
Introduction to Algorithms

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 1 / 64

Outline

1 Elementary Graph Algorithms
Representations of Graphs
Breadth-First Search
Depth-First Search
Topological Sort
Strongly Connected Components

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 2 / 64

Elementary Graph Algorithms Representations of Graphs

Subsection 1

Representations of Graphs

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 3 / 64

Elementary Graph Algorithms Representations of Graphs

Methods of Representation

There are two standard ways to represent a graph G = (V ,E).

As a collection of adjacency lists;
As an adjacency matrix.

Either way applies to both directed and undirected graphs.

The adjacency-list representation provides a compact way to represent
sparse graphs (with |E | much less than |V |2).

Most of our graph algorithms assume that an input graph is
represented in adjacency list form.

The adjacency-matrix representation is preferable when the graph is
dense (|E | is close to |V |2) or when we need to be able to tell quickly
if there is an edge connecting two given vertices.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 4 / 64

Elementary Graph Algorithms Representations of Graphs

The Adjacency List Representation

The adjacency-list representation of a graph G = (V ,E) consists of:
An array Adj of |V | lists, one for each vertex in V ;
For each u ∈ V , the adjacency list Adj[u] contains all the vertices v ,
such that there is an edge (u, v) ∈ E .
The vertices in each list are typically stored in an arbitrary order.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 5 / 64

Elementary Graph Algorithms Representations of Graphs

Memory Requirements versus Flexibility

If G is a directed graph, the sum of the lengths of all the adjacency
lists is |E |, since an edge of the form (u, v) is represented by having v

appear in Adj[u].

If G is an undirected graph, the sum of the lengths of all the
adjacency lists is 2|E |, since if (u, v) is an undirected edge, then u

appears in v ’s adjacency list and vice versa.

For both directed and undirected graphs, the adjacency-list
representation has the desirable property that the amount of memory
it requires is Θ(V + E).

We can adapt adjacency lists to represent weighted graphs, that is,
graphs for which each edge has an associated weight, typically given
by a weight function w : E → R.

Example: Let G = (V ,E) be a weighted graph with weight function
w . We simply store the weight w(u, v) of the edge (u, v) ∈ E with
vertex v in u’s adjacency list.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 6 / 64

Elementary Graph Algorithms Representations of Graphs

The Adjacency Matrix Representation

For the adjacency-matrix representation of a graph G = (V ,E),
we assume that the vertices are numbered 1, 2, . . . , |V | in some
arbitrary manner.

Then the adjacency-matrix representation of a graph G consists of a

|V | × |V | matrix A = (aij), such that aij =

{

1, if (i , j) ∈ E

0, otherwise

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 7 / 64

Elementary Graph Algorithms Representations of Graphs

Memory Requirements and Flexibility

The adjacency matrix of a graph requires Θ(|V |2) memory,
independent of the number of edges in the graph.

Since in an undirected graph, (u, v) and (v , u) represent the same
edge, for the adjacency matrix A of an undirected graph A = AT .

An adjacency matrix can also represent a weighted graph.

Example: If G = (V ,E) is a weighted graph with edge weight
function w , we can store the weight w(u, v) of the edge (u, v) ∈ E as
the entry in row u and column v of the adjacency matrix.

If an edge does not exist, we can store a NIL value, but for many
problems it is convenient to use 0 or ∞.

Although the adjacency-list representation is asymptotically at least
as space efficient as the adjacency-matrix representation, adjacency
matrices are simpler.

Moreover, adjacency matrices for unweighted graphs have the
advantage that they require only one bit per entry.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 8 / 64

Elementary Graph Algorithms Representations of Graphs

Representing Attributes

Most algorithms that operate on graphs need to maintain attributes
for vertices and/or edges.

We write v .d for an attribute d of a vertex v

If edges have an attribute f , then we denote this attribute for edge
(u, v) by (u, v).f .

If we represent a graph using adjacency lists, one design may
represent vertex attributes in additional arrays, such as an array
d [1 . . . |V |] that parallels the Adj array.

If the vertices adjacent to u are in Adj[u], then what we call the
attribute u.d would actually be stored in the array entry d [u].

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 9 / 64

Elementary Graph Algorithms Breadth-First Search

Subsection 2

Breadth-First Search

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 10 / 64

Elementary Graph Algorithms Breadth-First Search

Introducing Breadth-First Search

Given a graph G = (V ,E) and a distinguished source vertex s,
breadth-first search systematically explores the edges of G to
“discover” every vertex that is reachable from s.

It computes the distance (smallest number of edges) from s to each
reachable vertex.

It also produces a “breadth-first tree” with root s that contains all
reachable vertices.

For any vertex v reachable from s, the simple path in the breadth-first
tree from s to v corresponds to a “shortest path” from s to v in G ,
i.e., a path containing the smallest number of edges.

The algorithm works on both directed and undirected graphs.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 11 / 64

Elementary Graph Algorithms Breadth-First Search

Coloring Vertices During Discovery

Breadth-first search expands the frontier between discovered and
undiscovered vertices uniformly across the breadth of the frontier.

I.e., the algorithm discovers all vertices at distance k from s before
discovering any vertices at distance k + 1.

To keep track of progress, breadth-first search colors each vertex
white, gray or black.

