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Introduction to the Theory of Curves Divisors on Curves

Subsection 1

Divisors on Curves
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Introduction to the Theory of Curves Divisors on Curves

Smooth Projective Curves

Let k be an algebraically closed field.

Let C be a smooth projective curve over k .

That is, C is a smooth irreducible projective variety of dimension 1.
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Introduction to the Theory of Curves Divisors on Curves

Divisors and Divisor Groups of Curves

Definition (Divisor of a Curve)

A divisor D on C is a finite formal sum of points on C .
For a divisor D given by

D = n1P1+·· ·+nkPk , ni ∈Z, Pi ∈C ,

the degree of D is defined by

degD := n1+·· ·+nk .

The divisor group of C is given by

DivC := {D :D is a divisor on C }.

That is, DivC is the set of all divisors, or equivalently, the free abelian
group generated by the points of C .
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Introduction to the Theory of Curves Divisors on Curves

The Maximal Ideal mP of the Local Ring OC ,P

Recall the unique maximal ideal of the local ring OC ,P , given by

mP = {g ∈OC ,P : g(P)= 0}.

Since C is smooth,

dimkmP/m
2
P = dimC = 1.

Suppose t ∈mP , such that the residue class t spans the k-vector space
mP/m

2
P
.

Then, by Nakayama’s Lemma, t generates mP .
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Introduction to the Theory of Curves Divisors on Curves

A Strictly Descending Chain of Ideals

Consider the chain

mP %m2
P % · · ·%mk

P %mk+1
P % · · ·

It is a strictly descending chain of ideals.

Suppose, to the contrary, mk
P
=mk+1

P
, for some k .

Then, for some g ∈OC ,P ,

tk(1−gt)= 0.

So tk = 0.

However, OC ,P is contained in the function field k(C ).

So tk 6= 0.
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Introduction to the Theory of Curves Divisors on Curves

Intersection of mk
P
, k = 1,2, . . .

Lemma
∞⋂

k=1

mk
P = {0}.

Let U be an affine neighborhood of P in C .

The coordinate ring k[U] is Noetherian.

The local ring of k[U] is obtained by localization at a maximal ideal.

So the local ring OC ,P is also Noetherian.

By the Hilbert Basis Theorem, the ring OC ,P [T ] is also Noetherian.
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Introduction to the Theory of Curves Divisors on Curves

Intersection of mk
P
, k = 1,2, . . . (Cont’d)

Suppose we have α ∈
⋂

∞
k=1

mk
P
.

Then, for all k , we have α ∈mk
P
.

So
α= fk(t),

for some polynomial fk ∈OC ,P [T ] of the form

fk = gkT
k

, gk ∈OC ,P .

Let I be the ideal in OC ,P [T ] generated by the polynomials fk .

Since OC ,P [T ] is Noetherian, there are elements f1, . . . , fℓ which
generate I .
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Introduction to the Theory of Curves Divisors on Curves

Intersection of mk
P
, k = 1,2, . . . (Cont’d)

Now we obtain

fℓ+1(T )=
ℓ∑

i=1

hi(T )fi (T ), hi (T ) ∈OC ,P [T ],

where hi(T )= piT
ℓ+1−i , for some pi ∈OC ,P .

By substituting t for T , we obtain hi (t)∈m
ℓ+1−i
P

⊆mP .

Putting µi := hi(t), the equation above becomes

α=

ℓ∑

i=1

µiα=µα, µ=

ℓ∑

i=1

µi ∈m.

Thus, α(1−µ)= 0.

But (1−µ)(P)= 1 6= 0.

So 1−µ is a unit in OC ,P .

It now follows that α= 0.
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Introduction to the Theory of Curves Divisors on Curves

Multiplicity of a Function in OC ,P

Definition

For every function g ∈OC ,P , regular at P , the multiplicity of g at P is
given by

vP(g) :=max {k : g ∈mk
P }.

A function g vanishes at P if and only if vP(g)≥ 1.

If g has multiplicity k at P , then

g = htk ,

for some h ∈OC ,P , with h(P) 6= 0.
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Introduction to the Theory of Curves Divisors on Curves

Multiplicity of a Rational Function at a Point

Definition

For every rational function 0 6= f ∈ k(C ), the multiplicity of f at P is
defined by

vP(f ) := vP(g)−vP (h),

where f =
g
h , for some g ,h ∈OC ,P .

If vP(f )> 0, then f has a zero of order vP(f ) in P .

If vP(f )< 0, then f has a pole of order −vP(f ) in P .

This definition is independent of the representation f =
g
h
.

Suppose f =
g
h =

g ′

h′ .

Then gh′ = g ′h and we have

vP(g)+vP (h
′)= vP(gh

′)= vP(g
′h)= vP(g

′)+vP (h).
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Introduction to the Theory of Curves Divisors on Curves

Multiplicity as a Discrete Valuation

For every point P ∈C , the multiplicity at P defines a map

vP : k(C )∗ → Z;
f 7→ vP(f ).

This map has the following properties:

(1) vP(fg)= vP(f )+vP (g);
(2) vP(f +g)≥min {vP(f ),vP (g)}.

A map with these properties is called a discrete valuation on the
field k(C ).

We also have

OC ,P = {f ∈ k∗(C ) : vP(f )≥ 0}∪ {0},

mP = {f ∈ k∗(C ) : vP(f )> 0}∪ {0},

We call OC ,P a valuation ring of k(C ).
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Introduction to the Theory of Curves Divisors on Curves

Discrete Valuations and Valuation Rings

Definition (Discrete Valuation Ring)

An integral domain R is called a discrete valuation ring if the field of
fractions K of R has a valuation v , that is, a map

v :K∗
→Z,

such that, for all x ,y ∈K :

(1) v(xy)= v(x)+v(y);

(2) v(x +y)≥min {v(x),v(y)},

and such that R is the valuation ring of v , that is,

R = {x ∈K∗ : v(x)≥ 0}∪ {0}.
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Introduction to the Theory of Curves Divisors on Curves

Integral Closure

We borrow from Commutative Algebra a characterization of discrete
valuation rings.

First we recall the definition of a integral closure.

Let B be a ring and A a subring of B .

An element x ∈B is integral over A if x is a root of a monic
polynomial with coefficients in A.

This means that x satisfies an equation of the form

xn+a1x
n−1

+·· ·+an = 0,

where the ai are elements of A.

The set C of elements of B which are integral over A is a subring of B
containing A, called the integral closure of A in B .

If C =A, then A is said to be integrally closed in B .

If C =B , then B is said to be integral over A.
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Introduction to the Theory of Curves Divisors on Curves

Characterization of Discrete Valuation Rings

We give, without proof, a characterization of discrete valuation rings.

Proposition

Let A be a Noetherian local integral domain of dimension 1. Let m be its
maximal ideal and k =A/m its residue field. Then the following statements
are equivalent:

(1) A is a discrete valuation ring;

(2) A is integrally closed;

(3) A is a regular local ring (i.e., dimk(m/m2)= dimA= 1);

(4) m is a principal ideal;

(5) Every non-zero ideal is a power of m;

(6) There exists x ∈A, such that every non-zero ideal is of the form (xk), for
some k ≥ 0.
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Introduction to the Theory of Curves Divisors on Curves

Values of Functions at Points on Smooth Projective Curves

Lemma

If 0 6= f ∈ k(C ), then there are only finitely many P ∈C , such that

vP(f ) 6= 0.

We can write
f =

g

h
,

for some homogeneous polynomials g and h of the same degree (this
depends on the chosen embedding C ⊆Pn

k
).

The sets {g = 0} and {h = 0} are proper closed subsets of C .

Since C is a curve, both have only finitely many points.
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Introduction to the Theory of Curves Divisors on Curves

Principal Divisors of C

Definition (Divisor Defined by f )

Let 0 6= f ∈ k(C ) be a rational function. The divisor defined by f is given
by

(f ) :=
∑

P∈C

vP(f )P ∈DivC .

Definition (Principal Divisor)

A divisor D ∈DivC is called a principal divisor if there is a rational
function 0 6= f ∈ k(C ), such that

D = (f ).
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Introduction to the Theory of Curves Divisors on Curves

Structure of the Sets of Principal Divisors

We have

(fg)= (f )+ (g) and

(
1

f

)
=−(f ).

