
Introduction to Algorithms

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 1 / 47



Outline

1 Hash Tables
Direct-Address Tables
Hash Tables
Hash Functions
Open Addressing
Perfect Hashing

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 2 / 47



Hash Tables Direct-Address Tables

Subsection 1

Direct-Address Tables

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 3 / 47



Hash Tables Direct-Address Tables

Direct-Address Tables

Direct addressing is a simple technique that works well when the
universe U of keys is reasonably small.

Suppose an application needs a dynamic set in which each element
has a key drawn from the universe U = {0, 1, . . . ,m − 1}, where m is
not too large and no two elements have the same key.

To represent the dynamic set, we use an array, or direct-address
table,

denoted by T [0 . . .m − 1], in
which each position, or slot,
corresponds to a key in the uni-
verse U: Slot k points to an el-
ement in the set with key k . If
the set contains no element with
key k , then T [k] = NIL.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 4 / 47



Hash Tables Direct-Address Tables

The Dictionary Operations

DirectAddressSearch(T , k)

1. return T [k]

DirectAddressInsert(T , x)

1. T [x .key] = x

DirectAddressDelete(T , x)

1. T [x .key] = NIL

Each of these operations requires O (1) time.

For some applications, the elements in the dynamic set can be stored
in the direct-address table’s slot instead of in an object external to
the direct-address table, thus saving space.

Moreover, it is often unnecessary to store the key field of the object,
since if we have the index of an object in the table, we have its key,
but some way to tell if the slot is empty must be present.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 5 / 47



Hash Tables Hash Tables

Subsection 2

Hash Tables

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 6 / 47



Hash Tables Hash Tables

Hash Tables

If the universe U is large, storing a table T of size |U| may be
impractical, or even impossible, given the memory available on a
typical computer.

Furthermore, the set K of keys actually stored may be so small
relative to U that most of the space allocated for T would be wasted.

When the set K of keys stored in a dictionary is much smaller than
the universe U of all possible keys, a hash table requires much less
storage than a direct address table.

The storage requirements can be reduced to Θ(|K |) while we maintain
the benefit that searching for an element still requires only O (1) time.
The drawback is that this bound is for the average time, whereas for
direct addressing it holds for the worst-case time.

With direct addressing, an element with key k is stored in slot k ,
whereas with hashing, this element is stored in slot h(k), i.e., a hash

function h is used to compute the slot from the key k .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 7 / 47



Hash Tables Hash Tables

How Hash Tables Work

The hash function h maps the universe U of keys into the slots of a
hash table T [0 . . .m − 1]: h : U → {0, 1, . . . ,m − 1}.

We say that an element with key k hashes to slot h(k) or that h(k)
is the hash value of key k .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 8 / 47



Hash Tables Hash Tables

Dealing with Collisions

If two keys hash to the same slot a collision arises.

There are effective techniques for resolving the conflict created by
collisions:

By choosing a hash function h appearing to be “random” we may
minimize the number of collisions.
A hash function h, however, must be deterministic in that a given input
k should always produce the same output h(k).
Since |U | > m, avoiding collisions altogether is impossible.
A well-designed, “random”-looking hash function can minimize the
number of collisions, but a method for resolving the collisions that do
occur is still required.

The simplest collision resolution technique is called chaining.

An alternative method for resolving collisions is open addressing.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 9 / 47



Hash Tables Hash Tables

Collision Resolution by Chaining

In chaining, we put all the elements that hash to the same slot in a
linked list:

Slot j contains a pointer to the head of the list of all stored elements
that hash to j ; If there are no such elements, slot j contains NIL.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 10 / 47



Hash Tables Hash Tables

Dictionary Operations when Using Chaining

The dictionary operations on a hash table T are easy to implement
when collisions are resolved by chaining.

ChainedHashInsert(T , x)

1. insert x at the head of list T [h(x .key)]

ChainedHashSearch(T , k)

1. search for an element with key k in list T [h(k)]

ChainedHashDelete(T , x)

1. delete x from the list T [h(x .key)]

The worst-case running time for insertion is O (1).

For searching the worst-case running time is proportional to the
length of the list.

For deletion of an element x , assuming the lists are doubly linked, we
need O (1) time also.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 11 / 47



Hash Tables Hash Tables

Analysis of Hashing with Chaining

We look at the time it takes to search for an element with a given key.

