Introduction to Algorithms

George Voutsadakis®

Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 1/25

o

o Growing a Minimum Spanning Tree
o Kruskal's Algorithm
o Prim's Algorithm

George Voutsadakis (LSSU) Introduction to Algorithms

Minimum Spanning Trees

o Consider a connected, undirected graph G = (V, E), where, for each
edge (u,v) € E, we have a weight/cost w(u, v) for connecting u, v.

o We wish to find an acyclic subset T C E that connects all of the
vertices and whose total weight w(T) = >_, ,yer w(u,v) is
minimized.

o Since T is acyclic and connects all of the vertices, it must form a
tree, which we call a spanning tree since it “spans’ the graph G.

o We call the problem of determining the tree T the minimum
spanning tree problem.

George Voutsadakis (LSSU)

Minimum Spanning Trees

o We examine two algorithms for solving the minimum spanning tree
problem.
o Kruskal's algorithm;
o Prim’s algorithm.

o The two algorithms are greedy algorithms. Each step of a greedy
algorithm must make one of several possible choices. The greedy
strategy makes the choice that is the best at the moment.

o Such a strategy does not generally guarantee that it will always find
globally optimal solutions to problems.

o For the minimum spanning tree problem, however, we can prove that
certain greedy strategies do yield a spanning tree with minimum weight.

George Voutsadakis (LSSU)

Minimum Spanning Trees Growing a Minimum Spanning Tree

Subsection 1

Growing a Minimum Spanning Tree

George Voutsadakis (LSSU) Introduction to Algorithms June 2023

Minimum Spanning Trees

o Assume that we have a connected, undirected graph G = (V, E) with
a weight function w : E — R, and we wish to find a minimum
spanning tree for G.

o The greedy strategy of both algorithms is captured by the following
“generic” algorithm, which grows the minimum spanning tree one
edge at a time.

o The algorithm manages a set of edges A, maintaining the following
loop invariant.

Prior to each iteration, A is a subset of some minimum spanning tree.

o At each step, we determine an edge (u, v) that can be added to A
without violating this invariant, in the sense that AU {(u, v)} is also
a subset of a minimum spanning tree.

o We call such an edge a safe edge for A, since it can be safely added
to A while maintaining the invariant.

George Voutsadakis (LSSU)

Minimum Spanning Trees

A=10
while A does not form a spanning tree
find an edge (u, v) that is safe for A
A=AU{(u,v)}
return A
o We use the loop invariant as follows:
o Initialization: After Line 1, the set A trivially satisfies the loop

invariant.
o Maintenance: The loop in Lines 2-4 maintains the invariant by adding

only safe edges.
o Termination: All edges added to A are in a minimum spanning tree.
So the set A returned in Line 5 must be a minimum spanning tree.

o The tricky part is, of course, finding a safe edge in Line 3.

One must exist, since, when Line 3 is executed, the invariant dictates
that there is a spanning tree T such that AC T.

George Voutsadakis (LSSU)

Minimum Spanning Trees

o Acut (5,V —5) of an undirected graph G = (V, E) is a partition of
o We say that an edge
(u,v) € E crosses the cut
(S,V —S) if one of its
endpoints is in S and the
otherisin V — S.

o We say that a cut respects
a set A of edges if no edge
in A crosses the cut.

o An edge is a light edge crossing a cut if its weight is the minimum of

any edge crossing the cut.

o Note that there can be more than one light edge crossing a cut.

o More generally, we say that an edge is a light edge satisfying a given
property if its weight is the minimum of any edge satisfying the
property.

George Voutsadakis (LSSU)

Minimum Spanning Trees

Let G = (V, E) be a connected, undirected graph with a real-valued
weight function w defined on E. Let A be a subset of E that is included in
some minimum spanning tree for G, let (S, V — S) be any cut of G that
respects A and let (u, v) be a light edge crossing (S, V — S). Then, edge
(u, v) is safe for A.

o Let T be a minimum spanning tree that includes A. Assume that T
does not contain the light edge (u, v), since if it does, we are done.
We shall construct another minimum spanning tree T’ that includes
AU{(u,v)} by using a cut-and-paste technique, thereby showing that
(u,v) is a safe edge for A. The edge (u, v) forms a cycle with the
edges on the path p from v to v in T. Since v and v are on opposite
sides of the cut (S, V — S), there is at least one edge in T on the
path p that also crosses the cut. Let (x,y) be any such edge.