So there is a group homomorphism

k(C )∗ → DivC ;
f 7→ (f ),

from the multiplicative group k(C )∗ to the additive group DivC .

It follows that the principal divisors form a subgroup of DivC .
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Introduction to the Theory of Curves Divisors on Curves

Linear Equivalence

Definition (Linear Equivalence)

Two divisors D and D ′ are said to be linearly equivalent if their difference
is a principal divisor, i.e., if

D−D ′
= (f ), for some f ∈ k(C )∗.

This relation is denoted by D ∼D ′.

We have
D ∼ 0 if and only if D is a principal divisor.

Linear equivalence is an equivalence relation.
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Introduction to the Theory of Curves Divisors on Curves

The Divisor Class Group

Definition (The Divisor Class Group)

The divisor class group of C is defined by

ClC :=DivC/∼.

The principal divisors form a subgroup of the abelian group DivC .

So the divisor class group ClC is an abelian group.
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Introduction to the Theory of Curves Divisors on Curves

Example

Let C =P1
k
.

Then, in DivC , we have

D ∼ 0 iff degD = 0.

Consider a rational function f on P1
k
.

It can be written as
f =

g

h
,

for homogeneous polynomials g ,h ∈ k[x0,x1], with degg = degh.

So deg(f )= 0.
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Introduction to the Theory of Curves Divisors on Curves

Example (Cont’d)

Conversely, suppose degD = 0.

Then we have
D =D ′

−D ′′
,

where:
D ′ =

∑
nPP , for some nP > 0;

D ′′ =
∑
mPP , for some mP > 0;∑

nP =
∑
mP .

Then, there are homogeneous polynomials g and h, of degree
N =

∑
nP =

∑
mP , which vanish precisely on D ′ and D ′′, respectively.

Set
f =

g

h
.

Then we have (f )=D ′−D ′′ =D.

It follows that the degree function induces an isomorphism

deg :Cl(P1
k)

∼=Z.
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Subsection 2

The Degree of a Principal Divisor
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Introduction to the Theory of Curves The Degree of a Principal Divisor

The Degree of Map

We introduce the concept of the degree of a map between projective
curves.

Let f :C →C ′ be a surjective map.

By pull-back of functions, f induces an inclusion k(C ′)⊆ k(C ).

Now k(C ) and k(C ′) both have transcendence degree 1.

So the field extension k(C )/k(C ′) is finite.

Definition (Degree of a Map)

If f :C →C ′ is a surjective map between projective curves, then the degree
of f is defined by

degf := deg[k(C ) : k(C ′)].
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Surjectivity of Nonconstant Maps to P1
k

We will show that every nonconstant map f :C →C ′ between two
projective curves is surjective.

For now, we only need this for C ′ =P1
k
.

In this case, we can give an elementary proof.

Lemma

Every nonconstant map f :C →P1
k

is surjective.

Suppose f is not surjective.

Then we can assume that ∞ :=P1
k

\A1
k

is not in the image.

Hence, we may regard f as a map f :C →A1
k
.

By hypothesis, f is nonconstant.

Thus, f ∗(x) := x ◦ f is a nonconstant regular function on C .

This is not possible.
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Relating the Local Rings

Let f :C →C ′ be a surjective map.

Suppose the point Q ∈C ′ has preimage

f −1(Q)= {P1, . . . ,Pm}.

Associated to Q we have the ring

Õ =

m⋂

i=1

OC ,Pi
⊆ k(C )

of rational functions on C regular at P1, . . . ,Pm.

By means of the inclusion

OC ′,Q ⊆ k(C ′)⊆ k(C )

OC ′,Q is contained in Õ .

In particular, we may view Õ as an OC ′,Q-module.
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Existence of Local Parameters

Lemma

The ring Õ has the following properties.

(1) There are elements t1, . . . ,tm ∈ Õ with vPi
(tj)= δij .

In particular, ti is a local parameter at Pi .

(2) If u ∈ Õ , then
u = t

ℓ1

1
· · ·t

ℓm
m v ,

where:

ℓi = vPi
(u);

v is an invertible element of Õ .
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Existence of Local Parameters (Cont’d)

(1) Consider a projective embedding C ⊆Pn
k
.

Choose a hyperplane H, not containing any of the points Pi , so that

{P1, . . . ,Pm} ⊆U =C\H,

where:
U ⊆A

n
k
;

An
k

is such that we have a disjoint union Pn
k
=An

k
∪H .

Now we can choose affine hyperplanes Hi which:
Intersect C transversally at Pi (i.e., TPi

C *Hi );
Do not pass through any of the points Pj , for j 6= i .

In this argument we use the fact that the field k = k has infinitely
many elements.

Define ti to be given by the restriction of the equation of the
hyperplane Hi to the curve C .

Then the ti behave as required.
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Existence of Local Parameters (Cont’d)

(2) Let u ∈ Õ .

Set ℓi := vPi
(u)≥ 0.

Define
u′ := t

−ℓ1

1 · · ·t
−ℓm
m u.

Then vPi
(u′)= 0, for i = 1, . . . ,m.

Thus, u′ ∈ Õ
∗ is a unit.

The result then follows from the equality

u = t
ℓ1

1
· · ·t

ℓm
m u′

.
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Rational Maps Between Smooth Curves

Lemma

Let C and C ′ be smooth curves. If C ′ is projective, then every rational
map f :C 99KC ′ is a morphism.

It is enough to consider rational maps f :C 99KPn
k
.

The statement concerns the local behavior of f at each point P .

Let P ∈C and let t be a local parameter at P (generator of mP).

Then, there are rational functions fi , such that

f = (f0 : . . . : fn), fi ∈ k(C ),

and each fi can be written in the form

fi = tℓi f̃i ,

for some ℓi ∈Z, f̃i ∈OC ,P , with f̃i (P) 6= 0.
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Rational Maps Between Smooth Curves (Cont’d)

We may assume that ℓ0 ≤ ·· · ≤ ℓn.

Then
f = (tℓ0 f̃0 : t

ℓ1 f̃1 : . . . : tℓn f̃n)

= (f̃0 : t
ℓ1−ℓ0 f̃1 : . . . : tℓn−ℓ0 f̃n).

So we have a representation of f with:

All components being regular functions;
Nonzero first component, since f̃0(P) 6= 0.

Hence, f is regular at P .
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Isomorphisms of Smooth Projective Curves

Corollary

Two smooth projective curves C and C ′ are isomorphic if and only if they
are birationally equivalent.

Consider mutually inverse rational maps

ϕ : C 99K C ′;

ϕ−1 : C ′
99K C .

By the lemma, the maps ϕ and ϕ−1 are morphisms.

Moreover, we have

ϕ−1
◦ϕ= idC and ϕ◦ϕ−1

= idC ′ .
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Freeness of Õ as an OC ′,Q-Module

Recall that OC ′,Q ⊆ k(C ′) is contained in Õ =
⋂m
i=1

OC ,Pi
⊆ k(C ).

Moreover, this allows viewing Õ as an OC ′,Q-module.

Lemma

The module Õ is a free OC ′,Q-module of rank d = degf , i.e.,

Õ ∼=O
d
C ′,Q .

We started with:
A surjective map f :C →C ′ between two smooth curves;
A point Q ∈C ′.

We want to show that

Õ =

m⋂

i=1

OC ,Pi
∼=O

d
C ′,Q ,

where f −1(Q)= {P1, . . . ,Pm} and d = degf .
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Freeness of Õ (Cont’d)

Let V ⊆C ′ be an affine neighborhood of Q.

Denote the coordinate ring of V by B = k[V ].

We can view B as a subring of k(C ).

Let
A := the algebraic closure of B in k(C ).

A result from Commutative Algebra ensures that A is a finitely
generated k-algebra.

Moreover, A has field of fractions k(C ).

Thus, there is an affine curve U , with k[U]=A.

The proof proceeds in four steps.
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Freeness of Õ : Step (1)

(1) We show that U is smooth.

By a previous corollary, this is equivalent to the statement that every
local ring OU ,P is a regular local ring.

Consider a point P ∈U .

There is a maximal ideal m in A, such that

OU ,P
∼=Am.

Now A is integrally closed in k(C ).

An elementary argument (involving taking common denominators and
clearing denominators) shows that this also holds for Am.

By the characterization of discrete valuation rings, OU ,P is a regular
local ring.