All vertices start out white and may later become gray and then black.
A vertex is discovered the first time it is encountered during the search,
at which time it becomes nonwhite.
Gray and black vertices, therefore, have been discovered, but
breadth-first search distinguishes between them to ensure that the
search proceeds in a breadth-first manner.

If (u, v) ∈ E and vertex u is black, then vertex v is either gray or black,
i.e., all vertices adjacent to black vertices have been discovered.
Gray vertices may have some adjacent white vertices. They represent
the frontier between discovered and undiscovered vertices.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 12 / 64

Elementary Graph Algorithms Breadth-First Search

The Breadth-First Tree

Breadth-first search constructs a breadth-first tree.

Initially, it contains only its root, which is the source vertex s.

Whenever the search discovers a white vertex v in the course of
scanning the adjacency list of an already discovered vertex u, the
vertex v and the edge (u, v) are added to the tree.

We say that u is the predecessor or parent of v in the breadth-first
tree.

Since a vertex is discovered at most once, it has at most one parent.

Ancestor and descendant relationships in the breadth-first tree are
defined relative to the root s as usual.

If u is on the simple path in the tree from the root s to vertex v , then
u is an ancestor of v and v is a descendant of u.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 13 / 64

Elementary Graph Algorithms Breadth-First Search

Setting the Variables

The breadth-first search procedure BFS below assumes that the
input graph G = (V ,E) is represented using adjacency lists.

It attaches several additional attributes to each vertex in the graph.

We store the color of each vertex u ∈ V in the attribute u.color;
We store the predecessor of u in the attribute u.π.
If u has no predecessor (for example, if u = s or u has not been
discovered), then u.π = NIL.
The attribute u.d holds the distance from the source s to vertex u

computed by the algorithm.

The algorithm also uses a first-in, first-out queue Q to manage the
set of gray vertices.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 14 / 64

Elementary Graph Algorithms Breadth-First Search

The Procedure Breadth-First Search

BFS(G , s)

1. for each vertex u ∈ G .V − {s}
2. u.color = WHITE
3. u.d = ∞
4. u.π = NIL
5. s.color = GRAY
6. s.d = 0
7. s.π = NIL
8. Q = ∅
9. EnQueue(Q, s)

10. while Q 6= ∅
11. u = DeQueue(Q)
12. for each v ∈ G .Adj[u]
13. if v .color == WHITE
14. v .color = GRAY
15. v .d = u.d + 1
16. v .π = u
17. EnQueue(Q, v)
18. u.color = BLACK

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 15 / 64

Elementary Graph Algorithms Breadth-First Search

An Example of Breadth-First Search

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 16 / 64

Elementary Graph Algorithms Breadth-First Search

How Breadth-First Search Works

With the exception of the source vertex s, Lines 1-4:

Paint every vertex white;
Set u.d to be infinity for each vertex u;
Set the parent of every vertex to be NIL.

Line 5 paints s gray, since we consider it to be discovered as the
procedure begins.

Line 6 initializes s.d to 0.

Line 7 sets the predecessor of the source to be NIL.

Lines 8-9 initialize Q to the queue containing just the vertex s.

The while loop of Lines 10-18 iterates as long as there remain gray
vertices, which are discovered vertices that have not yet had their
adjacency lists fully examined.

This while loop maintains the following invariant:

At the test in Line 10, the queue Q consists of the set of gray vertices.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 17 / 64

Elementary Graph Algorithms Breadth-First Search

How Breadth-First Search Works (Cont’d)

Prior to the first iteration, the only gray vertex, and the only vertex in
Q, is the source vertex s. Line 11 determines the gray vertex u at the
head of the queue Q and removes it from Q. The for loop of Lines
12-17 considers each vertex v in the adjacency list of u.

If v is white, then it has not yet been discovered, and the algorithm
discovers it by executing Lines 14-17.

It is first grayed, and its distance v .d is set to u.d + 1.
Then, u is recorded as its parent v .π.
Finally, it is placed at the tail of the queue Q.

When all the vertices on u’s adjacency list have been examined, u is
blackened in Line 18.

The loop invariant is maintained:

Whenever a vertex is painted gray (in Line 14) it is also enqueued (in
Line 17);
Whenever a vertex is dequeued (in Line 11) it is also painted black (in
Line 18).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 18 / 64

Elementary Graph Algorithms Breadth-First Search

Analysis

We analyze the running time on an input graph G = (V ,E).

We use aggregate analysis.

After initialization, breadth-first search never whitens a vertex.

Thus, the test in Line 13 ensures that each vertex is enqueued at
most once, and hence dequeued at most once.

The operations of enqueuing and dequeuing take O (1) time.

So the total time devoted to queue operations is O (|V |).

Because the procedure scans the adjacency list of each vertex only
when the vertex is dequeued, it scans each adjacency list at most
once. Since the sum of the lengths of all the adjacency lists is Θ(|E |),
the total time spent in scanning adjacency lists is O (|E |).

The overhead for initialization is O (|V |).

Thus, the total running time of the BFS procedure is O (|V |+ |E |).

Thus, breadth-first search runs in time linear in the size of the
adjacency-list representation of G .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 19 / 64

Elementary Graph Algorithms Breadth-First Search

Shortest Paths

Define the shortest-path distance δ(s, v) from s to v as the
minimum number of edges in any path from vertex s to vertex v .