Given a hash table T with m slots that stores n elements, we define
the load factor α for T as n

m
, i.e., the average number of elements

stored in a chain.

The analysis will be in terms of α, which can be less than, equal to,
or greater than 1.
The worst-case behavior of hashing with chaining is terrible: all n
keys hash to the same slot, creating a list of length n.

The worst-case time for searching is thus Θ(n) plus the time to
compute the hash function.

The average performance of hashing depends on how well the hash
function h distributes the set of keys to be stored among the m slots,
on the average.

In the analysis, we assume simple uniform hashing, i.e., that any
given element is equally likely to hash into any of the m slots,
independently of where any other element has hashed to.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 12 / 47



Hash Tables Hash Tables

Setting Up the Analysis of the Average Case

For j = 0, 1, . . . ,m − 1, denote the length of the list T [j] by nj .

Then n = n0 + n1 + . . .+ nm−1.

The average value of nj is E [nj ] = α = n
m
.

We assume that the hash value h(k) can be computed in O (1) time.

Then the time required to search for an element with key k depends
linearly on the length nh(k) of the list T [h(k)].

Setting aside the O (1) time required to compute the hash function
and to access slot h(k), let us consider the expected number of
elements examined by the search algorithm.

This is the number of elements in the list T [h(k)] that are checked to
see if their keys are equal to k .

We consider two cases:

The search is unsuccessful: no element in the table has key k .
The search successfully finds an element with key k .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 13 / 47



Hash Tables Hash Tables

The Unsuccessful Search Case

Theorem

In a hash table in which collisions are resolved by chaining, an unsuccessful
search takes expected time Θ(1 + α), under the assumption of simple
uniform hashing.

Under the assumption of simple uniform hashing, any key k not
already stored in the table is equally likely to hash to any of the m

slots.

The expected time to search unsuccessfully for a key k is the
expected time to search to the end of list T [h(k)], which has
expected length E [nh(k)] = α.

Thus, the expected number of elements examined in an unsuccessful
search is α, and the total time required (including the time for
computing h(k)) is Θ(1 + α).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 14 / 47



Hash Tables Hash Tables

The Successful Search Case

In a successful search, the probability that a list is searched is
proportional to the number of elements it contains.

Theorem

In a hash table in which collisions are resolved by chaining, a successful
search takes time Θ(1 + α), on the average, under the assumption of
simple uniform hashing.

We assume that the element being searched for is equally likely to be
any of the n elements stored in the table. The number of elements
examined during a successful search for an element x is 1 more than
the number of elements that appear before x in x ’s list. Elements
before x in the list were all inserted after x was inserted, because new
elements are placed at the front of the list. To find the expected
number of elements examined, we take the average, over the n

elements x in the table, of 1 plus the expected number of elements
added to x ’s list after x was added to the list.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 15 / 47



Hash Tables Hash Tables

The Successful Search Case (Cont’d)

Let xi denote the ith element inserted into the table, i = 1, 2, . . . , n.

Let ki = xi .key. For keys ki and kj , we define the indicator random
variable Xij = I{h(ki ) = h(kj )}.

Under the assumption of simple uniform hashing, we have
Pr{h(ki ) = h(kj )} = 1

m
. So E [Xij ] =

1
m
.

Thus, the expected number of elements examined in a successful
search is

E
[

1
n

∑n
i=1(1 +

∑n
j=i+1 Xij)

]

= 1
n

∑n
i=1(1 +

∑n
j=i+1 E [Xij ])

= 1
n

∑n
i=1(1 +

∑n
j=i+1

1
m
) = 1 + 1

nm

∑n
i=1(n − i)

= 1 + 1
nm

(
∑n

i=1 n −
∑n

i=1 i) = 1 + 1
nm

(

n2 − n(n+1)
2

)

= 1 + n−1
2m = 1 + n/m

2 − n/m
2n = 1 + α

2 − α
2n .

Thus, the total time required for a successful search (including the
time for computing the hash function) is Θ(2 + α

2 − α
2n ) = Θ(1 + α).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 16 / 47



Hash Tables Hash Functions

Subsection 3

Hash Functions

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 17 / 47



Hash Tables Hash Functions

Interpreting Keys as Natural Numbers

Most hash functions assume that the universe of keys is the set
N = {0, 1, 2, . . .} of natural numbers.

If the keys are not natural numbers, we find a way to interpret them
as natural numbers.

For example, we can interpret a character string as an integer
expressed in suitable radix notation.