We conclude that U is smooth.

George Voutsadakis (LSSU) Algebraic Geometry July 2024 36 / 129



Introduction to the Theory of Curves The Degree of a Principal Divisor

Freeness of Õ : Step (2)

(2) We show that U is isomorphic to an open subset of C .

The field of fractions of A= k[U] is equal to the field k(C ).

So there is a birational map ϕ :U 99KC .

By a preceding lemma, the map ϕ is a morphism.

We show that ϕ maps the affine curve U isomorphically to ϕ(U)⊆C .

But, first, we show that ϕ(U) is open.

Note that a nonempty subset of C is open if and only if it equals C

minus finitely many points.

Now ϕ :U →C is birational.

So there are nonempty open sets U ′ ⊆U and U ′′ ⊆C , such that

ϕ |U ′ :U ′
→U ′′

is an isomorphism.

But U ′′ is open and nonempty and U ′′ ⊆ϕ(U).

So ϕ(U) is also open.
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Freeness of Õ : Step (2) (Cont’d)

We will now show that the map ϕ :U →ϕ(U) is an isomorphism.

To prove this, it is enough to show that the rational inverse map
ϕ−1 :ϕ(U) 99KU is a morphism.

Since U is affine, we cannot use the Rational Map Lemma.

Assume that U ⊆An
k

and that ϕ−1 = (g1, . . . ,gn), gi ∈ k(C ).

Let S =ϕ(R) be a point that is not regular for ϕ−1.

Possibly after renumbering, we have g1 =
h1

h2
, h1(S) 6= 0, h2(S)= 0.

If z1, . . . ,zn are the coordinates of An
k
, then g1 = (ϕ−1)∗(z1).

That is, ϕ∗(g1)= z1. Thus, ϕ∗(h1)= z1ϕ
∗(h2).

Now we get
ϕ∗(h2)(R)= h2(ϕ(R))= h2(S)= 0.

But from this it also follows that ϕ∗(h1)(R)= 0.

So h1(S)= 0, contradicting the hypothesis.

In the following we identify U with the image ϕ(U) by means of ϕ,
i.e., we view U as an open subset of C .

George Voutsadakis (LSSU) Algebraic Geometry July 2024 38 / 129



Introduction to the Theory of Curves The Degree of a Principal Divisor

Freeness of Õ : Step (3)

(3) We show that U = f −1(V ).
We have an inclusion

B = k[V ]
f ∗

,→A= k[U].

It induces a commutative diagram.

U ⊂ ✲ C

V

f
❄

⊂ ✲ C ′

f
❄

In particular, U ⊆ f −1(V ).

Suppose that this is a strict inclusion.

Then there is a point R̃ ∈C , such that R̃ 6∈U and S̃ := f (R̃) ∈V .

Let f −1(S̃)∩U = {R̃1, . . . , R̃ℓ}.

By the preceding lemma, there is a rational function g ∈ k(C ), which
is regular at R̃1, . . . , R̃ℓ but not at R̃,

g 6∈OC ,R̃ and g ∈OC ,R̃i
, i = 1, . . . ,ℓ.

Let X ⊆C be the set of points where g is not regular (its poles).

Then S̃ 6∈ f (X ∩U).
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Freeness of Õ : Step (3) (Cont’d)

Similarly, there is a function h ∈ k[V ]=B with

hg ∈ k[U]=A and hg 6∈OC ,R̃ .

Here h is chosen to:
Have zeros of sufficiently high order in f (X ∩U);
Be nonzero at S̃.

By definition of A, g ′ := hg ∈A is algebraic over B .

That is, g ′ satisfies an equation

g ′n
+bn−1g

′n−1
+·· ·+b0 = 0, bi ∈B = k[V ].

Thus, in the field k(C ), we have

g ′
=−bn−1−bn−2g

′−1
−·· ·−b0g

′−n+1
.

This is a contradiction, since g ′ 6∈OC ,R̃ but big
′−1 ∈OC ,R̃ .

We conclude that U =ϕ−1(V ).
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Freeness of Õ : Step (4)

(4) We show that
Õ =AOC ′,Q .

This, as we will see, leads to the statement of the lemma.

The inclusion AOC ′,Q ⊆ Õ is obvious.

Now let g ∈ Õ and let X be the set of poles of g .

Then we have Q 6∈ f (X ).

By Part (3), we can find a function h ∈ k[V ], with

h(Q) 6= 0 and hg ∈A.

Since h(Q) 6= 0, we have h−1 ∈OC ′,Q .

Thus, g ∈AOC ′,Q .
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Introduction to the Theory of Curves The Degree of a Principal Divisor

Freeness of Õ : Conclusion

By a previously quoted result of Commutative Algebra, A is finitely
generated as a B-module.

We showed that Õ =AOC ′,Q .

It follows that Õ is a finitely generated OC ′,Q -module.

The local ring OC ′,Q is a principal ideal ring.

That is, every ideal has the form (tk).

From the Structure Theorem of Finitely Generated Modules over
principal ideal rings, for some integer m,

Õ =O
m
C ′,Q ⊕T , T = torsion part.

But OC ′,Q ⊆ Õ ⊆ k(C ), i.e., Õ is contained in the field k(C ).

This shows that there can be no torsion.

So we get T = 0.
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Freeness of Õ : Conclusion (Cont’d)

It now remains to determine the number m.

This is the number of independent elements of Õ over OC ′,Q .

By multiplying through by the denominators, one sees that this is the
same as the number of independent elements of Õ over k(C ′).

Now d = deg[k(C ) : k(C ′)] is the degree of the field extension.

Therefore, we have m≤ d .

Now let f1, . . . , fd be a basis of k(C ) over k(C ′).

It is possible that some of f1, . . . , fd could have a pole in the set
f −1(Q).

However, we can multiply with a suitable power tℓ, where t is a local
parameter in Q.

So the functions f1t
ℓ, . . . , fd t

ℓ ∈ Õ are independent over k(C ′).

This shows that m≥ d .
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Surjective Map and Map Between Groups of Divisors

Let C and C ′ be smooth projective curves.

Suppose that f :C →C ′ is a surjective map.

Consider Q ∈C ′.

Choose a local parameter t in Q.

That is, t is a generator of the maximal ideal mQ .

The inverse image f −1(Q) is a proper closed subset of C .

So f −1(Q) contains only finitely many points.

We set
f ∗(Q) :=

∑

Pi∈f −1(Q)

vPi
(f ∗(t))Pi ,

where f ∗(t)= t ◦ f .
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Map Between Groups of Divisors

The divisor
f ∗(Q) :=

∑

Pi∈f −1(Q)

vPi
(f ∗(t))Pi

is independent of the choice of t.

Suppose t ′ is another local parameter.

Then t ′ = ut, for some unit u ∈OC ,Q .

In particular u(Q) 6= 0.

Hence, also f ∗(u)(Pi ) 6= 0.

So

vPi
(f ∗(t ′))= vPi

(f ∗(ut))= vPi
(f ∗(u))+vPi

(f ∗(t))= vPi
(f ∗(t)).

By extending linearly we obtain a group homomorphism

f ∗ :DivC ′
→DivC .
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Degree of a Map and Degree of a Divisor

Proposition

If f :C →C ′ is a surjective map between smooth projective curves, then for
all points Q ∈C ′,

degf ∗(Q)= degf .

This result gives a geometrical meaning to the degree

degf := deg[k(C ) : k(C ′)]

of a map f :C →C ′.

The degree of f is the number of preimages (correctly counted) of any
point Q ∈C ′.
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Degree of a Map and Degree of a Divisor (Cont’d)

Let t ∈OC ′,Q ⊆ Õ be a local parameter.

By a preceding lemma, we can write

t = t
ℓ1

1
· · ·t

ℓm
m v , ℓi = vPi

(t), v ∈ Õ
∗

.

Hence,

f ∗(Q)=
m∑

i=1

ℓiPi .

Moreover,

degf ∗(Q)=
m∑

i=1

ℓi .

Since we have vPi
(tj)= δij , the ti are pairwise coprime.

By the Chinese Remainder Theorem, we get

Õ/(t)=
m⊕

i=1

Õ/(tℓi
i
).
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Degree of a Map and Degree of a Divisor (Cont’d)

Claim: We have
dimk Õ/(tℓi

i
)= ℓi .