George Voutsadakis (LSSU)

Minimum Spanning Trees

o The edge (x,y) is not in A, because the cut respects A. Since (x,y)
is on the unique path from v to v in T, removing (x,y) breaks T
into two components. Adding (u, v) reconnects them to form a new
spanning tree T' = (T — {(x,y)}) U{(u, v)}.

o We show that T’ is a minimum spanning tree. Since (u, v) is a light
edge crossing (S, V — S) and (x, y) crosses the cut, w(u, v) < w(x,y).
Therefore,

w(T') = w(T) = w(x,y) + w(u,v) < w(T).

But T is a minimum spanning tree, so that w(T) < w(T’). Thus, T’
must be a minimum spanning tree also.

o We show that (u, v) is actually a safe edge for A. We have AC T,
since AC T and (x,y) € A. Thus, AU {(u,v)} C T'. Consequently,
since T’ is a minimum spanning tree, (u, v) is safe for A.

George Voutsadakis (LSSU)

Minimum Spanning Trees

o As GENERICMST proceeds on a connected graph G = (V, E), the
set A is always acyclic.

o At any point in the execution, the graph Ga = (V/, A) is a forest, and
each of the connected components of G4 is a tree.

o Moreover, any safe edge (u, v) for A connects distinct components of
Ga, since AU {(u, v)} must be acyclic.

o The loop in Lines 2-4 is executed |V/|— 1 times as each of the |V|—1
edges of a minimum spanning tree is successively determined.

Initially, when A = (), there are |V/| trees in Gp, and each iteration
reduces that number by 1.

When the forest contains only a single tree, the algorithm terminates.

George Voutsadakis (LSSU)

Minimum Spanning Trees

Corollary

Let G = (V, E) be a connected, undirected graph with a real-valued
weight function w defined on E. Let A be a subset of E that is included in
some minimum spanning tree for G. Let C = (V(, Ec) be a connected
component (tree) in the forest Ga = (V, A). If (u,v) is a light edge
connecting C to some other component in Gp, then (u,v) is safe for A.

o The cut (V¢, V — V¢) respects A, and (u, v) is a light edge for this
cut. Therefore, (u,v) is safe for A.

George Voutsadakis (LSSU) Introduction to Algorithms

Minimum Spanning Trees Kruskal's Algorithm

Subsection 2

Kruskal's Algorithm

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 13 /25

Minimum Spanning Trees

o Kruskal's algorithm finds a safe edge to add to the growing forest by
finding, of all the edges that connect any two trees in the forest, an
edge (u, v) of least weight.

o Let G and G, denote the two trees that are connected by (u, v).
Since (u, v) must be a light edge connecting C; to some other tree,
the corollary implies that (u, v) is a safe edge for C;.

o Our implementation of Kruskal's uses a disjoint-set data structure to
maintain several disjoint sets of elements. Each set contains the
vertices in one tree of the current forest.

o The operation FINDSET(u) returns a representative element from the
set that contains u.

o Thus, we can determine whether two vertices u and v belong to the
same tree by testing whether FINDSET(u) equals FINDSET(v).

o To combine trees, Kruskal's algorithm calls the UNION procedure.

George Voutsadakis (LSSU)

Minimum Spanning Trees

MSTKRUSKAL(G, w)
A=10
for each vertex v € G.V
MAKESET(v)

sort the edges of G.E into nondecreasing order by weight w
for each edge (u,v) € G.E, taken in nondecreasing order by weight
if FINFSET(u) # FINDSET(v)
A=AU{(u,v)}
UNION(u, v)

return A

George Voutsadakis (LSSU) Introduction to Algorithms

Minimum Spanning Trees Kruskal's Algorithm

Illustration of Kruskal's Algorithm

Do ——) O O ———mC

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 16 /25

Minimum Spanning Trees

o Lines 1-3 initialize the set A to the empty set and create |V/| trees,
one containing each vertex.

o The for loop in Lines 5-8 examines edges in order of weight, from
lowest to highest.
The loop checks, for each edge (u, v), whether the endpoints v and v
belong to the same tree.
o If they do, then the edge (u, v) cannot be added to the forest without
creating a cycle, and the edge is discarded.
o Otherwise, the two vertices belong to different trees.
In this case, the edge (u,v) is added to A in Line 7.
Then, the vertices in the two trees are merged in Line 8.