Thus, we might interpret the identifier pt as the pair of decimal
integers (112, 116), since p = 112 and t = 116 in the ASCII
character set.

Expressed as a radix-128 integer, pt becomes
(112 · 128) + 116 = 14452.

Since we can usually devise some such method for interpreting each
key as a (possibly large) natural number, we assume that the keys are
natural numbers.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 18 / 47



Hash Tables Hash Functions

The Division Method

In the division method for creating hash functions, we map a key k

into one of m slots by taking the remainder of k divided by m:

h(k) = k mod m.

E.g., if the hash table has size m = 12 and the key is k = 100, then
h(k) = 4.

This requires only a single division, so it is quite fast.

We avoid certain values of m: For example, m should not be a power
of 2, since, if m = 2p , then h(k) is just the p lowest-order bits of k .

A prime not too close to an exact power of 2 is often a good choice
for m.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 19 / 47



Hash Tables Hash Functions

The Multiplication Method

The multiplication method operates in two steps:

First, we multiply the key k by a constant A in the range 0 < A < 1
and extract the fractional part of kA.
Then, we multiply this value by m and take the floor of the result.

In short, the hash function is

h(k) = ⌊m(kA mod 1)⌋,

where “kA mod 1” means the fractional part of kA, i.e., kA− ⌊kA⌋.

An advantage of the multiplication method is that the value of m is
not critical.

We typically choose it to be a power of 2 (m = 2p , for some p), since
we can then easily implement the function.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 20 / 47



Hash Tables Hash Functions

Implementation of the Multiplication Method

Suppose that the word size of a machine is w bits.

Suppose that k fits into a single word.

Let A be a fraction of the form s
2w , where s is an integer, 0 < s < 2w .

We first multiply k by the w -bit integer s = A · 2w .

The result is a 2w -bit value r1 · 2
w + r0.

The p-bit hash value consists of the p most significant bits of r0.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 21 / 47



Hash Tables Hash Functions

Universal Hashing

Universal hashing can yield provably good performance on average,
no matter which keys occur.

At the beginning of execution, we select the hash function at random
from a carefully designed class of functions.

Randomly selecting the hash function causes the algorithm to
potentially behave differently on each execution, even for the same
input, guaranteeing good average-case performance for any input.

Poor performance may occur only when the the choice of a random
hash function causes the set of keys to hash poorly.

However, he probability of this occurring is small and is the same for
any set of keys of the same size.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 22 / 47



Hash Tables Hash Functions

Setting of Universal Hashing

Let H be a finite collection of hash functions that map a given
universe U of keys into the range {0, 1, . . . ,m − 1}.

Such a collection is said to be universal if, for each pair of distinct
keys k , ℓ ∈ U, the number of hash functions h ∈ H for which
h(k) = h(ℓ) is at most |H|

m
.

In other words, with a hash function randomly chosen from H, the
chance of a collision between distinct keys k and ℓ is no more than
the chance 1

m
of a collision if h(k) and h(ℓ) were randomly and

independently chosen from the set {0, 1, . . . ,m − 1}.

We will show that a universal class of hash functions gives good
average-case behavior.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 23 / 47



Hash Tables Hash Functions

Performance of Universal Hashing

Theorem

Suppose that a hash function h is chosen randomly from a universal
collection of hash functions and has been used to hash n keys into a table
T of size m, using chaining to resolve collisions.

If key k is not in the table, then the expected length E [nh(k)] of the
list that key k hashes to is at most the load factor α = n

m
.

If key k is in the table, then the expected length E [nh(k)] of the list
containing key k is at most 1 + α.

The expectations here are over the choice of the hash function and do
not depend on any assumptions about the distribution of the keys.

For all keys k 6= ℓ, define the indicator random variable Xkℓ =
I{h(k) = h(ℓ)}. By the definition of a universal collection of hash
functions, Pr{h(k) = h(ℓ)} ≤ 1

m
. Therefore, E [Xkℓ] ≤

1
m
.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 24 / 47



Hash Tables Hash Functions

Performance of Universal Hashing (Cont’d)

We define, for each key k , the random variable Yk that equals the
number of keys other than k that hash to the same slot as k . Then

E [Yk ] = E









∑

ℓ∈T
ℓ 6=k

Xkℓ









=
∑

ℓ∈T
ℓ 6=k

E [Xkℓ] ≤
∑

ℓ∈T
ℓ 6=k

1

m
.

