Introduction to Algorithms

George Voutsadakis®

Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 1/50

o The Aggregate Method
o The Accounting Method
o The Potential Method
o Dynamic Tables

George Voutsadakis (LSSU) Introduction to Algorithms

Amortized Analysis

o In an amortized analysis, we average the time required to perform a
sequence of data-structure operations over all the operations
performed.

o With amortized analysis, we can show that the average cost of an
operation is small, if we average over a sequence of operations, even
though a single operation within the sequence might be expensive.

o The difference between amortized analysis and average-case analysis
is that, in the former, the average performance of each operation is

guaranteed in the worst-case, whereas the latter involves a
probabilistic analysis.

George Voutsadakis (LSSU)

Amortized Analysis The Aggregate Method

Subsection 1

The Aggregate Method

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 4 /50

Amortized Analysis

o In aggregate analysis, we show that for all n, a sequence of n
operations takes worst-case time T(n) in total.

o In the worst case, the average cost, or amortized cost, per operation
is therefore @

o This amortized cost applies to each operation, even when there are
several types of operations in the sequence.

o In contrast, the accounting method and the potential method, studied
later, may assign different amortized costs to different types of
operations.

George Voutsadakis (LSSU)

Amortized Analysis

o We analyze stacks that have been augmented with a new operation.

o The two fundamental stack operations, each of which takes O (1)
time are:

PUSH(S, x): pushes object x onto stack S;
PoP(S): pops the top of stack S and returns the popped object.
Calling POP on an empty stack generates an error.

o Since each of these operations runs in O (1) time, we consider the
cost of each to be 1.

o The total cost of a sequence of n PUsH and PoOP operations is
therefore n. The actual running time for n operations is ©(n).

George Voutsadakis (LSSU)

Amortized Analysis

o We add the stack operation MULTIPOP(S, k), which removes the k
top objects of stack S, popping the entire stack if the stack contains
fewer than k objects. If k < 0 nothing changes.

o STACKEMPTY returns TRUE if there are no objects currently on the
stack, and FALSE otherwise.

while not STACKEMPTY(S) and k > 0

Por(S)

k=k—-1

o The actual running time of MULTIPOP(S, k) on a stack of s objects

is linear in the number of POP operations actually executed.
Assume costs of 1 each for PusH and Pop. The number of iterations
of the while loop is the number min (s, k) of objects popped. Each
iteration makes one call to POP. Thus, the total cost of MULTIPOP
is min (s, k) and the actual running time is linear in this cost.

George Voutsadakis (LSSU)

Amortized Analysis

o We analyze a sequence of n PusH, Pop and MULTIPOP operations
on an initially empty stack.

o The worst-case cost of a MULTIPOP operation in the sequence is
O (n), since the stack size is at most n.

o The worst-case time of any stack operation is therefore O (n).

o Hence, a sequence of n operations costs O (n?), since we may have
O (n) MuLTIPOP operations costing O (n) each.

o This O (n2) result, obtained by considering the worst-case cost of
each operation individually, is not tight.

o Using aggregate analysis, we can obtain a better upper bound that
considers the entire sequence of n operations.

George Voutsadakis (LSSU)

Amortized Analysis

o A single MULTIPOP operation can be expensive, but any sequence of
n PUsH, PoP and MULTIPOP operations on an initially empty stack
can cost at most O (n).

We can pop each object from the stack at most once for each time we
have pushed it onto the stack.

Therefore, the number of times that POP can be called on a nonempty
stack, including calls within MuULTIPOP, is at most the number of
PuUsH operations, which is at most n.

For any value of n, any sequence of n PusH, Pop and MuLTIPOP
operations takes a total of O (n) time.

o The average cost of an operation is ") =0(1).

o In aggregate analysis, we assign the amortlzed cost of each operation
to be the average cost.

o So all three stack operations have an amortized cost of O (1).

