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Dynamic Programming Rod Cutting

Subsection 1

Rod Cutting
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Dynamic Programming Rod Cutting

The Rod-Cutting Problem

Our first example uses dynamic programming to solve a simple
problem in deciding where to cut steel rods.

Long steel rods are bought and cut into shorter rods, which are then
sold. Each cut is free. The management wants to know the most
profitable way to cut up the rods.

We work under the following hypotheses:

We know, for i = 1, 2, . . ., the price pi in dollars that is charged for a
rod of length i inches;
Rod lengths are always an integral number of inches.

The rod-cutting problem is the following:

Given a rod of length n inches and a table of prices pi , i = 1, 2, . . . , n,
determine the maximum revenue rn obtainable by cutting up the rod
and selling the pieces.

Note that if the price pn for a rod of length n is large enough, an
optimal solution may require no cutting at all.
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Dynamic Programming Rod Cutting

Illustration for n = 4

Consider the case when n = 4. Assume pricing, given by

length i 1 2 3 4 5 6 7 8 9 10

price pi 1 5 8 9 10 17 17 20 24 30

The ways to cut up a rod of 4 inches in length, including the way
with no cuts at all is shown here:

We see that cutting a 4-inch rod into two 2-inch pieces produces
revenue p2 + p2 = 5 + 5 = 10, which is optimal.

We can cut up a rod of length n in 2n−1 different ways, since we have
an independent option of cutting, or not cutting, at distance i inches
from the left end.
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Dynamic Programming Rod Cutting

Considering Smaller Problems

We denote a decomposition in sum notation.

E.g., 7 = 2 + 2 + 3 means that a rod of length 7 is cut into three
pieces with length 2, 2 and 3.

If an optimal solution cuts a rod of length n into k pieces, then an
optimal decomposition n = i1 + i2 + · · ·+ ik provides maximum
corresponding revenue rn = pi1 + pi2 + · · ·+ pik .

We can frame the values rn, for n ≥ 1, in terms of optimal revenues
from shorter rods:

rn = max (pn, r1 + rn−1, r2 + rn−2, . . . , rn−1 + r1).

Since we do nor know ahead of time which value of i optimizes
revenue, we have to consider all possible values for i and pick the one
that maximizes revenue.

We also have the option of picking no i at all if we can obtain more
revenue by selling the rod uncut.
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Dynamic Programming Rod Cutting

Optimal Substructure

Thus, to solve the original problem of size n, we solve smaller
problems of the same type, but of smaller sizes.

Once we make the first cut, we may consider the two pieces as
independent instances of the rod-cutting problem.

The overall optimal solution incorporates optimal solutions to the two
related subproblems, maximizing revenue from each of those two
pieces.

We say that the rod-cutting problem exhibits optimal substructure:

Optimal solutions to a problem incorporate optimal solutions to
related subproblems, which we may solve independently.
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Dynamic Programming Rod Cutting

An Alternative Formulation

In a slightly simpler way to arrange a recursive structure for the rod
cutting problem, we view a decomposition as consisting of a first
piece of length i cut off the left-hand end, and then a right-hand
remainder of length n− i .

Only the remainder, and not the first piece, may be further divided.

The solution with no cuts at all has first piece of size i = n and
revenue pn and the remainder size 0 with corresponding revenue
r0 = 0.

Overall, we obtain the simpler version

rn = max
1≤i≤n

(pi + rn−i ).

In this formulation, an optimal solution embodies the solution to only
one related subproblem rather than two.
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Dynamic Programming Rod Cutting

Recursive Top-Down Implementation

The following procedure implements the computation in a
straightforward, top-down, recursive manner.

CutRod(p, n)

1. if n == 0

2. return 0

3. q = −∞

4. for i = 1 to n

5. q = max (q, p[i ] +CutRod(p, n − i))

6. return q

Procedure CutRod takes as input an array p[1 . . . n] of prices and an
integer n, and returns the max revenue possible for a rod of length n.

If n = 0, no revenue is possible, and so CutRod returns 0 in Line 2.
Line 3 initializes the maximum revenue q to −∞, so that the for loop in
Lines 4-5 correctly computes q = max1≤i≤n (pi +CutRod(p, n − i)).
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Dynamic Programming Rod Cutting

Running Time Explosion

Once the input size becomes moderately large, CutRod would take
a long time to run: For n = 40, the program takes at least several
minutes, and most likely more than an hour. Each time n is increased
by 1, the program’s running time would approximately double.

CutRod is inefficient because it calls itself recursively over and over
again with the same parameter values.

In fact, it solves the same subprob-
lems repeatedly. E.g. for n = 4:
CutRod(p, n) calls CutRod(p, n−
i) for i = 1, 2, . . . , n. Equivalently,
CutRod(p, n) calls CutRod(p, j),
for each j = 0, 1, . . . , n − 1.

When this process unfolds recursively, the amount of work done, as a
function of n, grows explosively.
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Dynamic Programming Rod Cutting

Running Time of CutRod

Let T (n) denote the total number of calls made to CutRod when
called with its second parameter equal to n.

This expression equals the number of nodes in a subtree whose root is
labeled n in the recursion tree.

Since the count includes the initial call at its root, T (0) = 1 and
T (n) = 1 +

∑n−1
j=0 T (j).

The solution is T (n) = 2n, whence the running time of CutRod is
exponential in n.

This should not be surprising since CutRod considers all 2n−1

possible ways of cutting up a rod of length n.

The dynamic programming method is used to convert CutRod into
an efficient algorithm.
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Dynamic Programming Rod Cutting

Dynamic Programming: Time vs. Space Tradeoff

Instead of computing the same subproblems repeatedly, each
subproblem is solved only once and its solution is saved.

If the solution is needed again later, it is looked up rather than being
recomputed.

Dynamic programming thus uses additional memory to save
computation time, i.e., is an example of a time-memory trade-off.

An exponential-time solution may be transformed in this way into a
polynomial-time solution.

A dynamic-programming approach runs in polynomial time when:

the number of distinct subproblems involved is polynomial in the input
size; and
we can solve each such subproblem in polynomial time.
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Dynamic Programming Rod Cutting

Top-Down With Memoization

There are two equivalent ways to implement a dynamic programming
approach.

The first approach is top-down with memoization.
In this approach, we write the procedure recursively in a natural
manner, but modified to save the result of each subproblem (usually in
an array or hash table).
The procedure now first checks to see whether it has previously solved
this subproblem.

If so, it returns the saved value, saving further computation at this level.
If not, the procedure computes the value in the usual manner.

We say that the recursive procedure has been memoized, i.e., it
“remembers” what results it has computed previously.
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Dynamic Programming Rod Cutting

Bottom-Up Method

There are two equivalent ways to implement a dynamic programming
approach.

The second approach is the bottom-up method.
This approach typically depends on some natural notion of the “size”
of a subproblem, such that solving any particular subproblem depends
only on solving “smaller” subproblems.
We sort the subproblems by size and solve them in that order.
When solving a particular subproblem, we have already solved all of the
smaller subproblems its solution depends upon, and we have saved
their solutions.
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Dynamic Programming Rod Cutting

The Top-Down Memoization Procedure

MemoizedCutRod(p, n)

1. let r [0 . . . n] be a new array
2. for i = 0 to n
3. r [i ] = −∞
4. return MemoizedCutRodAux(p, n, r)

MemoizedCutRodAux(p, n, r)

1. if r [n] ≥ 0
2. return r [n]
3. if n == 0
4. q = 0
5. else q = −∞
6. for i = 1 to n
7. q = max (q, p[i ] +MemoizedCutRodAux(p, n − i , r)
8. r [n] = q
9. return q
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Dynamic Programming Rod Cutting

How MemoizedCutRod Works

The main procedure MemoizedCutRod initializes a new auxiliary
array r [0 . . . n] with the value −∞, a convenient choice with which to
denote “unknown”.