If there is no path from s to v , then δ(s, v) = ∞.

We call a path of length δ(s, v) from s to v a shortest path from s

to v .

Lemma

Let G = (V ,E) be a directed or undirected graph, and let s ∈ V be an
arbitrary vertex. Then, for any edge (u, v) ∈ E , δ(s, v) ≤ δ(s, u) + 1.

If u is reachable from s, then so is v . In this case, the shortest path
from s to v cannot be longer than the shortest path from s to u

followed by the edge (u, v). Thus, the inequality holds.

If u is not reachable from s, then δ(s, u) = ∞, and the inequality
holds.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 20 / 64

Elementary Graph Algorithms Breadth-First Search

v .d Bounds δ(s, v) From Above

Lemma

Let G = (V ,E) be a directed or undirected graph, and suppose that BFS

is run on G , s, with s ∈ V . Then upon termination, for each vertex v ∈ V ,
the value v .d computed by BFS satisfies v .d ≥ δ(s, v).

We use induction on the number of EnQueue operations. The
inductive hypothesis is that v .d ≥ δ(s, v), for all v ∈ V .

The basis of the induction is the situation immediately after enqueuing
s in Line 9 of BFS. The inductive hypothesis holds here, because
s.d = 0 = δ(s, s) and v .d = ∞ ≥ δ(s, v), for all v ∈ V − {s}.
For the inductive step, consider a white vertex v discovered during the
search from u. By the inductive hypothesis, u.d ≥ δ(s, u). From the
assignment performed by Line 15 and from the lemma, we obtain
v .d = u.d + 1 ≥ δ(s, u) + 1 ≥ δ(s, v). Vertex v is then enqueued, and
it is never enqueued again because it is also grayed and the then clause
of Lines 14-17 is executed only for white vertices. Thus, the value of
v .d never changes again, and the inductive hypothesis is maintained.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 21 / 64

Elementary Graph Algorithms Breadth-First Search

Distance Values in the Queue

Lemma

Suppose that during the execution of BFS on G = (V ,E), the queue Q

contains the vertices 〈v1, v2, . . . , vr 〉, where v1 is the head of Q and vr is
the tail. Then, vr .d ≤ v1.d + 1 and vi .d ≤ vi+1.d , i = 1, 2, . . . , r − 1.

The proof is by induction on the number of queue operations.

Initially, when the queue contains only s, the lemma certainly holds.
For the inductive step, we must prove that the lemma holds after both
dequeuing and enqueuing a vertex.

If the head v1 of the queue is dequeued, v2 becomes the new head. By
the inductive hypothesis, v1.d ≤ v2.d . Then vr .d ≤ v1.d + 1 ≤

v2.d + 1. So the remaining inequalities are unaffected.
When we enqueue a vertex v in Line 17 of BFS, it becomes vr+1. At
that time, we have removed vertex u, whose adjacency list is currently
being scanned, from Q. By the inductive hypothesis, the new head v1

has v1.d ≥ u.d . Thus, vr+1.d = v .d = u.d + 1 ≤ v1.d + 1. From the
inductive hypothesis, vr .d ≤ u.d + 1. So vr .d ≤ u.d + 1 = v .d =
vr+1.d . Hence, the remaining inequalities are unaffected.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 22 / 64

Elementary Graph Algorithms Breadth-First Search

Increasing Distance Values

The following corollary shows that the d values at the time that
vertices are enqueued are monotonically increasing over time.

Corollary

Suppose that vertices vi and vj are enqueued during the execution of
BFS, and that vi is enqueued before vj . Then vi .d ≤ vj .d at the time
that vj is enqueued.

Immediate from the preceding lemma and the property that each
vertex receives a finite d value at most once during the course of
BFS.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 23 / 64

Elementary Graph Algorithms Breadth-First Search

Correctness of Breadth-First Search

Theorem (Correctness of Breadth-First Search)

Let G = (V ,E) be a directed or undirected graph, and suppose that BFS

is run on G from a given source vertex s ∈ V . Then, during its execution,
BFS discovers every vertex v ∈ V that is reachable from the source s,
and upon termination, v .d = δ(s, v), for all v ∈ V . Moreover, for any
vertex v 6= s that is reachable from s, one of the shortest paths from s to
v is a shortest path from s to v .π followed by the edge (v .π, v).

Assume some vertex receives a d value not equal to its shortest-path
distance. Let v be the vertex with minimum δ(s, v) that receives such
an incorrect d value. Clearly v 6= s. By a previous lemma,
v .d ≥ δ(s, v), and, thus, we have that v .d > δ(s, v). Vertex v must
be reachable from s, for if it is not, then δ(s, v) = ∞ ≥ v .d . Let u be
the vertex immediately preceding v on a shortest path from s to v , so
that δ(s, v) = δ(s, u)+1. Because δ(s, u) < δ(s, v), and the choice of
v , u.d = δ(s, u). Now we get, v .d > δ(s, v) = δ(s, u) + 1 = u.d + 1.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 24 / 64

Elementary Graph Algorithms Breadth-First Search

Correctness of Breadth-First Search (Cont’d)

Now consider the time when BFS chooses to dequeue vertex u from
Q in Line 11. At this time, vertex v is either white, gray or black.