George Voutsadakis (LSSU)

Amortized Analysis

o We implement a k-bit binary counter that counts upward from O.

o We use an array A[0... k — 1] of bits, where A.length = k, as the
counter.

o A binary number x stored in the counter has its Iowest—order. bit in
A[0] and its highest-order bit in A[k —1]: x = S>K" 1 A[i] - 2'.
o Initially, x =0, and, thus, A[i] =0, for i =0,1,...,k — 1.

o To add 1 (modulo 2¥) to the value, we use the following:

INCREMENT(A)

i=0

while i < A.length and A[i] ==1
Alil=0
i=i+1

if i < A.length
Alil=1

George Voutsadakis (LSSU) Introduction to Algorithms

Amortized Analysis

Comter - s asaoae @ The binary counter on the left is incre-

N
value B R RN RN cost

0 mented 16 times, starting with the initial

0 00000000

> 0000001M 3 value 0 and ending with the value 16.

i 0000o0rom 7 At the start of each iteration of the while
A+ wdel B loop in Lines 2-4, we wish to add a 1 into
¢ ooooroom 15 Position /.

0 0oovioim o If Afi] = 1, then adding 1 flips the bit to
2 00001100 22 0 in position i and yields a carry of 1, to
}4 600011 1M 25 be added into position i + 1 on the next
% WG TUTIN iteration of the loop.

o Otherwise, the loop ends, and then, if i < k, we know that A[/] =0,
so that Line 6 adds a 1 into position i/, flipping the 0 to a 1.

o The cost of each INCREMENT operation is linear in the number of
bits flipped.

George Voutsadakis (LSSU)

Amortized Analysis

o A cursory analysis yields a bound that is correct but not tight.

A single execution of INCREMENT takes time ©(k) in the worst case,
in which array A contains all 1s.

Thus, a sequence of n INCREMENT operations on an initially zero
counter takes time O (nk) in the worst case.

o We can get worst-case cost of O (n) for a sequence of n operations by
observing that not all bits flip each time INCREMENT is called.

o A[0] does flip each time INCREMENT is called.

o A[1] flips only every other time: a sequence of n operations on an
initially zero counter causes A[1] to flip [7] times.

o Similarly, A[2] flips only every fourth time, or | 7] times in a sequence
of n operations.

o In general, for i = 0,1,...,k —1, bit A[i] flips [5] times in a sequence
of n INCREMENT operations on an initially zero counter.

o For i > k, bit A[i] does not exist, and so it cannot flip.

George Voutsadakis (LSSU)

Amortized Analysis

o The total number of flips in the sequence is thus

k—1 n 0o 1
7] <nX g =2
i=0 i=0

o The worst-case time for a sequence of n INCREMENT operations on
an initially zero counter is therefore O (n).

o The average cost of each operation, and therefore the amortized cost
per operation, is @ =0(1).

George Voutsadakis (LSSU)

Amortized Analysis The Accounting Method

Subsection 2

The Accounting Method

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 14 /50

Amortized Analysis

o In the accounting method of amortized analysis, we assign differing
charges to different operations, with some operations charged more or
less than they actually cost.

o We call the amount we charge an operation its amortized cost.

o When an operation’s amortized cost exceeds its actual cost, we assign
the difference to specific objects in the data structure as credit.

o Credit can be used to pay for later operations whose amortized cost is
less than their actual cost.

o Thus, we can view the amortized cost of an operation as being split
between its actual cost and credit that is either deposited or used up.

o Since different operations may have different amortized costs, the
method differs from aggregate analysis, in which all operations have
the same amortized cost.

George Voutsadakis (LSSU)

Amortized Analysis

o We must choose the amortized costs of operations carefully.

o If we want to show that in the worst case the average cost per
operation is small by analyzing with amortized costs, we must ensure
that the total amortized cost of a sequence of operations provides an
upper bound on the total actual cost of the sequence.

o As in aggregate analysis, this relationship must hold for all sequences
of operations.

o If we denote the actual cost of the j-th operation by ¢; and the
amortized cost of the j-th operation by ¢;, we require
ST 1G> ¢, for all sequences of n operations.

o The total credit stored in the data structureis Y 7 ;G — Y i1 Gi.

o The total credit must be nonnegative at all times, since, if it was

allowed to become negative, the total amortized costs incurred at
that time would be below the total actual costs incurred.