It then calls its helper routine, MemoizedCutRodAux.

The procedure MemoizedCutRodAux is just the memoized
version of our previous procedure, CutRod.

It first checks in Line 1 to see whether the desired value is already
known.

If it is, then Line 2 returns it.
Otherwise, Lines 3-7 compute the desired value q in the usual manner.

Line 8 saves it in r [n];
Line 9 returns it.
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Dynamic Programming Rod Cutting

The Bottom Up Procedure

The bottom-up version is even simpler.

BottomUpCutRod(p, n)

1. let r [0 . . . n] be a new array

2. r [0] = 0

3. for j = 1 to n

4. q = −∞

5. for i = 1 to j

6. q = max (q, p[i ] + r [j − i ])

7. r [j ] = q

8. return r [n]

For the bottom-up approach, BottomUpCutRod uses the natural
ordering of the subproblems: A problem of size i is “smaller” than a
subproblem of size j if i < j .

The procedure solves subproblems of sizes j = 0, 1, . . . , n, in order.
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Dynamic Programming Rod Cutting

How the Bottom-Up Procedure Works

Line 1 of procedure BottomUpCutRod creates a new array
r [0 . . . n] in which to save the results of the subproblems.

Line 2 initializes r [0] to 0, since a rod of length 0 earns no revenue.

Lines 3-6 solve each subproblem of size j , for j = 1, 2, . . . , n, in order
of increasing size.

The approach used to solve a problem of a particular size j is the
same as that used by CutRod, except that Line 6 now references
array entry r [j − i ] instead of making a recursive call.

Line 7 saves the solution in r [j].

Line 8 returns r [n], the optimal value for rn.

The bottom-up and top-down procedures have same asymptotic
running time Θ(n2).
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Dynamic Programming Rod Cutting

Subproblem Graphs

The subproblem graph of a problem shows the set of subproblems
and how they depend on one another.

The subproblem graph has a directed edge from the
vertex for subproblem x to the vertex for subproblem
y if determining an optimal solution for subproblem
x involves directly considering an optimal solution for
subproblem y .

We can think of the subproblem graph as a “reduced” or “collapsed”
version of the recursion tree for the top-down recursive method.

In this version we coalesce all nodes for the same subproblem into a
single vertex and direct all edges from parent to child.
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Dynamic Programming Rod Cutting

Reconstructing a Solution

To return an actual solution, we can extend the dynamic programming
approach to record a choice that led to the optimal value:

ExtendedBottomUpCutRod(p, n)

1. let r [0 . . . n] and s[0 . . . n] be new arrays
2. r [0] = 0
3. for j = 1 to n

4. q = −∞
5. for i = 1 to j

6. if q < p[i ] + r [j − i ]
7. q = p[i ] + r [j − i ]
8. s[j ] = i

9. r [j ] = q

10. return r and s

This imitates BottomUpCutRod, except that it creates the array
s in Line 1, and it updates s[j] in Line 8 to hold the optimal size i of
the first piece to cut off when solving a subproblem of size j .
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Dynamic Programming Rod Cutting

Printing the List of Sizes in an Optimal Cut

The following procedure takes a price table p and a rod size n.

It calls ExtendedBottomUpCutRod to compute the array
s[1 . . . n] of optimal first-piece sizes;
It then prints out the complete list of piece sizes in an optimal
decomposition of a rod of length n.

PrintCutRodSolution(p, n)

1. (r , s) = ExtendedBottomUpCutRod(p, n)

2. while n > 0

3. print s[n]

4. n = n − s[n]
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Dynamic Programming Rod Cutting

Illustration of Printing

In our rod-cutting example, ExtendedBottomUpCutRod(p, 10)
would return the following arrays:

i 0 1 2 3 4 5 6 7 8 9 10

r [i ] 0 1 5 8 10 13 17 18 22 25 30
s[i ] 0 1 2 3 2 2 6 1 2 3 10

A call to PrintCutRodSolution(p, 10) would print just 10.

A call with n = 7 would print the cuts 1 and 6, corresponding to the
first optimal decomposition for r7.
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Dynamic Programming Matrix-Chain Multiplication

Subsection 2

Matrix-Chain Multiplication
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Dynamic Programming Matrix-Chain Multiplication

Matrix-Chain Multiplication

We are given a sequence (chain) 〈A1,A2, . . . ,An〉 of n matrices to be
multiplied, and we wish to compute the product A1A2 · · ·An.

We can evaluate the expression as follows:

We parenthesize it to resolve all ambiguities concerning the order of
multiplication;
We then use the standard algorithm for multiplying pairs of matrices as
a subroutine.

Matrix multiplication is associative, and so all parenthesizations yield
the same product.
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Dynamic Programming Matrix-Chain Multiplication

Full Parenthesization

A product of matrices is fully parenthesized if it is either a single
matrix or the product of two fully parenthesized matrix products,
surrounded by parentheses.

Example: If the chain of matrices is 〈A1,A2,A3,A4〉, then we can
fully parenthesize the product A1A2A3A4 in five distinct ways:

(A1(A2(A3A4))),
(A1((A2A3)A4)),
((A1A2)(A3A4)),
((A1(A2A3))A4),
(((A1A2)A3)A4).
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Dynamic Programming Matrix-Chain Multiplication

Matrix Multiplication

How we parenthesize a chain of matrices can have a dramatic impact
on the cost of evaluating the product.

Consider first the cost of multiplying two matrices.

The standard algorithm is given by the following pseudocode:

MatrixMultiply(A,B)

1. if A.columns 6= B.rows

2. error “incompatible dimensions”

3. else let C be a new A.rows× B.columns matrix

4. for i = 1 to A.rows

5. for j = 1 to B.columns

6. cij = 0

7. for k = 1 to A.columns

8. cij = cij + aik · bkj
9. return C
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Dynamic Programming Matrix-Chain Multiplication

Parenthesization and Efficiency

If A is a p × q matrix and B is a q × r matrix, the resulting matrix C

is a p × r matrix. The time to compute C is dominated by the
number of scalar multiplications in Line 8, which is pqr .

Example: To compare costs due to different parenthesizations,
consider 〈A1,A2,A3〉, with dimensions 10× 100, 100× 5 and 5× 50.

If we multiply according to the parenthesization ((A1A2)A3), the total
cost in scalar multiplications is:

(10 · 100 · 5) + (10 · 5 · 50) = 7, 500;

If we multiply according to the parenthesization (A1(A2A3)), the total
cost in scalar multiplications is:

(100 · 5 · 50) + (10 · 100 · 50) = 75, 000.

Thus, computing the product according to the first parenthesization is
10 times faster.
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Dynamic Programming Matrix-Chain Multiplication

The Matrix-Chain Multiplication Problem

The Matrix-Chain Multiplication Problem:

Given a chain 〈A1,A2, . . . ,An〉 of n matrices, where for i = 1, 2, . . . , n,
matrix Ai has dimension pi−1 × pi , fully parenthesize A1A2 · · ·An in a
way that minimizes the number of scalar multiplications.