If k 6∈ T , then nh(k) = Yk and |{ℓ : ℓ ∈ T and ℓ 6= k}| = n. Thus,

E [nh(k)] = E [Yk ] ≤
n

m
= α.

If k ∈ T , then because key k appears in list T [h(k)] and the count Yk

does not include key k , we have nh(k) = Yk + 1 and
|{ℓ ∈ T and ℓ 6= k}| = n − 1. Thus,

E [nh(k)] = E [Yk ] + 1 ≤
n − 1

m
+ 1 = 1 + α−

1

m
< 1 + α.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 25 / 47



Hash Tables Hash Functions

Expected Time of a Sequence of Operations

Universal hashing provides the desired payoff: it is impossible for an
adversary to pick a sequence of operations that forces the worst-case
running time.

Corollary

Using universal hashing and collision resolution by chaining in an initially
empty table with m slots, it takes expected time Θ(n) to handle any
sequence of n Insert, Search and Delete operations containing O (m)
Insert operations.

Since the number of insertions is O (m), we have n = O(m). So,
α = O (1). The Insert and Delete operations take constant time.
The expected time for each Search operation is O (1). By linearity
of expectation, the expected time for the entire sequence of n
operations is O (n). Since each operation takes Ω(1) time, the Θ(n)
bound follows.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 26 / 47



Hash Tables Hash Functions

Designing a Universal Class of Hash Functions

Choose a prime number p, large enough so that every possible key k
is in the range 0 to p − 1. Let Zp denote the set {0, 1, . . . , p − 1}
and let Z∗

p denote the set {1, 2, . . . , p − 1}.

Since p is prime, we can solve equations modulo p.
The size of the universe of keys is greater than the number of slots in
the hash table, whence p > m.

Define the hash function hab for any a ∈ Z
∗
p and any b ∈ Zp using a

linear transformation followed by reductions modulo p and then
modulo m:

hab(k) = ((ak + b) mod p) mod m.

The family of hash functions is Hpm = {hab : a ∈ Z
∗
p and b ∈ Zp}.

Each hash function hab maps Zp to Zm.

Since we have p − 1 choices for a and p choices for b, the collection
Hpm contains p(p − 1) hash functions.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 27 / 47



Hash Tables Hash Functions

Universality of Hpm

Theorem (Universality of Hpm)

The class Hpm of hash functions is universal.

Consider two distinct keys k and ℓ from Zp , so that k 6= ℓ. For a
given hab, we let r = (ak + b) mod p and s = (aℓ+ b) mod p.

Claim: r 6= s.

Since r − s ≡ a(k − ℓ) mod p, p is prime and both a and k − ℓ are
nonzero modulo p, their product must also be nonzero modulo p.

Therefore, when computing any hab ∈ Hpm, distinct inputs k and ℓ

map to distinct values r and s modulo p. I.e., there are no collisions
yet at the “mod p level”. Each of the possible p(p − 1) choices for
the pair (a, b), with a 6= 0, yields a different resulting pair (r , s), with
r 6= s, since we can solve for a and b, given r and s: Indeed

a = ((r − s)((k − ℓ)−1 mod p)) mod p

b = (r − ak) mod p.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 28 / 47



Hash Tables Hash Functions

Universality of Hpm (Cont’d)

Since there are only p(p − 1) possible pairs (r , s), with r 6= s, there is
a one-to-one correspondence between pairs (a, b), with a 6= 0, and
pairs (r , s), with r 6= s.

Thus, for any given pair of inputs k and ℓ, if we pick (a, b) uniformly
at random from Z

∗
p ×Zp, the resulting pair (r , s) is equally likely to

be any pair of distinct values modulo p.

Therefore, the probability that distinct keys k and ℓ collide is equal to
the probability that r ≡ s (mod m), when r and s are randomly
chosen as distinct values modulo p.

For a given value of r , of the p − 1 possible remaining values for s,
the number of values s such that s 6= r and s ≡ r (mod m) is at
most ⌈ p

m
⌉ − 1 ≤ p+m−1

m
− 1 = p−1

m
. The probability that s collides

with r when reduced modulo m is at most
p−1
m

p−1 = 1
m
. Therefore, for

any pair of distinct values k , ℓ ∈ Zp, Pr{hab(k) = hab(ℓ)} ≤ 1
m
.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 29 / 47



Hash Tables Open Addressing

Subsection 4

Open Addressing

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 30 / 47



Hash Tables Open Addressing

Idea Behind Open Addressing

In open addressing, all elements occupy the hash table itself, i.e.,
each table entry contains either an element of the dynamic set or NIL.

When searching for an element, we systematically examine table slots
until either we find the desired element or we have ascertained that
the element is not in the table.

No lists and no elements are stored outside the table.

In open addressing, the hash table can “fill up” so that no further
insertions can be made, whence the load factor α can never exceed 1.

Of course, we could store the linked lists for chaining inside the hash
table, in the otherwise unused hash-table slots, but the advantage of
open addressing is that it avoids pointers altogether.

Instead of following pointers, we compute the sequence of slots to be
examined.
Avoiding pointers provides the hash table with a larger number of slots
for the same amount of memory, potentially yielding fewer collisions
and faster retrieval.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 31 / 47



Hash Tables Open Addressing

Idea Behind Insertion

To perform insertion using open addressing, we successively examine,
or probe, the hash table until we find an empty slot in which to put
the key.

Instead of being fixed in the order 0, 1, . . . ,m − 1 (Θ(n) search time),
the sequence of positions probed depends upon the key being inserted.

To determine which slots to probe, we extend the hash function to
include the probe number (starting from 0) as a second input.

Thus, the hash function becomes

h : U × {0, 1, . . . ,m − 1} → {0, 1, . . . ,m − 1}.

With open addressing, we require that for every key k , the probe
sequence 〈h(k , 0), h(k , 1), . . . , h(k ,m − 1)〉 be a permutation of
〈0, 1, . . . ,m − 1〉, so that every hash-table position is eventually
considered as a slot for a new key as the table fills up.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 32 / 47



Hash Tables Open Addressing

The Hash Insert Procedure

Suppose the elements in the hash table T are keys with no satellite
information and key k is identical to the element containing key k .

Each slot contains either a key or NIL (if the slot is empty).

The input is a hash table T and a key k .

The output is the slot number where k is stored or an “overflow”.

HashInsert(T , k)

1. i = 0

2. repeat

3. j = h(k , i)

4. if T [j ] == NIL

5. T [j ] = k

6. return j

7. else i = i + 1

8. until i == m

9. error “hash table overflow”

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 33 / 47



Hash Tables Open Addressing

The Hash Search Procedure

The algorithm for searching for key k probes the same sequence of
slots that the insertion algorithm examined when key k was inserted.

The search can terminate (unsuccessfully) when it finds an empty
slot, since k would have been inserted there and not later in its probe
sequence (assuming that keys are not deleted from the table).

HashSearch takes as input a hash table T and a key k .

It returns j if slot j contains key k , or NIL if key k is not in T .

HashSearch(T , k)

1. i = 0
2. repeat
3. j = h(k , i)
4. if T [j ] == k

5. return j
6. i = i + 1
7. until T [j ] == NIL or i == m
8. return NIL

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 34 / 47



Hash Tables Open Addressing

Deletion in Open Addressing

Deletion from an open-address hash table is difficult:

When we delete a key from slot i , we cannot simply mark that slot as
empty by storing NIL in it.

If we did, we might be unable to retrieve any key k during whose
insertion we had probed slot i and found it occupied.

We can solve this problem by marking the slot, storing in it the
special value DELETED instead of NIL.

We would then modify the procedure HashInsert to treat such a
slot as if it were empty so that we can insert a new key there.

We do not need to modify HashSearch, since it will pass over
DELETED values while searching.

When we use DELETED, search times no longer depend on the load
factor α, and for this reason chaining is more commonly selected as a
collision resolution technique when keys must be deleted.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 35 / 47



Hash Tables Open Addressing

Techniques for Approximating Uniform Hashing

We assume uniform hashing: the probe sequence of each key is
equally likely to be any of the m permutations of 〈0, 1, . . . ,m − 1〉.

Uniform hashing generalizes the notion of simple uniform hashing
defined earlier to a hash function that produces not just a single
number, but a whole probe sequence.
We examine three techniques to compute the probe sequences for
open addressing:

linear probing;
quadratic probing;
double hashing.

These techniques all guarantee that 〈h(k , 0), h(k , 1), . . . , h(k ,m − 1)〉
is a permutation of 〈0, 1, . . . ,m − 1〉, for each key k .