George Voutsadakis (LSSU)

Amortized Analysis

o Recall that the actual costs of the operations are 1 for PUsH, 1 for
Pop, and min (k,s) for MuLTIPOP, where k is the argument
supplied to MULTIPOP and s is the stack size when it is called.

o We assign amortized costs: 2 for PusH, 0 for Pop and 0 for
MurtiPopP. (Note the amortized cost of MULTIPOP is constant (0),
whereas the actual cost is variable.)

o We show that we can pay for any sequence of stack operations by
charging the amortized costs.

o We start with an empty stack.

o When we push an item on the stack, we use 1 unit to pay the actual
cost of the push and are left with a credit of 1 attached to the item.

o At any point in time, every item on the stack has 1 unit of credit on it,
which serves as prepayment for the cost of popping it from the stack.

o When we execute a POP operation, we charge the operation nothing
and pay its actual cost using the credit stored in the stack.

By charging the PuUsH a little more, we can charge the POP nothing.

Amortized Analysis

o We can also charge MULTIPOP operations nothing.
o To pop the first item, we take the unit of credit off the item and use it
to pay the actual cost of a POP operation.
o To pop a second item, we again have a unit of credit on the item to
pay for the POP operation, and so on.
Thus, we have always charged enough up front to pay for MuLTIPOP
operations.

o It follows that, for any sequence of n PusH, Pop and MuLTIPOP
operations, the total amortized cost is an upper bound on the total
actual cost.

o Since the total amortized cost is O (n), so is the total actual cost.

George Voutsadakis (LSSU)

Amortized Analysis

o The running time of INCREMENT on a binary counter that starts at
zero is proportional to the number of bits flipped.

o We use as the unit cost the flipping of a bit.

o For the amortized analysis:

o We charge an amortized cost of 2 units to set a bit to 1.

o When a bit is set, we use 1 unit to pay for the actual setting of the bit,
and we place the other on credit to be used when the bit is reset to 0.

o At any point in time, every 1 in the counter has a unit of credit on it,
and thus we can charge nothing to reset a bit to 0.

o To determine the amortized cost of INCREMENT, note that the cost
of resetting the bits within the while loop is paid for by the credit on
the bits that are reset. The procedure sets at most one bit, whence
the amortized cost is at most 2 units.

Since the amount of credit stays nonnegative at all times, for n
INCREMENT operations, the total amortized cost is O (n), which
bounds the total actual cost.

Amortized Analysis The Potential Method

Subsection 3

The Potential Method

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 20 /50

Amortized Analysis

o Instead of representing prepaid work as credit stored with specific
objects, the potential method of amortized analysis represents the
prepaid work as “potential energy"”, or just “potential”, which can be
released to pay for future operations.

o The potential is associated with the data structure as a whole rather
than with specific objects.

o We perform n operations, starting with an initial data structure Dy.

o Foreachi=1,2,...,n, we let ¢; be the actual cost of the i-th
operation.
o Foreach i=1,2,...,n, we let D; be the data structure that results

after applying the i-th operation to data structure D;_j.

o A potential function ® maps each data structure D; to a real
number ®(D;), which is the potential associated with data structure
D;.

George Voutsadakis (LSSU)

Amortized Analysis

o The amortized cost ¢; of the i-th operation with respect to potential
function & is defined by

C=c+ ‘D(D;) = ¢(D,'_1).

l.e., the amortized cost of each operation is its actual cost plus the
change in potential due to the operation.

o The total amortized cost of the n operations is

ZC’_ZC’+¢(i) — ¢(Dll)—zcl+¢ D) — ®(Do).
i=1

i=1

o If we can define a potential function ® so that ®(D,) > ®(Dyp), then
the total amortized cost)/, ¢; gives an upper bound on the total
actual cost Y7, ¢

George Voutsadakis (LSSU)

Amortized Analysis

o Since, in practice, we do not always know how many operations might
be performed, we require that ®(D;) > ®(Dy), for all i, so as to
guarantee that we pay in advance.

o Usually we define #(Dy) = 0 and show that ®(D;) > 0, for all i.
o Intuitively, the idea is that:

o If the potential difference ®(D;) > ®(D;_1) of the i-th operation is
positive, then the amortized cost ¢; represents an overcharge to the
i-th operation, and the potential of the data structure increases.

o If the potential difference is negative, then the amortized cost
represents an undercharge to the i-th operation, and the decrease in
the potential pays for the actual cost of the operation.

o Note that the amortized costs depend on the choice of the potential
function @, i.e., different potential functions may yield different
amortized costs that may all be upper bounds on the actual costs.