If v is white, then Line 15 sets v .d = u.d + 1, a contradiction.
If v is black, then it was already removed from the queue. By the
preceding corollary, we have v .d ≤ u.d , again a contradiction.
If v is gray, then it was painted gray upon dequeuing some vertex w ,
which was removed from Q earlier than u and s.t. v .d = w .d + 1.
By the preceding corollary, w .d ≤ u.d . So v .d = w .d + 1 ≤ u.d + 1, a
contradiction.

Thus, v .d = δ(s, v), for all v ∈ V .

All vertices v reachable from s must be discovered, for otherwise they
would have ∞ = v .d > δ(s, v).

To conclude the proof, observe that if v .π = u, then v .d = u.d + 1.

Thus, we can obtain a shortest path from s to v by taking a shortest
path from s to v .π and then traversing the edge (v .π, v).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 25 / 64

Elementary Graph Algorithms Breadth-First Search

Breadth-First Trees

The procedure BFS builds a breadth-first tree, which corresponds
to the π attributes.

For a graph G = (V ,E), with source s, we define the predecessor
subgraph of G as Gπ = (Vπ,Eπ), where

Vπ = {v ∈ V : v .π 6= NIL} ∪ {s};
Eπ = {(v .π, v) : v ∈ Vπ − {s}}.

The predecessor subgraph Gπ is a breadth-first tree if Vπ consists of
the vertices reachable from s and, for all v ∈ Vπ, the subgraph Gπ

contains a unique simple path from s to v that is also a shortest path
from s to v in G .

A breadth-first tree is in fact a tree, since it is connected and
|Eπ| = |Vπ|+ 1.

We call the edges in Eπ tree edges.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 26 / 64

Elementary Graph Algorithms Breadth-First Search

Breadth-First Trees

The following lemma shows that the predecessor subgraph produced
by BFS is a breadth-first tree.

Lemma

When applied to a directed or undirected graph G = (V ,E), procedure
BFS constructs π so that the predecessor subgraph Gπ = (Vπ,Eπ) is a
breadth-first tree.

Line 16 of BFS sets v .π = u if and only if (u, v) ∈ E and
δ(s, v) < ∞, i.e., if v is reachable from s. Thus, Vπ consists of the
vertices in V reachable from s. Since Gπ forms a tree, it contains a
unique simple path from s to each vertex in Vπ. The preceding
theorem shows that every such path is a shortest path in G .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 27 / 64

Elementary Graph Algorithms Breadth-First Search

Printing a Shortest Path

The following procedure prints out the vertices on a shortest path
from s to v , assuming that BFS has already computed a breadth-first
tree.

PrintPath(G , s, v)

1. if v == s

2. print s

3. elseif v .π == NIL

4. print “no path from” s “to” v “exists”

5. else PrintPath(G , s, v .π)

6. print v

Each recursive call is for a path one vertex shorter.

Thus, PrintPath runs in time linear in the number of vertices in the
path printed.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 28 / 64

Elementary Graph Algorithms Depth-First Search

Subsection 3

Depth-First Search

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 29 / 64

Elementary Graph Algorithms Depth-First Search

Idea of Depth-First Search

The strategy followed by depth-first search is to search “deeper” in
the graph whenever possible.

Depth-first search explores edges out of the most recently discovered
vertex v that still has unexplored edges leaving it.
Once all of v ’s edges have been explored, the search “backtracks” to
explore edges leaving the vertex from which v was discovered.

This process continues until we have discovered all the vertices that
are reachable from the original source vertex.

If any undiscovered vertices remain, then depth-first search selects one
of them as a new source, and it repeats the search from that source.

The algorithm repeats this entire process until it has discovered every
vertex.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 30 / 64

Elementary Graph Algorithms Depth-First Search

The Depth-First Forest

Whenever depth-first search discovers a vertex v during a scan of the
adjacency list of an already discovered vertex u, it records this event
by setting v ’s predecessor attribute v .π to u.

Unlike breadth-first search, whose predecessor subgraph forms a tree,
the predecessor subgraph produced by a depth-first search may be
composed of several trees, because the search may repeat from
multiple sources.

Therefore, we define the predecessor subgraph of a depth-first
search as Gπ = (V ,Eπ), where:

Eπ = {(v .π, v) : v ∈ V and v .π 6= NIL}.

The predecessor subgraph of a depth-first search forms a depth-first

forest comprising several depth-first trees.

The edges in Eπ are tree edges.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 31 / 64

Elementary Graph Algorithms Depth-First Search

Coloring and Timestamping

Depth-first search colors vertices during the search to indicate their
state.

Each vertex is initially white;
It is grayed when it is discovered in the search;
It is blackened when it is finished, that is, when its adjacency list has
been examined completely.

This technique guarantees that each vertex ends up in exactly one
depth-first tree, so that these trees are disjoint.

Besides creating a depth-first forest, depth-first search also
timestamps each vertex.

Each vertex v has two timestamps:
The first timestamp v .d records when v is first discovered (and grayed);
The second timestamp v .f records when the search finishes examining
v ’s adjacency list (and blackens v).