Note that in the matrix-chain multiplication problem:

We are not actually multiplying matrices.
The goal is only to determine an order for multiplying matrices that
has the lowest cost.

Typically, the time invested in determining this optimal order is more
than paid for by the time saved later on when actually performing the
matrix multiplications.
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Dynamic Programming Matrix-Chain Multiplication

Counting the Number of Parenthesizations

Exhaustively checking all possible parenthesizations is not efficient.

Denote the number of alternative parenthesizations by P(n).

When n = 1, P(1) = 1;
When n ≥ 2, a fully parenthesized matrix product is the product of two
fully parenthesized matrix subproducts.
The split between the two subproducts may occur between the kth and
(k + 1)st matrices, for any k = 1, 2, . . . , n− 1.

Thus, we obtain

P(n) =

{

1, if n = 1
∑n−1

k=1 P(k)P(n − k), if n ≥ 2
.

The solution to this recurrence is Ω(2n), whence the number of
possible solutions is exponential in n.

Exhaustive search is therefore a poor strategy.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 29 / 92



Dynamic Programming Matrix-Chain Multiplication

Applying Dynamic Programming to Parenthesize

To use the dynamic-programming method to determine how to
optimally parenthesize a matrix chain, we shall follow a four-step
sequence:

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.

We go through these steps in order, demonstrating clearly how we
apply each step to the problem.
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Dynamic Programming Matrix-Chain Multiplication

Step 1: Structure of an Optimal Parenthesization

We find the optimal substructure and then use it to construct an
optimal solution to the problem from optimal solutions to
subproblems.

We adopt the notation Ai ...j , where i ≤ j , for the matrix that results
from evaluating the product AiAi+1 · · ·Aj .

Observe that, if the problem is nontrivial, i.e., i < j , then to
parenthesize the product AiAi+1 · · ·Aj , we must split the product
between Ak and Ak+1, for some integer k in the range i ≤ k < j .
That is, for some k , we first compute the matrices Ai ...k and Ak+1...j

and then multiply them together to produce the final product Ai ...j .

The cost of parenthesizing this way consists of:

The cost of computing the matrix Ai ...k ;
The cost of computing Ak+1...j ;
The cost of multiplying them together.
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Dynamic Programming Matrix-Chain Multiplication

Step 1 (Cont’d)

The optimal substructure of this problem is as follows.

Suppose that to optimally parenthesize AiAi+1 · · ·Aj , we split the
product between Ak and Ak+1.

Then the way we parenthesize the “prefix” subchain AiAi+1 · · ·Ak

within this optimal parenthesization of AiAi+1 · · ·Aj must be an
optimal parenthesization of AiAi+1 · · ·Ak .

If there were a less costly way to parenthesize AiAi+1 · · ·Ak , then we
could substitute that parenthesization in the optimal parenthesization
of AiAi+1 · · ·Aj to produce another way to parenthesize AiAi+1 · · ·Aj

with cost lower than the optimum, a contradiction.

A similar observation holds for how we parenthesize the subchain
Ak+1Ak+2 · · ·Aj in the optimal parenthesization of AiAi+1 · · ·Aj .
It must be an optimal parenthesization of Ak+1Ak+2 · · ·Aj .
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Dynamic Programming Matrix-Chain Multiplication

Summary of Substructure Analysis

Optimal substructure shows that we can construct an optimal
solution to the problem from optimal solutions to subproblems.

We have seen that:

Any solution to a nontrivial instance of the matrix-chain multiplication
problem requires us to split the product;
Any optimal solution contains within it optimal solutions to subproblem
instances.

Thus, we can build an optimal solution to an instance by:

Splitting the problem into two subproblems (optimally parenthesizing
AiAi+1 · · ·Ak and Ak+1Ak+2 · · ·Aj);
Finding optimal solutions to subproblem instances;
Combining these optimal subproblem solutions.

When searching for the correct place to split the product, we must
consider all possible places so as to pick the optimal one.
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Dynamic Programming Matrix-Chain Multiplication

Step 2: A Recursive Solution

We pick as our subproblems the problems of determining the
minimum cost of parenthesizing AiAi+1 · · ·Aj , for 1 ≤ i ≤ j ≤ n.

Let m[i , j] be the minimum number of scalar multiplications needed
to compute the matrix Ai ...j . For the full problem, the lowest cost way
to compute A1...n would thus be m[1, n].

We can define m[i , j] recursively as follows.

If i = j , the problem is trivial; the chain consists of just one matrix
Ai ...i = Ai , so that no scalar multiplications are necessary to compute
the product. Thus, m[i , i ] = 0, for i = 1, 2. . . . , n.
To compute m[i , j ] when i < j , we assume that to optimally
parenthesize, we split AiAi+1 · · ·Aj between Ak and Ak+1, where
i ≤ k < j . Then, m[i , j ] equals the minimum cost for computing the
subproducts Ai ...k and Ak+1...j , plus the cost of multiplying these two
matrices together. Recalling that each matrix Ai is pi−1 × pi , we get
m[i , j ] = m[i , k ] +m[k + 1, j ] + pi−1pkpj .
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Dynamic Programming Matrix-Chain Multiplication

The Recursive Equation

The equation m[i , j] = m[i , k] +m[k + 1, j] + pi−1pkpj assumes that
we know the value of k , which we do not.

The possible values for k , are k = i , i + 1, . . . , j − 1.

Since the optimal parenthesization must use one of these values for k ,
we need only check them all to find the best.

Thus, our recursive definition for the minimum cost of parenthesizing
the product AiAi+1 · · ·Aj becomes

m[i , j] =

{

0, if i = j

mini≤k<j {m[i , k] +m[k + 1, j] + pi−1pkpj}, if i < j

We define s[i , j] to be a value of k at which we split AiAi+1 · · ·Aj in
an optimal parenthesization. That is, s[i , j] = k , such that

m[i , j] = m[i , k] +m[k + 1, j] + pi−1pkpj .
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Dynamic Programming Matrix-Chain Multiplication

Step 3: Computing the Optimal Costs

We implement a bottom-up method in MatrixChainOrder.

It assumes that matrix Ai has dimensions pi−1 × pi , i = 1, 2, . . . , n.

Its input is a sequence p = 〈p0, p1, . . . , pn〉, where p.length = n+ 1.

It uses an auxiliary table m[1 . . . n, 1 . . . n] for storing the m[i , j] costs
and another auxiliary table s[1 . . . n − 1, 2 . . . n] that records which
index of k achieved the optimal cost in computing m[i , j].

In bottom-up, the cost m[i , j] of computing a matrix-chain product of
j − i +1 matrices depends only on the costs of computing products of
fewer than j − i + 1 matrices. For k = i , i + 1, . . . , j − 1,

the matrix Ai ...k is a product of k − i + 1 < j − i + 1 matrices;
the matrix Ak+1...j is a product of j − k < j − i + 1 matrices.

