
Introduction to Algorithms

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 1 / 30



Outline

1 Elementary Data Structures
Stacks and Queues
Linked Lists
Implementing Pointers and Objects
Representing Rooted Trees

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 2 / 30



Elementary Data Structures Stacks and Queues

Subsection 1

Stacks and Queues

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 3 / 30



Elementary Data Structures Stacks and Queues

Stacks and LIFO versus Queues and FIFO

Stacks and queues are dynamic sets in which the element removed
from the set by the Delete operation is prespecified.

In a stack, the element deleted from the set is the one most recently
inserted:
The stack implements a last-in, first-out, or LIFO, policy.
In a queue, the element deleted is always the one that has been in the
set for the longest time:
The queue implements a first-in, first-out, or FIFO, policy.

There are several efficient ways to implement stacks and queues on a
computer:

We show how to use a simple array to implement each.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 4 / 30



Elementary Data Structures Stacks and Queues

Stacks

The Insert operation on a stack is often called Push, and the
Delete operation, without an argument, is often called Pop.

We can implement a stack of at most n elements with an array
S[1 . . . n].

The array has an attribute S.top that indexes the most recently
inserted element.

The stack consists of elements S[1 . . . S.top], where:

S[1] is the element at the bottom of the stack;
S[S.top] is the element at the top.

When S.top = 0, the stack contains no elements and is empty.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 5 / 30



Elementary Data Structures Stacks and Queues

Stacks: Test and Operations

To test whether the stack is empty we use:

StackEmpty(S)

1. if S.top == 0

2. return TRUE

3. else return FALSE

If we attempt to pop an empty stack, the stack underflows.

Pop(S)

1. if StackEmpty(S)

2. error “underflow”

3. else S.top = S.top− 1

4. return S[S.top + 1]

If S.top exceeds n, the stack overflows (we ignore this).

Push(S, x)

1. S.top = S.top + 1

2. S[S.top] = x

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 6 / 30



Elementary Data Structures Stacks and Queues

Queues

We call the Insert operation on a queue EnQueue, and we call the
Delete operation, that takes no argument, DeQueue.

The queue has a head and a tail.

When an element is enqueued, it enters at the tail of the queue.

The element dequeued is always the one at the head of the queue.

One way to implement a queue of at most n− 1 elements is using an
array Q[1 . . . n].

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 7 / 30



Elementary Data Structures Stacks and Queues

Implementing Queues

The queue has an attribute Q.head that indexes its head.

The attribute Q.tail indexes the next location at which a newly
arriving element will be inserted into the queue.

The elements in the queue reside in locations

Q.head,Q.head + 1, . . . ,Q.tail− 1,

where we “wrap around” in the sense that location 1 immediately
follows location n in a circular order.

When Q.head = Q.tail, the queue is empty.

Initially, we have Q.head = Q.tail = 1.

If we attempt to dequeue an element from an empty queue, the queue
underflows.

When Q.head = Q.tail + 1, the queue is full, and if we attempt to
enqueue an element, then the queue overflows.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 8 / 30



Elementary Data Structures Stacks and Queues

Operations on Queues

In our procedures EnQueue and DeQueue, we have

assumed that n = Q.length;
omitted the error checking for underflow and overflow.

EnQueue(Q, x)

1. Q[Q.tail] = x

2. if Q.tail == Q.length

3. Q.tail = 1

4. else Q.tail = Q.tail + 1

DeQueue(Q)

1. x = Q[Q.head]

2. if Q.head == Q.length

3. Q.head = 1

4. else Q.head = Q.head + 1

5. return x

Each operation takes O (1) time.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 9 / 30



Elementary Data Structures Linked Lists

Subsection 2

Linked Lists

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 10 / 30



Elementary Data Structures Linked Lists

Linked Lists

A linked list is a data structure in which the objects are arranged in a
linear order.

The linear order is not determined by indices as in an array, but by a
pointer in each object.

Each element of a doubly linked list L is an object with an attribute
key and two pointer attributes next and prev.

Given an element x in the list, x.next points to its successor in the
linked list, and x.prev points to its predecessor.

If x.prev = NIL, the element x has no predecessor and is therefore the
first element, or head, of the list.

If x.next = NIL, the element x has no successor and is therefore the
last element, or tail, of the list.

An attribute L.head points to the first element of the list. If
L.head = NIL, the list is empty.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 11 / 30



Elementary Data Structures Linked Lists

Types of Linked Lists

A list may have one of several forms:
It may be either singly linked or doubly linked.