These timestamps provide important information about the structure
of the graph.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 32 / 64

Elementary Graph Algorithms Depth-First Search

The Depth-First Search Procedure

The procedure DFS below records when it discovers vertex u in the
attribute u.d and when it finishes vertex u in the attribute u.f .

These timestamps are integers between 1 and 2|V |, since there is one
discovery event and one finishing event for each of the |V | vertices.

For every vertex u, u.d < u.f .

Vertex u is WHITE before time u.d , GRAY between time u.d and
time u.f , and BLACK thereafter.

The input graph G may be undirected or directed.

DFS(G)

1. for each vertex u ∈ G .V

2. u.color = WHITE
3. u.π = NIL
4. time = 0
5. for each vertex u ∈ G .V
6. if u.color == WHITE
7. DFSVisit(G , u)

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 33 / 64

Elementary Graph Algorithms Depth-First Search

The Subroutine DFSVisit

DFSVisit(G , u)

1. time = time + 1 //white vertex u has just been discovered

2. u.d = time

3. u.color = GRAY

4. for each v ∈ G .Adj[u] //explore edge (u, v)

5. if v .color == WHITE

6. v .π = u

7. DFSVisit(G , u)

8. u.color = BLACK //blacken u; it is finished

9. time = time + 1

10. u.f = time

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 34 / 64

Elementary Graph Algorithms Depth-First Search

Illustration of DFS

The progress of DFS:

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 35 / 64

Elementary Graph Algorithms Depth-First Search

How DFS Works

Lines 1-3 paint all vertices white and initialize π attributes to NIL.

Line 4 resets the global time counter.
Lines 5-7 check each vertex in V in turn and, when a white vertex is
found, visit it using DFSVisit:

Every time DFSVisit(G , u) is called in Line 7, vertex u becomes the
root of a new tree in the depth-first forest.

In each call DFSVisit(u), vertex u is initially white.
Line 1 increments time.
Line 2 records the new value of time as the discovery time u.d .
Line 3 paints u gray.
Lines 4-7 examine each vertex v adjacent to u and recursively visit v if
it is white.
As each vertex v ∈ Adj[u] is considered in Line 4, we say that edge
(u, v) is explored by the depth-first search.
Finally, after every edge leaving u has been explored, Lines 8-10 paint u
black, increment time and record the finishing time in u.f .

When DFS returns, every vertex u has been assigned a discovery

time u.d and a finishing time u.f .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 36 / 64

Elementary Graph Algorithms Depth-First Search

Running Time of DFS

The loops on Lines 1-3 and Lines 5-7 of DFS take time Θ(|V |),
exclusive of the time to execute the calls to DFSVisit.

We use aggregate analysis.

The procedure DFSVisit is called exactly once for each vertex
v ∈ V , since the vertex u on which DFSVisit is invoked must be
white and the first thing DFSVisit does is paint vertex u gray.

During an execution of DFSVisit(G , v), the loop on Lines 4-7
executes |Adj[v]| times.

Since
∑

v∈V |Adj[v]| = Θ(|E |), the total cost of executing Lines 4-7
of DFSVisit is Θ(|E |).

The running time of DFS is therefore Θ(|V |+ |E |).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 37 / 64

Elementary Graph Algorithms Depth-First Search

Properties of Depth-First Search

The most basic property of depth-first search is that the predecessor
subgraph Gπ does indeed form a forest of trees, since the structure of
the depth-first trees exactly mirrors the structure of recursive calls of
DFSVisit:

u = v .π if and only if DFSVisit(G , v) was called during a search of
u’s adjacency list.
Additionally, vertex v is a descendant of vertex u in the depth-first
forest if and only if v is discovered during the time in which u is gray.

Another important property of depth-first search is that discovery and
finishing times have parenthesis structure:

If we represent the discovery of vertex u with a left parenthesis “(u”
and represent its finishing by a right parenthesis “u)”, the history of
discoveries and finishings makes a well-formed expression in the sense
that the parentheses are properly nested.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 38 / 64

Elementary Graph Algorithms Depth-First Search

Illustration of Parenthesis Structure

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 39 / 64

Elementary Graph Algorithms Depth-First Search

Parenthesis Theorem

Theorem (Parenthesis Theorem)

In any depth-first search of a (directed or undirected) graph G = (V ,E),
for any two vertices u and v , exactly one of the following three conditions
holds:

the intervals [u.d , u.f] and [v .d , v .f] are entirely disjoint, and neither
u nor v is a descendant of the other in the depth-first forest;

the interval [u.d , u.f] is contained entirely within the interval
[v .d , v .f], and u is a descendant of v in a depth-first tree;

the interval [v .d , v .f] is contained entirely within the interval
[u.d , u.f], and v is a descendant of u in a depth-first tree.

Consider the case in which u.d < v .d . We consider two subcases,
according to whether v .d < u.f or not.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 40 / 64

Elementary Graph Algorithms Depth-First Search

Parenthesis Theorem (Cont’d)

Case in which u.d < v .d .

The first subcase occurs when v .d < u.f . So v was discovered while u

was still gray. This implies that v is a descendant of u. Moreover, since
v was discovered more recently than u, all of its outgoing edges are
explored, and v is finished, before the search returns to and finishes u.
In this case, therefore, the interval [v .d , v .f] is entirely contained
within the interval [u.d , u.f].
In the other subcase, u.f < v .d . By the inequality, u.d < u.f < v .d

< v .f . Thus, the intervals [u.d , u.f] and [v .d , v .f] are disjoint.
Because the intervals are disjoint, neither vertex was discovered while
the other was gray. So neither vertex is a descendant of the other.