The functions 1,ti , . . . ,t
ℓi−1

i
are linearly independent over k .

So we have
dimk Õ/(tℓi

i
)≥ ℓi .

Thus, it is enough to show that every element w ∈ Õ can be written as

w ≡α0+α1ti +·· ·+αℓi−1t
ℓi−1

i
mod tℓi

i
, αi ∈ k .

We prove this by induction on s = ℓi .

If s = 0, there is nothing to prove.

Assume, next, that the statement is true for s ≥ 0.

That is, we have

w ≡α0+α1ti +·· ·+αs−1t
s−1
i mod tsi .
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Degree of a Map and Degree of a Divisor (Cont’d)

By a preceding lemma,

w̃ := t−si (w −α0−α1t1−·· ·−αs−1t
s−1
i ) ∈ Õ ⊆OC ,Pi

.

Set αs := w̃(Pi ).

So w̃ −αs has a zero in Pi .

I.e., w̃ −αs ∈ (ti ).

In other words,

αs ≡ t−si (w −α0−·· ·−αs−1t
s−1
i ) mod ti .

Multiplication by ts
i

gives

w ≡α0+·· ·+αs−1t
s−1
i +αs t

s
i mod ts+1

i .
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Degree of a Map and Degree of a Divisor (Conclusion)

By the Claim, we know that dimk Õ/(tℓi
i
)= ℓi .

We now get

dimÕ/(t)=
m∑

i=1

dimÕ/(tℓi
i
)=

m∑

i=1

ℓi = degf ∗(Q).

On the other hand, by a preceding lemma we also have

Õ ∼=O
d
C ′,Q d = degf .

Thus, we get
Õ/(t)∼= (OC ′,Q/(t))

d ∼= kd .

These equations imply that d = degf ∗(Q).
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Principal Divisors of Smooth Projective Curves

Theorem (Degree of Principal Divisors)

If C is a smooth projective curve, then every principal divisor on C has
degree 0.

Let f ∈ k(C ) be a nonconstant function on C .

Then f defines a rational map f :C 99KP1
k
.

By a previous lemma, f is a morphism.
But, then, another lemma asserts that f is surjective.

By definition of (f ) and f ∗, we have

(f )= f ∗(0)− f ∗(∞).

A previous proposition implies that

degf ∗(0)= degf ∗(∞)= degf .

So
deg(f )= degf ∗(0)−degf ∗(∞)= 0.
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Remark: The Case k =C

In the case k =C one can also give an analytic proof of the theorem.

For this one considers the integral

∫

γ

df

f

over a suitable closed path γ.

By Cauchy’s integral theorem this integral counts the difference
between the number of zeros and poles of f in the “interior” of γ.

By following the path in the opposite direction, the integral also
counts the difference between the number of zeros and poles in the
region “outside” γ.

This gives the value 0 for the degree of the principal divisor.
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The Jacobian Variety of C

Since every principal divisor has degree 0, the degree function induces
a homomorphism

deg :ClC →Z.

Definition (The Jacobian Variety)

We define the Jacobian variety of C (of degree 0) by

Jac0C :=Cl0C := {D ∈ClC : degD = 0}.

There is an exact sequence

0−→Cl0C −→ClC
deg
−→Z−→ 0.

Torelli’s theorem says that the polarized abelian variety Cl0C
determines the curve.
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The Jacobian of Rational Curves

Proposition

The Jacobian Cl0C is trivial if and only if C is rational (i.e., isomorphic to
P1
k
).

We have already seen that Cl0(P1
k
)= {0}.

Conversely, suppose Cl0(C )= {0}. Then any two divisors D and D ′ of
the same degree are linearly equivalent.

Let P 6=Q be two distinct points on C . Since P ∼Q, there is a
nonzero rational function f ∈ k(C ), with

(f )=P −Q .

By a preceding lemma, the rational map f :C 99KP1
k

is a regular map.

We have f ∗(0)=P , f ∗(∞)=Q. In particular f has degree 1.

So it induces an isomorphism of the function fields.

Thus, by a preceding corollary, is an isomorphism of C with P1
k
.
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The Structure of the Jacobian

We saw Cl0C is the kernel of the morphism deg :ClC →Z.

So the Jacobian Cl0C has a group structure.

The group structure on Cl0C is given simply by adding divisors.

This is clearly compatible with linear equivalence.

Thus, if C is not a rational curve, then Cl0C is a g -dimensional
projective abelian variety.

That is, a projective variety with the structure of an abelian group,
with addition,

(a,b) 7→ a+b,

and inversion
a 7→ a−1

,

being morphisms.

Over C, an abelian variety is a g -dimensional torus, which is also a
projective variety.
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The Genus of a Curve

The dimension g of Cl0C is the genus of the curve C .

Over the ground field C, it is a nontrivial result that this is the same
as the topological genus, which is given by the number of holes of C
as a Riemann surface.

We will give a definition of the genus of C in terms of the number of
independent regular differentials on C .

We will then relate it to the degree of the canonical divisor of C .

The genus will also appear in the statement of the Riemann-Roch
Theorem.
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The Case of a Smooth Plane Cubic

Consider the case of a smooth plane cubic C ⊆P2
C
.

We gave a topological description for the case of cubics in Legendre
normal form.

We also saw that such a curve is homeomorphic to a torus.

Hence C has genus 1.

Consider a fixed point O ∈C (which for simplicity we will take to be a
point of inflection).

It can then be seen that the map

C → Cl0C
P 7→ P −O

defines an isomorphism of C with Cl0C .

George Voutsadakis (LSSU) Algebraic Geometry July 2024 57 / 129



Introduction to the Theory of Curves Bézout’s Theorem

Subsection 3

Bézout’s Theorem
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Bézout’s Theorem for One Smooth Curve

Theorem

Let C and C ′ be two plane curves of degrees d and d ′, respectively.
Assume that C is smooth, and that C is not a component of C ′.
Then C and C ′ intersect in precisely dd ′ points, that is,

C .C ′
=

∑

P

IP(C ,C ′)= dd ′
.

Suppose that
C = {f (x0,x1,x2)= 0} ⊆P

2
k ,

where f is a homogeneous polynomial of degree d .

Suppose
C ′

= {g(x0,x1,x2)= 0} ⊆P
2
k ,

where g is a homogeneous polynomial of degree d ′.

By assumption, C ′ does not contain C .
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Bézout’s Theorem for One Smooth Curve (Cont’d)

For every point P ∈C , we can view the equation g of C ′ as a regular
function in an affine neighborhood of P .

That is, we can view g as an element of OC ,P (well defined up to
multiplication by nonzero scalars).

In this way, C ′ defines a divisor

D =
∑

P∈C

vP(g)P ∈DivC .

From the definition of local intersection multiplicity, it follows that

IP(C ,C ′)= vP(g).

Thus,
C .C ′

=
∑

P

IP(C ,C ′)= degD .
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Bézout’s Theorem for One Smooth Curve (Cont’d)

Now consider the rational function

h=
g

xd
′

0

.

Here we may assume that C 6= {x0 = 0}.

The rational function h defines a principal divisor on C ,

(h)=D−d ′D0,

where D is as above, and D0 is the divisor on C defined by x0.

If L is the line {x0 = 0}, then

degD0 = L.C

= d . (previous proposition)

Since (h) is a principal divisor, by the theorem,

0= deg(h)= degD −d ′degD0.

So degD = d ′degD0 = dd ′.

George Voutsadakis (LSSU) Algebraic Geometry July 2024 61 / 129



Introduction to the Theory of Curves Bézout’s Theorem

Remarks on the General Case

The same method can also be used to prove the general version of
Bézout’s theorem.

In general one must decompose C into irreducible components

C1, . . . ,Cn.

If they are not smooth, one must consider the normalization

νi : C̃i →Ci .

As before, the proof in the general case is based on the fact that
principal divisors on curves have degree zero.
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Subsection 4

Linear Systems on Curves
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Ordering on Divisors

Definition (Divisor Ordering)

There is a partial ordering on divisors on curves, defined as follows.
Consider divisors

D1 =
∑

nPP and D2 =
∑

mPP .

We write
D1 ≥D2 iff nP ≥mP , for all P ∈C .
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Vector Space Associated With a Divisor

Definition

Let D be a divisor. We define

L(D) := {0 6= f ∈ k(C ) : (f )≥−D}∪ {0}.