None of these techniques fulfills the assumption of uniform hashing,
since none of them is capable of generating more than m2 different
probe sequences (uniform hashing requires m!).

Double hashing outputs the greatest number of probe sequences.
George Voutsadakis (LSSU) Introduction to Algorithms June 2023 36 / 47



Hash Tables Open Addressing

Linear Probing

Given an ordinary hash function h′ : U → {0, 1, . . . ,m − 1}, which we
refer to as an auxiliary hash function, the method of linear probing
uses the hash function

h(k , i) = (h′(k) + i) mod m, i = 0, 1, . . . ,m − 1.

Given key k :
We probe T [h′(k)],T [h′(k) + 1], . . . ,T [m− 1].
Then we wrap around to slots T [0],T [1], . . . ,T [h′(k)− 1].

Because the initial probe determines the entire probe sequence, there
are only m distinct probe sequences.

Linear probing is easy to implement, but it suffers from a problem
known as primary clustering: Long runs of occupied slots build up,
increasing the average search time.

Clusters arise because an empty slot preceded by i full slots gets filled
next with probability i+1

m
. Long runs of occupied slots tend to get

longer, and the average search time increases.
George Voutsadakis (LSSU) Introduction to Algorithms June 2023 37 / 47



Hash Tables Open Addressing

Quadratic Probing

Quadratic probing uses a hash function of the form

h(k , i) = (h′(k) + c1i + c2i
2) mod m,

where h′ is an auxiliary hash function, c1 and c2 are positive
auxiliary constants, and i = 0, 1, . . . ,m − 1.

The initial position probed is T [h′(k)]. Later positions probed are
offset by amounts depending quadratically on i .

This method works much better than linear probing, but to make full
use of the hash table, the values of c1, c2 and m are constrained.

If two keys have the same initial probe position, their probe sequences
are the same, since h(k1, 0) = h(k2, 0) implies h(k1, i) = h(k2, i).

This property leads to a milder form of clustering, called secondary

clustering.

As in linear probing, the initial probe determines the entire sequence,
and so only m distinct probe sequences are used.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 38 / 47



Hash Tables Open Addressing

Double Hashing

Double hashing uses a hash function of the form

h(k , i) = (h1(k) + ih2(k)) mod m,

where both h1 and h2 are auxiliary hash functions.

The initial probe goes to position T [h1(k)].

Successive probe positions are offset from previous posi-
tions by the amount h2(k), modulo m. Unlike the case of
linear or quadratic probing, the probe sequence depends in
two ways upon the key k , since the initial probe position,
the offset, or both, may vary.
The value h2(k) must be relatively prime to the hash-table size m for
the entire hash table to be searched.

A convenient way to ensure this condition is to let m be a power of 2
and to design h2 so that it always produces an odd number.
Another way is to let m be prime and to design h2 so that it always
returns a positive integer less than m.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 39 / 47



Hash Tables Perfect Hashing

Subsection 5

Perfect Hashing

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 40 / 47



Hash Tables Perfect Hashing

Perfect Hashing

We call a hashing technique perfect hashing if the worst-case
number of memory accesses required to perform a search is O (1).

The basic idea to create a perfect hashing scheme is simple: We use a
two-level hashing scheme with universal hashing at each level.

In the first level the n keys are hashed into m slots using a hash
function h carefully selected from a family of universal hash functions.
Instead of making a list of the keys hashing to slot j , we use a small
secondary hash table Sj with an associated hash function hj . By
choosing the hj ’s carefully, we can avoid collisions at the second level.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 41 / 47



Hash Tables Perfect Hashing

Second Level Hashing

To guarantee that there are no collisions at the secondary level we
need to let the size mj of hash table Sj be the square of the number
nj of keys hashing to slot j .

This quadratic dependence of mj on nj may seem to require excessive
storage, but we show that a good choice of the first level hash function
keeps the expected total amount of space used at O (n).

We use hash functions chosen from the universal classes of hash
functions Hp,m, where p is a prime greater than any key value.

Those keys hashing to slot j are re-hashed into a secondary hash table
Sj of size mj using a hash function hj chosen from the class Hp,mj

.

First, we determine how to ensure that the secondary tables have no
collisions.
Second, we show that the expected amount of memory used overall -
for the primary hash table and all the secondary hash tables - is O (n).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 42 / 47



Hash Tables Perfect Hashing

Secondary Hashing Without Collisions

Theorem

Suppose that we store n keys in a hash table of size m = n2 using a hash
function h randomly chosen from a universal class of hash functions.
Then, the probability is less than 1

2 that there are any collisions.

