
Introduction to Algorithms

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 1 / 36



Outline

1 Binary Search Trees
Defining Binary Search Trees
Querying a Binary Search Tree
Insertion and Deletion
Randomly Built Binary Search Trees

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 2 / 36



Binary Search Trees Defining Binary Search Trees

Subsection 1

Defining Binary Search Trees

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 3 / 36



Binary Search Trees Defining Binary Search Trees

Binary Search Trees

A binary search tree is organized in a binary tree:

We can represent such a tree by a linked
data structure in which each node is an
object.

In addition to a key and satellite data, each node contains attributes:

left, pointing to its left child;
right, pointing to its right child;
p, pointing to its parent.

If a child or the parent is missing, the appropriate field contains the
value NIL.

The keys are always stored in such a way as to satisfy the binary
search tree property: Let x be a node in a binary search tree.

If y is a node in the left subtree of x , then y .key ≤ x .key.
If y is a node in the right subtree of x , then y .key ≥ x .key.
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Binary Search Trees

We can print out all the keys in a binary search tree in sorted order by
a simple recursive algorithm, called an inorder tree walk.

It is so named because the key of the root of a subtree is printed
between the values in its left subtree and those in its right subtree.

To use the following procedure to print all the elements in a binary
search tree T , we call InorderTreeWalk(T .root):

InorderTreeWalk(x)

1. if x 6= NIL

2. InorderTreeWalk(x .left)

3. print x .key

4. InorderTreeWalk(x .right)
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Illustration of Inorder Tree Walk

The inorder tree walk prints the keys in each of the two binary search
trees in the order

2, 3, 5, 5, 7, 8.

The correctness of the algorithm follows by induction directly from
the binary-search-tree property.
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Time for Inorder Tree Walk

Theorem

If x is the root of an n-node subtree, then InorderTreeWalk(x) takes
Θ(n) time.

Let T (n) denote the time taken by InorderTreeWalk when it is
called on the root of an n-node subtree.

Since it visits all n nodes of the subtree, we have T (n) = Ω(n).
It remains to show that T (n) = O (n).
Since InorderTreeWalk takes a small, constant amount of time on
an empty subtree (for the test x 6= NIL), we have T (0) = c , for some
constant c > 0.
For n > 0, suppose that InorderTreeWalk is called on a node x

whose left subtree has k nodes and whose right subtree has n− k − 1
nodes.
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Time of Inorder Tree Walk (Cont’d)

The time to perform InorderTreeWalk(x) is bounded by

T (n) ≤ T (k) + T (n − k − 1) + d ,

for some constant d > 0 that reflects an upper bound on the time to
execute the body of InorderTreeWalk(x), exclusive of the time
spent in recursive calls. We use the substitution method to show that
T (n) = O (n) by proving that T (n) ≤ (c + d)n+ c .

For n = 0, we have (c + d) · 0 + c = c = T (0).
For n > 0, we have

T (n) ≤ T (k) + T (n − k − 1) + d

= ((c + d)k + c) + ((c + d)(n − k − 1) + c) + d

= (c + d)n + c − (c + d) + c + d

= (c + d)n + c .
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Subsection 2

Querying a Binary Search Tree
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Searching a Binary Search Tree

Besides Search, which searches for a key stored in a binary search
tree, binary search trees can support the queries Minimum,
Maximum, Successor and Predecessor.

We examine these operations and show how to support each one in
time O (h) on any binary search tree of height h.

Searching: Given a pointer to the root of the tree and a key k ,
TreeSearch returns a pointer to a node with key k , if one exists,
and NIL, otherwise.

TreeSearch(x , k)

1. if x == NIL or k == x .key

2. return x

3. if k < x .key

4. return TreeSearch(x .left, k)

5. else return TreeSearch(x .right, k)

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 10 / 36



Binary Search Trees Querying a Binary Search Tree

Illustration of Tree Search

The procedure begins its search at the root and traces a path
downward:

For each node x it encounters, it compares the key k , with x .key.
If the two keys are equal, the search terminates.
If k is smaller than x .key, the search continues in the left subtree of x .
If k is larger than x .key, the search continues in the right subtree.

The nodes encountered during search form a path downward from the
root. Thus, the running time of TreeSearch is O (h), where h is
the height of the tree.
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Replacing Recursion by Iteration

The same procedure can be written iteratively by “unrolling” the
recursion into a while loop.

On most computers, this version is more efficient:

IterativeTreeSearch(x , k)

1. while x 6= NIL and k 6= x .key

2. if k < x .key

3. x = x .left

4. else x = x .right

5. return x
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Minimum in a Binary Search Tree

We find an element whose key is a minimum by following left child
pointers from the root until we encounter a NIL.