Clearly L(D) is a k-vector space.

We define
ℓ(D) := dimkL(D).
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Support of a Divisor and Effective Divisors

Definition

The support of a divisor D =
∑
nPP is defined by

suppD := {P : nP 6= 0}.

Definition

A divisor D is called effective if

D ≥ 0.
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Degree of D and Dimension of L(D)

Lemma

(1) If degD < 0, then L(D)= {0}.

(2) For every effective divisor D, we have ℓ(D)≤ degD +1.

In particular, L(D) is a finite dimensional vector space.

Equality holds only if C is rational or D = 0.

(1) Suppose degD < 0.

Consider 0 6= f ∈ L(D).

Then f has more zeros than poles.

This contradicts deg(f )= 0.
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Degree of D and Dimension of L(D) (Cont’d)

(2) Suppose degD = 0.

By hypothesis, D is effective.

So we have D = 0.

In this case L(D) is the space of constants.

So ℓ(D)= 1.

Next, suppose that d := degD ≥ 1.

Let P1, . . . ,Pd+1 be distinct points that do not lie in the support of D.

Consider the map

L(D) → kd+1;
f 7→ (f (P1), . . . , f (Pd+1)).

Its kernel is L(D −P1−·· ·−Pd+1).

So L(D −P1−·· ·−Pd+1) has codimension at most d +1 in L(D).

By Part (1), L(D −P1−·· ·−Pd+1)= {0}.

So dimL(D)≤ d +1.

George Voutsadakis (LSSU) Algebraic Geometry July 2024 68 / 129



Introduction to the Theory of Curves Linear Systems on Curves

Degree of D and Dimension of L(D) (Cont’d)

Now suppose that ℓ(D)= d +1.

This is equivalent to the above map being surjective.

Then the composition with the projection onto the first d −1
components is also surjective.

Moreover, its kernel is L(D −P1−·· ·−Pd−1).

Thus,
dimL(D −P1−·· ·−Pd−1)= 2.

So, there exist linearly independent functions

f ,g ∈ L(D −P1−·· ·−Pd−1).

George Voutsadakis (LSSU) Algebraic Geometry July 2024 69 / 129



Introduction to the Theory of Curves Linear Systems on Curves

Degree of D and Dimension of L(D) (Cont’d)

Now deg(D −P1−·· ·−Pd−1)= 1.

So, for some points P 6=Q on C with P ∼Q,

(f ) = P1+·· ·+Pd−1−D +P ;
(g) = P1+·· ·+Pd−1−D +Q .

The proof of the preceding proposition then shows that there is an
isomorphism C ∼=P1

k
.

Suppose, conversely, that C is rational.

Then we can always find a rational function with:

Poles (counted with multiplicity) given by the divisor D;
Zeros at exactly d of the points P1, . . . ,Pd+1.

This implies that the map L(D)→ kd+1 is surjective.
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Spaces Associated With Equivalent Divisors

Proposition

If D1 ∼D2, then L(D1)∼= L(D2).

Let D1−D2 = (f ).

If g ∈ L(D1), then
(gf )= (g)+ (f )≥−D2.

In this way, we obtain an isomorphism

L(D1) → L(D2);
g 7→ gf .
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Complete Linear Systems Associated With Divisors

Definition

A divisor D defines a complete linear system

|D | := {D ′
≥ 0 :D ′

∼D}.

We know that:

Equivalent divisors have the same degree
(since principal divisors have degree 0);
Effective divisors have nonnegative degree.

So, if degD < 0, we have |D | =;.
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Bijection Between |D| and P(L(D))

Proposition

There is a natural bijection between the complete linear system |D | and the
projective space P(L(D)).

Let f ∈ L(D) be nonzero.

Define
Df := (f )+D .

Then we have:
Df ≥ 0;
Df ∼D;
For λ∈ k∗, (f )= (λf ).

Thus, we obtain a map

P(L(D)) → |D |;
f 7→ Df .
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Bijection Between |D| and P(L(D)) (Cont’d)

We first show surjectivity.

Suppose that D ′ ≥ 0 and D ′ ∼D.

Let f be a rational function, with (f )=−D +D ′.

Since D ′ ≥ 0, it follows that f ∈ L(D).

Next, we show injectivity.

Suppose that f and g are rational functions with (f )= (g).

Then f
g is an everywhere regular function.

Hence, f
g is constant.

I.e., f =λg , for some λ ∈ k∗.

In the following we will identify |D | and P(L(D)).

So |D | is considered to have the structure of a projective space.
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Linear System and Base Points

Definition (Linear System)

A linear system ϑ on C is a projective subspace of a complete linear
system |D |.

Definition (Base Point)

A point P ∈C is called a base point of the linear system ϑ if

ϑ=ϑ∩|D −P |.

A linear system ϑ is called base point free if it has no base points.

We may consider only base point free linear systems.

Suppose P is a base point of |D |. Then L(D)= L(D −P).

By subtracting all the base points of D, we obtain a base point free
linear system |D ′| with L(D)= L(D ′).
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Linear System Defined By Hyperplane Sections

Suppose that C ⊆Pr
k

is a smooth curve not contained in a hyperplane.

Then the set of hyperplanes H in Pr
k

defines a set of divisors of the
form C ∩H on C , called hyperplane sections.

More precisely, C ∩H is defined by restricting an equation {s = 0} for H
to the curve C .

On every open set C\{xi = 0}, we can view s as a regular function.

Taking the zeros of s, counted with multiplicity, defines an effective
divisor D :=C ∩H.
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Linear System Defined By Hyperplane Sections (Cont’d)

Consider two hyperplanes:

H1 = {s1 = 0};
H2 = {s2 = 0}.

Then s1
s2

is a rational function.

So the divisors D1 and D2 are linearly equivalent.

The set of hyperplane sections C ∩H on C is a base point free linear
system ϑ, which is not necessarily complete.

The divisors of the linear system ϑ all have the same degree d .

We call d the degree of the embedded curve C ⊆Pr
k
.

In the case of a plane curve this agrees with the definition of degree
previously given.
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The Map Defined by a Complete Linear System

Definition (The Map Defined by a Complete Linear System)

Let D be a divisor on a curve C .
Let |D | be a base point free complete linear system.
Then the map ϕD , called the map defined by the complete linear

system |D |, is defined as follows.
Let ℓ= ℓ(D)> 0. Choose a basis f0, . . . , fℓ−1 of L(D).
We define ϕD by

ϕD : C → Pℓ−1
k

;

P 7→ (f0(P) : . . . : fℓ−1(P)).

By a previous lemma, the map ϕD is a morphism.
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Remarks

Clearly ϕD depends on the choice of basis.

However, two different bases give rise to maps differing only by a
projective automorphism of Pℓ−1

k
.

If ℓ≥ 2, then the map
ϕD :C →ϕD(C )

has finite fibers.

Similarly, for any base point free linear system ϑ⊆ |D | of projective
dimension r , by making a choice of basis of ϑ, we obtain a morphism

ϕϑ :C →P
r
k .

If ϑ= |D |, then ϕϑ =ϕ|D| =ϕD .
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Example

Let C =P1
k
, with homogeneous coordinates x0,x1.

Consider the divisor D = 3∞ on C , where ∞= (1 : 0).

Then ℓ(D)= 4.

Moreover, a basis for L(D) given by

x3
0

x3
1

,
x2
0 x1

x3
1

=
x2
0

x2
1

,
x0x

2
1

x3
1

=
x0

x1

,
x3
1

x3
1

= 1 ∈ L(D).

The map ϕD is given by

ϕD : P1
k

→ P3
k
;

(x0 : x1) 7→ (
x3
0

x3
1

:
x2
0

x2
1

: x0
x1

: 1)= (x3
0 : x2

0 x1 : x0x
2
1 : x3

1 ).

Thus |D | defines the embedding of P1
k

as the cubic normal curve in
P3
k
.
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Hyperplane Sections and Base Point Free Linear Systems

Let δ be an arbitrary base point free linear system on C .

We show the hyperplane sections of ϕδ(C ) give rise to elements of δ.

Let δ be an arbitrary base point free linear system of projective
dimension r , on a curve C .

Choose a basis f0, . . . , fr for δ.

We get a map

ϕδ : C → Pr
k
;

P 7→ (f0(P) : . . . : fr (P)).