George Voutsadakis (LSSU)

Amortized Analysis

o We revisit the example of the stack operations PUsH, Pop and
MuLTIPOP.

o We define the potential function ® on a stack to be the number of
objects in the stack.

o For the empty stack Dy, we have ®(Dp) = 0.

o Since the number of objects in the stack is never negative, the stack
D; that results after the i-th operation has nonnegative potential,
®(D;j) > 0= d(Dy).

o This implies that the total amortized cost of n operations with
respect to ® represents an upper bound on the actual cost.

o We now compute the amortized costs of the various stack operations.

George Voutsadakis (LSSU)

Amortized Analysis

o If the i-th operation on a stack containing s objects is a PUSH, then
the potential difference is

q)(D,) = (D(D,'_l) = (S + 1) —s=1.
Thus, the amortized cost of this PUSH operation is
&=c+ (D)~ (D) =1+1=2

o If the i-th operation is MULTIPOP(S, k), it causes k' = min (k, s)
objects to be popped. The actual cost of the operation is k’. The
potential difference is

®(D;) — P(Dj—1) = — K.
Thus, the amortized cost of the MULTIPOP is
a =G q)(D,) — (D(D,',l) = k/ - k/ =0.

o Similarly, the amortized cost of a POP operation is 0.

George Voutsadakis (LSSU)

Amortized Analysis

o The amortized cost of each of the three operations is O (1).
o So the total amortized cost of a sequence of n operations is O (n).

o Since the total amortized cost of n operations is an upper bound on
the total actual cost, the worst-case cost of n operations is O (n).

George Voutsadakis (LSSU) Introduction to Algorithms

Amortized Analysis

o We define the potential of the counter after the j-th INCREMENT to
be b;, the number of 1s in the counter after the j-th operation.

o Suppose that the i-th INCREMENT operation resets t; bits.
The actual cost of the operation is at most t; + 1, since in addition to
resetting t; bits, it sets at most one bit to 1.

o If b; =0, then the i-th operation resets all k bits; So b;_1 = t; = k.
o If b >0, then b; = b;_1 — t; + 1.

In either case, b; < b;_1 — t; + 1, and the potential difference is
®(Dj) — ®(Dj—1) < (bi—1 —ti+1)—bi_1=1—t;.
o The amortized cost is therefore
G=c¢+®D;)—d(Di1)<ti+1+1—-t;=2.

o Clearly, the total amortized cost of a sequence of n operations is an
upper bound on the total actual cost. Thus, the worst-case cost of n
INCREMENT operations is O (n).

George Voutsadakis (LSSU)

Amortized Analysis

o Suppose the counter starts with by 1s, and after n INCREMENT
operations it has b, 1s, where 0 < by, b, < k.
o For the total amortized cost, we have

n n

D =Y G — (D) + d(Do).
i=1 i=1

o Wehavec <2, foralll1<i<n.

o Since ®(Dy) = by and ®(D,) = by, the total actual cost is

n n
> G <> 2= byt by=2n—by+ by.
i=1 i=1
o Since by < k, as long as k = O (n), the total actual cost is O (n).

le., if we execute at least n = Q(k) INCREMENT operations, the total
actual cost is O (n), no matter what initial value the counter contains.

George Voutsadakis (LSSU)

Amortized Analysis Dynamic Tables

Subsection 4

Dynamic Tables

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 29 /50

Amortized Analysis

o If we do not know in advance how many objects an application will
store in a table, we might want to be able to dynamically expand and
contract an initially allocated table.

o The actual cost of an insertion or a deletion operation may be large
when it triggers an expansion or a contraction.

o Using amortized analysis, we show that the amortized cost of
insertion and deletion is only O (1).

o We also see how to guarantee that the unused space in a dynamic
table never exceeds a constant fraction of the total space.

George Voutsadakis (LSSU)

Amortized Analysis

o We assume that the dynamic table supports the operations
TABLEINSERT and TABLEDELETE:

o TABLEINSERT inserts into the table an item that occupies a single slot.
o TABLEDELETE removes an item from the table, thereby freeing a slot.
o We define the load factor o T) of a nonempty table T to be the
number of items stored in the table divided by the size (number of
slots) of the table.
We assign an empty table size 0, and we define its load factor to be 1.
o If the load factor of a dynamic table is bounded below by a constant,
the unused space in the table is never more than a constant fraction
of the total amount of space.

