Introduction to Algorithms

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) Single-Source Shortest Paths

- The Bellman-Ford Algorithm
- Single-Source Shortest Paths in Directed Acyclic Graphs
- Dijkstra's Algorithm
- Difference Constraints and Shortest Paths
- Proofs of Shortest-Paths Properties

Shortest Paths and Weights

- In a shortest-paths problem, we are given a weighted, directed graph $G=(V, E)$, with weight function $w: E \rightarrow \mathbb{R}$ mapping edges to real-valued weights.
- The weight $w(p)$ of path $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ is the sum of the weights of its constituent edges: $w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$.
- We define the shortest-path weight $\delta(u, v)$ from u to v by $\delta(u, v)= \begin{cases}\min \{w(p): u \stackrel{p}{\rightsquigarrow} v\}, & \text { if there is a path from } u \text { to } v \\ \infty, & \text { otherwise }\end{cases}$
- A shortest path from vertex u to vertex v is defined as any path $u \stackrel{p}{\rightsquigarrow} v$ with weight $w(p)=\delta(u, v)$.

Variants

- The single-source shortest-paths problem:

Given a graph $G=(V, E)$, we want to find a shortest path from a given source vertex $s \in V$ to each vertex $v \in V$.

- The algorithm for this problem can solve other variants also.
- Single-destination shortest-paths problem:

Find a shortest path to a given destination vertex t from each vertex v.

- Single-pair shortest-path problem:

Find a shortest path from u to v for given vertices u and v.

- All-pairs shortest-paths problem:

Find a shortest path from u to v for every pair of vertices u and v.
The last variant can be solved by running a single source algorithm once from each vertex, but there is a faster algorithm.

Optimal Substructure of a Shortest Path

- Shortest-paths algorithms typically rely on the property that a shortest path between two vertices contains other shortest paths within it.
- Optimal substructure is one of the key indicators that dynamic programming and the greedy method might apply.

Lemma (Subpaths of Shortest Paths are Shortest Paths)

Given a weighted, directed graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$, let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ be a shortest path from vertex v_{0} to vertex v_{k} and, for any i and j such that $0 \leq i \leq j \leq k$, let $p_{i j}=\left\langle v_{i}, v_{i+1}\right.$, $\left.\ldots, v_{j}\right\rangle$ be the subpath of p from vertex v_{i} to vertex v_{j}. Then, $p_{i j}$ is a shortest path from v_{i} to v_{j}.

- Decompose p into $v_{0} \stackrel{p_{0 i}}{\rightsquigarrow} v_{i} \stackrel{p_{i j}}{\rightsquigarrow} v_{j} \stackrel{p_{j k}}{\rightsquigarrow} v_{k}$. Then $w(p)=w\left(p_{0 i}\right)+w\left(p_{i j}\right)$ $+w\left(p_{j k}\right)$. Suppose there was a path $p_{i j}^{\prime}$ from v_{i} to v_{j} with weight $w\left(p_{i j}^{\prime}\right)<w\left(p_{i j}\right)$. Then, $v_{0} \stackrel{p_{0 i}}{\rightsquigarrow} v_{i} \stackrel{p_{i j}^{\prime}}{\sim} v_{j} \stackrel{p_{j k}}{\rightsquigarrow} v_{k}$ is a path from v_{0} to v_{k} with weight $w\left(p_{0 i}\right)+w\left(p_{i j}^{\prime}\right)+w\left(p_{j k}\right)<w(p)$, a contradiction.

Negative-Weight Edges

- Some instances of the single-source shortest-paths problem may include edges whose weights are negative.
- If the graph $G=(V . E)$ contains no negative weight cycles reachable from the source s, then, for all $v \in V$, the shortest-path weight $\delta(s, v)$ remains well defined, even if it has a negative value.
- If the graph contains a negative-weight cycle reachable from s, however, shortest-path weights are not well defined.
No path from s to a vertex on the cycle can be a shortest path, since we can always find a path with lower weight by following the proposed "shortest" path and then traversing the negative-weight cycle.
- If there is a negative weight cycle on some path from s to v, we define $\delta(s, v)=-\infty$.

The Effect of Negative-Weight Edges

- There is only one path from s to a. So we have $\delta(s, a)=w(s, a)=3$.
- There is only one path from s to b.

$$
\begin{aligned}
& \text { So } \delta(s, b)=w(s, a)+w(a, b) \\
& =3+(-4)=-1
\end{aligned}
$$

- There are infinitely many paths from s to $c:\langle s, c\rangle,\langle s, c, d, c\rangle$, $\langle s, c, d, c, d, c\rangle$, and so on.
The cycle $\langle c, d, c\rangle$ has weight $6+(-3)=3>0$. So the shortest path from s to c is $\langle s, c\rangle$, with weight $\delta(s, c)=w(s, c)=5$.
- Similarly, he shortest path from s to d is $\langle s, c, d\rangle$, with weight $\delta(s, d)=w(s, c)+w(c, d)=11$.