Let x0, . . . ,xr be the projective coordinates of Pr
k
.

Consider in Pr
k

a hyperplane

H =
{∑

λixi = 0
}

.

The hyperplane section ϕδ(C )∩H may be pulled back to a divisor
ϕ∗
δ
(H) on C , given by the points in ϕ−1(H), counted with multiplicity.
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Hyperplane Sections and Linear Systems (Cont’d)

The multiplicities are defined as follows.

Consider the function
(
∑

λixi )◦ϕδ.

It can be viewed as a local function at every point P ∈C .

The multiplicity of the point P in ϕ∗
δ
(H) is the vanishing order of this

function at P .

The divisor obtained in this way is nothing but the divisor DfH ∈ δ of
the function

fH =
∑

λi fi .

Thus every hyperplane section H ∩ϕδ(C ) gives rise to DfH ∈ δ.

If ϕδ is an embedding, then all elements of δ correspond to
hyperplane sections of the embedded curve in this way.
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Differential Forms on a Smooth Curve

Let U ⊆C be an open set.

Consider the vector space

φ(U) :=
{
ϕ :U →

⋃
mx/m

2
x :ϕ(x) ∈mx/m

2
x

}
.

Let f ∈OC (U) be a regular function.

Define an element df ∈φ(U) by

df (x) := f − f (x) modm2
x .

George Voutsadakis (LSSU) Algebraic Geometry July 2024 83 / 129



Introduction to the Theory of Curves Linear Systems on Curves

Properties of Differential Forms

As in elementary calculus, the following identities hold.

(1) d(f +g)= df +dg ;
(2) d(fg)= fdg +gdf ;

(3) d( fg )=
gdf −fdg

g2 , whenever g 6= 0.

Property (1) is obvious.

Properties (2) and (3) follow by calculating and comparing both sides
of the equality modulo m2

x .

If F ∈ k[x1, . . . ,xn], then for regular functions f1, . . . , fn on U ,

(4) dF (f1, . . . , fn)=
∑n
i=1

∂F
∂xi

(f1, . . . , fn)dfi .

In view of Property (1), it is enough to prove this for monomials.

Using Property (2), this can be shown by induction on the degree of
the monomials.

Property (3) generalizes to rational functions in their domain of
definition.
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Regular Differential Forms

Definition (Regular Differential Form)

An element ϕ ∈φ(U) is called a regular differential form on U if, for
every point P ∈U , there are a neighborhood V and regular functions
f1, . . . , fℓ,g1, . . . ,gℓ ∈OC (V ), such that

ϕ |V=

ℓ∑

i=1

fidgi .

The set of all regular differentials on U is an O(U)-module, which we
denote by Ω

1[U].
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Cotangent Bundles and Regular Differential Forms

Recall that mx/m
2
x can be identified with the dual of the tangent

space of C at x .

The disjoint union of these spaces is called the cotangent bundle

over U .

The elements of φ(U) are sections of the cotangent bundle.

The definition of regular differential forms tells us which sections
should be called regular.
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Example

Let t be the coordinate of A1
k
.

Then dt is a basis of mx/m
2
x , for every x ∈A1

k
.

Hence, every element ϕ ∈φ(A1
k
)can be written as

ϕ= fdt , for some function f on A1
k
.

If ϕ ∈Ω
1[A1

k
], then the formula for dF (f1, . . . , fn) implies that

ϕ |V= gdt , for some function g regular on V .

Comparing this with ϕ |V= f |V dt shows that f is regular.

Hence, we find that
Ω

1[A1
k ]= k[A1

k ]dt .
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Characterization of Ω1[U ]

Proposition

Let C be a smooth curve and let P ∈C . Then there exists an affine
neighborhood U of P , such that, as O(U)-modules,

Ω
1[U]∼=O(U).

We can assume that C ⊆An
k

has coordinates x1, . . . ,xn, such that
t1 := x1 |C is a local parameter near the point P .

Choose a basis F1, . . . ,Fℓ of the ideal I (C ) of C in An
k
.

Since the Fi are in the ideal I (C ), we have dF (f1, . . . , fn)= 0.

Hence, for 1≤ i ≤ ℓ, we have

n∑

j=1

∂Fi

∂xj

∣∣∣∣
C

dtj = 0, tj = xj |C .
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Characterization of Ω1[U ] (Cont’d)

Since C has dimension 1, the matrix

((
∂Fi

∂xj

)
(P)

)

i ,j

has rank n−1 at P .

We use the preceding equation to obtain local representations

dti = gidt1, i = 2, . . . ,n,

where the gi are regular in a neighborhood of P .
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Characterization of Ω1[U ] (Cont’d)

Let

U ′
=

n⋂

i=2

domgi .

Choose some affine set U ⊆U ′.

Now dx1, . . . ,dxn span the cotangent space in An
k

at every point.

So dt1 is nonzero in mx/m
2
x , for all x ∈U .

Therefore, every element ϕ ∈Ω
1[U] has a representation

ϕ=ψdt1,

for some k-valued function ψ on U .

On the other hand, dti = gidt1.

So there is a local representation ϕ= gdt1, where g is regular.

This shows that ψ= g is regular on U . I.e., ϕ ∈O(U).

Hence, Ω1[U]∼=O(U) as an O(U)-module.
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Ω
1[U ] and Local Parameters

Corollary

Let t be a local parameter at a point P ∈C . Then there exists an affine
neighborhood V of P , such that

Ω
1[V ]=Odt .

Let U be a neighborhood of P .

Let t ′ ∈O(U) be as in the preceding proof.

Then dt = gdt ′, for some g ∈O(U).

Now both t and t ′ are local parameters at the point P .

So we have g(P) 6= 0.

We can then take as V any affine neighborhood of P where g does
not vanish.
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Zeroes of Regular Differential Forms

Let ω∈Ω
1[U] be a regular differential form on U .

We look at the zeros of ω, i.e., the points where ω(x)= 0 ∈mx/m
2
x .

Let ω= gdt be a local representative, as in the proposition.

Then the zeros of ω are just the zeros of g .

If ω 6≡ 0, then this defines an effective divisor on U .

Note that if two regular differential forms ω,ω′ ∈Ω
1[U] coincide on a

nonempty open set in U , then ω=ω′.
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Equivalence of Regular Differential Forms

Consider pairs (U ,ω), where:

U ⊆C is open and nonempty;
ω is a regular differential form on U .

We define an equivalence relation by

(U ,ω)∼ (U ′,ω′) iff for some nonempty open V ⊆U ,
ω |V=ω′ |V .

Previous results assert this is an equivalence relation.
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Rational Differential Forms

Definition (Rational Differential Form)

A rational differential form on C is an equivalence class of pairs

(U ,ω),

where:

U is a nonempty open set in C ;

ω is a regular differential form on U .

We denote the set of rational differential forms on C by Ω
1(C ).

Let f ∈ k(C ) is a rational function.

Then df defines a rational differential form on C .

Moreover, Ω1(C ) is a k(C )-vector space.
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Domain of Regularity of a Rational Differential Forms

Let ω∈Ω
1(C ) be a rational differential form.

Define
Uω

to be the union of all open sets U , such that ω has a representative
(U ,ω′).

Then ω ∈Ω
1[Uω].

Uω is called the domain of regularity of ω.
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The Vector Space Ω
1(C )

Proposition

Ω
1(C ) is a 1-dimensional vector space over k(C ).

Let U ⊆C be open, as in the preceding proposition, so that, for some
local parameter t,

Ω
1[U]=O(U)dt .

Let ω∈Ω
1(C ).

Then, there exists some open V ⊆U , such that ω |V is regular.

We still have Ω
1[V ]=O(V )dt

Hence, ω |V= gdt, for some g ∈ k[V ]⊆ k(C ).

The map ω 7→ g gives the desired isomorphism.
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Divisors Associated With Rational Differential Forms

Let ω∈Ω
1(C ) be a nonzero rational differential form on C .

Let P ∈C .

Then there is a neighborhood U of P , such that

ω |U= gdt ,

for some local parameter t at P , and some rational function g .

If dt ′ is some other local parameter, then locally

dt = udt ′,

for some unit u in a neighborhood of P .

Hence if we associate to P the order of g at P , this is well defined.

In this way we define a divisor (ω) ∈DivC .