George Voutsadakis (LSSU)

Amortized Analysis

o We start by analyzing a dynamic table in which we only insert items.

o We assume that storage for a table is allocated as an array of slots.

o A table fills up when all slots have been used or, equivalently, when
its load factor is 1.

o We assume that, upon inserting an item into a full table, our software
environment can expand the table by allocating a new table with
more slots than the old table had.

o Because we always need the table to reside in contiguous memory, we
must allocate a new array for the larger table and then copy items
from the old table into the new table.

o A common heuristic allocates a new table with twice as many slots as
the old one.

o If the only table operations are insertions, then the load factor of the
table is always at least 3, and thus the amount of wasted space never
exceeds half the total space in the table.

George Voutsadakis (LSSU)

Amortized Analysis

o Assume that T is an object representing the table.
o T.table is a pointer to the block of storage representing the table.
o T.num contains the number of items in the table;
o T .size gives the total number of slots in the table.

Initially, T.num = T .size = 0.

if T .size ==
allocate T .table with 1 slot
T.size=1

if T.num == T .size

allocate new-table with 2 - T .size slots
insert all items in T .table into new-table
free T .table
T .table = new-table
T .size =2 - T .size

insert x into T .table

T.num= T.num+1

George Voutsadakis (LSSU)

Amortized Analysis

o Notice that we have two “insertion” procedures:
o The TABLEINSERT procedure itself;
o The elementary insertion into a table in Lines 6 and 10.
o We can analyze the running time of TABLEINSERT in terms of the
number of elementary insertions by assigning a cost of 1 to each
elementary insertion.

o We assume that the actual running time of TABLEINSERT is linear in
the time to insert individual items, so that:

o The overhead for allocating an initial table in Line 2 is constant;
o The overhead for allocating and freeing storage in Lines 5 and 7 is
dominated by the cost of transferring items in Line 6.

o We call the event in which Lines 5-9 are executed an expansion.

George Voutsadakis (LSSU)

Amortized Analysis

o Let us analyze a sequence of n TABLEINSERT operations on an
initially empty table.
o For the cost ¢; of the /i-th operation:

o If the current table has room for the new item, then ¢; = 1, since we
need only perform the one elementary insertion in Line 10.
o If the current table is full, an expansion occurs, whence ¢; = i:

o The cost is 1 for the elementary insertion in Line 10
o The cost is i — 1 for the items that we must copy from the old table to
the new table in Line 6.
o If we perform n operations, the worst-case cost of an operation is
O (n). This leads to an upper bound of O (n2) on the total running
time for n operations.

George Voutsadakis (LSSU)

Amortized Analysis

o The O (n?) bound is not tight, because we rarely expand the table in
the course of n TABLEINSERT operations. The i-th operation causes
an expansion only when i — 1 is an exact power of 2.

o The amortized cost of an operation is in fact O (1).
The cost of the i-th operation is

o i, if i—1is an exact power of 2
"7 1 1, otherwise

The total cost of n TABLEINSERT operations is therefore
[log n]

Zc,§n+ Z 2 < n+2n=3n.

o Since the total cost of n TABLEINSERT operations is bounded by 3n,
the amortized cost of a single operation is at most 3.

George Voutsadakis (LSSU)

Amortized Analysis

o By using the accounting method, we can gain some feeling for why
the amortized cost of a TABLEINSERT operation should be 3.

o Intuitively, each item pays for 3 elementary insertions:
o Inserting itself into the current table;
o Moving itself when the table expands;

o Moving another item that has already been moved once when the table
expands.

Example: Suppose that the size of the table is m immediately after an
expansion. Then the table holds 7 items, and it contains no credit.
We charge 3 units for each insertion.

o The elementary insertion that occurs immediately costs 1 unit.

o We place another unit as credit on the item inserted.

o We place the third unit as credit on one of the 7 items in the table.

The table will not fill again until another 7 items are inserted. Thus,
by the time the table contains m items and is full, we will have placed

a unit of credit on each item to pay to reinsert it during the expansion.