The case in which v .d < u.d is symmetric to the above.

Corollary (Nesting of Descendants’ Intervals)

Vertex v is a proper descendant of vertex u in the depth-first forest for a
(directed or undirected) graph G if and only if u.d < v .d < v .f < u.f .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 41 / 64

Elementary Graph Algorithms Depth-First Search

The White-Path Theorem

The next theorem gives another important characterization of when
one vertex is a descendant of another in the depth-first forest.

Theorem (White-Path Theorem)

In a depth-first forest of a (directed or undirected) graph G = (V ,E),
vertex v is a descendant of vertex u if and only if at the time u.d that the
search discovers u, there is a path from u to v consisting entirely of white
vertices.

(⇒) If v = u, then the path from u to v contains just vertex u, which is
still white when we set the value of u.d . Now, suppose that v is a
proper descendant of u in the depth-first forest. By the corollary,
u.d < v .d . So v is white at time u.d . Since v can be any descendant
of u, all vertices on the unique simple path from u to v in the
depth-first forest are white at time u.d .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 42 / 64

Elementary Graph Algorithms Depth-First Search

The White-Path Theorem (The Reverse)

(⇐) Suppose that there is a path of white vertices from u to v at time
u.d , but v does not become a descendant of u in the depth-first tree.
Without loss of generality, assume that every vertex other than v

along the path becomes a descendant of u. (Otherwise, let v be the
closest vertex to u along the path that does not become a descendant
of u.) Let w be the predecessor of v in the path, so that w is a
descendant of u (w and u may in fact be the same vertex). By the
corollary, w .f ≤ u.f . Because v must be discovered after u is
discovered, but before w is finished, we have u.d < v .d < w .f ≤ u.f .
By the theorem, the interval [v .d , v .f] is contained entirely within the
interval [u.d , u.f]. By the corollary, v must be a descendant of u.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 43 / 64

Elementary Graph Algorithms Depth-First Search

Classification of Edges

Depth-first search can be used to classify the edges of the input graph
G = (V ,E).

We can define four edge types in terms of the depth-first forest Gπ

produced by a depth-first search on G :

1. Tree edges are edges in the depth-first forest Gπ. Edge (u, v) is a tree
edge if v was first discovered by exploring edge (u, v).

2. Back edges are those edges (u, v) connecting a vertex u to an
ancestor v in a depth-first tree.
We consider self-loops, which may occur in directed graphs, to be back
edges.

3. Forward edges are those nontree edges (u, v) connecting a vertex u to
a descendant v in a depth-first tree.

4. Cross edges are all other edges.
They can go between vertices in the same depth-first tree, as long as
one vertex is not an ancestor of the other, or they can go between
vertices in different depth-first trees.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 44 / 64

Elementary Graph Algorithms Depth-First Search

Illustrating the Classification of Edges

Edge labels indicate edge types.

In the right figure, all tree and forward edges head downward in a
depth-first tree and all back edges go up.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 45 / 64

Elementary Graph Algorithms Depth-First Search

DFS and the Classification

The DFS algorithm has enough information to classify some edges as
it encounters them.

The key idea is that when we first explore an edge (u, v), the color of
vertex v tells us something about the edge.

1. WHITE indicates a tree edge;
2. GRAY indicates a back edge;
3. BLACK indicates a forward or cross edge.

The first case is immediate from the specification of the algorithm.

For the second case, observe that the gray vertices always form a
linear chain of descendants corresponding to the stack of active
DFSVisit invocations. The number of gray vertices is one more
than the depth in the depth-first forest of the vertex most recently
discovered. Exploration always proceeds from the deepest gray vertex,
so an edge that reaches another gray vertex has reached an ancestor.

The third case handles the remaining possibility.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 46 / 64

Elementary Graph Algorithms Depth-First Search

Undirected Graphs: Forward and Cross Edges

We now show that forward and cross edges never occur in a
depth-first search of an undirected graph.

Theorem

In a depth-first search of an undirected graph G , every edge of G is either
a tree edge or a back edge.

Let (u, v) be an arbitrary edge of G . Suppose without loss of
generality that u.d < v .d . Then the search must discover and finish v
before it finishes u (while u is gray), since v is on u’s adjacency list.
Consider the first time that the search explores edge (u, v).

If it is in the direction from u to v , then v is undiscovered (white) until
that time, for otherwise the search would have explored this edge
already in the direction from v to u. So (u, v) becomes a tree edge.
If it is in the direction from v to u, then (u, v) is a back edge, since u

is still gray at the time the edge is first explored.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 47 / 64

Elementary Graph Algorithms Topological Sort

Subsection 4

Topological Sort

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 48 / 64

Elementary Graph Algorithms Topological Sort

Topological Sort

A topological sort of a directed acyclic graph (DAG) G = (V ,E) is
a linear ordering of all its vertices such that, if G contains an edge
(u, v), then u appears before v in the ordering.

We can view a topological sort of a graph as an ordering of its vertices
along a horizontal line so that all directed edges go from left to right.