George Voutsadakis (LSSU)

Minimum Spanning Trees

o The running time of Kruskal's algorithm for a graph G = (V, E)
depends on the implementation of the disjoint-set data structure.

o An efficient implementation guarantees running time O (|E|log |V]).

George Voutsadakis (LSSU) Introduction to Algorithms

Minimum Spanning Trees Prim's Algorithm

Subsection 3

Prim’s Algorithm

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 19 /25

Minimum Spanning Trees

o Prim's algorithm has the property that the edges in the set A always
form a single tree.

o The tree starts from an arbitrary root vertex r and grows until the
tree spans all the vertices in V.

o Each step adds to the tree A a light edge that connects A to an
isolated vertex, one on which no edge of A is incident.

o This rule adds only edges that are safe for A, whence, when the
algorithm terminates, the edges in A form a minimum spanning tree.

George Voutsadakis (LSSU)

Minimum Spanning Trees

o The connected graph G and the root r of the minimum spanning tree
to be grown are inputs to the algorithm.

o During execution, all vertices that are not in the tree reside in a
min-priority queue @ based on a key attribute.

o For each vertex v, the attribute v.key is the minimum weight of any
edge connecting v to a vertex in the tree and v.key = oo if there is no
such edge.

o The attribute v.m names the parent of v in the tree.

o The algorithm implicitly maintains the set A from GENERICMST as
A={(v,vm):veV—{r}—Q}

o When the algorithm terminates, the min-priority queue Q is empty.

o The minimum spanning tree A for G is thus

A={(v,v.m):veV —{r}}.

George Voutsadakis (LSSU)

Minimum Spanning Trees

MSTPRrIM(G, w,r)

for each u e G.V

u.key = o0
u.m = NIL
r.key =0
Q=G.V
while @ # ()
u = EXTRACTMIN(Q)
for each v € G.Adj[u]
if ve Qand w(u,v) < v.key
VT =u

v.key = w(u,v)

George Voutsadakis (LSSU) Introduction to Algorithms

Trees

George Voutsadakis (LSSU)

Minimum Spanning Trees

o Lines 1-5 initialize.
o The key of each vertex is set to oo (except r, whose key is set to 0);
o The parent of each vertex is set to NIL;
o The min priority queue @ is set to contain all the vertices.
o The algorithm maintains the following three-part loop invariant:
Prior to each iteration of the while loop of Lines 6-11:
A={(v,vm):veV—{r} - Q}.
The vertices already into the minimum spanning tree are in V — Q.
For all vertices v € Q, if v. # NIL, then v.key < co and v.key is the
weight of a light edge (v, v.m) connecting v to some vertex already
placed into the minimum spanning tree.
o Line 7 identifies a vertex u € @ incident on a light edge that crosses
the cut (V — Q, Q) (except in the first iteration, in which u = r).
o Removing u from the set @ adds it to the set V — @ of vertices in
the tree, thus adding (u, u.m) to A.
o The for loop of Lines 8-11 updates the key and 7 attributes of every
vertex v adjacent to u but not in the tree, maintaining 3.

George Voutsadakis (LSSU)

Minimum Spanning Trees

o The running time of Prim’s algorithm depends on how we implement
the min priority queue Q. Suppose we implement @ as a binary
min-heap.

o We use the BUILDMINHEAP to perform Lines 1-5 in O (| V|) time.

o The body of the while loop executes |V/| times. Each EXTRACTMIN
operation takes O (log |V/|) time. Thus, the total time for all calls to
EXTRACTMIN is O (| V| log |V]).

o The for loop in Lines 8-11 executes O (|E|) times altogether, since the
sum of the lengths of all adjacency lists is 2| E]|.

o Within the for loop, we can implement the test for membership in Q in
Line 9 in constant time by keeping a bit for each vertex that tells

whether or not it is in Q, and updating the bit when the vertex is
removed from Q.

o The assignment in Line 11 involves an implicit DECREASEKEY on the
min-heap, supported in a binary min-heap in O (log |V|).

Thus, the total time is O (|V|log|V|+ |E|log |V|) = O (|E|log |V|).

George Voutsadakis (LSSU)

	Outline
	Minimum Spanning Trees
	Growing a Minimum Spanning Tree
	Kruskal's Algorithm
	Prim's Algorithm