Amortized Analysis

o We can use the potential method to analyze a sequence of n
TABLEINSERT operations.

o We define a potential function ® that is 0 immediately after an
expansion but builds to the table size by the time the table is full, so
that we can pay for the next expansion by the potential.

o One possibility is ®(T) =2 T.num — T .size.

o Immediately after an expansion, we have T.num = % and, thus,
®(T) =0, as desired.

o Immediately before an expansion, we have T.num = T .size, and, thus,
®(T) = T.num, as desired.

o The initial value of the potential is 0, and since the table is always at
least half full, T.num > % which implies that ®(T) is always
nonnegative.

o Thus, the sum of the amortized costs of n TABLEINSERT operations
gives an upper bound on the sum of the actual costs.

George Voutsadakis (LSSU)

Amortized Analysis

o We analyze the amortized cost of the /-th TABLEINSERT operation.
o We let
o num; denote the number of items stored in the table after the i-th
operation;
o size; denote the total size of the table after the /-th operation;
o ®; denote the potential after the i-th operation.
o Initially, numg = 0, sizeg = 0 and $g = 0.
o If the i-th TABLEINSERT operation does not trigger an expansion,
then we have size; = size;_.

So the amortized cost is

~

G = G+o -0,

1+ (2 num; —size;) — (2 - num;_; — size;_1)
1+ (2 num; —sizej) — (2 - (num; — 1) — size;)
= 3.

George Voutsadakis (LSSU)

Amortized Analysis

o If the i-th operation does trigger an expansion, then we have

size; = 2-sizej_1;
1
size;j_1 = num;_1 = num; — 1.

These imply size; = 2(num; — 1).

So the amortized cost is

G = t+oi-9
= num; + (2 - num; — size;) — (2 - num;_1 — size;_1)
= num;+ (2 num; — 2(num; — 1))
— (2(num; — 1) — (num; — 1))
= num;+ 2 — (num; — 1)
= 3

George Voutsadakis (LSSU) Introduction to Algorithms

Amortized Analysis

o To implement a TABLEDELETE operation, it is simple enough to
remove the specified item from the table.
o In addition, when the number of items in the table drops too low, we
allocate a new, smaller table, and copy the items into it.
o We would like to preserve two properties:
o The load factor of the dynamic table is bounded below by a constant;
o The amortized cost of a table operation is bounded above by a
constant.
o We assume that cost can be measured in terms of elementary
insertions and deletions.
o We follow the strategy for expansion and contraction:
o Double the table size when an item is inserted into a full table;

o Halve the size when a deletion would cause the table to become less
than half full.

o Then we guarantee that the load factor of the table never drops
below % but it can result in rather large amortized cost.

George Voutsadakis (LSSU)

Amortized Analysis

o Consider the following scenario:
o We perform n operations on a table T, where n is an exact power of 2.
o The first 7 operations are insertions, which by our previous analysis
cost a total of ©(n).
At the end of this sequence of insertions, T.num = T .size = 7.
o For the second 7 operations, we perform the following sequence: insert,
delete, delete, insert, insert, delete, delete, insert, insert, ...
The first insertion causes the table to expand to size n. The two
following deletions cause the table to contract back to size 5. Two
further insertions cause another expansion, and so forth.
The cost of each expansion and contraction is ©(n), and there are
©(n) of them. Thus, the total cost of the n operations is ©(n?).

This makes the amortized cost of an operation ©(n).

o The downside of this strategy is obvious: After expanding the table,
we do not delete enough items to pay for a contraction. Likewise,
after contracting the table, we do not insert enough items to pay for
an expansion.

George Voutsadakis (LSSU)

Amortized Analysis

o We can improve upon this strategy by allowing the load factor of the

1
table to drop below 3.

o We double the table size upon inserting an item into a full table;
o We halve the table size when deleting an item causes the table to
become less than % full.

o The load factor of the table is now bounded below by %.

o Intuitively, we consider a load factor of % to be ideal, and the table’'s
potential would then be 0.

As the load factor deviates from % the potential increases so that by
the time we expand or contract the table, the table has sufficient
potential to pay for copying all the items into the new table.

o We need a potential function that:

o Grows to T.num by the time that the load factor has either increased
to 1 or decreased to 71;?

o After either expanding or contracting the table, the load factor goes
back to % and the table's potential reduces back to 0.