If a list is singly linked, we omit the prev pointer in each element.

It may be sorted or not.

If a list is sorted, the linear order of the list corresponds to the linear

order of keys stored in elements of the list.

The minimum element is then the head of the list, and the maximum

element is the tail.

If the list is unsorted, the elements can appear in any order.

It may be circular or not.

In a circular list, the prev pointer of the head of the list points to the

tail, and the next pointer of the tail of the list points to the head.

We will be working with unsorted, doubly linked lists.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 12 / 30



Elementary Data Structures Linked Lists

Searching a Doubly Linked List

The procedure ListSearch(L, k) finds the first element with key k

in list L by a simple linear search, returning a pointer to this element.

If no object with key k appears in the list, then NIL is returned.

ListSearch(L, k)

1. x = L.head

2. while x 6= NIL and x .key 6= k

3. x = x .next

4. return x

To search a list of n objects, the ListSearch procedure takes Θ(n)
time in the worst case, since it may have to search the entire list.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 13 / 30



Elementary Data Structures Linked Lists

Inserting in a Doubly Linked List

Given an element x whose key field has already been set, the
ListInsert procedure “splices” x onto the front of the linked list:

ListInsert(L, x)

1. x .next = L.head

2. if L.head 6= NIL

3. L.head.prev = x

4. L.head = x

5. x .prev = NIL

The running time for ListInsert on a list of n elements is O (1).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 14 / 30



Elementary Data Structures Linked Lists

Deleting from a Linked List

ListDelete removes an element x from a linked list L. Given a
pointer to x , it “splices” x out of the list by updating pointers.

If we wish to delete an element with a given key, we must first call
ListSearch to retrieve a pointer to the element.

ListDelete(L, x)

1. if x .prev 6= NIL

2. x .prev.next = x .next

3. else L.head = x .next

4. if x .next 6= NIL

5. x .next.prev = x .prev

ListDelete runs in O (1) time. However, deletion by key takes
Θ(n) worst case time due to first calling ListSearch.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 15 / 30



Elementary Data Structures Linked Lists

Sentinels

The code for ListDelete would be simpler if we could ignore the
boundary conditions at the head and tail of the list:

ListDelete′(L, x)

1. x .prev.next = x .next

2. x .next.prev = x .prev

A sentinel is a dummy object that allows us to simplify boundary
conditions:

Suppose that we provide with list L an object L.nil that represents NIL
but has all the attributes of the other objects in the list.
Wherever we have a reference to NIL in list code, we replace it by a
reference to the sentinel L.nil.

This change turns a regular doubly linked list into a circular doubly
linked list with L.nil lying between head and tail.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 16 / 30



Elementary Data Structures Linked Lists

Searching and Inserting with Sentinels

The code for ListSearch remains the same, but with the references
to NIL and L.head changed as specified above:

ListSearch′(L, k)

1. x = L.nil.next

2. while x 6= L.nil and x .key 6= k

3. x = x .next

4. return x

We use the two-line procedure ListDelete′ from before to delete an
element from the list.

For insertion:

ListInsert′(L, x)

1. x .next = L.nil.next

2. L.nil.next.prev = x

3. L.nil.next = x

4. x .prev = L.nil

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 17 / 30



Elementary Data Structures Linked Lists

Example of Inserting and Deleting with Sentinels

The figure shows the effects of ListInsert′ and ListDelete′ on a
sample list:

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 18 / 30



Elementary Data Structures Implementing Pointers and Objects

Subsection 3

Implementing Pointers and Objects

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 19 / 30



Elementary Data Structures Implementing Pointers and Objects

A Multiple-Array Representation of Objects

We can represent a collection of objects that have the same attributes
by using an array for each attribute.

The figure shows how we can implement
a linked list with three arrays. The array
key holds the values of the keys currently
in the dynamic set, and the pointers reside
in the arrays next and prev.

For a given array index x , the array entries x .key, x .next and x .prev
represent an object in the linked list.

For the constant NIL, we usually use an integer (such as 0 or −1)
that cannot possibly represent an actual index into the arrays.

A variable L holds the index of the head of the list.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 20 / 30



Elementary Data Structures Implementing Pointers and Objects

A Single-Array Representation of Objects

The words in a computer memory are typically addressed by integers
from 0 to M − 1, where M is a suitably large integer.
An object may occupy a contiguous set of locations in memory.

A pointer is simply the address of the first memory location.
Other locations can be indexed by adding an offset to the pointer.