There are
(

n
2

)

pairs of keys that may collide. Each pair collides with
probability 1

m
if h is chosen at random from a universal family H of

hash functions. Let X be a random variable that counts the number
of collisions. When m = n2, the expected number of collisions is
E [X ] =

(

n
2

)

1
n2

= n2−n
2

1
n2

< 1
2 . Applying Markov’s inequality,

Pr{X ≥ t} ≤ E [X ]
t

. Taking t = 1, completes the proof.

Given a static set K of n keys to be hashed, it is easy to find a
collision-free hash function h with a few random trials.

To deal with excessive table size m = n2, we use the theorem only to
hash the entries at the second level (within each slot).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 43 / 47



Hash Tables Perfect Hashing

Towards Achieving Linearity of Space

We now show that the overall memory used is O (n).

Since the size mj of the jth secondary hash table grows quadratically
with the number nj of keys stored, we run the risk that the overall
amount of storage could be excessive.

If the first-level table size is m = n, then the amount of memory used
is O (n) for

the primary hash table,
the storage of the sizes mj of the secondary hash tables,
the storage of the parameters aj and bj defining the secondary hash
functions hj drawn from the class Hp,mj

.

The following results provide a bound on:

the expected combined sizes of all the secondary hash tables;
the probability that the combined size of all the secondary hash tables
is superlinear (that it equals or exceeds 4n).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 44 / 47



Hash Tables Perfect Hashing

Expected Combined Size of Secondary Hash Tables

Theorem

Suppose that we store n keys in a hash table of size m = n using a hash
function h randomly chosen from a universal class of hash functions.

Then, we have E
[

∑m−1
j=0 n2j

]

< 2n, where nj is the number of keys

hashing to slot j .

We start with a2 = a + 2
(

a
2

)

. We have

E
[

∑m−1
j=0 n2j

]

= E
[

∑m−1
j=0

(

nj + 2
(

nj
2

))

]

= E
[

∑m−1
j=0 nj

]

+

2E
[

∑m−1
j=0

(

nj
2

)

]

= E [n] + 2E
[

∑m−1
j=0

(

nj
2

)

]

= n + 2E
[

∑m−1
j=0

(

nj
2

)

]

.

The sum
∑m−1

j=0

(

nj
2

)

is just the total number of pairs of keys that
collide. By the properties of universal hashing, the expected value of
this summation is at most

(

n
2

)

1
m

= n(n−1)
2m = n−1

2 . Thus,

E
[

∑m−1
j=0 n2j

]

≤ n + 2n−1
2 = 2n − 1 < 2n.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 45 / 47



Hash Tables Perfect Hashing

Expected Space for Secondary Hash Tables

Corollary

Suppose that we store n keys in a hash table of size m = n using a hash
function h randomly chosen from a universal class of hash functions, and
we set the size of each secondary hash table to mj = n2j , for j = 0, 1,
. . . ,m − 1. Then, the expected amount of storage required for all
secondary hash tables in a perfect hashing scheme is less than 2n.

Since mj = n2j , for j = 0, 1, . . . ,m − 1, the theorem gives

E





m−1
∑

j=0

mj



 = E





m−1
∑

j=0

n2j



 < 2n.

This completes the proof.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 46 / 47



Hash Tables Perfect Hashing

Probability of Large Secondary Hash Table Storage Space

Corollary

Suppose that we store n keys in a hash table of size m = n using a hash
function h randomly chosen from a universal class of hash functions, and
we set the size of each secondary hash table to mj = n2j , for j = 0, 1,

. . . ,m − 1. Then, the probability is less than 1
2 that the total storage used

for secondary hash tables equals or exceeds 4n.

We apply Markov’s inequality Pr{X ≥ t} ≤ E [X ]
t

, with X =
∑m−1

j=0 mj

and t = 4n.

Recalling that E
[

∑m−1
j=0 mj

]

< 2n, we get

Pr







m−1
∑

j=0

mj ≥ 4n







≤
E
[

∑m−1
j=0 mj

]

4n
<

2n

4n
=

1

2
.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 47 / 47


	Outline
	Hash Tables
	Direct-Address Tables
	Hash Tables
	Hash Functions
	Open Addressing
	Perfect Hashing