Example:

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 49 / 64

Elementary Graph Algorithms Topological Sort

The Topological Sort Procedure

TopologicalSort(G)

1. call DFS(G) to compute finishing times v .f for each vertex v

2. as each vertex is finished, insert it onto the front of a linked list

3. return the linked list of vertices

We can perform a topological sort in time Θ(|V |+ |E |).
Depth-first search takes Θ(|V |+ |E |) time;
It takes O (1) time to insert each of the |V | vertices onto the front of
the linked list.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 50 / 64

Elementary Graph Algorithms Topological Sort

Characterizing DAGs

The correctness of this algorithm uses the following key lemma
characterizing directed acyclic graphs.

Lemma

A directed graph G is acyclic if and only if a depth-first search of G yields
no back edges.

(⇒) Suppose that a depth-first search produces a back edge (u, v). Then
vertex v is an ancestor of vertex u in the depth-first forest. Thus, G
contains a path from v to u, and edge (u, v) completes a cycle.

(⇐) Suppose that G contains a cycle c . We show that a depth-first search
of G yields a back edge. Let v be the first vertex to be discovered in
c . Let (u, v) be the preceding edge in c . At time v .d , the vertices of
c form a path of white vertices from v to u. By the White-Path
Theorem, vertex u becomes a descendant of v in the depth-first
forest. Therefore, (u, v) is a back edge.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 51 / 64

Elementary Graph Algorithms Topological Sort

Correctness of the Topological Sort

Theorem

TopologicalSort produces a topological sort of the directed acyclic
graph provided as its input.

Suppose that DFS is run on a given DAG G = (V ,E) to determine
finishing times for its vertices. It suffices to show that for any pair of
distinct vertices u, v ∈ V , if G contains an edge from u to v , then
v .f < u.f . Consider any edge (u, v) explored by DFS(G). When this
edge is explored, v cannot be gray, since then v would be an ancestor
of u and (u, v) would be a back edge, contradicting the lemma.
Therefore, v must be either white or black.

If v is white, it becomes a descendant of u. So v .f < u.f .
If v is black, it has already been finished. So v .f has already been set.
Because we are still exploring from u, we have yet to assign a
timestamp to u.f . So once we do, we will have v .f < u.f as well.

Thus, for any edge (u, v) in the DAG, we have v .f < u.f .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 52 / 64

Elementary Graph Algorithms Strongly Connected Components

Subsection 5

Strongly Connected Components

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 53 / 64

Elementary Graph Algorithms Strongly Connected Components

Strongly Connected Components and Transpose

A strongly connected component of a directed graph G = (V ,E)
is a maximal set of vertices C ⊆ V , such that for every pair of
vertices u and v in C , we have both u v and v u, i.e., vertices u
and v are reachable from each other.

Our algorithm for finding strongly connected components of a graph
G = (V ,E) uses the transpose of G , GT = (V ,ET), where

ET = {(u, v) : (v , u) ∈ E},

i.e., ET consists of the edges of G with their directions reversed.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 54 / 64

Elementary Graph Algorithms Strongly Connected Components

Example

Given an adjacency-list representation of G , the time to create GT is
O (|V |+ |E |).

Observe that G and GT have exactly the same strongly connected
components. u and v are reachable from each other in G if and only
if they are reachable from each other in GT .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 55 / 64

Elementary Graph Algorithms Strongly Connected Components

Discovering Strongly Connected Components

The following Θ(|V |+ |E |)-time algorithm computes the strongly
connected components of a directed graph G = (V ,E) using two
depth-first searches, one on G and one on GT .

StronglyConnectedComponents(G)

1. call DFS(G) to compute finishing times u.f for each vertex u

2. compute GT

3. call DFS(GT), but in the main loop of DFS, consider the vertices in order
of decreasing u.f (as computed in line 1)

4. output the vertices of each tree in the depth-first forest formed in Line 3 as
a separate strongly connected component

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 56 / 64

Elementary Graph Algorithms Strongly Connected Components

The Component Graph

Suppose G has strongly connected components C1,C2, . . . ,Ck .

The component graph GSCC = (V SCC,ESCC) of G is define as
follows:

The vertex set V SCC is {v1, v2, . . . , vk}, and it contains a vertex vi for
each strongly connected component Ci of G ;
There is an edge (vi , vj) ∈ E SCC if G contains a directed edge (x , y),
for some x ∈ Ci and some y ∈ Cj .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 57 / 64

Elementary Graph Algorithms Strongly Connected Components

The Component Graph is a DAG

The key property is that the component graph is a DAG.

Lemma

Let C and C ′ be distinct strongly connected components in directed graph
G = (V ,E), let u, v ∈ C , let u′, v ′ ∈ C ′, and suppose that G contains a
path u u′. Then G cannot also contain a path v ′ v .

If G contains a path v ′ v , then it contains paths u u′ v ′ and
v ′ v u. Thus, u and u′ are reachable from each other. This
contradicts the assumption that C and C ′ are distinct strongly
connected components.

We shall see that by considering vertices in the second depth-first
search in decreasing order of the finishing times that were computed
in the first depth-first search, we are, in essence, visiting the vertices
of the component graph (each of which corresponds to a strongly
connected component of G) in topologically sorted order.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 58 / 64

Elementary Graph Algorithms Strongly Connected Components

Relating Strongly Connected Components

When we discuss u.d or u.f , the values always refer to the discovery
and finishing times as computed by the first call of DFS, in Line 1.