The algorithm fills in the table m in a manner corresponding to solving
the parenthesization problem on matrix chains of increasing length.
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Dynamic Programming Matrix-Chain Multiplication

The Procedure MatrixChainOrder

MatrixChainOrder(p)

1. n = p.length− 1
2. let m[1 . . . n, 1 . . . n] and s[1 . . . n − 1, 2 . . . n] be new tables
3. for i = 1 to n

4. m[i , i ] = 0
5. for ℓ = 2 to n //ℓ is the chain length
6. for i = 1 to n − ℓ+ 1
7. j = i + ℓ− 1
8. m[i , j] = 1
9. for k = i to j − 1

10. q = m[i , k] +m[k + 1, j] + pi+1pkpj
11. if q < m[i , j]
12. m[i , j] = q

13. s[i , j] = k

14. return m and s
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Dynamic Programming Matrix-Chain Multiplication

How MatrixChainOrder Works

The algorithm computes m[i , i ] = 0 for i = 1, 2 . . . , n in Lines 3-4.

It then uses recurrence to compute m[i , i + 1], for i = 1, 2, . . . , n − 1,
during the first execution of the loop in Lines 5-13.

The second time through the loop, it computes m[i , i + 2], for
i = 1, . . . , n − 2, and so on.

At each step the m[i , j] cost computed in Lines 10-13 depends only on
the entries m[i , k] and m[k + 1, j] that have already been computed.
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Dynamic Programming Matrix-Chain Multiplication

Time and Space Requirements of MatrixChainOrder

The nested loop structure of MatrixChainOrder yields a running
time of O

(

n3
)

for the algorithm:

The loops are nested three deep, and each loop index (ℓ, i and k)
takes on at most n − 1 values.

The running time of this algorithm is in fact also Ω(n3).

The algorithm requires Θ(n2) space to store the m and s tables.

MatrixChainOrder is much more efficient than the exponential
time method of enumerating all possible parenthesizations and
checking each one.
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Dynamic Programming Matrix-Chain Multiplication

Step 4: Constructing an Optimal Solution

MatrixChainOrder determines the optimal number of scalar
multiplications needed to compute a matrix-chain product.

To show how to multiply the matrices, we look at the table
s[1 . . . n − 1; 2 . . . n].

Each entry s[i , j ] records a value of k , such that an optimal
parenthesization of AiAi+1 · · ·Aj splits the product between Ak and
Ak+1.

Thus, we know that the final matrix multiplication in computing
A1...n optimally is A1...s[1,n]As[1,n]+1...n.

We can determine the earlier matrix multiplications recursively:

s[1, s[1, n]] determines the last matrix multiplication when computing
A1...s[1,n];
s[s[1, n] + 1, n] determines the last matrix multiplication when
computing As[1,n]+1...n.
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Printing Optimal Parenthesization

The following recursive procedure prints an optimal parenthesization
of 〈Ai ,Ai+1, . . . ,Aj〉, given the s table computed by MatrixChain

Order and the indices i and j .

The initial call PrintOptimalParens(s, 1, n) prints an optimal
parenthesization of 〈A1,A2, . . . ,An〉.

PrintOptimalParens(s, i , j)

1. if i == j

2. print “Ai”

3. else print “(”

4. PrintOptimalParens(s, i , s[i , j ])

5. PrintOptimalParens(s, s[i , j ] + 1, j)

6. print “)”
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Subsection 3

Elements of Dynamic Programming
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Pattern in Optimal Substructure

A common pattern in discovering optimal substructure:

1. You show that a solution to the problem consists of making a choice,
such as choosing an index at which to split the matrix chain.
Making this choice leaves one or more subproblems to be solved.

2. You suppose that for a given problem, you are given the choice that
leads to an optimal solution.
You assume the choice has been given to you.

3. Given this choice, you determine which subproblems ensue and how to
best characterize the resulting space of subproblems.

4. You show that the solutions to the subproblems used within an optimal
solution to the problem must themselves be optimal by using a “cut
and paste” technique.
You do so by supposing that each of the subproblem solutions is not
optimal and then deriving a contradiction.
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The Space of Subproblems

To characterize the space of subproblems, a good rule of thumb says
to try to keep the space as simple as possible and then expand it as
necessary.

The space of subproblems that we considered for the rod-cutting
problem contained the problems of optimally cutting up a rod of length
i for each size i .
This subproblem space worked well, and we had no need to try a more
general space of subproblems.
Conversely, suppose that we had tried to constrain our subproblem
space for matrix-chain multiplication to matrix products of the form
A1A2 · · ·Aj . As before, an optimal parenthesization must split this
product between Ak and Ak+1, for some 1 ≤ k < j .
Unless we could guarantee that k always equals j − 1, we would find
that we had subproblems of the form A1A2 · · ·Ak and Ak+1Ak+2 · · ·Aj ,
and that the latter subproblem is not of the form A1A2 · · ·Aj . For this
problem, we needed to allow our subproblems to vary at “both ends”,
i.e., to allow both i and j to vary in the subproblem AiAi+1 · · ·Aj .
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Optimal Substructure

Optimal substructure varies across problem domains in two ways:

1. How many subproblems an optimal solution uses;
2. How many choices we have in determining which subproblem(s) to use

in an optimal solution.

In the rod-cutting problem, an optimal solution for cutting up a rod
of size n uses just one subproblem (of size n− i), but we must
consider n choices for i in order to determine which one yields an
optimal solution.

Matrix-chain multiplication for the subchain AiAi+1 · · ·Aj serves as
an example with two subproblems and j − i choices.

For given Ak at which the split occurs, we have two subproblems:

Parenthesizing AiAi+1 · · ·Ak ;
Parenthesizing Ak+1Ak+2 · · ·Aj .

Once we determine the optimal solutions to subproblems, we choose
from among j − i candidates for the index k .
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The Running Time

Informally, the running time of a dynamic-programming algorithm
depends on the product of two factors:

The number of subproblems overall;
How many choices we look at for each subproblem.

In rod cutting, we had Θ(n) subproblems overall, and at most n
choices to examine for each, yielding an O

(

n2
)

running time.

Matrix-chain multiplication had Θ(n2) subproblems overall, and in
each we had at most n − 1 choices, giving an O

(

n3
)

running time
(actually, a Θ(n3) running time).

Usually, the subproblem graph gives an alternative way to perform the
same analysis.

Each vertex corresponds to a subproblem;
The choices for a sub problem are the edges incident to that
subproblem.
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Two Graph Problems: Optimal Substructure

Consider the following two problems in which we are given a directed
graph G = (V ,E ) and vertices u, v ∈ V .

Unweighted Shortest Path:

Find a path from u to v consisting of the fewest edges.

Such a path must be simple, since removing a cycle from a path
produces a path with fewer edges.

Unweighted Longest Simple Path:

Find a simple path from u to v consisting of the most edges.

We need to include the requirement of simplicity because otherwise
we can traverse a cycle as many times as we like to create paths with
an arbitrarily large number of edges.
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The Unweighted Shortest-Path Problem

The unweighted shortest-path problem exhibits optimal substructure.

Suppose that u 6= v , so that the problem is nontrivial. Then, any
path p from u to v must contain an intermediate vertex, say w . w

may be u or v . Thus, we can decompose the path u
p
 v into

subpaths u
p1
 w

p2
 v . Clearly, the number of edges in p equals the

number of edges in p1 plus the number of edges in p2.

Claim: If p is an optimal (shortest) path from u to v , then p1 must
be a shortest path from u to w .

We use a “cut-and-paste” argument: If there were another path, say
p′1 from u to w with fewer edges than p1, then we could cut out p1

and paste in p′1 to produce a path u
p′1
 w

p2
 v with fewer edges than

p, thus contradicting p’s optimality.