The following procedure returns a pointer to the minimum element in
the subtree rooted at a given node x , assumed to be non-NIL.

TreeMinimum(x)

1. while x .left 6= NIL

2. x = x .left

3. return x

The binary-search-tree property guarantees correctness:

If a node x has no left subtree, then since every key in the right subtree
of x is at least as large as x .key, the minimum key in the subtree
rooted at x is x .key.
If node x has a left subtree, then since no key in the right subtree is
smaller than x .key and every key in the left subtree is not larger than
x .key, the minimum key resides in the subtree rooted at x .left.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 13 / 36



Binary Search Trees Querying a Binary Search Tree

Maximum in a Binary Search Tree

The pseudocode for TreeMaximum is symmetric:

TreeMaximum(x)

1. while x .right 6= NIL

2. x = x .right

3. return x

Correctness is similar to that of TreeMinimum.

Both of these procedures run in O (h) time on a tree of height h:

As in TreeSearch, the sequence of nodes encountered forms a
simple path downward from the root.
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Successor and Predecessor

If all keys are distinct, the successor of a node x is the node with the
smallest key greater than x .key.

The structure of a binary search tree allows us to determine the
successor of a node without ever comparing keys.

The following procedure returns the successor of a node x in a binary
search tree if it exists, and NIL if x has the largest key in the tree.

TreeSuccessor(x)

1. if x .right 6= NIL

2. return TreeMinimum(x .right)

3. y = x .p

4. while y 6= NIL and x == y .right

5. x = y

6. y = y .p

7. return y
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Correctness and Running Time of Successor

We break the code for TreeSuccessor into two cases:

If the right subtree of node x is nonempty, then the successor of x is
just the leftmost node in x ’s right subtree. This we find by calling
TreeMinimum(x .right).
If the right subtree of node x is empty and x has a successor y , then y

is the lowest ancestor of x whose left child is also an ancestor of x . To
find y , we simply go up the tree from x until we encounter a node that
is the left child of its parent.

The running time of TreeSuccessor (and TreePredecessor,
which is symmetric) on a tree of height h is O (h), since we either
follow a simple path up or a simple path down the tree.

Theorem

We can implement the dynamic-set operations Search, Minimum,
Maximum, Successor and Predecessor so that each one runs in
O (h) time on a binary search tree of height h.
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Subsection 3

Insertion and Deletion
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Insertion in a Binary Search Tree

To insert a new value v into a binary search tree T , we use the
procedure TreeInsert.

It takes a node z for which z .key = z .left = NIL, and z .right = NIL.

It modifies T and some of the attributes of z in such a way that it
inserts z into an appropriate position in the tree.
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TreeInsert(T )

TreeInsert(T )

1. y = NIL

2. x = T .root

3. while x 6= NIL

4. y = x

5. if z .key < x .key

6. x = x .left

7. else x = x .right

8. z .p = y

9. if y == NIL

10. T .root = z

11. elseif z .key < y .key

12. y .left = z

13. else y .right = z
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How Tree Insertion Works

TreeInsert begins at the root
of the tree and traces a path
downward.
The pointer x traces the path,
and the pointer y is maintained
as the parent of x .

After initialization, the while loop causes these two pointers to move
down the tree, going left or right depending on the comparison of
z .key with x .key, until x is set to NIL.

This NIL occupies the position where we wish to place the item z .

Lines 8-13 set the pointers that cause z to be inserted.

Like the other primitive operations on search trees, the procedure
TreeInsert runs in O (h) time on a tree of height h.
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Deleting a Node

Deleting a node z from a binary search tree consists of three cases:

If z has no children, we simply remove it by modifying its parent to
replace z by NIL.
If z has a single child, we elevate the child to assume z ’s position in
the tree by modifying z ’s parent to replace z by z ’s child.
If z has two children, then we must find z ’s successor y , which lies in
z ’s right subtree, and have y assume z ’s position in the tree.

The rest of z ’s original right subtree becomes y ’s right subtree.
z ’s left subtree becomes y ’s left subtree.

The process is tricky because it matters whether y is z ’s right child.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 21 / 36



Binary Search Trees Insertion and Deletion

Deletion: The First Cases

The procedure for deleting a given node z from a binary search tree
T takes as arguments pointers to T and z .

It organizes its cases a bit differently as follows:

If z has no left child, then we replace z by its right child, which may or
may not be NIL.

When z ’s right child is NIL, this case deals with the situation in which
z has no children.
When z ’s right child is non-NIL, this case handles the situation in
which z has just one child, which is its right child.