George Voutsadakis (LSSU) Algebraic Geometry July 2024 97 / 129



Introduction to the Theory of Curves Linear Systems on Curves

Canonical Divisor Class

Let ω∈Ω
1(C ) be a nonzero rational differential form on C .

Suppose ω′ is any other nonzero rational differential form on C .

We know that
ω′

= f ω,

for some f ∈ k(C )∗.

This implies that (ω)∼ (ω′).

In this way we obtain a well defined divisor class

K := (ω) ∈ClC .

Definition (Canonical Divisor Class)

The divisor K is called the canonical divisor class, or the canonical

divisor, of C .
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The Genus

Definition (Genus)

The genus of the curve C is defined to be the integer

g := ℓ(K ).

Thus the genus of a smooth curve C is equal to the number of linearly
independent regular differential forms on C .

If the ground field is C, then g is equal to the topological genus of the
compact Riemann surface C .

A smooth curve C has genus 0 if and only if it is isomorphic to P1
k
.

A smooth plane cubic has genus 1.
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Riemann-Roch Theorem

Theorem (Riemann-Roch)

If C is a projective curve of genus g and D is a divisor of degree d on C ,
then

ℓ(D)−ℓ(K −D)= 1+d −g .

Over C, the Riemann-Roch Theorem establishes a link between the
algebraic and topological properties of the curve.
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Riemann’s Theorem

Corollary (Riemann’s Theorem)

If D is a divisor of degree d > 2g −2, then

ℓ(D)= d +1−g .

By hypothesis d > 2g −2.

So deg(K −D)< 0.

Then, by a previous lemma, L(K −D)= {0}.

Thus, by the Riemann-Roch Theorem,

ℓ(D)= 1+d −g .
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Degree of Canonical Divisor

Corollary

The canonical divisor has even degree, given by

degK = 2g −2.

Set D =K .

By a previous lemma,

ℓ(K −D)= ℓ(0)= 1.

By definition ℓ(K )= g .

So, by the Riemann-Roch Theorem,

ℓ(K )−ℓ(0)= 1+d −g

g −1= 1+deg(K )−g

deg(K )= 2g −2.
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Subsection 5

Projective Embeddings of Curves
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Differential of a Morphism Between Varieties

Let f :X →Y be a morphism between varieties with f (P)=Q.

By pullback of functions we have a map

f ∗ :mY ,Q/m
2
Y ,Q →mX ,P/m

2
X ,P .

By duality, we get a vector space homomorphism

df (P) :TX ,P →TY ,Q ,

where df (P) is the differential of the morphism f at the point P .

If X and Y are smooth complex varieties, this corresponds to the
usual definition of the differential of a holomorphic map.
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Projective Embeddings

Definition (Projective Embedding)

A morphism f :X →Pn
k

of a projective variety X in Pn
k

is called a
projective embedding of X if:

f is injective;

The differential df (P) is injective at every point P of X .

This terminology is justified by the following result, stated without
proof.

Proposition

Let X is a projective variety and f :X →Pn
k

a projective embedding. Then
f (X ) is a subvariety of Pn

k
and f induces an isomorphism f :X → f (X ).
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Very Ample Divisors

Let C be a curve.

Let D be a divisor on C , such that |D | is a base point free complete
linear system.

Recall the construction of the map ϕD :C →Pℓ−1
k

defined by the
complete linear system |D |, where ℓ= ℓ(D)> 0.

Our goal is to determine which divisors give rise to embeddings.

Definition (Very Ample Divisor)

A divisor D on a curve C is called very ample if:

|D| is base point free;

The map ϕD :C →Pℓ−1
k

, where ℓ= ℓ(D), is an embedding.
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Characterization of Very Ample Divisors

Proposition

For a divisor D on a curve C the following are equivalent:

(1) D is very ample.

(2) For any points P ,Q ∈C (including P =Q),

dim|D −P −Q | = dim|D |−2.

(2)⇒(1): First note that, for any divisor D, and any points P and Q

on C , we have
dim|D −P −Q | ≤ dim|D |−2.

To prove this, one applies the same argument that was used in the
proof of a previous lemma to show that, for an effective divisor D,
ℓ(D)≤ degD +1.
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Characterization of Very Ample Divisors (Cont’d)

By the same argument, it also follows that,

dim|D −P −Q | = dim|D |−2, for all P and Q,
implies dim|D −P | = dim|D |−1, for all P .

Equivalently, |D | cannot have a base point.

It remains to show that, under the hypothesis, ϕD is an embedding.

Let P and Q be any two distinct points on C .
Since |D −P −Q | 6= |D −P |, there is a function f ∈ L(D), such that:

P lies in the support of the effective divisor Df =D + (f );
Q does not lie in the support of Df =D + (f ).

We can extend f to a basis f = f0, . . . , fℓ−1 of L(D).
With this choice of basis:

The first coordinate of ϕD(P) equals 0;
The first coordinate of ϕD(Q) is not 0.

In particular, ϕD(P) 6=ϕD(Q).

Thus, ϕD is injective.

George Voutsadakis (LSSU) Algebraic Geometry July 2024 108 / 129



Introduction to the Theory of Curves Projective Embeddings of Curves

Characterization of Very Ample Divisors (Cont’d)

By the preceding proposition, it suffices now to show that the
differential df (P) is injective at a point P .

We must, in turn, show that there is a function f ∈ L(D), such that:

(f )+D −P ≥ 0;
(f )+D −2P is not effective.

That is, f vanishes at P , but not to second order.

Suppose, this has been shown.

Consider a basis f = f0, . . . , fℓ−1 for L(D).

Then, locally, ϕ∗
D
(x0)= f0 ∈mP , but ϕ∗

D
(x0) 6∈m

2
P
.

I.e., the map between the duals of the tangent spaces is surjective.

Thus, the differential is injective.

For the existence of the required function, note that, by hypothesis
(taking P =Q), |D −P | 6= |D −2P |.

The existence of f is equivalent to this statement.
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Characterization of Very Ample Divisors (Converse)

(1)⇒(2): Assume that the linear system |D | is base point free and the
map ϕD :D →Pℓ−1

k
is an embedding.

Let P ,Q be two distinct points of C .

By assumption, ϕD(P) 6=ϕD(Q).

After a transformation of coordinates, we can assume that

ϕD(P)= (1 : 0 : . . . : 0) and ϕD(Q)= (0 : 1 : . . . : 0).

Then ϕ∗
D
(x0) defines an effective divisor in |D |, but not in |D −P |.

I.e.,
dim|D −P | = dim|D |−1.

Further, ϕ∗
D
(x1) ∈ |D −P |\|D −P −Q |.

Hence, for P 6=Q,

dim|D −P −Q | = dim|D |−2.
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Characterization of Very Ample Divisors (Converse Cont’d)

Now we deal with the case P =Q.

We may assume that:

ϕD(P)= (1 : 0 : . . . : 0);
The tangent to ϕD(C ) at P is spanned by the line through
(1 : 0 : . . . : 0) and (0 : 1 : . . . : 0).

The hyperplane {x1 = 0}:

Contains the point ϕD(P)= (1 : 0 : . . . : 0);
Meets the tangent to ϕD(C ) at this point transversally.

So ϕ∗
D
(x1) ∈ |D −P |\|D −2P |.

Thus, dim|D −2P | = dim|D |−2.

The classical language for ϕD :

Being injective is that the linear system |D| “separates points”;
Having an injective differential is that the linear system |D| “separates
tangents”.
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Very Ample Divisors and Genus

Proposition

Let C be a smooth projective curve of genus g .
Let D be a divisor of degree d on C .

(1) If d ≥ 2g , then |D | is base point free.

(2) If d ≥ 2g +1, then |D | is very ample.

(1) We know that degK = 2g −2 and, by hypothesis, d ≥ 2g .

So the divisors K −D and K − (D −P) have negative degree.

By Riemann’s Theorem, ℓ(D)= 1+d −g and
ℓ(D −P)= d −g = ℓ(D)−1.

So |D | is base point free.

(2) Since d ≥ 2g +1, for points P ,Q ∈C , deg(K − (D −P −Q))< 0.

By Riemann’s Theorem, ℓ(D −P −Q)= 1+d −g −2= ℓ(D)−2.