The figure shows how a single array A can be used to store the linked
list:

An object occupies a contiguous subarray A[j . . . k]. Each field of the
object corresponds to an offset in the range from 0 to k − j , and a
pointer to the object is the index j .

The single-array representation is flexible in that it permits objects of
different lengths to be stored in the same array.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 21 / 30



Elementary Data Structures Implementing Pointers and Objects

Allocating and Freeing Objects

We explore the problem of allocating and freeing (or deallocating)
homogeneous objects using the example of a doubly linked list
represented by multiple arrays.

Suppose that the arrays in the multiple array representation have
length m and that at some moment the dynamic set contains n ≤ m

elements. Then n objects represent elements currently in the dynamic
set, and the remaining m − n objects are free. The free objects are
kept in a singly linked list, the free list.

The free list uses only the next array,
which stores the next pointers within
the list. The head of the free list is
held in the global variable free.

When the dynamic set represented by linked list L is nonempty, the
free list may be intertwined with list L.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 22 / 30



Elementary Data Structures Implementing Pointers and Objects

Allocate and Free Procedures

The free list is a stack: The next object allocated is the last one freed.

We can use a list implementation of the stack operations Push and
Pop to implement the procedures for allocating and freeing objects.

The global variable free used in the following procedures points to the
first element of the free list.

AllocateObject()

1. if free = NIL

2. error “out of space”

3. else x = free

4. free = x .next

5. return x

FreeObject(x)

1. x .next = free

2. free = x

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 23 / 30



Elementary Data Structures Implementing Pointers and Objects

Illustration of Allocating and Freeing

Calling AllocateObject() (returns index 4), setting key[4] to 25,
and calling ListInsert(L, 4).

After executing ListDelete(L, 5), we call FreeObject(5), making
object 5 the new free-list head, with object 8 following it:

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 24 / 30



Elementary Data Structures Implementing Pointers and Objects

A Free List Serving Multiple Linked Lists

It is common to use a single free list to service several linked lists.

The figure shows two linked lists and a free list intertwined through
key, next and prev arrays.

The two procedures AllocateObject and FreeObject run in
O (1) time.

They can be modified to work for any homogeneous collection of
objects by letting any one of the fields in the object act like a next
field in the free list.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 25 / 30



Elementary Data Structures Representing Rooted Trees

Subsection 4

Representing Rooted Trees

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 26 / 30



Elementary Data Structures Representing Rooted Trees

Representing Trees by Linked Data Structures

We look at the problem of representing rooted trees by linked data
structures:

We first look at binary trees.
Then we present a method for rooted trees in which nodes can have an
arbitrary number of children.

We represent each node of a tree by an object.

As with linked lists, we assume that:

Each node contains a key attribute.
The remaining attributes of interest are pointers to other nodes, and
they vary according to the type of tree.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 27 / 30



Elementary Data Structures Representing Rooted Trees

Binary Trees

The figure shows how we use the attributes p, left and right to store
pointers to the parent, left child, and right child of each node in a
binary tree T :

If x .p = NIL, then x is the root.

If node x has no left child, then x .left = NIL, and similarly for the
right child.

The root of the entire tree T is pointed to by the attribute T .root.

If T .root = NIL, then the tree is empty.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 28 / 30



Elementary Data Structures Representing Rooted Trees

Trees with Unbounded Branching: Inefficient Attempts

To represent a tree in which the number of children of each node is at
most some constant k , we replace the left and right attributes by
child1, child2, . . ., childk .

This scheme no longer works when the number of children of a node
is unbounded, since we do not know how many attributes to allocate
in advance.

Moreover, even if the number of children k is bounded by a large
constant but most nodes have a small number of children, we may
waste a lot of memory.

A scheme to represent trees with arbitrary numbers of children that
uses only O (n) space for any n-node rooted tree is given in the
following slide.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 29 / 30



Elementary Data Structures Representing Rooted Trees

Rooted Trees with Unbounded Branching

The left-child, right-sibling representation:

As before, each node con-
tains a parent pointer p,
and T .root points to the
root of tree T .
Instead of having a pointer
to each of its children, how-
ever, each node x has only
two pointers:

1. x .LeftChild points to the leftmost child of node x .

If node x has no children, then x .LeftChild = NIL.

2. x .RightSibling points to the sibling of x immediately to its right.

If node x is the rightmost child of its parent, then
x .RightSibling = NIL.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 30 / 30


	Outline
	Elementary Data Structures
	Stacks and Queues
	Linked Lists
	Implementing Pointers and Objects
	Representing Rooted Trees


