V(J1)u V().
Then there exist f € J; and g€ Jp, with f(P) #0 and g(P) #0.
This implies that fg(P) # 0.
Since fge Jyndo, PZV(hnh).
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Lemma

The maps / and V have the following properties:
XcY=>I1(X)21(Y);
For every subset X < A7, we have X < V(/(X)).
Equality holds if and only if X is algebraic.
If J=Ais an ideal, then J<I(V/(J)).

o Statements (1) and (3) are obvious.
The relationship X < V(/(X)) is also clear.
Suppose X = V/(/(X)). Then X is algebraic by definition.
Conversely, suppose X is closed. Then X = V/(Jp), for some ideal Jp.
In particular, Jo < /(X). So V(I(X)) < V(h)=X.
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o In general
Jel(V(J))
is a strict inclusion.
o Consider
J= (X{(, ,X,’,(), k=2
o Then
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_ Affine Varicties |
Definition (Radical Ideal)

For an ideal J in a ring R, the radical of J is defined by
VJ:={r: there exists k =1, with r¥ e J}.

We call an ideal J a radical ideal if J=+V/J.

o It follows from the binomial theorem that v/J is an ideal.

o Clearly, we always have J<V/J.

o Any ideal of the form /(X) is automatically a radical ideal.

o So radical ideals play a significant role in the relationship between
ideals and varieties.

George Voutsadakis (LSSU) Algebraic Geometry



Affine Varieties

o Consider a prime ideal J in a ring R.
This means that, for all x,y € R,

xy€J implies xeJoryel.
In particular, for all xe R and all k=1,
xKeJ implies xeJ.

Now, let x € v/ J.

Then x¥ € J, for some k = 1.
Hence, x € J.

This shows that vJ < J.

Therefore, J is radical.
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o Algebraic sets are called Zariski closed because they satisfy the
axioms for the closed sets of a topology.

o The associated topology on A} is called the Zariski topology.

o A subset of A7 is called Zariski open if its complement is Zariski
closed.

o The Zariski topology is very different from the topology studied in real
or complex analysis.

o E.g., the Zariski topology is not Hausdorff.
© The Zariski topology on A7 induces a topology on every subset of A}.
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o Consider the Zariski topology on Ai.
o The empty set and Ai are simultaneously open and closed.
o Since k is algebraically closed, every ideal J< k[x] is a principal ideal.
It can be written as
J=((xmar) o (x=an)
o Thus, the Zariski closed subsets of Ai, different from @ and Al, are

precisely the finite subsets.

o Hence, every nonempty Zariski open subset of A\f}( is dense.

George Voutsadakis (LSSU) Algebraic Geometry



Affine Varieties

Definition (Irreducible Algebraic Set)

An algebraic subset X is called irreducible if there is no decomposition

X=X UXa, XXX
into proper algebraic subsets X1, X5>. Otherwise X is called reducible.
: Consider the subset
V(xix) < Ai. Viz1)

It is reducible, since

V(X1X2) = V(Xl) U V(X2).
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e et

Let X # @ be an algebraic set, with corresponding ideal /(X). Then X is
irreducible if and only if /(X) is a prime ideal.

o Assume X is reducible.

Then, there is a decomposition
X= X1 U X2,

for some algebraic subsets X1, Xo g X.

Since X1 g X, there exists f € [(X1)\I(X).

Since X> ¢ X, there exists g € [(X2)\I(X).
Thus, fg vanishes on X; U X, =X. So fgel(X).
This shows that /(X) is not prime.
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o Suppose that /(X) is not prime.
Then, there exist f,g € A, with fg € [(X), but f,g & I(X).
Let
Ji:=(I(X),f) and J:=(I(X)g).
Then X; = V/(J1) and Xo = V/(J2) are proper subsets of X.
On the other hand, for P € X we have fg(P) =0.
So f(P)=0or g(P)=0.
This implies that Pe Xy or P e Xo.
It follows that X < X; uXo.
Thus X is reducible.
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o Let R be a ring.

o An ascending chain
hebhechc---cl,c---
of ideals in R is stationary if, for some ng, we have
Ing+k = Ing, for all k=0.

o A ring R is Noetherian if and only if it satisfies the ascending chain
condition (acc), namely, every ascending chain

hebhechc---cl,c---

of ideals becomes stationary.
o The ring A= k[x,...,x5] is a Noetherian ring.
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©

Consider a descending chain of algebraic sets
X12X52:---2X,2---.
o We have a corresponding ascending chain of ideals,

I(X1)cl(Xp) - cl(Xp) S

©

Suppose X, 2Xn+1 is a proper inclusion.

o Since X, and X1 are algebraic sets,
I1(Xn) € 1(Xn+1)

is also a proper inclusion.

o But the ring A= k[x1,...,xp] is Noetherian.

©

Thus, every descending sequence of closed sets becomes stationary.
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o A topological space in which every descending sequence of closed sets
becomes stationary is called a Noetherian topological space.

o Thus, the Zariski topological space A} is a Noetherian topological
space.

o It follows from the axiom of choice that every nontrivial system X of
algebraic sets in A} has a minimal element (an element X € X, such
that, there is no Y € Z, with Y ¢ X.)
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_Affine Varicties |

Every algebraic set X < A} has a decomposition
X=Xiu---uX,

where:
o The X; are irreducible algebraic sets;
o Xi ¢ X;, for i #].
This decomposition is unique up to the order of the factors.

o The X; are called the irreducible components of X.
o First we show the existence of such a decomposition.
Let X be the set of all algebraic sets not having such a representation.

Suppose, to the contrary, that T # @.
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o Then, X has a minimal element X, which is reducible.
Thus, there exist X7, X2 ¢ X with X =X; uXo.
Since X is a minimal element of X, it follows that X, Xo ¢ =.

Thus, X; and X5 can be decomposed into a union of irreducible
components.

This means that X also has such a decomposition.
This contradicts X € X.

It remains to show that such a decomposition is unique.
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o Suppose there is another decomposition
X= Y1U---U Yg.

with Y; irreducible and Y; € Y;, for i #j. Then
l
X,' =X,'ﬂX U X N Y

Since X; is irreducible, we have X;n Y, = X;, for some m.
In particular, Y, 2 X;.
By exchanging the roles of the two decompositions we can similarly
show that for some j, we have X;2 Y, 2 X;.
Thus, i=j and X; = Y,.

o The proposition is true for any Noetherian topological space, since the
proof only uses the fact that the Zariski topology is Noetherian.
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Lemma

For a closed set V < A7, the following are equivalent:
V is irreducible.
For any two open sets Uy, U, # @ of V we have Ui nUs # @.
Every open set @ # U< V is dense in V.

o The equivalence of (1) and (2) follows from
UinUy=¢ iff (V— Ul)U(V— U2) =V.

On the other hand, by definition, a subset U < V is dense if and only if
it meets every nonempty open subset of V.

This gives the equivalence of (2) and (3).
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Definition (Affine Variety)

An affine variety (over k) is an affine algebraic set.

Definition (Finite Generation)

Let B be a subring of A.
A is finitely generated over B (or finitely generated as a
B-algebra) if there are finitely many elements aj, ..., a,, such that
A= Blay,...,an].
A'is a finite B-algebra if there are finitely many elements ay,...,a,
with A= Baj +---+ Ba,.

: The polynomial ring k[x1,...,xs] is a finitely generated
k-algebra, but not a finite k-algebra.
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Let k be a field with infinitely many elements. Let A= k[ay,...,an] be a
finitely generated k-algebra. If A is a field, then A is algebraic over k.

o For now, we give a brief heuristic argument.
Suppose that t € A is transcendental over k.
Then k[t] is a polynomial ring over k.
Now k has infinitely many elements.
By Euclid's Theorem, k[t] has infinitely many primes.
Suppose k(t) was generated over k by finitely many elements r; = %.

This is impossible, since there is a finite set of primes (the prime
divisors of the g;) which contains all primes in the denominator of any
element constructed as a polynomial in the r;.

o This argument can be made rigorous, but we will give a different proof.
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A Varieties
Theorem (Hilbert's Nullstellensatz)

Let k be an algebraically closed field. Let A= k[x,...,x5]. Then the
following hold:

Every maximal ideal m<c A is of the form
m=(xy—ai,...,xn—an) =1(P),

for some point P =(ay,...,a,) € A].
If J< Ais a proper ideal, then V(J) # @.
For every ideal J< A, we have I(V/(J))=VJ.

o The crucial point is (2), which says that every nontrivial ideal has at
least one point in its zero locus.

o This explains the name of the theorem, which can be translated as the
“theorem about the existence of zeros’.



Affine Varieties

o The result is clearly false for non algebraically closed fields.
o This is illustrated by the ideal

(x> +1) g R[x].
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First note that any ideal of the form (x; —ai,...,x, —an) is maximal.

This follows from the fact that the evaluation map
k[x1,...,xn] = k;  f—1(P)

induces an isomorphism k[xy,...,xp|/(x1 —a1,...,xn—an) = k.

Note that, by a linear transformation, we may assume all a; are zero.
Then the map f— £(0,...,0) simply maps f to its constant term.
So its kernel is the set of functions with zero constant.

These are precisely the functions divisible by x;, for some i.
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o Now suppose that m < k[x,...,x,] is any maximal ideal in A.
This implies that K := k[x,...,xp]/m is a field.
Moreover K is also a finitely generated k-algebra (generated by the
residue classes x; mod m).
By the theorem, K is algebraic over k.
By hypothesis, k is algebraically closed.
So the natural map

@k k[x1,...,xn] = k[x1,...,Xa]/m=K

is an isomorphism between k and K.

Let b; :=x; mod me K and let a; := ¢ 1(b;).
Then, for each /i, we have x; — a; € kerm = m.

So (x1—a1,...,Xp—ap) S m.

But (x1 —ai,...,xp—an) is @ maximal ideal.

So we have the equality (x1 —a1,...,xp—an) = m.
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Suppose J S A= k[x,...,Xn].

We know k[xi,...,xs] is a Noetherian ring.

So there exists a maximal ideal m with J< m.

From Part (1), we have m=I(P), for some point Pe A7.

So
Py=V(I(P)c V().

This shows that V/(J) is nonempty.
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This step is usually proved by Rabinowitsch’s trick.
Let J< k[xi,...,xn] be an ideal and f e /(V(J)).
We want to show that VN € J, for some N.

The trick is to introduce an additional variable t.
We then define an ideal Jr2 J by
Je=(J, ft—=1) S k[x1,...,xn, t],
We have
V(Jr)={Q=(a1,...,an, b) = (P,b) e A" : Pe V(J),bf (P) =1}.

Projection onto the first n coordinates maps V/(Jf) to the subset of
V(J) of points P, with f(P) #0.

But f is an element of /(V/(J)).

So V(Jr)=.
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o Thus, by Part (2), Jr = k[x1,..., Xxn, t].
In particular, 1€ Jg.
Thus, we can write

r
1= Zg,-f,-+go(ft—1) € k[Xl,...,Xn,t],
i=1

for some gj € k[x1,...,xp, t] and f; € J.
Let tV be the highest power of t appearing in gj, for 0<i<r.
Multiplying by tV gives

r
N =3 Gi(x1, ..., Xn, f)fi + Go(x1, ..., Xn, ) (ft = 1),
i=1

where the G; = fNg; are polynomials in x1,...,xp, ft.
This equation holds in k[xi,...,xn, t].
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o We have

N =3 Gi(x1, .. ) X, F)fi + Go(x1, ..., X, ) (FE = 1),
i=1

where the G; = ng,- are polynomials in xq,...,x,, ft.

Consider this equation modulo (ft—1).

That is, consider its reduction in the ring k[xy,...,xn, t]/(ft —1).
We obtain the relationship

N =Y hi(xt,..xa)fi mod (ft—1),

where hj(x1,...,xn) := Gj(x1,...,Xn, 1).

The natural map k[xi,...,xn| = k[x1,...,xn, t]/(ft = 1) is injective.
So we must already have fV =Y hi(x1,...,xn)f; in k[x1,...,xn].
Thus, FNe J.



Affine Varieties

S . =) - =B
Corollary

For A= k[x1,...,xs], the maps V and /

{ideals of A} 4 {subsets of A7}

induce the following bijections:

{radical ideals of A} = {subvarieties of A7}
u u
{prime ideals of A} A {irreducible subvarieties of AJ}
u u
{maximal ideals of A} <1 {points of A7}
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o For every algebraic set X < A7, we have
V(I(X))=X.

Conversely, by Hilbert's Nullstellensatz, Part (3), for every ideal J, we
have

I(V(J)=VJ.

Thus we obtain the first bijection.
The second bijection follows from a preceding proposition.
The third follows from Hilbert's Nullstellensatz, Part (1).
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o An affine hypersurface in A7 is an algebraic subset given by a single
equation:

V(f)={PeA}:f(P)=0}, O#fek[xy,...,xa].

o If the prime decomposition of f is given by f=f"-.-f;", then

o The ideal (f) is prime if and only if f is irreducible, that is, if m=1
and rp =1.

o Thus, we have the following bijection:

{ irreducible

1:1 . .
. —={f € k[x1,...,xn] : f irreducible}/k*.
hypersurfaces in A} } n
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Lemma

Let C < B < A be rings.

If B is a finite C-algebra and A is a finite B-algebra, then A is also a
finite C-algebra.

If A a finite B-algebra, then A is integral over B, i.e., every element
x € A satisfies an equation of the form

X"+ by X"+ +bix+by=0, b;€eB.

Conversely, if x € A satisfies an equation of the above form, then B[x]
is a finite B-algebra.
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Suppose
B=Cby+---+ Chp,.

Suppose, also, that
A=Baj+---+Ba,.

Then
A= Calbl AP oo qr Ca,,bm.

Suppose x € A satisfies an equation
X"+ by x" 14+ bix+by=0, bjeB.

Then
x" = —bn_lxn_l — - —bix+ bp.

So we have
B[x]=B+Bx+---+Bx" 1
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We prove this using a “determinant trick”.
Suppose that
A=Baj+---+ Ba,.

Then, for any xe€ A, we have xa; € A, for i=1,...,n.
Thus, there are elements bj; € B, such that

n
Xaj = Z b,-jaj.
Jj=1

We get a single polynomial equation for x from these n linear
equations:

o We express this in matrix notation;

o We take the determinant of the matrix.

The lat equation is equivalent to
n
Z(X(s,'j — b,-j)aj =0.
j=1

George Voutsadakis (LSSU) Algebraic Geometry



Affine Varieties

o In matrix notation, it can be written as

Ma =0,

where:

o M is the matrix given by M :=(xd; — bjj)i

o ais the column vector with transpose a=(as,...,an).
Let M4 be the adjoint matrix of M.
Then, since Ma=0, detMa= M24Ma=0.
Thus, detMa; =0, for i=1,...,n.
But the a; generate the B-algebra A.
Hence detM =detM-1=0.
Expanding the determinant, we also have, for some b; € B,

detM = x" + bp_1x" L+ + by x + by.

Thus, x satisfies a polynomial equation with coefficients in B.
So B[x] is a finite B-algebra.
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Definition (Monic Polynomial)

A polynomial f € B[x] is called monic if the coefficient of the leading term
is 1.

Lemma (Nakayama's Lemma)

Let A#O0 be a finite B-algebra. Then, for all proper ideals m of B we have
mA# A.

o Suppose A is a finite B-algebra.
We can write
A=Baj +---+ Bap,

for some a; € A.

George Voutsadakis (LSSU) Algebraic Geometry



Affine Varieties

o Suppose that
mA=A.

Then, there exist bjje m, 1<i,j < n, such that

n
a,-:Zb,-jaj, l<i=<n.
J=1

From this we can conclude that
det(a,'j = b,'j) =0.

Expanding the determinant shows that 1€ m, a contradiction.
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Lemma

Let A be a field and B < A a subring, such that A is a finite B-algebra.
Then B is also a field.

o Let0#beB.
Since A is a field, there exists b™1 € A.
We must show that b1 lies in B.
By Part (2) of the Finite Algebra Lemma, there exist b; € B, such that

b+ bp1 b "V kb b 4 by = 0.
Multiplication by b1 gives

b™t= —(bp_1+bpob+---+byb" 1) eB.
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o The degree of a monomial
% v
Xy X"

is defined to be the sum ¥ v;.

o The degree of a polynomial is the maximum of the degrees of all its
monomials terms.
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Lemma

Suppose that f is a nonzero element of k[xi,...,xs], with d =degf. Then
there is a change of variables

, .
X =Xj—@jxp, l<i<=n-1,

where a1,...,a,_1 € k, such that
! ! / !
f(xg+a1Xn, ..., X1+ AnXn, Xn) € K[X1, .., X],_1,Xn]
has a term of the form cx¢, for some nonzero c € k.

o In fact “almost any” choice of @; will work (see, also, below).

Let
XI{=X,'—CZ,'X,,
for some ajek, 1<si<n-1.
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o Since d =degf, we can write

f=Fy+G,
where:
o Fy is a sum of monomials of degree d (i.e., Fy is homogeneous of
degree d);
o degG=d-1.

Then we have

f(x{+@1Xn, ..., X1+ @An_1Xn, Xn)

= Fd(al,...,an_l,l)xg +terms of lower order in x,.
Now Fy(ai,...,@pn-1,1) is a nonzero polynomial in ay,...,@np-1.
So its zero set is not A\Z‘1 (k has infinitely many elements).
This means we can choose ay,...,a,-1 € k with

Fa(ay,...,ap-1,1) #0.

This completes the proof, since then ¢ = Fy(ay,...,ap-1,1) #0.
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o Noether normalization relates the geometric idea of dimension to the
algebraic structure of the coordinate ring of a variety.

Theorem (Noether Normalization)

Let k be an infinite field. Let A= kl[ay,...,a,] be a finitely generated
k-algebra. Then there exist ys,...,ym € A, with m < n, such that:

Y1,---,¥m are algebraically independent over k;
A is a finite k[y1,..., ym]-algebra.

o The fact that yi,...,ym are algebraically independent (i.e., they do not
satisfy any polynomial equation with coefficients in k), is equivalent to

the statement that the map from the polynomial ring k[t1,...,tm] in m
variables over k to k[yi,...,ym]|, given by t;— y;, is an isomorphism.
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o We use induction on n.
Let k[xi,...,xn] be the polynomial ring over k in n variables.

Let
I :=ker(k[x1,...,xn] = k[a1,...,an] = A)

be the kernel of the homomorphism given by x; — a;.

o Suppose / =0.
We can take m=n and y; = a1,...,yn = an.
Then Statements (1) and (2) hold.
o Suppose [ #0.
Then there is some nonzero element f € /.
o If n=1, then we have f(a1)=0.
The result follows from Part (3) of the Finite Algebra Lemma, with
m=0.
That is, the set of y; is empty.
o Suppose, next, that n> 1.
Assume the result holds for n—1.
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o By the preceding lemma, there exist a1,...,a,-1 € k, such that, setting
a,=aj—a;ap and A":=k[a],...,a]_;] € A, we have that, for some
nonzero constant c € k,

1
F(xp):= - f(ay+aixn, ..., a1+ @n-1Xn, Xn)

is @ monic polynomial in A’[x,], and F(a,)=0.
By Part (3) of the Finite Algebra Lemma, a, is integral over A’.
By the inductive hypothesis, there are y;,...,ym € A, such that:

Y1,...,¥m are algebraically independent over k;
A’ is a finite k[y1,...,ym]-algebra.

By Part (3) of the Finite Algebra Lemma, A= A’[a,] is a finite
A’-algebra. Then, by Part (1) of the Finite Algebra Lemma, A is a
finite k[y1,...,ym]-algebra.
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o In the proof, the collection of m-tuples of linear forms in ay,...,a,
forms an affine space A]™.

o So the successive linear changes of variables given by the preceding
lemma can all be taken to be “general.

o Consequently, y1,...,ym can be taken to be any “general” choice of
linear forms in ay,...,a,.

o To say that a set of linear forms is general with respect to some
property, or in general satisfies the property, means that, there is
a Zariski open subset of A]™, such that, for any point in this set, the
corresponding set of linear forms satisfies the given property.

o That is, the property is true for a dense set of linear forms, or,
colloquially, “in general”.
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e et

Let k be a field with infinitely many elements. Let A= k[ay,...,a,] be a
finitely generated k-algebra. If A is a field, then A is algebraic over k.

o Let A=k[ay,...,an] be a finitely generated k-algebra.
Suppose that A is a field.
By Noether Normalization, we get yi,...,ym € A, for some m < n, such
that, setting
B=klyi,...,ym] € A,
we have that A is a finite B-algebra.
By a preceding lemma, B is a field.
This can only be the case if m=0.
So A is a finite extension of k.

Thus, A is algebraic over k.
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o Let X< A} be a variety.
For simplicity we assume X to be irreducible.
l.e., we assume that the ideal / =/(X) < k[xy,...,xs] is prime.

We consider the ring
A= k[al,...,a,,] = k[Xl,...,Xn]//,

where a; :=x; mod /.
Later A will be termed the coordinate ring of X.

By Noether Normalization, there exist algebraically independent linear
forms y1,...,¥m in ai,...,a, (which can be taken to be general), such
that A is a finite k[y1,..., ym]-algebra.
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o The linear forms obtained from Noether Normalization lift
(nonuniquely) to linear forms yy,...,¥,, in x1,...,x,, where

yi=yi mod/.

The forms yy,...,¥,, define a linear projection
=Y yYm) AL — A

By restricting yy,...,y, to X, we obtain a map

Ppi=mlx: X—A.

On X we have
Yilx=Yilx-
So ¢ is independent of the choice of lifts y;.
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Suppose k = k. Let ¢ be the mapping of the preceding slide. Then, for
every point Pe A", the fiber ¢p~(P) is finite and nonempty.

o We first show that ¢~1(P) is finite.

By Part (2) of the Finite Algebra Lemma, there exist an integer N and
polynomials f,...,fy_,, for 1<i<n, such that for i=1,...,n, we have

alN+f,(-,_l(yl,...,ym)a,{v'1+---+ﬂ(yl,...,ym):o.

This means that, with / =/(X), we have, for some gj €/,

XiN + f/('l_l(yl,,,,,}_/m)xl.’\"l 4ot fo"(yl,...,ym) =gi(X1,..., Xn)-
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o For I =1(X), we have, for some gj €/,

XiN + fl(l—l(yl»---»)_/m)xiN_l Tt fi)i(.)_/ly""ym) = gi(Xl""’X”)'

Suppose (x1,...,x,) € X. Then gi(x1,...,x,)=0.
So x; is a solution of the equation f/(x) =0, where

Fi(x) = xN+ F e Ym)XN 4 £ (Vi Yim)-

Since [ is prime, A= k[ay,...,ap] is an integral domain.
So it has a field of fractions k(az,...,an).
We can thus consider f(x) € k(ay,...,an)[x].

By the Fundamental Theorem of Algebra, there are only a finite
number of solutions x? to f/(x) =0.

Thus, for any point y = (y1,...,ym) € AJ7, we have only finitely many
points x = (x?,...,x%) € X, with ¢(x) = y.



Affine Varieties

o Finally, we show that ¢~1(P) is always nonempty.
It is enough to show that for every point P =(by,...,by) € A},

/p:= I+(y1—b1,...,ym—bm)?fk[Xl,---,Xn]-

Then Hilbert's Nullstellensatz implies that ¢p=1(P) =V (Ip) # @.
The displayed condition is equivalent to

(yl—bl,...,ym—bm);ék[al,...,an].

Now (y1 —b1,...,¥m—bm) is a maximal ideal in k[y1,...,¥m].
In particular, it is a proper ideal.
So the condition follows from Nakayama’'s Lemma, with

B=kl[y1,...,¥m], A=kla1,...,an], m=(y1—b1,-...Ym— bm).
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o Let
f= X1X2 + Xp2X3 + X3X1 € k[X]_,X2,X3].

For the quadric hypersurface S := V/(f) gA\i, we have
A = k[x1,x2,x3] /(F).
We use the notation
aj:=x; mod(f), i=123.

In the proof of Noether Normalization, since f does not contain any
terms of the form x™, we must make a change of variables.
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o Eg., let
Z =X+ Xq.

Then we have
f=z(x;+x3)—

Now A is algebraic over k[a; + a2, a3].

Moreover, the corresponding map ¢ is given by

¢: S - Ai,
(x1,z,x3) — (z,x3).

The fiber
¢ (a,b) ={(x,a,b) : x> — ax — ab}

consists of at most 2 points.
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o S contains the coordinate axes.

So for any choice of 1<i< =<3, the projection to the x;,x; plane,

s — A2
(x1,x2,x3) — (X, %),
has an infinite fiber over (0,0).
Similarly, suppose (a,b,c)€S.
Then S contains the line L:={(1a,Ab,Ac): A€ k}.
Thus, the projection

(X1,X2,X3) (=2 (le —axp,CX1 — 3X3)

maps L to (0,0).
However, there is a dense set of hyperplanes such that the
corresponding projection has finite fibers.
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o The characteristic of a field k, char(k), is the minimal prime p, such

that

p-l=1+.--+1=0,
\ﬂ—/
p times
o The characteristic is 0 if there is no such prime.
: For any prime p, the field ', :=Z/pZ and its algebraic
closure both have positive characteristic p.

The field C and its subfields all have characteristic 0.
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Definition

A nonconstant irreducible polynomial
f=apx"+---+a1x+ap € k[x]
is called separable if the formal derivative is nonzero, that is,
f'=na,x" 1+ +a #0.

Otherwise f is called inseparable.
An arbitrary polynomial is called separable if every factor is separable.
An irreducible polynomial

fek[xi,...,xn]

is called separable with respect to x; if the formal derivative with respect
to this variable is nonzero.
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o Clearly all polynomials over a field of characteristic O are separable.

o An irreducible polynomial f € k[x] over a field of characteristic p is
inseparable if and only if

f(x)=g(xP), for some g€ k[x].

o Eg., f(x)=xP—-telFp(t)[x] is an irreducible inseparable polynomial
in characteristic p.

o In characteristic p the Frobenius identity aP + bP = (a+ b)P implies that
if k is algebraically closed then we can write

f(x)=g(x) = h(x)?,

where h(x) is obtained from g(x) by replacing all coefficients by their
p-th roots.
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Definition (Separable Elements)

Suppose K /k is a field extension and x € K is algebraic over k. Then x is
called separable over k, if the minimal polynomial of x is separable over k.
Otherwise x is called inseparable.

Definition (Separable Extensions)

An algebraic extension K /k is called separable if all elements of K are
separable over k.
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e et

Let k be an algebraically closed field. Let A= kJas,...,a,] be an integral
domain with field of fractions K. Then there are ys,...,ym € A, such that:

Y1,.-.,Ym are algebraically independent over k;
A'is a finite k[y1,..., ym]-algebra;

K is a separable extension of k(yi,...,¥m)-

o In characteristic 0 all algebraic extensions are separable.
So assume that the characteristic p of k is positive.
Let x; be algebraically independent over k.
Define a map 7: k[xi,...,xn] = k[a1,...,an] by setting 7(x;) = a;.
Since A is an integral domain, the ideal / :=ker(7) is prime.
In particular, we can choose an irreducible element f € /.
Suppose that f has degree d.
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o By a preceding lemma, there is a change of variables of the form

Xj =Xj t QjXp,

such that 1?(?(1,?2,...) =1f(x1,x2,...,%n) has a term of the form c(>~<,,)d.
Note that if f has a term of the form cxl.d, then f has a term of the
form ¢(%;)9.

Exchanging the role of x, with x;, for j=1,...,n—1, we can make a
sequence of changes of variables to obtain a polynomial in xi,...,X,,

where
n
Xi=xi+ ) BijXj»
j=1
J#i
for some constants Bj;, 1<i,j<n, i #j, such that, for each /, as a

polynomial in X; over k[{x;:j #i}], the leading term is of the form
ci(X;)?, for some nonzero c; € k.
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o Now f is irreducible.
So k[xi,...,xn]/(f) is an integral domain.

The change of variables induces an isomorphism

KIXt, e orXn) /(F) 2 kIR0, . or Znl /(F).

Hence, k[Xi,...,Xn]/(f) is also an integral domain.
Thus f is also irreducible.

But k[x1,...,Xn] = k[x1,-.., Xn].

So we can replace x; by X; and f by 7.

So we may assume that f is irreducible and has a leading term of the
form ¢;(x;)9, for c; € k, with respect to each variable.
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. f is separable with respect to at least one variable x;.
Otherwise we would have f € k[xl,...,xf,...,x,,], for all i.
So there would be polynomials g and h with

f=g(x},....xH5) =h(x1,...,xn)P.

This would contradict the irreducibility of f.
Thus, we may assume that f is separable with respect to xp,.
We view the equation

f(a1,...,an-1,an) =0

as a separable equation for a,, over the field of fractions of

A = k[al,...,an_l].

Now we apply an inductive argument.

We need to use the fact that the composition of two separable
extensions is again a separable extension.
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Theorem (Theorem of the Primitive Element)

Let K be a field with infinitely many elements. Let L2 K be a finite
separable extension. Then there is an element x € L, with L= K(x).
Moreover, if L is generated over K by a finite set of elements z, ..., z,,
then x can be chosen to be an element of the form x =Y «;z;, with a; € K.

o Let K< M be the normal closure of L over K.
Then K< M is a finite Galois extension.
By the Fundamental Theorem of Galois Theory, there are only finitely
many fields between K and M.
The fields {K;} between K and L form finitely many K-subspaces of
the vector space L.
If K has infinitely many elements, then there exists x € L which does
not lie in the union of the Kj.
Then L= K(x).
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o Suppose zi,...,z, generate L.
Then they cannot all be contained in any single K;.

So, there is some linear combination

X=Za,-z,-

which is not contained in any K;.
Hence L= K(x).
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Corollary

Let k be an algebraically closed field. Let A= kJay,...,a,] be an integral
domain with field of fractions K. Then there exist y1,...,Ym+1 € A, such
that:

Y1,-..,¥m are algebraically independent over k;
A'is a finite k[y1,..., ym]-algebra;
K is a separable extension of k(yi,...,ym);

The field of fractions K of A is generated over k by y1,...,¥m+1.

o By the preceding proposition, we can assume K is a separable field
extension of k(yi,...,¥m)-
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o By hypothesis A= kJa,...,an].
So the a; generate K as a field extension of k(y1,...,¥m)-

By the theorem, we can write yp,,,1 as a linear combination of the a;
with coefficients in k(y1,...,¥Ym)-

Multiply this linear equation through by the common denominator.

We then obtain an expression for y,,,1 as a linear combination of the
a; with coefficients in k[yi,..., Ym].
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o The corollary means the extension k < K can be decomposed as

k< KO = k(yl,...,ym) cK= Ko(ym+1),

where:

o The first extension is purely transcendental;
o The second is a primitive algebraic extension.
That is, an algebraic extension generated by a single element.

o In other words, K = k(y1,...,¥m+1), where there is only one algebraic
relation between the y;.
o Geometrically:

o If y; are the coordinates of A1 then this relation describes a
hypersurface in A",

o Thus, the displayed decomposition means that every irreducible variety
is “almost” isomorphic to a hypersurface.
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Subsection 2

Polynomial Functions and Maps
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o Let V denote an affine variety in AJ.

Definition (Polynomial Function)

A polynomial function on V is a map f: V — k, such that, there exists a
polynomial F € k[x1,...,xp], with

f(P)=F(P), forall PeV.

o The polynomial F is not uniquely determined by the values it takes on
V.

o In particular, for F and G € k[xy,..., x|, we have

Fly=Gly iff (F=G)ly=0
iff F—Gel(V).
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Definition (Coordinate Ring)

The coordinate ring of V is defined by

k[V]:=k[x1,....,xa]/I(V).

o From preceding remarks we can make the following identification:

k[V]={f :f:V — k is a polynomial function}.
o We also have

V is irreducible iff k[V/] is an integral domain.

o The coordinate functions xi,...,x, generate k[V].

o This explains the terminology “coordinate ring’.
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©

The ring k[V] plays the same role for V' that k[x,...,x,] plays for A7.

o In particular, there is a correspondence between:
o The closed sets W contained in V;
o The ideals of k[V].
o The projection 7 : k[x1,...,xp] = k[V] = k[x1,...,xn]/I(V) induces a

bijection

fideals J < K[x1,...,xa] : J2 I(V)} <2 (ideals J' < k[V]}.

©

It is defined by
J—J/I(V).

©

Its inverse map is
J =Y.
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o This mapping preserves radical ideals, prime ideals and maximal ideals,

{radical ideals J' < k[V]} L closed sets W < Vj
U U
{prime ideals J' < k[V]} ZL  firreducible sets W < V}
U v
{maximal ideals J' < k[V]} L {points of V1.

o Closed sets of V in the topology induced by the Zariski topology on
A are the same as those defined by taking the closed sets of V' to be
sets of the form V/(J), where J is a radical ideal in k[V].
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A Varieties
Definition (Reduced Algebra)

An algebra A is reduced if A contains no nilpotent elements.
That is, for x € A,

x"=0, for some n=1, implies x=0.

o The algebra k[xi,...,xn]/I is reduced if and only if / is a radical ideal.
o Since /(V) is a radical ideal, the coordinate ring is a reduced algebra.

o By construction, the coordinate ring k[V] of an affine variety V is a
finitely generated k-algebra.
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o Being finitely generated and reduced characterize coordinate rings of
varieties.

o Let A be a finitely generated reduced k-algebra.

o We can construct a corresponding algebraic variety as follows.

o Choosing generators ay,...,a,, we can write

A=klay,...,an)
o We then have a surjective homomorphism

w: k[xi,...,xn] — A=kla1,...,an]
Xj +=— aj.
Let / =ker(m). Then V = V() is a variety.
It is irreducible if and only if A is an integral domain.
Since A is reduced, / is a radical ideal. So /(V)=1.
By construction A= k[V].

© 06 0 o



Affine Varieties

o Consider the usual parabola
Go=1{(x,y) EA%( :y—x2 =0}.

We have
k[Col = k[x,y1/(y =x*) = k[x] = k[A}].

o Consider the semicubical parabola, given by
G={(xy)e A\i :y2 -x3=0}

We have
k(G = kIx,y1/(v? = x°).
o Notice that k[C;] is not a UFD.
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Co has a rational parametrization

©

t— (t,t%).

©

C1 has a rational parametrization,

t— (t3t3).

©

So there are bijections between each of Cy and C; and Ai.

However, as algebraic varieties Cy and C; behave differently.

©

We will see that G is isomorphic to AL, but C; is not.

©
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o Let V< AJ and W < A] be closed sets.
o Denote by x;, for 1 <i<n, the coordinate functions on A].

o Denote by y;, for 1 <j < m, the coordinate functions on A

Definition (Polynomial Map)

A map f:V — W is called a polynomial map if there are polynomials
Fi,...,Fm€k[x1,...,Xn], such that

f(P)=(Fi(P),....Fm(P)) e WS A,

for all points Pe V.
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Lemma

Let y1,...,¥m be the coordinate functions on Aj". Amap f:V — W is a
polynomial map if and only if f;:=y;jof € k[V], for j=1,...,m.

° Composing .f with Yj gives the projection Vv f W AP
onto the j-ih coordinate. Let f; = yjof.
Then if f is a polynomial map, we have x lyj
fi(P) = Fj(P), for some F; € k[xq,...,x,]. - P
Thus f; is a polynomial map. So f; € k[V]. k
Suppose, conversely, f; =y;of is a polynomial map, for every j.

Then by definition, there are polynomials Fi,..., Fp,, such that
f(P)=(Fi(P),...,Fm(P)), for all Pe V.

o Thus, any polynomial map f:V — W can be written in the form
f=(f,....fm), with fi,..., fm € k[V].
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Lemma

A polynomial map f: V — W is continuous in the Zariski topology.

o We must show that if Z< W is closed, then f~1(Z) is also closed.

Suppose
Z={hy=---=h,=0%L

Then
f(Z)={hjof =---=hof =0}.

So f71(Z) is also closed.
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o We revisit the curves Cp and C.
Consider the maps:
o f:Al — Co; t—(t,t2);
o g:Ai — Cy; t—(t2,13).
They are both bijective polynomial maps.
o Let yq,...,ym be linear forms in the variables x, ..., x,.
The map
f=(1ym) A — A7
is a polynomial map.
We saw that, for every irreducible variety V/, there is some integer m,

such that, for a general choice of yi,...,ym, the map ¢p =1y is
surjective with finite fibers.
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o Let VSA], WcAT and XQA/’; be algebraic sets.
o Let f:V— W and g: W — X be polynomial maps.
o Then gof:V — X is also a polynomial map.

°

This follows immediately from the fact that the composition of a
polynomial with a polynomial is again a polynomial.
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©

©

For g € k[W], define
f*(g):=geof.

o g is a polynomial function.

©

So gof is also a polynomial function.

Thus, we have a map

©

Fro kW] — k[V];
g — f*(g)=gof.
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o Let f:V— W and g: W — X be polynomial maps.

o Then
(gof)* =f"og"  k[X]—k[V].

f'
Vv w—8 . x
PN |
. g'(h) A
O |
Al

o This follows immediately from the fact that, for he k[X], we have

(gof)*(h)=ho(gof)=(hog)of=g"(h)of =f"(g"(h)).
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o The map f* is a ring homomorphism.
o f*(g1+&2)=(g1+8&2)of =g1of +goof =f"(g1)+f
o f*(g1-82)=(81-82)of =(g1°f)-(g20f)=f"(g1)-f
o For any constant c € k, we have f*(c) =c.
o So * is also a k-algebra homomorphism.

o Thus, every polynomial map f: V — W gives rise to a k-algebra

homomorphism
f*: k[W]— k[V].
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Let ¢: k[W] — k[V] be a k-algebra homomorphism. Then there exists a
unique polynomial map f: V — W, such that

*

p="f".

o Suppose that W< A]".
Let y1,...,ym be the coordinate functions on A]".
Letting y; =y;+ (W), we have

K[W]=klys,-co yml [I(W) = K[y, Y ]

Set
f - (yl)Ek[V] i=1,...,m.

Then f:=(f1,...,fm): V — A" is a polynomial map.
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o First we show that f(V)c W.
Suppose that G = G(y1,...,ym) € [(W).
Then in k[W], we have G(y,...,¥,) =0.
Thus,

G(f,o fm) = G(p(V1)-- - 0(Ym)) = 9(G (Y1, ¥ m)) = 0.

So f(V)cs W.

Next, we show that ¢ = f*.

The elements y,...,Y,, generate the k-algebra k[W].

So it is enough to show that ¢(y;)=f*(y;) =f;.

This is precisely the definition of the f;.

This also shows that f =(fi,...,fn) is the unique polynomial map with
Q="r*.
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S . =) - =B
Corollary

There is a bijection

{f‘ f:v-Ww } EEN { ‘(p:k[W]—»k[V] }

a polynomial map a k-algebra hom.
f - f*
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Definition (Isomorphism)

A polynomial map f: V — W is an isomorphism if there is a polynomial
map g: W — V, such that

fog=idy and gof=idy.

Corollary

A polynomial map f: V — W is an isomorphism of varieties if and only if
f*: k[W]— k[V] is an isomorphism of k-algebras.

o This follows from the fact that

(Fog)* =g"of".
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o Let A=(ajj) be an invertible (nx n) matrix.

o Consider the linear forms
n
Yi= ) @ijX;.
Jj=1

o They define a bijective polynomial map

f=(y1,...,y,,):AZ—>AZ.
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©

Consider the parabola Cy={y —x?>=0} in Ai.

o Consider, also, the parametrization
f: Ai —  Co;
t — (t,t2).

The projection p: Ai —»Ai to the first coordinate, restricted to Cp,
gives an inverse map

©

g: G — A}
(xy) — x

o Thus, f is an isomorphism.
o We can also see this by considering the map f*: k[Co] — k[Ai].
o Note that

f*: KG)=klx] — K[AL]=k[t];

X — 1t

is an isomorphism.
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o Now consider the semicubical parabola

Ci={(xy):y?=x3%.
o The map

f: Ai -  Cp;
t — (t3,13),

is a bijection.
The image *(k[Gi]) k(A\b = k[t] is generated by f*(x) = t? and
Frly)=¢.
So f*(k[Ci]) # k[t], and, thus, f is not an isomorphism.
Though f is a bijection, the inverse map g: G; —»Ai, with

[ Y i (0y) £(0,0)
seon={g i ()= (00)

©

©

©

is not a polynomial map.
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A category € consists of the following data:
A class of objects Ob%;
For any two objects A, B € Ob¥, a set Mor¢ (A, B).
The elements of these sets are called morphisms.
For any three objects A, B, C € Ob¥¢, there is a map

o:Morg (A, B) x Morg(B,C) — Morg(A, C);
(frg) — gof.
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Definition (Category Cont'd)

These data satisfy the following axioms.

o is associative, i.e.
(gof)oh=go(foh);

for all Ae Ob¥¢, there is a morphism
idA € MOI’<g(A,A),

called the identity of A, such that, for all B € Ob% and for all
f e Mor¢ (A, B) and g € Morg(B,A), we have

foidg=f and idpog=g.
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Among the categories of interest to us are:

The category of sets and maps;
The category of topological spaces and continuous maps;
The category of groups and group homomorphisms.
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A Varieties
Definition (Functor)

For categories € and 2 a functor F : € — 2, which may be either
covariant or contravariant, is given by:

a map F : Ob¥%¢ — Ob2;

a collection of maps

Mor« (A, B) — Morg(F(A), F(B)), in the covariant case,
Mor¢ (A, B) — Morg(F(B),F(A)), in the contravariant case,

having the following properties:
F(ida) =idF(a).
_ | F(f)oF(g), in the covariant case,
F(fog) _{ F(g)o F(f), in the contravariant case.
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o For every category ¢, we have the functor id¢ given by the identity.

o For many categories there is a “forgetful” functor, which simply
“forgets’ some of the structure of the objects in the domain of the

functor.

o An example is given by the functor
F : {groups, homomorphisms} — {sets, maps},

which maps a group to its underlying set.
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o The relationship between varieties and ideals can now be expressed by
the following contravariant functor:

finitely generated
reduced k-algebras; ,
k-algebra homomorphisms
V. —  k[V]
(F:V-W) — (f*:k[W]— k[V]).

I3 affine varieties;
“| polynomial maps

o The category on the left is the category of affine varieties.

o The category on the right is the category of finitely generated
reduced k-algebras.

o Often we will refer to a category by referring only to its objects.

o The morphisms are then understood to be the usual morphisms
between the objects in question.

George Voutsadakis (LSSU) Algebraic Geometry



Affine Varieties

Definition (Functorial Morphism)

For two functors F, G : € — 2, which are both covariant or both
contravariant, a functorial morphism, or natural transformation,
¢ : F— G is a family of morphisms

{p(A): F(A)— G(A): Ae Obs},

such that, for every morphism f: A— B, with A, B € Ob%¢, we have a
commutative diagram (covariant and contravariant case, respectively):

F) 22, 6a) F8) 2B g(a)
F(f)l lcm F(f)l lcm
F(B) W G(B) F(A) W G(A)
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Definition (Functorial Isomorphism)

The functorial morphism
p:F—-G

defines a functorial isomorphism ¢ : F = G, if there is a functorial
morphism ¥ : G — F, such that

wop=idg and GoF =idg.

Definition (Equivalence of Categories)

A functor F : € — 2 defines an equivalence of categories if there is a
functor G : 9 — €, such that

GoF=id¢ and FoG Zidg.
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The functor defined by

V o~ K[V],
(F:V=W) — (f*:k[W]—k[V]),

induces the following contravariant equivalences of categories:

category of category of finitely
{ s e } — generated reduced

k-algebras
category of irreducible ety @ Gy
: . - generated k-algebras
affine varieties . . :
which are integral domains
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o We construct an inverse functor G.
Let A be a finitely generated reduced k-algebra.
Choose generators ai,...,a, of A and consider the homomorphism

7w k[xi,...,.xn] — A=k|a1,...,an];
Xj — aj.

The ideal | =kerm is then a radical ideal.

It defines a variety V = V/(I).

V is irreducible if and only if / is a prime ideal.

l.e., V is irreducible if and only if A is an integral domain.

We set G(A)=V.

By the preceding proposition, every homomorphism ¢ : A— B of
finitely generated reduced k-algebras gives rise to a unique morphism
f:G(B)— G(A), with ¢ = F(f). So we set G(¢)=".

It is easy to check that F and G define an equivalence of categories.

George Voutsadakis (LSSU) Algebraic Geometry



Affine Varieties

o Consider the category of affine varieties.
o Let V and W be affine varieties.

o An affine variety V x W is the categorical
product of V and W if there exist polynomial 4
maps py:VxW —V and pyy: Vx W —> W

|
(the projection maps), such that, for any ?
affine variety Z, mapping to both V and W “IVxw \®
via polynomial maps f: Z—V, g: Z—> W,
there is a unique polynomial map QN 3
h:Z— V x W, such that the diagram vV W

commutes.
o For affine varieties V and W, the categorical product of V and W is
given by the set-theoretic product V x W.
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For varieties V < A7 and W< A, we have:
The set- theoretlc product V x W< Al x A7 =A7"™ is a variety;
If V and W are irreducible, then V x W is aIso |rredUC|b|e.

Consider varieties V ¢ AZ and W ¢ AT.

Let f1,...,fr € k[x1,...,xn] and g1,...,8r € k[y1,...,ym] be polynomials,
such that

V={f=--=f=0 and W={g=---=g =0}

Then
V x W:{fl=~~~=f[=g1=~~~=gr=0}_

So Vx WAl x AT =A7"™ is a variety.
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First we remark that, for all w e W, the projection onto the first factor
defines an isomorphism between V x {w} and V.

Similarly, {v} x W is isomorphic to W, for all ve V.
Suppose there is a decomposition V x W = Z; U Z5.

This induces a decomposition
Vxiw}=(Vx{winZ)u(V x{w}n2y).

V x {w}, being isomorphic to V, is irreducible.
So either Vx{winZ; =V x{w} or V x{w}nZs =V x{w}.
le., Vx{w}c Z; or V x{w}c /.
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o Vx{wlcZor Vxi{w}c /.

We now define
W,=iweW:Vx{w}cZ}, i=12.
Then Wi u Wo = W. If we show that the W; are closed, then, by the
irreducibility of W, Wi =W or Whr = W.
In the first case V x W = Z; and in the second V x W = 7.

For each point ve V, let
VV,-VZ={W€ W:(v,w)eZz}, i=12.

Then the sets W are closed, since {v} x WY = ({v} x W)n Z;.
Since W; =Nyev WY, the sets W; are also closed.
o Note that the Zariski topology on V x W is not the product topology.
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Subsection 3

Rational Functions and Maps
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o Let V be an irreducible variety.
o Then the coordinate ring k[V] is an integral domain.
o Hence k[V] has a field of fractions.

The function field of V is the field of fractions of k[V], denoted k(V).
Elements f € k(V') are called rational functions on V.

o Any rational function can be written as f = £, with g, he k[V].
o In general k[V] need not be a UFD.
o So the representation f =%, g,he k[V] is not necessarily unique.

o We can only give f a well defined value at a point P if there is a
representation f = &, with h(P) #0.
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Definition (Regular Function)

Let f € k(V) and P € V. The rational function f is called regular at P if
there is a representation f = £, with h(P)#0. The domain of definition
of f is defined to be the set

dom(f):={PeV :f is regular at P}.

For every polynomial function h e k[V/], we define

Vy:=1{Pe V:h(P)#0}

o Clearly V}, is an open subset of V.
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For a rational function f € k(V/), the following hold:

dom(f) is open and dense in V.
dom(f) =V iff f e k[V].
dom(f) 2V, iff f e k[V][h7Y].
For f € k(V), we define the ideal of denominators of f by
Dy :={he k[V]: fhe k[V]} < k[V].
By definition we have
D¢ = {h € k[V] : there is a representation f = £} U{0}.
Moreover,
V\dom(f)={P e V:h(P)=0,for all he D¢} =V(Ds).

Hence, V\dom(f) is closed. So dom(f) is open.
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Since dom(f) is obviously nonempty, it is also dense in V.

We have dom(f) =V if and only if V(Df)=0

By Hilbert's Nullstellensatz, this is equivalent to 1€ Ds.

This is, in turn, equivalent to f € k[V].

We have dom(f)2 V}, if and only if h vanishes on V/(Ds).

By Hilbert’s Nullstellensatz, this holds iff h" € D¢, for some n=>1.
This implies that f = & € k[V][h71].

o Part (2) of the theorem says that the polynomial functions are
precisely the rational functions that are “everywhere regular".

o We refer to polynomial functions as regular functions.

George Voutsadakis (LSSU) Algebraic Geometry



Affine Varieties

o We will define the ring G(U) of functions regular on an open set
UcV.

o This will lead to the concept of the structure sheaf of a variety.

o We first define the ring of functions on V regular at a point Pe V.

Definition (The Local Ring)

The local ring of V at a point Pe V is the ring

Ovy,p:={fek(V):f is regular at P}.
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Recall that a ring is local if it has a unique maximal ideal.
The local ring @\ p < k(V') is a subring of k(V).

Moreover, we have

©

©

©

Oy p=k[V]ih™L: h(P) #0}.

©

The ring Gy p is in fact a local ring.

©

Its unique maximal ideal is

mp::{gek(V):f,gek[V],f(P):O,g(P);éo}.
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Definition (Multiplicatively Closed System)

Let R be a ring. A multiplicatively closed system in R is a subset
S c R* = R\{0}, with the following properties:

a,be S implies abe S.
1eS.

: A ring R is an integral domain if and only if R* = R\{0} is
multiplicatively closed.

: An ideal p# R is a prime ideal if and only if R\p is a
multiplicatively closed system.

George Voutsadakis (LSSU) Algebraic Geometry



Affine Varieties

©

Let R be a ring.
Let S< R\{0} a multiplicatively closed system.

©

©

Define the following equivalence relation on the product R x S:

(r',s") ~(r",s") o there exists s€ S, with s(r's”" —r"s') = 0.

©

The set of equivalence classes is denoted by
Rs:=RxS/~.

We write

©

r
s
to denote the equivalence class of (r,s).
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o We can then define addition and multiplication in Rs.

o Addition is defined by
rorrs'+r's

o Multiplication is defined by
r
s

s’ ss!

o It is straightforward to check that these operations are well defined.

o The ring Rs is a commutative ring with identity element 1= %

Definition (Localization)

The ring Rs is called the localization of R with respect to the

multiplicative system S.
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o Let R be a ring.
o Let S be a multiplicatively closed system in R.
o The natural map is a ring homomorphism,

R — Rs;

r

r — =

1
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o Let R be an integral domain.
o Let
S=R* = R\{0}.
o Then Rs is the field of fractions of R.
o In this case, the map
R— Rs
is injective.
o So R may be identified with its image in Rs.
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o Let R be a ring.
o Let p < R be a prime ideal.
o Let
Sp=R\p.
o The ring
Ry = Rs,
is called the localization of R at p.
o In fact Ry is a local ring.
o Its unique maximal ideal is

mp::{gzpep,SES}ng.

o To see this, consider an element of R, not in mj.
It is of the form S;' with s’ € S.
So it has an inverse 5 and is, therefore, a unit.
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o Let R be an integral domain.
o Let 0#f€eR.
o Set
Se={f":n=0}.
o We define
Rf = Rs,.
o Since R is an integral domain, the map
R — Re
e
is injective.
o Identifying R with its image in Rf and in the field of fractions, we

have an equality
R¢ = R[f ] cfield of fractions of R.
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©

The local ring @y p, was defined as a subring of the function field
k(V).

Ov,p may also be constructed by localization.

Consider a point Pe V.

The ideal corresponding to P is

© ©

©

Mp =1{f e k[V]: f(P)=0}=I({P}) = I({P}) + (V) S k[V].

This ideal is maximal.
We have an equality

© ©

@V’P = k[V]mP

l.e., Oy p arises through localization of the coordinate ring at Mp.
The maximal ideal of Gy p is given by

mp={feOyp:f(P)=0}.

© ©
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o For every nonempty open set U< V/, we define
O(U):=0y(U):={f ek(V):f is regular on U}.

o Further, we set

@’\/(QS) :={0}.
o Then @\(U) is a ring.
o In addition it is a k-algebra.

o The set of rings 0\/(U), together with the natural restriction
homomorphisms, forms the structure sheaf &\, .

o The local ring @y p is called the stalk of the structure sheaf at the
point P.

o The elements of @\ p are called function germs.
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o The preceding theorem can be formulated as follows.

o Part 2:
o(V)=k[V];

o Part 3:
6(Vh) = k[VI[h] = k[V]p

where the ring k[V]}, is the localization of the coordinate ring k[V/]
with respect to the multiplicative system {h": n=0}.
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o We consider maps on V which are not everywhere defined.

Definition (Rational Map)

A rational map f:V --» A7 is an n-tuple

f=(f,....f)

of rational functions fi,...,f, € k(V).
The map f is called regular at the point P if all f; are regular at P.
The domain of definition dom(f) is the set of all regular points of f, i.e.

dom(f) = édom(f}).

For an affine variety W c A7, a rational map f:V --» W is a rational map
f:V--» A7, such that f(P)e W, for all regular points P € dom(f).

o By the theorem, dom(f) is a nonempty open subset of V.
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o In contrast to the situation for polynomial maps, for rational maps
f:V--—>W and g: W --5s X, the composition

gof: V—f—) W—€—>X

cannot always be defined in a meaningful way.
: Consider two rational maps.
o f is defined by

. 1 2.
f: Ay — Ay
x = (x,0).
o g is defined by
. 2 1.
g: Ak --> ‘;&k'
(xy) - 3

y
Note that

f(A})ndom(g) = 2.
So the composition is nowhere defined.
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o Consider a rational map f:V --» W.
o We want to define a map *: k(W) — k(V) with

f*(g)=gof.

o We have constructed a homomorphism 7* : kK[W]— k[V].

o So we know that, for g € k[W], the function 7*(g) € k(V) is well
defined.

o It is possible that f*(h) =0, for some he k[W], with h#0.

o In that case, we cannot define f*(£) to be ?Eﬁ;
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Definition (Dominant Rational Map)

A rational map f: V --»> W is called dominant if f(dom(f)) is a Zariski
dense subset of W.

Definition (Inverse Image)

For a rational map f:V --» W and a subset U< W, we define the inverse
image of U under f by

f(U):={P edom(f): f(P)e U).
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Suppose f: V --» W is dominant.

Let g: W --» A\f}( be a rational map.

By a preceding theorem, dom(g) is a nonempty open subset of W.
By a preceding lemma, f~*(dom(g)) is a dense open subset of dom(f).

© ©6 6 o o

Thus, the composition gof:V --» A,l( is defined on the dense open
subset

f1(dom(g))c V.

George Voutsadakis (LSSU) Algebraic Geometry



Affine Varieties

©

Let f:V --» W be a rational map.
Consider the corresponding homomorphism f* : k[W] — k(V).

©

©

For all g € k[W], we have
f*(g) =0 f(dom(f)) < V(g).

o Thus,
f*: k[W]— k(V) is injective & f is dominant.

©

Hence, if f is dominant, then we can extend f* to a homomorphism
f*:k(W)— k(V) by setting

«(8)._f"(e)
(%)= =0
o If f:V--»W and g: W --» X are dominant, then gof:V --» X is

also dominant.
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Let V and W be irreducible affine varieties.
Every dominant rational map f: V --» W defines a k-linear
homomorphism * : k(W) — k(V).
Conversely, if f:k(W)— k(V) is a k-linear homomorphism, then
there exists a unique dominant rational map ¢ : V --» W, with

p="r".

If f:V--»W and g: W --» X are dominant, then gof:V --3 X is
also dominant and

(gof)" =f"og".
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o Parts (1) and (3) have already been discussed.
Suppose that W c A].
The coordinate functions y1,...,ym generate the field k(W).
We set f;:=¢(yi) € k(V) and

fi=(f,....fm): V--> W.

This map has image in W.
By construction * = ¢.
It remains to show that f is dominant.
Since f* = ¢, we have

£ Lk w)= @ lk[w] -
Since ¢ is a field homomorphism, ¢ is injective.
So " Ixjw: K[W] — k(V) is also injective.
Hence, f is dominant.
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o Open subsets of affine varieties behave similarly to affine varieties.

Definition (Quasi-Affine Variety)

A quasi-affine variety is an open subset of an affine variety.
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Let U; and U, be irreducible quasi-affine varieties, contained in the affine
varieties V and W, respectively.

A morphism f: U; — W is a rational map f:V --» W, with
Ui cdom(f), i.e., f is regular at every point P e U;.

A morphism f: U; — Uy is a morphism f: U; — W, with f(U;) < Us.
An isomorphism of quasi-affine varieties is a morphism f: U; — Uy,
such that, there is a morphism g: U, — Uy, with

gof=idy, and fog=idy,.

o For two irreducible affine varieties VV and W,

{f:f:V—> W amorphism}={f:f:V — W a polynomial map}.
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o Consider again the semicubical parabola
G ={(xy) EA%( : y2 -x3=0L.
Recall that it has a parametrization
f: A/l( - G;
t — (t3,83).
This parametrization is not an isomorphism.
So k[A}] and k[C1] are not isomorphic.
However, the restriction
f: AL \0} — C1\{(0,0)}

is an isomorphism of quasi-affine varieties.

Its inverse is
glxy)=Z.
X

o In terminology to come, Ai and C; are birationally equivalent.
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o We saw A\f}( and C; are birationally equivalent.

The theorem gives us a map
F*: k(C1) — k(A}),

with

Thus f* is surjective.

Moreover, f* is a nonzero field homomorphism.

So f* is also injective.

So the function fields k(A}) = k(t) and k(C;) are isomorphic.

We will see that the function fields of any birationally equivalent
varieties are isomorphic, and vice versa.
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o Let V be an affine variety.
o Let fek[V].
o We defined the quasi-affine variety

Vi = VAV(f)={Pe V:f(P)#0}.

The quasi-affine variety Vf is isomorphic to an affine variety with
coordinate ring

k[Vel = kIVIIF] = k[ V]F.

o In the proof we use again Rabinowitsch's trick.
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o Let
J:=1(V)<cklxi,...,xn]
be the ideal of the variety V c AJ.
Let F € k[x1,...,xn| be a polynomial, with F|y,=f.
We set
Jr = (4, tF =1) S k[xq,...,Xn, t].
: Vf is isomorphic to the affine variety W = V/(Jg) QAZ”.
Consider the maps:
o p: W — Vg, with (x1,...,%n,¥) — (X1,---, Xn);
o q:Vr— W, with (xq,...,xp) — (xl,...,xn,m).
These are mutually inverse morphisms.

The conclusion now follows.
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o The figure illustrates the proposition for V:Ai and f=x-1.

t-axis

W=V(~1)-1)

z-axis, V = A}

T~

N\ ~ thelinex—1=0

° Th.e quasi-affine variety Ai\{l} = (Ai)(x—l) c A,l( is isomorphic to the
affine variety W < A2, given by t(x—1)=1.
o In this case the map p is the projection to the x-axis.
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o Every open set in V is a union of sets of the form V.

o Hence, the sets Vi form a basis of the Zariski topology of V.

Corollary

The Zariski topology on V has a basis of affine sets.

o By the corollary, we may, without loss of generality, restrict attention
to affine varieties.

o There are quasi-affine varieties which are not affine.

: A\i\{(0,0)} is a quasi-affine variety that is not affine.
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o We give a possible definition of an abstract affine variety.

o It allows considering affine varieties without reference to a surrounding
affine space.

Definition (Abstract Affine Variety)

An abstract affine variety over a field k is a pair (V,k[V]) consisting of:
o Aset V;
o A k-algebra k[V] of functions on V/, such that:

o k[V] is generated by finitely many elements x1,...,xn over k;
o The map

vV - AZ;

P — (x1(P),...,xn(P)),

defines a bijection between V and a Zariski closed subset of AZ.
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