Symmetrically, p2 must be a shortest path from w to v .
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The Unweighted Shortest-Path Problem: Method

The fact that the unweighted shortest-path problem exhibits optimal
substructure implies that we can find a shortest path from u to v by:

Considering all intermediate vertices w ;
Finding:

a shortest path from u to w ;
a shortest path from w to v ;

Choosing an intermediate vertex w that yields the overall shortest path.
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Finding a Longest Simple Path

The problem of finding an unweighted longest simple path does not
exhibit optimal substructure.

If we decompose a longest simple path u
p
 v into subpaths

u
p1
 w

p2
 v , then it is not necessarily the case that p1 must be a

longest simple path from u to w , and p2 a longest simple path from
w to v .

Consider the path q → r → t, which is a longest
simple path from q to t. q → r is not a longest
simple path from q to r : The path q → s →
t → r is a simple path that is longer. r → t is
not a longest simple path from r to t: The path
r → q → s → t is a simple path that is longer.

No efficient dynamic-programming algorithm for this problem has ever
been found. In fact, this problem is NP-complete.
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Dependence of Subproblems

Although a solution to a problem for both longest and shortest paths
uses two subproblems, the subproblems in finding the longest simple
path are not independent, whereas for shortest paths they are.

For the example above, we have the problem of finding a longest
simple path from q to t with two subproblems:

Finding longest simple paths from q to r ;
Finding longest simple paths from r to t.

Choosing the path q → s → t → r , we use the vertices s and t.

We can no longer use these vertices in the second subproblem, since
the combination of the two solutions to subproblems would yield a path
that is not simple.
If we cannot use vertex t in the second problem, then we cannot solve
it at all, since t is required to be on the path that we find.
Moreover, t is not the vertex at which we are “splicing” together the
subproblem solutions (that vertex being r).
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Independence of Subproblems

In contrast, the subproblems for finding a shortest path do not share
resources and are, thus, independent.

Claim: If a vertex w is on a shortest path p from u to v , then we can

splice together any shortest path u
p1
 w and any shortest path

w
p2
 v to produce a shortest path from u to v . We are assured that,

other than w , no vertex can appear in both paths p1 and p2.

Suppose that some vertex x 6= w appears in both p1 and p2, so that

we can decompose p1 as u
pux
 x  w and p2 as w  x

pxv
 v . By the

optimal substructure of this problem, path p has as many edges as p1
and p2 together, say that p has e edges. Now let us construct a path

p′ = u
pux
 x

pxv
 v from u to v . Because we have excised the paths

from x to w and from w to x , each of which contains at least one
edge, path p′ contains at most e − 2 edges, which contradicts the
assumption that p is a shortest path. Thus, we are assured that the
subproblems for the shortest-path problem are independent.
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Overlapping Subproblems

The second ingredient that an optimization problem must have for
dynamic programming to apply is that the space of subproblems must
be “small”.

A recursive algorithm for the problem solves the same subproblems
over and over, rather than always generating new subproblems.

Typically, the total number of distinct subproblems is a polynomial in
the input size.

When a recursive algorithm revisits the same problem repeatedly, we
say that the optimization problem has overlapping subproblems.

In contrast, a problem for which a divide-and-conquer approach is
suitable usually generates brand-new problems at each step of the
recursion.

Dynamic programming algorithms take advantage of overlapping
subproblems by solving each subproblem once and then storing the
solution in a table where it can be looked up when needed.
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Illustration of the Overlapping-Subproblems Property

We reexamine the matrix-chain multiplication problem.

Observe that MatrixChain-

Order repeatedly looks up
the solution to subproblems in
lower rows when solving sub-
problems in higher rows.

For example, it references entry m[3, 4] four times: during the
computations of m[2, 4], m[1, 4], m[3, 5] and m[3, 6].

If m[3, 4] was recomputed each time, the running time would increase
dramatically.
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A Recursive Matrix Chain Procedure

The following inefficient procedure computes m[i , j], the minimum
number of scalar multiplications needed to compute
Ai ...j = AiAi+1 · · ·AJ :

RecursiveMatrixChain(p, i , j)

1. if i == j

2. return 0

3. m[i , j ] =∞

4. for k = i to j − 1

5. q = RecursiveMatrixChain(p, i , k)

+RecursiveMatrixChain(p, k + 1, j) + pi−1pkpj

6. if q < m[i , j ]

7. m[i , j ] = q

8. return m[i , j ]
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Time Requirements of the Recursive Procedure

Let T (n) be the time taken by RecursiveMatrixChain to
compute an optimal parenthesization of a chain of n matrices.

The execution of Lines 1-2 and Lines 6-7 each take at least unit time.

The multiplication in Line 5 also takes at least unit time.

Thus,

T (1) ≥ 1;

T (n) ≥ 1 +
∑n−1

k=1(T (k) + T (n − k) + 1), n > 1.

Noting that for i = 1, 2, . . . , n − 1, each term T (i) appears once as
T (k) and once as T (n − k), and collecting the n − 1 1s in the
summation together with the 1 out front, we get

T (n) ≥ 2
n−1
∑

i=1

T (i) + n.

We shall prove that T (n) = Ω(2n) using the substitution method.
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Time Requirements of the Recursive Procedure (Cont’d)

We obtained

T (n) ≥ 2
n−1
∑

i=1

T (i) + n.

We show that T (n) ≥ 2n−1, for all n ≥ 1.

For the basis T (1) ≥ 1 = 20.

Inductively, for n ≥ 2, we have

T (n) ≥ 2
n−1
∑

i=1

2i−1 + n = 2
n−2
∑

i=0

2i + n

= 2(2n−1 − 1) + n = 2n − 2 + n

≥ 2n−1.
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Reconstructing an Optimal Solution

As a practical matter, we often store which choice we made in each
subproblem in a table so that we do not have to reconstruct this
information from the costs that we stored.

For matrix-chain multiplication, the table s[i , j] saves us a significant
amount of work when reconstructing an optimal solution.

Suppose that we did not maintain the s[i , j] table, having filled in
only the table m[i , j] containing optimal subproblem costs.

We choose from among j − i possibilities when we determine which
subproblems to use in an optimal solution to parenthesizing
AiAi+1 · · ·Aj , and j − i is not a constant.

Therefore, it would take Θ(j − i) = ω(1) time to reconstruct which
subproblems we chose for a solution to a given problem.

By storing in s[i , j] the index of the matrix at which we split the
product AiAi+1 · · ·Aj , we can reconstruct each choice in O (1) time.
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Memoization

An alternative approach to dynamic programming that offers the
efficiency of the bottom-up dynamic programming approach while
maintaining a top-down strategy is the memoization of the natural,
but inefficient, recursive algorithm.

As in the bottom-up approach, we maintain a table with subproblem
solutions, but the control structure for filling in the table is more like
the recursive algorithm.

A memoized recursive algorithm maintains an entry in a table for the
solution to each subproblem.