The Effect of Negative-Weight Edges (Cont'd)

- There are infinitely many paths from s to $e:\langle s, e\rangle,\langle s, e, f, e\rangle$, $\langle s, e, f, e, f, e\rangle$, and so on. The cycle $\langle e, f, e\rangle$ has weight $3+(-6)=-3<0$. So there is no shortest path from s to e.
By traversing the negative weight cycle $\langle e, f, e\rangle$ arbitrarily many times, we can find paths from s to e with arbitrarily large negative weights. So $\delta(s, e)=-\infty$.
- Similarly, $\delta(s, f)=-\infty$.
- Because g is reachable from f, we can also find paths with arbitrarily large negative weights from s to g. So $\delta(s, g)=-\infty$.
- Vertices h, i and j also form a negative-weight cycle. However, hey are not reachable from s. So $\delta(s, h)=\delta(s, i)=\delta(s, j)=\infty$.

Cycles

- A shortest path cannot contain a negative weight cycle.
- Nor can it contain a positive weight cycle.

Suppose $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ is a path and $c=\left\langle v_{i}, v_{i+1}, \ldots, v_{j}\right\rangle$ is a positive weight cycle on this path (so that $v_{i}=v_{j}$ and $w(c)>0$). Then the path $p^{\prime}=\left\langle v_{0}, v_{1}, \ldots, v_{i}, v_{j+1}, v_{j+2}, \ldots, v_{k}\right\rangle$ has weight $w\left(p^{\prime}\right)=w(p)-w(c)<w(p)$. So p cannot be a shortest path from v_{0} to v_{k}.

- That leaves only 0 -weight cycles. We can remove a 0 -weight cycle from any path to produce another path whose weight is the same.
- Therefore, without loss of generality we can assume that when we are finding shortest paths, they have no cycles.
Since any acyclic path in a graph $G=(V, E)$ contains at most $|V|$ distinct vertices, it also contains at most $|V|-1$ edges.
We can restrict attention to shortest paths of at most $|V|-1$ edges.

Representing Shortest Paths

- Given a graph $G=(V, E)$, we maintain for each vertex $v \in V$ a predecessor $v . \pi$ that is either another vertex or NIL.
- The shortest paths algorithms we study set the π attributes so that the chain of predecessors originating at a vertex v runs backwards along a shortest path from s to v.
- Thus, given a vertex v for which $v . \pi \neq$ NIL, the procedure $\operatorname{PrintPath}(G, s, v)$ will print a shortest path from s to v.
- In the midst of executing a shortest paths algorithm, however, the π-values might not indicate shortest paths.
- As in breadth first search, we shall be interested in the predecessor subgraph $G_{\pi}=\left(V_{\pi}, E_{\pi}\right)$ induced by the π values:
- We define the vertex set V_{π} as the set of vertices of G with non-NIL predecessors, plus $s: V_{\pi}=\{v \in V: v . \pi \neq$ NIL $\} \cup\{s\}$.
- The directed edge set E_{π} is the set of edges induced by the π values for vertices in $V_{\pi}: E_{\pi}=\left\{(v . \pi, v) \in E: v \in V_{\pi}-\{s\}\right\}$.

Shortest-Paths Trees

- We prove that the π values produced by our algorithms have the property that at termination G_{π} is a "shortest-paths tree", a rooted tree containing a shortest path from the source s to every vertex that is reachable from s.
- Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$.
Assume that G contains no negative weight cycles reachable from the source vertex $s \in V$, so that shortest paths are well defined.
- A shortest paths tree rooted at s is a directed subgraph $G^{\prime}=\left(V^{\prime}\right.$, E^{\prime}), where $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$, such that:

1. V^{\prime} is the set of vertices reachable from s in G;
2. G^{\prime} forms a rooted tree with root s;
3. For all $v \in V^{\prime}$, the unique simple path from s to v in G^{\prime} is a shortest path from s to v in G.

Illustrating Shortest-Paths Trees

- Shortest paths are not necessarily unique, and neither are shortest paths trees.

Relaxation: Initialization

- The algorithms we present use the technique of relaxation.
- For each vertex $v \in V$, we maintain an attribute $v . d$, which is an upper bound on the weight of a shortest path from source s to v. We call v.d a shortest path estimate.
- We initialize the shortest-path estimates and predecessors by the following $\Theta(V)$-time procedure:

InitializeSingleSource(G, s)

1. for each vertex $v \in G . V$
2. $v . d=\infty$
3. $v . \pi=\mathrm{NIL}$
4. $s . d=0$

- After initialization, $v . \pi=$ NIL, for all $v \in V$, $s . d=0$, and $v . d=\infty$, for $v \in V-\{s\}$.

Relaxation: The Evolution

- The process of relaxing an edge (u, v) consists of testing whether we can improve the shortest path to v found so far by going through u and, if so, updating $v . d$ and $v . \pi$.
- A relaxation step may decrease the value of the shortest-path estimate $v . d$ and update v 's predecessor field $v . \pi$.

$\operatorname{Relax}(u, v, w)$

$$
\begin{aligned}
& \text { 1. if } \quad \begin{array}{l}
v . d
\end{array}>u . d+w(u, v) \\
& \text { 2. } \quad v . d=u . d+w(u, v) \\
& \text { 3. } \quad v . \pi=u
\end{aligned}
$$

Properties of Shortest Paths and Relaxation

- Suppose the graph is initialized by InitializeSingleSource (G, s) and that shortest path estimates and the predecessor subgraph change only due to relaxation steps.
- Triangle Inequality: For all $(u, v) \in E, \delta(s, v) \leq \delta(s, u)+w(u, v)$.
- Upper-Bound Property: We always have $v . d \geq \delta(s, v)$, for all vertices $v \in V$, and once $v . d$ achieves the value $\delta(s, v)$, it never changes.
- No-Path Property: If there is no path from s to v, then we always have $v . d=\delta(s, v)=\infty$.
- Convergence Property: If $s \rightsquigarrow u \rightarrow v$ is a shortest path in G, for some $u, v \in V$, and if $u . d=\delta(s, u)$ at any time prior to relaxing edge (u, v), then $v . d=\delta(s, v)$ at all times afterward.
- Path-Relaxation Property: If $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ is a shortest path from $s=v_{0}$ to v_{k}, and we relax the edges of p in the order $\left(v_{0}, v_{1}\right)$, $\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$, then $v_{k} \cdot d=\delta\left(s, v_{k}\right)$. This property holds regardless of any other relaxation steps that occur.
- Predecessor-Subgraph Property: Once $v . d=\delta(s, v)$, for all $v \in V$, the predecessor subgraph is a shortest paths tree rooted at s.

Subsection 1

The Bellman-Ford Algorithm

Setting Up the Bellman-Ford Algorithm

- The Bellman-Ford algorithm solves the single-source shortest-paths problem in the general case in which edge weights may be negative.
- Given a weighted, directed graph $G=(V, E)$, with source s and weight function $w: E \rightarrow \mathbb{R}$, the Bellman-Ford algorithm returns a boolean value indicating whether or not there is a negative-weight cycle that is reachable from the source.
- If there is such a cycle, the algorithm indicates that no solution exists.
- If there is no such cycle, the algorithm produces the shortest paths and their weights.
- The algorithm relaxes edges, progressively decreasing an estimate v.d on the weight of a shortest path from the source s to each vertex $v \in V$, until it achieves the actual shortest path weight $\delta(s, v)$.
- The algorithm returns TRUE if and only if the graph contains no negative-weight cycles that are reachable from the source.

The Bellman-Ford Procedure

BellmanFord(G, w, s)

1. InitializeSingleSource (G, s)
2. for $i=1$ to $|G . V|-1$
3. for each edge $(u, v) \in G . E$
4. $\operatorname{Relax}(u, v, w)$
5. for each edge $(u, v) \in G . E$
6. if $v . d>u . d+w(u, v)$
7. return FALSE
8. return TRUE

Illustrating the Bellman-Ford Procedure

How the Bellman-Ford Procedure Works

- In Line 1 , the d and π values of all vertices are initialized.
- Then the algorithm makes $|V|-1$ passes over the edges of the graph. Each pass is one iteration of the for loop of Lines 2-4 and consists of relaxing each edge of the graph once.
- After making $|V|-1$ passes, Lines 5-8 check for a negative-weight cycle and return the appropriate boolean value.
- The Bellman-Ford algorithm runs in time $\mathrm{O}(|V||E|)$.
- The initialization in Line 1 takes $\Theta(|V|)$ time;
- Each of the $|V|-1$ passes over the edges in Lines 2-4 takes $\Theta(|E|)$ time;
- The for loop of Lines 5-7 takes $\mathrm{O}(|E|)$ time.

Correctness without Negative-Weight Cycles

- If there are no negative-weight cycles, the algorithm computes correct shortest-path weights for all vertices reachable from the source.

Lemma

Let $G=(V, E)$ be a weighted, directed graph with source s and weight function $w: E \rightarrow \mathbb{R}$, and assume that G contains no negative-weight cycles that are reachable from s. Then, after the $|V|-1$ iterations of the for loop of Lines 2-4 of BellmanFord, we have $v . d=\delta(s, v)$, for all vertices v that are reachable from s.

- Consider a v reachable from s. Let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $v_{0}=s$ and $v_{k}=v$, be any acyclic shortest path from s to v. Path p has at most $|V|-1$ edges. So $k \leq|V|-1$. Each of the $|V|-1$ iterations of the for loop of Lines 2-4 relaxes all E edges. