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Smooth Points and Dimension Smooth and Singular Points

The Tangent Space to a Hypersurface at a Point

Let V be an irreducible affine hypersurface,

V =V (f )= {(x1, . . . ,xn) ∈A
n
k : f (x1, . . . ,xn)= 0},

where f ∈ k[x1, . . . ,xn] is an irreducible nonconstant polynomial.

Definition (Tangent Space)

Let P = (a1, . . . ,an) ∈V . The tangent space to the hypersurface V at

the point P is defined by

TP(V ) :=

{
(x1, . . . ,xn) ∈A

n
k :

n∑

i=1

∂f

∂xi
(P)(xi −ai )= 0

}
,

where ∂f
∂xi

denotes the (formal) derivative of f with respect to xi .

The space TP(V ) is an affine subspace of An
k
, and P ∈TP(V ).

TP(V ) is often given the structure of a vector space, with origin at P .
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Smooth Points and Dimension Smooth and Singular Points

Tangent Space is “Space of Tangents”

Lemma

Let L⊆An
k

be an affine line through the point P . Then P is a multiple
root of f |L if and only if L⊆TP(V ).

The line L has a parametrization

L : xi = ai +bi t ,

where:
P = (a1, . . . ,an);
(b1, . . . ,bn) is a vector in the direction of L.

Let
g := f |L .

Then
g(t)= f (a1+b1t , . . . ,an+bnt).

George Voutsadakis (LSSU) Algebraic Geometry July 2024 5 / 50



Smooth Points and Dimension Smooth and Singular Points

Tangent Space is “Space of Tangents” (Cont’d)

By hypothesis, P = (a1, . . . ,an) ∈V .

So
g(0)= f (P)= 0.

So g has a multiple root at 0 if and only if

∂g
∂t (0)= 0 iff

∑n
i=1

bi
∂f
∂xi

(P)= 0

iff L⊆TP(V ),

by the equation for TP(V ).
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Smooth Points and Dimension Smooth and Singular Points

Smooth (Regular) Points

Definition (Smooth (Regular) Point)

P is called a smooth (or regular) point of the hypersurface V if there
exists some i , such that

∂f

∂xi
(P) 6= 0.

Otherwise P is called a singular point (or a singularity) of V .

This definition gives us the following characterizations of smooth and
singular points on affine hypersurfaces.

P is a smooth point of V iff TPV is an affine hyperplane.

P is a singular point of V iff TPV =An
k

.
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Smooth Points and Dimension Smooth and Singular Points

Smoothness of General Points

Proposition

For an irreducible affine hypersurface V ⊆An
k
, the set

Vsmooth := {P ∈V :P is a smooth point of V }

is open and dense in V .

The set Vsing :=V \Vsmooth is given by

Vsing =V

(
f ,

∂f

∂x1
, . . . ,

∂f

∂xn

)
⊆A

n
k .

Since this is obviously a closed subset, Vsmooth is open.

We are assuming that V is irreducible.

So show that Vsmooth is dense, we must show that Vsing 6=V .
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Smooth Points and Dimension Smooth and Singular Points

Smoothness of General Points (Cont’d)

Claim: Vsing 6=V .

Suppose, to the contrary, that Vsing =V .

Then all derivatives ∂f
∂xi

vanish on V .

That is, ∂f
∂xi

∈ (f ).

But the degree of ∂f
∂xi

is less than the degree of f .

This implies that ∂f
∂xi

= 0.

Assume, first, char(k)= 0.
It already follows that f is constant, a contradiction.
Assume, next, that char(k)= p > 0.
Then it follows that f is constant or is a polynomial in x

p

i
.

But we assume that the ground field k is algebraically closed.
So this implies that f = gp.
This contradicts the irreducibility of f .
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Smooth Points and Dimension Smooth and Singular Points

Real and Complex Manifolds

Let k =R or C.

Let P be a smooth point of a hypersurface V ⊆An
k
.

Assume that ∂f
∂x1

(P) 6= 0.

Consider the map

p : An
k

→ An
k
;

(x1, . . . ,xn) 7→ (f (x1, . . . ,xn),x2, . . . ,xn).

At the point P , p has an invertible Jacobian matrix
(
∂pi
∂xj

)
ij
.

By the Inverse Function Theorem, there are neighborhoods U ⊆An
k

of
P and W ⊆An

k
of p(P) (in the usual analytic topology), such that

p :U →W is diffeomorphic (or biholomorphic if k =C).
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Smooth Points and Dimension Smooth and Singular Points

Real and Complex Manifolds (Cont’d)

In terms of the coordinates y1, . . . ,yn of the image space An
k
,

p(V )∩W =V (y1)∩W .

Thus, V is:

Locally diffeomorphic to an open subset of Rn−1; or
Locally biholomorphic to an open subset of Cn−1.

This defines the structure of a manifold on the neighborhood

V ∩U

of P in V .

The functions x2, . . . ,xn can be used as local coordinates for V in the
neighborhood V ∩U of P .
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Example
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Smooth Points and Dimension Smooth and Singular Points

Linear Part of a Polynomial at a Point

Consider an arbitrary irreducible affine variety V ⊆An
k
.

Let f ∈ k[x1, . . . ,xn] be a polynomial.

Let P = (a1, . . . ,an) be a point.

The linear part of f at P = (a1, . . . ,an) is defined by

f
(ℓ)

P
:=

n∑

i=1

∂f

∂xi
(P)(xi −ai).
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Smooth Points and Dimension Smooth and Singular Points

Tangent Space to an Irreducible Variety at a Point

Definition (Tangent Space)

The tangent space to an irreducible variety V at a point P ∈V is
defined by the following intersection of hyperplanes:

TPV :=
⋂

f ∈I (V )

V (f
(ℓ)

P
)⊆A

n
k .

This is an affine subspace of An
k

containing P .

If V is a hypersurface, then this is the same as the tangent space
considered previously.
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Smooth Points and Dimension Smooth and Singular Points

Dimension

Definition (Dimension)

For an irreducible affine variety V , we define the dimension of V by

dimV =min {dimTPV :P ∈V }.

By definition, we have, for all P ∈V ,

dimTPV ≥ dimV .

We show that dimV is equal to the dimension of the tangent space
dimTPV , for a general point P on V .
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Smooth Points and Dimension Smooth and Singular Points

Upper Semicontinuity of Dimension

Proposition

The function V →N; P 7→ dimTPV , is upper semicontinuous in the Zariski
topology, i.e., for all r ∈N, the set

Sr (V ) := {P ∈V : dimTPV ≥ r }

is closed.

Suppose that g1, . . . ,gm generate the ideal I (V ).

For every f ∈ I (V ), the linear part f
(ℓ)

P
can be written as a linear

combination of g
(ℓ)

i ,P
.

It follows that

TPV =
m⋂

i=1

V (g
(ℓ)

i ,P
)⊆A

n
k .
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Smooth Points and Dimension Smooth and Singular Points

Upper Semicontinuity of Dimension (Cont’d)

Now we have

dimTPV = n− rank

(
∂gi

∂xj
(P)

)

ij

.

Hence,

P ∈ Sr (V ) iff rank

(
∂gi

∂xj
(P)

)

ij

≤ n− r .

The latter is satisfied if and only if all (n− r +1)× (n− r +1) minors of(
∂gi
∂xj

)
ij

vanish.

But these minors are polynomial functions.

Therefore, Sr (V ) is closed.
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Smooth Points and Dimension Smooth and Singular Points

Dimension of V and Dimension of TPV

Proposition

Let r = dim(V ) be an irreducible affine variety. Then there is an open dense
subset V0 ⊆V , such that

dimTPV = dimV , for all P ∈V0.

Let r = dim(V ).

By definition of dimension,

Sr (V )=V and Sr+1(V ) 6=V .

By the proposition, Sr+1(V ) is closed.

So we can take
V0 :=V \Sr+1(V ).

V0 is open and nonempty.
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Smooth Points and Dimension Smooth and Singular Points

Smooth (Regular) Points of a Variety

Definition (Smooth (Regular) Point)

For an irreducible affine variety V , a point P ∈V is a smooth (regular)
point of V if

dimTPV = dimV .

Otherwise, P is a singular point.

For a hypersurface V (f ) in An
k
, we have

∂f

∂xi
(P) 6= 0, for some i , iff rank

(
∂f

∂xi
(P)

)

i

= 1.

Thus, a hypersurface V in An
k

has dimension dimV = n−1.
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Smooth Points and Dimension Smooth and Singular Points

Codimension

Definition (Codimension)

The codimension of an irreducible affine variety V in An
k

is defined by

codimV = n−dimV .

Suppose that V ⊆An
k

is defined by r polynomials f1, . . . , fr .

By the proposition, the codimension is given by the rank of the matrix
(
∂fi

∂xj

)

ij

at a smooth point P .

It follows that codimV ≤ r .

Thus, to define an irreducible affine variety of codimension r requires
at least r equations.

In fact this is also the case if V is reducible.
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Smooth Points and Dimension Smooth and Singular Points

Complex Varieties as Manifolds

In the case k =C, an irreducible affine variety V of dimension n− r

can be considered as a complex manifold of the same dimension.

Let P be a smooth point of V .

By definition, there are functions

f1, . . . , fr ∈ I (V ),

with linearly independent linear parts at P .

So the matrix (
∂fi

∂xj
(P)

)

i ,j=1,...r

is nonsingular.
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Smooth Points and Dimension Smooth and Singular Points

Complex Varieties as Manifolds (Cont’d)

By the Inverse Function Theorem, the map

p : An
k

→ An
k
;

(x1, . . . ,xn) 7→ (f1(x1, . . . ,xn), . . . , fr (x1, . . . ,xn),xr+1, . . . ,xn)

induces a diffeomorphism between a neighborhood of P and a
neighborhood of p(P).

We can take
xr+1, . . . ,xn

to be local coordinates for V in a neighborhood of P .
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Smooth Points and Dimension Smooth and Singular Points

Arbitrary Affine Varieties

Let V be an arbitrary affine variety.

Suppose V has a decomposition into irreducible components,

V =V1∪·· ·∪Vℓ.

Definition (Smooth (Regular) Point)

A point P ∈V is a smooth (regular) point of V if:

(1) P lies on exactly one irreducible component Vi of V ;

(2) P is a smooth point of Vi .

Definition (Dimension)

The dimension of V is defined to be the maximum of the dimensions of
the irreducible components V .
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Subsection 2

Algebraic Characterization of the Dimension of a Variety
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Transcendence Basis and Transcendence Degree

Let V be an irreducible affine variety defined over k .

Let K be the quotient field of the coordinate ring of V .

By Noether normalization, there is a (not necessarily unique) field Kt ,
such that:

k ⊆Kt ⊆K ;
Kt/k is purely transcendental;
K/Kt is algebraic.

Thus for some integer n, the field Kt is isomorphic to a field of
rational functions in n variables over k , i.e., Kt

∼= k(x1, . . . ,xn).
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Transcendence Basis and Transcendence Degree (Cont’d)

If K/k(α1, . . . ,αm) is an algebraic extension, we say that α1, . . . ,αm

span the transcendental part of K .

If additionally α1, . . . ,αm are algebraically independent, then we call
the set {α1, . . . ,αm} a transcendence basis of K over k .

There always exists a transcendence basis.

Moreover, any two transcendence bases have the same number of
elements.

This number is called the transcendence degree, trdegkK of K over
the field k .
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Dimension and Transcendence Degree

We will show that the dimension of a variety is equal to the
transcendence degree of its function field.

Consider the case of an irreducible hypersurface V ⊆An
k
.

Let f be an irreducible equation for V .

The coordinate ring of V is given by

k[V ]= k[x1, . . . ,xn]/(f ).

After possible renumbering, we can assume that f contains the
variable x1.

Then we have
k(V )= k(x2, . . . ,xn)[x1]/(f ).

So x2, . . . ,xn form a transcendence basis of k(V ).

So we have trdegkk(V )= n−1= dimV .

We will show that this equality is true for algebraic varieties in general.
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

The Maximal Ideal mP of OV ,P

In the following the tangent space TPV is considered as a vector
space with origin at P .

Recall the construction of the maximal ideal mP in the local ring OV ,P .

The maximal ideal of P in An
k

is given by

MP = {f ∈ k[x1, . . . ,xn] : f (P)= 0} ⊆ k[x1, . . . ,xn].

This gives us a maximal ideal in the quotient,

MP =MP/I (V )⊆ k[V ].

Localization gives us the maximal ideal mP in OV ,P ,

mP =

{
f

g
∈ k(V ) : f (P)= 0,g(P) 6= 0

}
⊆OV ,P ⊆ k(V ).
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Algebraic Form of TPV

Theorem

There is an isomorphism of vector spaces

TPV
∼= (mP/m

2
P)

∗ :=Homk(mP/m
2
P ,k),

which is natural in the sense of being independent of choice of basis.

For simplicity we assume that P is the origin, (0, . . . ,0).

This can always be achieved by a translation.

Under this hypothesis, MP = (x1, . . . ,xn).

Let (kn)∗ be the dual space of kn.

The coordinates x1, . . . ,xn are linear forms on kn.

So we can consider them as a basis of (kn)∗.
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Algebraic Form of TPV (Cont’d)

For all f ∈ k[x1, . . . ,xn], we have a linear function

f
(ℓ)
P

=
n∑

i=1

∂f

∂xi
(0)xi ∈ (k

n)∗.

So we obtain a linear map

d : MP → (kn)∗;

f 7→ f
(ℓ)

P
.
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Algebraic Form of TPV (Cont’d)

Claim: d :MP → (kn)∗ is surjective and kerd =M2
P
.

We have d(xi )= xi .
Moreover, the xi form a basis for (kn)∗.
So d is surjective.
For f (P) ∈MP , we have

f
(ℓ)
P

= 0 iff all terms of f have order at least 2.

That is, f
(ℓ)
P

= 0 iff f ∈M2
P
.

So the kernel is M2
P
.

Thus, d induces an isomorphism

MP/M
2
P
∼= (kn)∗.
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Algebraic Form of TPV (Cont’d)

Now let V ⊆An
k

be an affine variety.

The inclusion TPV ⊆ kn corresponds to a surjection (kn)∗ → (TPV )∗,
given by restriction of linear forms on kn to TPV .

Thus, the composition

D :MP/M
2
P → (kn)∗ → (TPV )∗

is also surjective.

Claim: ker(D)=M2
P
+ I (V ).

This can be seen by the following sequence of equivalences.

f ∈ kerD iff f
(ℓ)

P
|TPV= 0

iff f
(ℓ)

P
=

∑
aig

(ℓ)

i ,P
, for some gi ∈ I (V ),ai ∈ k ,

iff f −
∑
aigi ∈M

2
P

, for some gi ∈ I (V ),ai ∈ k ,

iff f ∈M2
P
+ I (V ).
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Algebraic Form of TPV (Cont’d)

The last claim gives

MP/M
2

P
∼=MP/(M

2
P + I (V ))∼= (TPV )∗.

It now suffices to show that

MP/M
2

P
∼=mP/m

2
P .

Then the result will follow by duality.

The inclusion MP ⊆mP induces an injection

ϕ :MP/M
2

P →mP/m
2
P .

We show that ϕ is surjective.

Take f
g ∈mP . Then c := g(0) 6= 0. Moreover,

f

c
−
f

g
= f

(
1

c
−

1

g

)
∈m2

P .

So ϕ( f
c
)= f

g
∈mP/m

2
P
.

George Voutsadakis (LSSU) Algebraic Geometry July 2024 33 / 50



Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Local Dependence of TPV

Corollary

The tangent space TPV depends only on a neighborhood of P in V .
That is, if f :V 99KW is a birational map which maps a neighborhood V0

of P isomorphically to a neighborhood W0 of Q = f (P), then there is an
isomorphism

TPV =TQW .

Let f :V 99KW be birational and f (P)=Q.

Then we have an isomorphism

f ∗ : k(W )= k(W0)→ k(V )= k(V0),

which maps functions regular at Q to functions regular at P .
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Local Dependence of TPV (Cont’d)

We consider the isomorphism

f ∗ : k(W )= k(W0)→ k(V )= k(V0).

Clearly, functions vanishing at P map to functions vanishing at Q.

So mQ is mapped to mP .

Thus, f ∗ induces an isomorphism

f ∗ : mQ/m
2
Q

→ mP/m
2
P

‖ ‖

(TQW )∗ (TPV )∗

Corollary

If V and W are birationally equivalent varieties, then dimV = dimW .
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Differentials

Definition (Differential)

Let f :V →W be a morphism with f (P)=Q.
Dualizing the map

f ∗ :mQ/m
2
Q →mP/m

2
P

gives a homomorphism

df (P) :TPV →TQW .

It is called the differential of f at P .

In the real and complex cases, this coincides with the usual
differentials defined in analysis.
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Dimension and Transcendence Degree

Theorem

If V is an irreducible affine variety, then

dimV = trdegkk(V ).

V is birationally equivalent to an affine hypersurface.

This hypersurface has:

The same dimension as V ;
Isomorphic function field.

So the result follows from the proof for hypersurfaces, given previously.
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Set of Smooth Points

Corollary

For every affine variety V , the set of smooth points is an open dense subset
of V .

This can be inferred directly using the definition of regular points.

Alternatively, one can reduce to the case of a hypersurface.
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Smooth Points of Quasi-Projective Varieties

Definition (Smooth or Regular Point)

Let V be a quasi-projective variety. A point P ∈V is a smooth (or
regular) point of V if there is an affine neighborhood U ⊆V of P , such
that P is a smooth point of U .

This holds for all affine neighborhoods containing P .

Thus, the set of smooth points is again an open dense subset.
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Dimension of Quasi-Projective Varieties

We define the dimension of a quasi-projective variety.

Suppose that V is an irreducible projective variety in Pn
k
.

Consider its standard affine covering

V =V0∪·· ·∪Vn.

We may assume that V is not contained in any hyperplane Hi ⊆Pn
k
.

Then, it follows easily that all the Vi have the same dimension.

We call this the dimension of V .

If V is reducible, then, we define the dimension of V to be the
maximum of the dimensions of the components.
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Krull Dimension of a Variety

Every variety is birationally equivalent to an affine variety.

So in the following V is always an irreducible affine variety.

V is a Noetherian topological space.

That is, every chain

V =V0 %V1 %V2 % · · ·%Vℓ 6= ;

of irreducible closed sets has finite length ℓ.

Definition (Krull Dimension)

The Krull dimension of V , denoted krdim(V ), is the supremum of the
lengths of all descending chains of the form

V =V0 %V1 %V2 % · · ·%Vℓ 6= ;.
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Krull Dimension of a Ring

Definition (Krull Dimension)

Let A be a ring.

(1) The height, ht(I ), of a prime ideal I is the supremum over the lengths
ℓ of all chains of prime ideals of the form

I0 á I1 á I2 á ·· · á Iℓ = I .

(2) The Krull dimension of A, denoted dimA, is the supremum over the
heights ht(I ) of all prime ideals I 6=A.
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Krull Dimension of Varieties and Rings

Consider a descending chain of irreducible closed sets

V =V0 %V1 %V2 % · · ·%Vℓ 6= ;.

Set
Ii = I (Vi).

Then
{0} á I1 á I2 á ·· · á Iℓ

is an ascending chain of prime ideals in the coordinate ring
k[V ]= k[x1, . . . ,xn]/I (V ).

Conversely, a chain of prime ideals gives rise to a chain of irreducible
closed sets.

Thus, we immediately have

krdim(V )= dimk[V ].
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Dimension of a Variety and Krull Dimension

The fact that the Krull dimension is the same as the dimension
defined before follows from a theorem in commutative algebra.

Theorem

Let A be an integral domain which is a finitely generated k-algebra. Let K
be the field of fractions of A. Then

dimA= trdegkA.

Corollary

If V is an irreducible affine variety, then

krdim(V )= trdegkk(V )= dimV .

Combining previously obtained results.
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Dimension of OV ,P and Dimension of m/m2

Concerning the Krull dimension of the local ring OV ,P at any point
P ∈V , we mention, without proof,

Proposition

If V is an irreducible affine variety, then for all points P ∈V ,

dimOV ,P = dimk[V ].

Also, from commutative algebra, we have

Proposition

Let A be a Noetherian local ring with maximal ideal m and residue class
field k =A/m. Then

dimk(m/m2)≥ dimA.

For A=OV ,P , the statement follows from previous results.
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Smooth Points and Dimension Algebraic Characterization of the Dimension of a Variety

Smoothness and Regularity

Definition (Regular Local Ring)

A Noetherian local ring A, with maximal ideal m, is called a regular local

ring if
dimk(m/m2)= dimA.

Corollary

A point P ∈V is smooth if and only if OV ,P is a regular ring.

By a previous theorem, a point P is smooth if and only if

dimk(mP/m
2
P )= dimV .

We also know
dimV = dimk[V ]= dimOV ,P .

It follows that P is smooth if and only if OV ,P is a regular ring.
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Resolution of Singularities (Curves and Blow-up)

Consider the curves C and C ′ in A2
k
, given by

C := {(x ,y) ∈A2
k
: y2 = x3+x2},

C ′ := {(x ,y) ∈A2
k
: y2 = x3}.

Recall that the blow-up of A2
k

at the origin is given by:

The variety

Ã
2
k := {((x ,y),(t0 : t1)) ∈A

2
k ×P

1
k : xt1−yt0 = 0};

The projection map π : Ã2
k
→A2

k
which is a bijection away from the

exceptional line E :=π−1{(0,0)}.

Recall that Ã2
k

has a covering by affine sets V0 and V1.

We again identify V0 with A2
k
, and take coordinates x ,u = t1

t0
.

Set ρ :=π |V0
.
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Resolution of Singularities (Pullbacks)

Now ρ∗ : k(A2
k
)→ k(Ã2

k
) is given by

x 7→ x , y 7→ xu.

So the pullbacks of the equations for C and C ′ are given by

ρ∗(x3+x2−y2) = x2(x +1−u2),

ρ∗(x3−y2) = x2(x −u2).

These are the equations for π−1(C ) and π−1(C ′), respectively.

Let C̃ and C̃ ′ be the curves given by

C̃ ∩V0 = {(x ,u) ∈A2
k
: x +1−u2 = 0},

C̃ ′∩V0 = {(x ,u) ∈A2
k
: x −u2 = 0}.
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Resolution of Singularities (Pullbacks Cont’d)

The pullback of the equation for C vanish on C̃ .

The pullback of the equation for C ′ vanishes onC̃ ′.

The exceptional line E is given by x = 0.

So the pulled-back equations both vanish with multiplicity 2 along E .

We express this by writing

π−1(C ) = C̃ +2E ,

π−1(C ′) = C̃ ′+2E .
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Resolution of Singularities (Resolution)

Restricted to E , the equations for C
and C ′ are given by u2−1 and u2.

One has simple zeros at u =±1, and
the other has a double zero at u = 0.

E is a tangent line to the curve C̃ ′,
which meets E at one point with
multiplicity two.

E meets C̃ transversally at two points.

In general, the strict transform of a curve C is given by the closure
of π−1(C\{(0,0)}).

In this example, the strict transforms C̃ and C̃ ′ are smooth curves,
birational to C and C ′, respectively, via π.

For each curve the singularity at the origin has been “resolved”.
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