Each table entry initially contains a special value to indicate that the
entry has yet to be filled in.
When the subproblem is first encountered as the recursive algorithm
unfolds, its solution is computed and then stored in the table.
Each subsequent time that we encounter this subproblem, we simply
look up the value stored in the table and return it.
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The Memoized Matrix Chain Procedure

MemoizedMatrixChain(p)

1. n = p.length− 1
2. let m[1 . . . n, 1 . . . n] be a new table
3. for i = 1 to n

4. for j = i to n

5. m[i , j ] =∞
6. return LookupChain(m, p, 1, n)

LookupChain(m, p, i , j)

1. if m[i , j ] < 1
2. return m[i , j ]
3. if i == j

4. m[i , j ] = 0
5. else for k = i to j − 1
6. q = LookupChain(m, p, i , k) + LookupChain(m, p, k + 1, j) + pi+1pkpj
7. if q < m[i , j ]
8. m[i , j ] = q

9. return m[i , j ]
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How MemoizedMatrixChain Works

The MemoizedMatrixChain, like MatrixChainOrder,
maintains a table m[1 . . . n, 1 . . . n] of computed values of m[i , j], the
minimum number of scalar multiplications needed to compute the
matrix Ai ...j .

Each table entry initially contains the value ∞ to indicate that the
entry has yet to be filled in.

Upon calling LookupChain(m, p, i , j):

If Line 1 finds that m[i , j ] <∞, then the procedure simply returns the
previously computed cost m[i , j ] in Line 2;
Otherwise, the cost is computed as in RecursiveMatrixChain,
stored in m[i , j ], and returned.

Thus, LookupChain(m, p, i , j) always returns the value of m[i , j],
but it computes it only upon the first call of LookupChain with
these specific values of i and j .
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Time Requirements

Like MatrixChainOrder, MemoizedMatrixChain runs in
O
(

n3
)

time:

Line 5 of MemoizedMatrixChain executes Θ(n2) times.

We can categorize the calls of LookupChain into two types:
1. Calls in which m[i , j ] =∞, so that Lines 3-9 execute;
2. Calls in which m[i , j ] <∞, so that LookupChain returns in Line 2.

There are Θ(n2) calls of the first type, one per table entry.

All calls of the second type are made as recursive calls by calls of the
first type. Whenever a given call of LookupChain makes recursive
calls, it makes O (n) of them. Therefore, there are O

(

n3
)

calls of the
second type in all.

Each call of the second type takes O (1) time, and each call of the
first type takes O (n) time plus the time spent in its recursive calls.

The total time, therefore, is O
(

n3
)

. Memoization, thus, turns an
Ω(2n)-time algorithm into an O

(

n3
)

-time algorithm.
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Subsection 4

Longest Common Subsequence
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DNA and Similarity

A strand of DNA consists of a string of molecules called bases, where
the possible bases are adenine, guanine, cytosine and thymine.

Representing each of these bases by its initial letter, we can express a
strand of DNA as a string over the finite set {A,C ,G ,T}.

One reason to compare two strands of DNA is to determine how
“similar” the two strands are.

This constitutes a measure of how closely related the two organisms
are.
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DNA Similarity

We can define similarity of strands S1 and S2 in many different ways:

We can say that two DNA strands are similar if one is a substring of
the other.
We could say that two strands are similar if the number of changes
needed to turn one into the other is small.
We could find a third strand S3 whose bases appear in each of S1, S2.
These bases must appear in the same order, but not necessarily
consecutively.
The longer the strand S3 we can find, the more similar S1 and S2 are.
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Example of DNA Comparison

Example: The DNA of one organism may be

S1 = ACCGGTCGAGTGCGCGGAAGCCGGCCGAA

and the DNA of another organism may be

S2 = GTCGTTCGGAATGCCGTTGCTCTGTAAA.

Suppose we measure the similarity of strands S1 and S2 by finding a
third strand S3, such that the bases in S3 appear in each of S1 and S2
in the same order, but not necessarily consecutively.

Then, the longest strand is

S3 = GTCGTCGGAAGCCGGCCGAA.
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Longest Common Subsequences (LCSs)

Given a sequence X = 〈x1, x2, . . . , xm〉, a sequence Z = 〈z1, z2, . . . ,
zk〉 is a subsequence of X if there exists a strictly increasing
sequence 〈i1, i2, . . . , ik〉 of indices of X , such that for all j = 1, 2, . . . ,
k , we have xij = zj .

Example: For example, Z = 〈B ,C ,D,B〉 is a subsequence of
X = 〈A,B ,C ,B ,D,A,B〉, with index sequence 〈2, 3, 5, 7〉.

Given two sequences X and Y , a sequence Z is a common

subsequence of X and Y if Z is a subsequence of both X and Y .

Example: If X = 〈A,B ,C ,B ,D,A,B〉 and Y = 〈B ,D,C ,A,B ,A〉,
the sequence 〈B ,C ,A〉 is a common subsequence of both X and Y .

The sequence 〈B ,C ,A〉 is not a longest common subsequence (LCS)
of X and Y , since it has length 3 and the sequence 〈B ,C ,B ,A〉,
which is also common to both X and Y , has length 4.

Both 〈B ,C ,B ,A〉 and 〈B ,D,A,B〉 are LCSs of X and Y , since X

and Y have no common subsequence of length 5 or greater.
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The Longest-Common-Subsequence Problem

The longest-common-subsequence problem:

Given two sequences X = 〈x1, x2, . . . , xm〉 and Y = 〈y1, y2, . . . , yn〉,
find a maximum length common subsequence of X and Y .

A brute-force approach to solving the LCS problem:

Enumerate all subsequences of X ;
Check each subsequence to see whether it is also a subsequence of Y ,
keeping track of the longest subsequence found.

Each subsequence of X corresponds to a subset of the indices
〈1, 2, . . . ,m〉 of X .

Because X has 2m subsequences, this approach requires exponential
time, making it impractical for long sequences.
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The Dynamic Programming Approach

In a dynamic programming approach, the subproblems correspond to
pairs of “prefixes” of the two input sequences.

Given a sequence X = 〈x1, x2, . . . , xm〉, the i -th prefix of X , for
i = 0, 1, . . . ,m, is Xi = 〈x1, x2, . . . , xi〉.

Example: If X = 〈A,B ,C ,B ,D,A,B〉, then:

X4 = 〈A,B,C ,B〉;
X0 is the empty sequence.
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Step 1: Characterizing a Longest Common Subsequence

Theorem (Optimal Substructure of an LCS)

Let X = 〈x1, x2, . . . , xm〉 and Y = 〈y1, y2, . . . , yn〉 be sequences, and let
Z = 〈z1, z2, . . . , zk〉 be any LCS of X and Y .

1. If xm = yn, then zk = xm = yn and Zk−1 is an LCS of Xm−1 and
Yn−1.

2. If xm 6= yn, then zk 6= xm implies that Z is an LCS of Xm−1 and Y .

3. If xm 6= yn, then zk 6= yn implies that Z is an LCS of X and Yn−1.

(1) If zk 6= xm, then we could append xm = yn to Z to obtain a common
subsequence of X and Y of length k + 1, contradicting the
supposition that Z is a longest common subsequence of X and Y .
Thus, we must have zk = xm = yn. Now, the prefix Zk−1 is a
length-(k − 1) common subsequence of Xm−1 and Yn−1.
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Characterizing a Longest Common Subsequence

Claim: The prefix Zk−1 is a length-(k − 1) LCS of Xm−1 and Yn−1.

Suppose for the purpose of contradiction that there exists a common
subsequence W of Xm−1 and Yn−1 with length greater than k − 1.
Then, appending xm = yn to W produces a common subsequence of
X and Y whose length is greater than k , which is a contradiction.