If z has just one child, which is its left child, then we replace z by its
left child.
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Deletion: The Remaining Case

Otherwise, z has both a left and a right child. We find z ’s successor
y , which lies in z ’s right subtree and has no left child. We want to
splice y out of its current location and have it replace z in the tree.

If y is z ’s right child, then we replace z by y , leaving y ’s right child
alone.
Otherwise, y lies within z ’s right subtree but is not z ’s right child.
We replace y by its own right child x .
We set y to be r ’s (z ’s right child) parent.
Finally, we replace z by y .
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Transplanting a Subtree

To move subtrees around within the binary search tree, we define a
subroutine Transplant, which replaces one subtree as a child of its
parent with another subtree.

When Transplant replaces the subtree rooted at node u with the
subtree rooted at node v , node u’s parent becomes node v ’s parent,
and u’s parent ends up having v as its appropriate child.

Transplant(T , u, v)

1. if u.p == NIL

2. T .root = v

3. elseif u == u.p.left

4. u.p.left = v

5. else u.p.right = v

6. if v 6= NIL

7. v .p = u.p
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How Transplant Works

Lines 1-2 handle the case in which u is the root of T .

Otherwise, u is either a left child or a right child of its parent.

Lines 3-4 take care of updating u.p.left if u is a left child.
Line 5 updates u.p.right if u is a right child.

We allow v to be NIL, and Lines 6-7 update v .p if v is non-NIL.

Note that Transplant does not attempt to update v .left and
v .right; doing so, or not doing so, is the responsibility of
Transplant’s caller.
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Deletions Using Transplant

With the Transplant procedure in hand, the procedure that deletes
node z from a binary search tree T is:

TreeDelete(T , z)

1. if z .left == NIL

2. Transplant(T , z , z .right)

3. elseif z .right == NIL

4. Transplant(T , z , z .left)

5. else y = TreeMinimum(z .right)

6. if y .p 6= z

7. Transplant(T , y , y .right)

8. y .right = z .right

9. y .right.p = y

10. Transplant(T , z , y)

11. y .left = z .left

12. y .left.p = y
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How Deletion Works

The TreeDelete procedure executes the four cases as follows.

Lines 1-2 handle the case in which node z has no left child;
Lines 3-4 handle the case in which z has a left child but no right child.
Lines 5-12 deal with the remaining two cases, in which z has two
children.
Line 5 finds node y , which is the successor of z . Because z has a
nonempty right subtree, its successor must be the node in that subtree
with the smallest key, whence the call to TreeMinimum(z .right). As
we noted before, y has no left child. We want to splice y out of its
current location, and it should replace z in the tree.

If y is z ’s right child, then Lines 10-12 replace z as a child of its parent
by y and replace y ’s left child by z ’s left child.
If y is not z ’s left child, Lines 7-9 replace y as a child of its parent by
y ’s right child and turn z ’s right child into y ’s right child. Then Lines
10-12 replace z as a child of its parent by y and replace y ’s left child
by z ’s left child.
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Time Requirements

Each line of TreeDelete, including the calls to Transplant,
takes constant time, except for the call to TreeMinimum in Line 5.

Thus, TreeDelete runs in O (h) time on a tree of height h.

Theorem

We can implement the dynamic-set operations Insert and Delete so
that each one runs in O (h) time on a binary search tree of height h.
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Subsection 4

Randomly Built Binary Search Trees
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Randomly Built Binary Search Trees

The height of a binary search tree varies as items are inserted and
deleted.

If the n items are inserted in strictly increasing order, the tree will be a
chain with height n − 1.
Also, h ≥ ⌊log n⌋.

We can show that the behavior of the average case is much closer to
the best case than to the worst case.

Unfortunately, little is known about the average height of a binary
search tree when both insertion and deletion are used to create it.
When the tree is created by insertion alone, the analysis becomes more
tractable.

We define a randomly built binary search tree on n keys as one
that arises from inserting the keys in random order into an initially
empty tree, where each of the n! permutations of the input keys is
equally likely.
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Expected Height of a Randomly Built Tree

Theorem

The expected height of a randomly built binary search tree on n distinct
keys is O (log n).

We define three random variables that help measure the height of a
randomly built binary search tree:

The height of a randomly built binary search on n keys is Xn;
The exponential height is Yn = 2Xn .
When we build a binary search tree on n keys, we choose one key as
that of the root, and we let Rn denote the random variable that holds
this key’s rank within the set of n keys, i.e., Rn holds the position that
this key would occupy if the set of keys were sorted. The value of Rn is
equally likely to be any element of the set {1, 2, . . . , n}.