If U ⊆ V , define d(U) = minu∈U {u.d} and f (U) = maxu∈U {u.f }.

That is, d(U) and f (U) are the earliest discovery time and latest
finishing time, respectively, of any vertex in U.

Lemma

Let C and C ′ be distinct strongly connected components in directed graph
G = (V ,E). Suppose that there is an edge (u, v) ∈ E , where u ∈ C and
v ∈ C ′. Then f (C) > f (C ′).

We consider two cases, depending on which strongly connected
component, C or C ′, had the first discovered vertex during the
depth-first search.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 59 / 64

Elementary Graph Algorithms Strongly Connected Components

Relating Strongly Connected Components (Cont’d)

If d(C) < d(C ′), let x be the first vertex discovered in C . At time
x .d , all vertices in C and C ′ are white. At that time, G contains a
path from x to each vertex in C consisting only of white vertices.
Because (u, v) ∈ E , for any vertex w ∈ C ′, there is a path in G at
time x .d x u → v w consisting only of white vertices. By the
White-Path Theorem, all vertices in C and C ′ become descendants of
x . By the corollary, x .f = f (C) > f (C ′).

If d(C) > d(C ′), let y be the first vertex discovered in C ′. At time
y .d , all vertices in C ′ are white and G contains a path from y to each
vertex in C ′ consisting only of white vertices. By the White-Path
Theorem, all vertices in C ′ become descendants of y . By the corollary,
y .f = f (C ′). At time y .d , all vertices in C are white. Since there is
an edge (u, v) from C to C ′, the lemma implies that there cannot be
a path from C ′ to C . Hence, no vertex in C is reachable from y . At
time y .f , therefore, all vertices in C are still white. Thus, for any
vertex w ∈ C , we have w .f > y .f . This implies that f (C) > f (C ′).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 60 / 64

Elementary Graph Algorithms Strongly Connected Components

Finishing Times of Strongly Connected Components

Each edge in GT that goes between different strongly connected
components goes from a component with an earlier to a component
with a later finishing time.

Corollary

Let C and C ′ be distinct strongly connected components in directed graph
G = (V ,E). Suppose that there is an edge (u, v) ∈ ET , where u ∈ C and
v ∈ C ′. Then f (C) < f (C ′).

Since (u, v) ∈ ET , we have (v , u) ∈ E .

But the strongly connected components of G and GT are the same.

The lemma implies that f (C) < f (C ′).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 61 / 64

Elementary Graph Algorithms Strongly Connected Components

The Depth-First Search on G
T

In the second depth-first search on GT , we start with the strongly
connected component C whose finishing time f (C) is maximum.

The search starts from some vertex x ∈ C , and it visits all vertices in
C . By the corollary, GT contains no edges from C to any other
strongly connected component. So the search from x will not visit
vertices in any other component. Thus, the tree rooted at x contains
exactly the vertices of C .
Having completed visiting all vertices in C , the search in Line 3 selects
as a root a vertex from some other strongly connected component C ′

whose finishing time f (C ′) is maximum over all components other than
C . The search will visit all vertices in C ′. By the corollary, the only
edges in GT from C ′ to any other component must be to C , which we
have already visited.
In general, when the depth-first search of GT in Line 3 visits any
strongly connected component, any edges out of that component must
be to components that the search already visited. Each depth-first
tree, therefore, will be exactly one strongly connected component.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 62 / 64

Elementary Graph Algorithms Strongly Connected Components

Correctness of StronglyConnectedComponents

Theorem

StronglyConnectedComponents correctly computes the strongly
connected components of the directed graph G provided as its input.

We argue, by induction on the number of depth-first trees found in
the depth-first search of GT in Line 3, that the vertices of each tree
form a strongly connected component.

The inductive hypothesis is that the first k trees produced in Line 3
are strongly connected components.

The basis for the induction, when k = 0, is trivial.
In the inductive step, we assume that each of the first k depth-first
trees produced in Line 3 is a strongly connected component. We
consider the (k + 1)-st tree produced.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 63 / 64

Elementary Graph Algorithms Strongly Connected Components

The Induction Step

Let the root of this tree be vertex u, and let u be in strongly
connected component C . Because of how we choose roots in the
depth-first search in Line 3, u.f = f (C) > f (C ′) for any strongly
connected component C ′ other than C that has yet to be visited.

By the inductive hypothesis, at the time that the search visits u, all
other vertices of C are white. By the White-Path Theorem, therefore,
all other vertices of C are descendants of u in its depth-first tree.
Moreover, by the inductive hypothesis and by the corollary, any edges
in GT that leave C must be to strongly connected components that
have already been visited. Thus, no vertex in any strongly connected
component other than C will be a descendant of u during the
depth-first search of GT . It follows that the vertices of the depth-first
tree in GT that is rooted at u form exactly one strongly connected
component. This completes the inductive step.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 64 / 64

	Outline
	Elementary Graph Algorithms
	Representations of Graphs
	Breadth-First Search
	Depth-First Search
	Topological Sort
	Strongly Connected Components