(2) If zk 6= xm, then Z is a common subsequence of Xm−1 and Y . If
there were a common subsequence W of Xm−1 and Y with length
greater than k , then W would also be a common subsequence of Xm

and Y , contradicting the assumption that Z is an LCS of X and Y .

(3) The proof is symmetric to (2).
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Step 2: A Recursive Solution

The theorem implies that we should examine either one or two
subproblems when finding an LCS of X = 〈x1, x2, . . . , xm〉 and
Y = 〈y1, y2, . . . , yn〉.

If xm = yn, we must find an LCS of Xm−1 and Yn−1. Appending
xm = yn to this LCS yields an LCS of X and Y .
If xm 6= yn, then we must solve two subproblems:

Finding an LCS of Xm−1 and Y ;
Finding an LCS of X and Yn−1.

Whichever of these two LCSs is longer is an LCS of X and Y .

Because these cases exhaust all possibilities, we know that one of the
optimal subproblem solutions must appear within an LCS of X and Y .

We can readily see the overlapping subproblems property in the LCS
problem: To find an LCS of X and Y , we may need to find the LCSs
of X and Yn−1 and of Xm−1 and Y . Each of these subproblems has
the subsubproblem of finding an LCS of Xm−1 and Yn−1.
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The Recursive Formula

Define c[i , j] to be the length of an LCS of the sequences Xi and Yj .

If either i = 0 or j = 0, one of the sequences has length 0, and so the
LCS has length 0.
The optimal substructure of the LCS problem gives the recursive
formula

c[i , j ] =







0, if i = 0 or j = 0
c[i − 1, j − 1] + 1, if i , j > 0 and xi = yj
max (c[i , j − 1], c[i − 1, j ]), if i , j > 0 and xi 6= yj

In this recursive formulation, a condition in the problem restricts
which subproblems we may consider:

When xi = yj , we can and should consider the subproblem of finding an
LCS of Xi−1 and Yj−1.
Otherwise, we instead consider the two subproblems of finding an LCS
of Xi and Yj−1 and of Xi−1 and Yj .
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Step 3: Computing the Length of an LCS

Since the LCS problem has only Θ(mn) distinct subproblems, we can
use dynamic programming to compute the solutions bottom up.

Procedure LCSLength takes two sequences X = 〈x1, x2, . . . , xm〉
and Y = 〈y1, y2, . . . , yn〉 as inputs.

It stores the c[i , j] values in a table c[0 . . .m, 0 . . . n], and it computes
the entries in row-major order, i.e., the procedure fills in the first row
of c from left to right, then the second row, and so on.

The procedure also maintains the table b[1 . . .m, 1 . . . n] to help us
construct an optimal solution. Intuitively, b[i , j] points to the table
entry corresponding to the optimal subproblem solution chosen when
computing c[i , j].

The procedure returns the b and c tables;

c[m, n] contains the length of an LCS of X and Y .
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The Procedure LCS Length

LCSLength(X ,Y )

1. m = X .length
2. n = Y .length
3. let b[1 . . .m, 1 . . . n] and c[0 . . .m, 0 . . . n] be new tables
4. for i = 1 to m
5. c[i , 0] = 0
6. for j = 0 to n
7. c[0, j ] = 0
8. for i = 1 to m
9. for j = 1 to n

10. if xi == yj
11. c[i , j ] = c[i − 1, j − 1] + 1
12. b[i , j ] = “տ ”
13. elseif c[i − 1, j ] ≥ c[i , j − 1]
14. c[i , j ] = c[i − 1, j ]
15. b[i , j ] = “ ↑ ”
16. else c[i , j ] = c[i , j − 1]
17. b[i , j ] = “← ”
18. return c and b
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An Example

The tables produced by LCSLength on the sequences
X = 〈A,B ,C ,B ,D,A,B〉 and Y = 〈B ,D,C ,A,B ,A〉:

The running time of the procedure is Θ(mn), since each table entry
takes Θ(1) time to compute.
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Step 4: Constructing an LCS

To construct an LCS, we begin at b[m, n] and trace through b by
following the arrows.

The elements of the LCS are found in reverse order, but the following
prints them out in the correct order.

The initial call is PrintLCS(b,X ,X .lenth,Y .length).

PrintLCS(b,X , i , j)

1. If i == 0 or j == 0
2. return
3. if b[i .j ] == “տ ”
4. PrintLCS(b,X , i − 1, j − 1)
5. print xi
6. elseif b[i , j ] == “ ↑ ”
7. PrintLCS(b,X , i − 1, j)
8. else PrintLCS(b,X , i , j − 1)

The time needed is O (m + n).
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Subsection 5

Optimal Binary Search Trees
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Optimal Binary Search Trees

We are given a sequence K = 〈k1, k2, . . . , kn〉 of n distinct keys in
sorted order (so that k1 < k2 < . . . < kn).

We wish to build a binary search tree from these keys.

For each key ki , we have a probability pi that a search will be for ki .

Some searches may be for values not in K .

These are represented by n + 1 “dummy keys” d0, d1, . . . , dn.

Key di represents all values between ki and ki+1.

Suppose for each di , there is a probability qi that a search will
correspond to di .

We have
n

∑

i=1

pi +
n

∑

i=0

qi = 1.
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Expected Cost of a Search

Assume that the actual cost of a search equals the number of nodes
examined, i.e., the depth of the node found by the search plus 1.

Then the expected cost of a search is

E [Search Cost in T ]

=

n
∑

i=1

(depthT (ki ) + 1)pi +

n
∑

i=0

(depthT (di ) + 1)qi

=

n
∑

i=1

pi +

n
∑

i=0

qi +

n
∑

i=1

depthT (ki )pi +

n
∑

i=0

depthT (di)qi .

= 1 +

n
∑

i=1

depthT (ki )pi +

n
∑

i=0

depthT (di )qi .
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An Example

i 0 1 2 3 4 5

p1 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10

A tree with smallest expected search cost is an optimal binary

search tree. Node Depth Probability Contribution
k1 1 0.15 0.30
k2 0 0.10 0.10
k3 2 0.05 0.15
k4 1 0.10 0.10
k5 2 0.20 0.60
d0 2 0.05 0.15
d1 2 0.10 0.30
d2 3 0.05 0.20
d3 3 0.05 0.20
d4 3 0.05 0.20
d5 3 0.10 0.40

Total 2.80
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Exhaustive Search

An optimal binary search tree is not necessarily a tree whose overall
height is smallest.

Nor can we necessarily construct an optimal binary search tree by
always putting the key with the greatest probability at the root.

As with matrix-chain multiplication, exhaustive checking of all
possibilities fails to yield an efficient algorithm.

We can label the nodes of any n-node binary tree with the keys
k1, k2, . . . , kn to construct a binary search tree, and then add in the
dummy keys as leaves.
The number of binary trees with n nodes is Ω( 4n

n3/2
).

So we would have to examine an exponential number of binary search
trees in an exhaustive search.

We shall solve this problem with dynamic programming.
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Step 1: The Structure of an Optimal Binary Search Tree

A subtree of a binary search tree must contain keys in a contiguous
range ki , . . . , kj , for some 1 ≤ i ≤ j ≤ n.

In addition, a subtree that contains keys ki , . . . , kj must also have as
its leaves the dummy keys di−1, . . . , dj .

We state the optimal substructure:

If an optimal binary search tree T has a subtree T ′ containing keys
ki , . . . , kj , then this subtree T ′ must be optimal as well for the
subproblem with keys ki , . . . , kj and dummy keys di−1, . . . , dj .

By cut-and-paste, if there were a subtree T ′′ whose expected cost is
lower than that of T ′, then we could cut T ′ out of T and paste in
T ′′, resulting in a binary search tree of lower expected cost than T ,
contradicting the optimality of T .
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Step 1 (Cont’d)

Given keys ki , . . . , kj , one of these keys, say kr (i ≤ r ≤ j), is the root
of an optimal subtree containing these keys.

The left subtree of the root kr contains the keys ki , . . . , kr−1 (and
dummy keys di−1, . . . , dr−1);
The right subtree contains the keys kr+1, . . . , kj (and dummy keys
dr , . . . , dj).

As long as we examine all candidate roots kr , where i ≤ r ≤ j , and
we determine all optimal binary search trees containing ki , . . . , kr−1

and those containing kr+1, . . . , kj , we are guaranteed that we will find
an optimal binary search tree.

If in a subtree with keys ki , . . . , kj , we select

ki as the root, ki ’s left subtree contains the keys ki , . . . , ki−1,
interpreted as a sequence with no keys, but only the single dummy key
di−1;
kj as the root, then kj ’s right subtree contains no actual keys, but only
the dummy key dj .
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Step 2: A Recursive Solution

To define the value of an optimal solution recursively, we pick our
subproblem domain as finding an optimal binary search tree
containing the keys ki , . . . , kj , where i ≥ 1, j ≤ n, and j ≥ i − 1.

Define e[i , j] as the expected cost of searching an optimal binary
search tree containing the keys ki , . . . , kj .

Ultimately, we wish to compute e[1, n].

The easy case occurs when j = i − 1. Then we have just the dummy
key di−1. The expected search cost is e[i , i − 1] = qi−1.
When j ≥ i , we need to select a root kr from among ki , . . . , kj and
then create:

An optimal binary search tree with keys ki , . . . , kr−1 as its left subtree;
An optimal binary search tree with keys kr+1, . . . , kj as its right subtree.
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Step 2: The Recursive Cost Equation

When a subtree becomes a subtree of a node, the depth of each node
in the subtree increases by 1. Then, the expected search cost of this
subtree increases by the sum of all the probabilities in the subtree.

For a subtree with keys ki , . . . , kj , let us denote this sum of

probabilities as w(i , j) =
∑j

ℓ=i pℓ +
∑j

ℓ=i−1 qℓ.

Thus, if kr is the root of an optimal subtree containing keys
ki , . . . , kj , we have

e[i , j] = pr + (e[i , r − 1] + w(i , r − 1)) + (e[r + 1, j] + w(r + 1, j)).

Since w(i , j) = w(i , r − 1) + pr + w(r + 1, j) we rewrite e[i , j] as

e[i , j] = e[i , r − 1] + e[r + 1, j] + w(i , j).

This recursive equation assumes that we know which node kr to use
as the root.
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Step 2: The Recursive Optimal Cost Equation

We choose the root that gives the lowest expected search cost:
e[i , j] =
{

qi−1, if j = i − 1
mini≤r≤j {e[i , r − 1] + e[r + 1, j] + w(i , j)}, if i ≤ j

The e[i , j] values give the expected search costs in optimal binary
search trees.

To help us keep track of the structure of optimal binary search trees,
we define root[i , j], for 1 ≤ i ≤ j ≤ n, to be the index r for which kr
is the root of an optimal binary search tree containing keys ki , . . . , kj .

We show how to compute the values of root[i , j].

We omit the procedure for constructing an optimal binary search tree
from these values.
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Step 3: Computing the Optimal Expected Search Cost

We store the e[i , j] values in a table e[1 . . . n + 1, 0 . . . n].

The first index needs to run to n+ 1: In order to have a subtree
containing only the dummy key dn, we need to compute and store
e[n+ 1, n].
The second index needs to start from 0: To have a subtree containing
only the dummy key d0, we need to compute and store e[1, 0].

We use only the entries e[i , j] for which j ≤ i − 1.

A table root[i , j] records the root of the subtree containing keys
ki , . . . , kj . This table uses only the entries for which 1 ≤ i ≤ j ≤ n.

Rather than compute the value of w(i , j) from scratch every time we
are computing e[i , j], which would take Θ(j − i) additions, we store
these values in a table w [1 . . . n + 1, 0 . . . n].

For the base case, we compute w [i , i − 1] = qi−1, for 1 ≤ i ≤ n + 1.
For j ≥ i , we compute w [i , j ] = w [i , j − 1] + pj + qj .

Thus, we can compute the Θ(n2) values of w [i , j] in Θ(1) time each.
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The Optimal Binary Search Tree Procedure
The pseudocode takes as inputs the probabilities p1, . . . , pn and q0, . . . , qn and the
size n, and returns the tables e and root.

OptimalBST(p,q, n)

1. let e[1 . . . n+ 1, 0 . . .n], w [1 . . . n + 1, 0 . . .n], and root[1 . . . n, 1 . . . n] be
new tables

2. for i = 1 to n + 1
3. e[i , i − 1] = qi−1

4. w [i , i − 1] = qi−1

5. for ℓ = 1 to n

6. for i = 1 to n − ℓ+ 1
7. j = i + ℓ− 1
8. e[i , j ] = 1
9. w [i , j ] = w [i , j − 1] + pj + qj

10. for r = i to j
11. t = e[i , r − 1] + e[r + 1, j ] + w [i , j ]
12. if t < e[i , j ]
13. e[i , j ] = t
14. root[i , j ] = r
15. return e and root

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 89 / 92



Dynamic Programming Optimal Binary Search Trees

How OptimalBST Works

The for loop of Lines 2-4 initializes the values of e[i , i − 1] and
w [i , i − 1].

The for loop of Lines 5-14 then uses the previously obtained
recurrences to compute e[i , j] and w [i , j], for all 1 ≤ i ≤ j ≤ n.

In the first iteration, when ℓ = 1, the loop computes e[i , i ] and w [i , i ],
for i = 1, 2, . . . , n.
The second iteration, with ℓ = 2, computes e[i , i + 1] and w [i , i + 1],
for i = 1, 2, . . . , n − 1, and so forth.

The innermost for loop, in Lines 10-14, tries each candidate index r

to determine which key kr to use as the root of an optimal binary
search tree containing keys ki , . . . , kj .

This for loop saves the current value of the index r in root[i , j]
whenever it finds a better key to use as the root.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 90 / 92



Dynamic Programming Optimal Binary Search Trees

Example

For the key distribution

i 0 1 2 3 4 5

p1 0.15 0.10 0.05 0.10 0.20
qi 0.05 0.10 0.05 0.05 0.05 0.10

the following shows the tables e[i , j],w [i , j] and root[i , j] computed by
the procedure OptimalBST:

OptimalBST computes the rows from bottom to top and left to
right within each row.
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Time Requirements

OptimalBST takes time Θ(n3).

Its running time is O
(

n3
)

:

Its for loops are nested three deep and each loop index takes at most n
values.

Like with MatrixChainOrder, it also takes Ω(n3) time as well,
since it has an almost identical structure modulo a unit difference on
the bounds of the loop indices.
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