So the result follows from the preceding proposition.
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Non-Constant Morphisms Between Projective Curves

Proposition

Let f :C →C ′ be a nonconstant morphism between two projective curves.
If C ′ is nonsingular, then f is surjective.

Suppose f is nonconstant and f (C ) 6=C ′.

Choose a point P ∈C ′ which is not in the image of C .

If we can show that C ′\{P} is affine, then, we have a contradiction to
the fact that every regular function on C is constant.

Let g be the genus of C ′.

Consider the divisor D = (2g +1)P .

It satisfies the hypothesis of the preceding proposition.

Hence, D defines an embedding ϕD :C ′ →P
g+1

k
.

By construction of ϕD , there is a hyperplane H, with C ∩H = {P}

(H touches the curve ϕD(C
′) at the point ϕD(P) with order 2g +1).

This shows that C ′\{P} is affine.
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The Canonical Linear System |K | on C

Lemma

Let C be a smooth projective curve of genus g ≥ 2.
Then |K | is base point free.

By definition we have ℓ(K )= g .

We must show that, for every point P ∈C , ℓ(K −P)= g −1.

By the Riemann-Roch Theorem, we have

ℓ(K −P)−ℓ(P)= g −2.

Since P is effective, we have ℓ(P)≥ 1.

On the other hand, since g ≥ 2, the curve C is not rational.

By a previous lemma, ℓ(P)= 1.

Thus, ℓ(K −P)= g −1.
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Hyperelliptic Curves

Definition

A smooth projective curve C is called hyperelliptic if:

g(C )≥ 2;

There exists a surjective morphism

C →P
1
k

of degree 2.
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Smooth Projective Curves of Genus ≥ 2

Proposition

If C is a smooth projective curve of genus g ≥ 2, then either |K | is very
ample or C is hyperelliptic.

By the Riemann-Roch Theorem,

ℓ(K −P −Q)−ℓ(P +Q)= g −3.

Suppose, first, that, for all p and Q, ℓ(P +Q)= 1.
Then it follows that ℓ(K −P −Q)= g −2.
By a previous proposition, |K | is very ample.
Suppose, next, ℓ(P +Q)= 2, for some points P and Q.
Since C is not rational, a previous lemma implies that any divisor D on
C of degree 1 has ℓ(D)≤ 1.
So the linear system |P +Q| is base point free.
Hence, it defines a degree two map ϕP+Q :C →P1

k
.

So C is hyperelliptic.

George Voutsadakis (LSSU) Algebraic Geometry July 2024 116 / 129



Introduction to the Theory of Curves Projective Embeddings of Curves

The Canonical Embedding

Definition (Canonical Embedding)

If |K | is very ample, then
ϕK :C →P

g−1

k

is called the canonical embedding of C .
Moreover, ϕK (C ) is called the canonical model of C .

We show (using several results about secant varieties and tangent
varieties, stated without proofs) that every projective smooth curve C

can be embedded in P3
k
.
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Projection from a Point

We considered the projection from a point P ∈Pn
k
.

Choose a hyperplane Pn−1
k

not containing P .

The projection from P onto Pn−1
k

is given by the map

πP :Pn
k\{P} →P

n−1
k

which takes a point Q 6=P to the intersection of the line PQ with the
hyperplane Pn−1

k
.

Two different choices of hyperplanes give maps differing only by a
projective transformation.
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Projection from a Point (Cont’d)

Take coordinates for Pn
k

so that:

P = (1 : 0 : . . . : 0);
Pn−1
k

= {x0 = 0}.

Then πP is given by

πP(x0 : x1 : . . . : xn)= (x1 : . . . : xn).

For a curve C ⊆Pn
k
, with P 6∈C , by restricting πP to C we obtain a

projection πP :C →Pn−1
k

from P .

In terms of linear systems, this map is defined by the linear system

ϑ= {H ∩C :P ∈H} ∼=P
n−1
k .
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Secant of a Curve

We determine when the projection πP :C →Pn−1
k

is an embedding.

We find a sequence of embeddings.

In the end we will end up with C embedding in P3
k
.

Definition (Secant)

If Q and R are two distinct points of C , then the line

QR

is called a secant of C .
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Secant Variety of a Curve

If the point P lies on QR then clearly πP(Q)=πP(R).

So the projection πP :C →Pn−1
k

is not injective.

For πP to be an embedding we must choose P not lying on any secant
of C .

This leads to the concept of a secant variety.

As a set, it is the union of the secants and tangents of C .

To give a definition from which it is clear that the secant variety is a
variety, we must introduce Grassmannian varieties.
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Grassmannain Varieties

Definition (Grassmannian Variety)

The Grassmannian variety of lines in Pn
k

is given by

Gr(1,n) := {L : L is a line in Pn
k

}.

The Grassmannian Gr(1,n)⊆P can be identified with the subset of
(
∧2kn+1) of tensors of the form v ∧w .

In fact, Gr(1,n) is a (smooth) projective variety defined by quadratic
equations.
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Flag Variety

The set
F (1,n) := {(P ,L) ∈Pn

k ×Gr(1,n) :P ∈ L}

is called a flag variety.

F (1,n) is also a smooth projective variety.

By definition, F (1,n)⊆Pn
k
×Gr(1,n).

So we have projection maps p and q,

F (1,n)

P
n
k

✛

p

Gr(1,n)

q
✲

The fibers of the projection q are isomorphic to P1
k
.
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The Mappings t and s

We define a map from the curve C to the Grassmannian,

t : C → Gr(1,n);
Q 7→ TQC .

t associates to a point Q ∈C the tangent to C at the point Q.

We define a map s from C ×C to the Grassmannian,

s : C ×C → Gr(1,n);

s(Q ,R) 7→

{
QR , if Q 6=R ,
TQC , if Q =R .

Both t and s are morphisms of projective varieties.
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The Tangent Surface and the Secant Variety

Definition (Tangent Surface)

The tangent surface of C is defined by

TanC := p(q−1(t(C ))).

Definition (Secant Variety)

The secant variety of a curve C is defined by

SecC := p(q−1(s(C ×C ))).

As sets:

TanC is the union of the tangents to the curve C ;
SecC is the union of the secants and tangents of C .

We have C ⊆TanC ⊆ SecC .
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Dimensions of TanC and SecC

TanC is defined as the image of the projective variety q−1(t(C ))
under the morphism p.

So it can be shown that TanC is a projective variety in Pn
k
.

C is a curve and q is a dominant morphism with one-dimensional
fibers.

We use the fact that for a dominant morphism of projective varieties,
the dimension of the image plus the dimension of the general fiber
equals the dimension of the domain.

We conclude that q−1(t(C )) has dimension ≤ 2.

Thus, dimTanC ≤ 2.

In fact, we always have dimTanC = 2, unless C is a line.

Similarly, SecC is a projective variety with dimSecC ≤ 3.
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Characterization of πP Being an Embedding

Proposition

The projection πP :C →Pn−1
k

of a curve C from a point P 6∈C is an
embedding if and only if:

(1) P lies on no secant of C ;

(2) P lies on no tangent of C .

As discussed above, the map πP is given by the linear system

ϑ= {H ∩C :P ∈H} ∼=P
n−1
k .

Since P 6∈C , this is a base point free linear system.
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Characterization of πP Being an Embedding (Cont’d)

We point out the following properties about the base point free linear
system ϑ.

It separates points (i.e., ϕϑ is injective) if and only if, for any two
points Q 6=R of C , there is a hyperplane H through P , such that:

H contains Q;
H does not contain R .

This is equivalent to saying that P does not lie on the secant QR.

The linear system separates tangents at a point R ∈C if and only if
there is a hyperplane H through P and R which intersects the tangent
TRC transversally, i.e., TRC *H.

This is the case if and only if P does not lie on the tangent TRC .
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Embeddability of Smooth Projective Curves in P3
k

Corollary

Every smooth projective curve C can be embedded in P3
k
.

Let g = g(C ) be the genus of the curve C .

Let D be a divisor of degree d = 2g +1.

By a preceding proposition,

ϕD :C →P
g+1

k

is an embedding.
If g ≤ 2, then there is no more to prove.
Suppose g ≥ 3. Since dimSecC ≤ 3, there is a point P 6∈SecC .
By the proposition. the projection from P gives an embedding

C →P
g

k
.

We can continue to project from points P 6∈SecC in this way.
In the end, we obtain an embedding in P3

k
.
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