If Rn = i , then the left subtree of the root is a randomly built binary
search tree on i − 1 keys, and the right subtree is a randomly built
binary search tree on n− i keys.
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Expected Height (Cont’d)

Because the height of a binary tree is 1 more than the larger of the
heights of the two subtrees of the root, the exponential height of a
binary tree is twice the larger of the exponential heights of the two
subtrees of the root: If we know that Rn = i , it follows that
Yn = 2 ·max {Yi−1,Yn−i}.

As base cases, we have that Y1 = 1, because the exponential height of
a tree with 1 node is 20 = 1 and, for convenience, we define Y0 = 0.

Next, define indicator random variables Zn,1,Zn,2, . . . ,Zn,n, where
Zn,i = I{Rn = i}. Because Rn is equally likely to be any element of
{1, 2, . . . , n}, it follows that Pr{Rn = i} = 1

n
, for i = 1, 2, . . . , n.

Hence, we have E [Zn,i ] =
1
n
, for i = 1, 2, . . . , n.

Because exactly one value of Zn,i is 1 and all others are 0,
Yn =

∑

n

i=1 Zn,i(2 ·max (Yi−1,Yn−i )).

We shall show that E [Yn] is polynomial in n, which will ultimately
imply that E [Xn] = O (log n).
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Zn,i is independent of the values of Yi−1 and Yn−i

Claim: The indicator random variable Zn,i = I{Rn = i} is
independent of the values of Yi−1 and Yn−i .

Suppose Rn = i has been chosen.

The left subtree (whose exponential height is Yi−1) is randomly built
on the i − 1 keys whose ranks are less than i . This subtree is just like
any other randomly built binary search tree on i − 1 keys. Other than
the number of keys it contains, this subtree’s structure is not affected
at all by the choice of Rn = i . Hence, the random variables Yi−1 and
Zn,i are independent.
Likewise, the right subtree, whose exponential height is Yn−i , is
randomly built on the n − i keys whose ranks are greater than i . Its
structure is independent of the value of Rn, and so the random
variables Yn−i and Zn,i are independent.
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Obtaining a Recurrence for E [Yn]

Now we have:

E [Yn] = E [
∑

n

i=1 Zn,i(2 ·max (Yi−1,Yn−i ))]

=
∑

n

i=1 E [Zn,i (2 ·max (Yi−1,Yn−i ))]

=
∑

n

i=1 E [Zn,i ]E [2 ·max (Yi−1,Yn−i )]

=
∑

n

i=1
1
n
E [2 ·max (Yi−1,Yn−i )]

=
2

n

∑

n

i=1 E [max (Yi−1,Yn−i )]

≤
2

n

∑

n

i=1(E [Yi−1] + E [Yn−i ]).

Since each term E [Y0],E [Y1], . . . ,E [Yn−1] appears twice in the last
summation, once as E [Yi−1] and once as E [Yn−i ], we have the
recurrence

E [Yn] ≤
4

n

n−1
∑

i=0

E [Yi ].
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Solving the Recurrence for E [Yn]

Claim: For all integers n > 0, the recurrence E [Yn] ≤
4
n

∑

n−1
i=0 E [Yi ]

has the solution

E [Yn] ≤
1

4

(

n + 3

3

)

.

We use the identity
∑

n−1
i=0

(

i+3
3

)

=
(

n+3
4

)

.
For the base cases, we have

E [Y0] = Y0 = 0 ≤ 1
4
= 1

4

(

3
3

)

= 1
4

(

0+3
3

)

;

E [Y1] = Y1 = 1 ≤
1
4
· 4 = 1

4

(

4
3

)

= 1
4

(

1+3
3

)

.

For the inductive case, we have that

E [Yn] ≤ 4
n

∑n−1
i=0 E [Yi ] ≤

4
n

∑n−1
i=0

1
4

(

i+3
3

)

= 1
n

∑

n−1
i=0

(

i+3
3

)

= 1
n

(

n+3
4

)

= 1
n

(n+3)!
4!(n−1)! =

1
4
(n+3)!
3!n! = 1

4

(

n+3
3

)

.
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Bounding E [Xn]

We have bounded E [Yn], but our ultimate goal is to bound E [Xn].

Since the function f (x) = 2x is convex, we can employ Jensen’s
inequality: 2E [Xn] ≤ E [2Xn ] = E [Yn].

2E [Xn] ≤ 1
4

(

n+3
3

)

=
1

4

(n + 3)(n + 2)(n + 1)

6

=
n3 + 6n2 + 11n + 6

24
.

Taking logarithms of both sides gives E [Xn] = O (log n).
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