George Voutsadakis (LSSU)

Amortized Analysis

o We assume that whenever the number of items drops to 0, we free
the storage for the table, i.e., if T.num =0, then T .size = 0.
o We define a potential function @ that:

o Is 0 immediately after an expansion or contraction;
o Builds as the load factor increases to 1 or decreases to %.

o Denote the load factor of a nonempty table T by a(T) = ;’;:‘Z’z
o For an empty table, T.num = T.size=0and o(T) = 1.
o So, it holds always T.num = «(T) - T .size.
o We define
[2. T.num — Tusize, ifo(T)>12
*(T) = { Lsize _ T num, ifo(T) <3

o The potential of an empty table is 0 and the potential is never
negative. Thus, the total amortized cost of a sequence of operations
with respect to ® is an upper bound on the actual cost.

George Voutsadakis (LSSU)

Amortized Analysis

[2. T.num — Tsize, if a(T)>
o We set (T) = { T.;ize — T.num, if a(T) <

NN =

The following hold:
o When the load factor is % the potential is 0.
o When the load factor is 1, we have T.size = T.num.
This gives ®(T) = T.num.
Thus, the potential can pay for an expansion if an item is inserted.
o When the load factor is %, we have T.size =4 - T.num.
This gives ®(T) = T.num.
Thus, the potential can pay for a contraction if an item is deleted.

George Voutsadakis (LSSU)

Amortized Analysis

o To analyze a sequence of n TABLEINSERT and TABLEDELETE
operations, we let:
o ¢; denote the actual cost of the i-th operation;
o ¢; denote its amortized cost with respect to ®;
o num; denote the number of items stored in the table after the i-th
operation;
o size; denote the total size of the table after the /-th operation;
o «; denote the load factor of the table after the i-th operation;
o ®; denote the potential after the /-th operation.

o Initially, numg = 0, sizeg =0, ag = 1, and ¢ = 0.

George Voutsadakis (LSSU)

Amortized Analysis

o We start with the case in which the i-th operation is TABLEINSERT.

o If j_1 > % the analysis is identical to that for table expansion.
Whether the table expands or not, the amortized cost ¢; of the
operation is at most 3.

o Ifaj_1 < % the table cannot expand as a result of the operation,
since the table expands only when a;_; = 1.

o If o < % as well, then the amortized cost of the i-th operation is

~

G = G+Pi—di, _

1+ (%% — num;) — (%5 — num;_1)
1+ (55% — num;) — (55 — (num; — 1))
= 0.

George Voutsadakis (LSSU)

Amortized Analysis

o We continue with case a;_1 < % in which the table cannot expand.

o Ifaj_1 < % but o > % then

~

Ci = GF ar (D,- — q),',l
= 1+ (2-num; —size;) — (— num;_1)
14 (2(num;_1 4 1) — sizej_1) — (5= — num,_1)
= 3num;_; — %size;_l +3
3aij_1sizej_1 — 3sizej_1 +3
3size;_1 — 3sizei_1 + 3
3.

sizej_1
2

A

Thus, the amortized cost of a TABLEINSERT operation is at most 3.

George Voutsadakis (LSSU) Introduction to Algorithms

Amortized Analysis

o If the i-th operation is TABLEDELETE, num; = num;_; — 1.
o We handle the case a;_1 < %

o If operation does not cause the table to contract, then size; = size;_1.
The amortized cost of the operation is

~

G = Gt+®—d4 _
= 1+ (%% —num;) — (%57 — num;_;)
= 14 (% —num;) — (55% — (num; + 1))
= Z

George Voutsadakis (LSSU) Introduction to Algorithms

Amortized Analysis

o We continue with the case a;_1 < %

o Ifaj1 < % and the /-th operation does trigger a contraction, then the
actual cost of the operation is ¢; = num; + 1, since we delete one item

and move num; items.

We have . .

Size; Slzej_1 +1
= = num;_3; = num; 0
2 4

The amortized cost of the operation is

G = at®i—di, '
= (num; +1) + (22 — num;) — (5522 — num;_1)
= (num;+1) + ((num; + 1) — num;)
— ((2 - num; + 2) — (num; + 1))
= 1.

o When the i-th operation is a TABLEDELETE and a;_71 > % the
amortized cost is also bounded above by a constant.

George Voutsadakis (LSSU)

	Outline
	Amortized Analysis
	The Aggregate Method
	The Accounting Method
	The Potential Method
	Dynamic Tables

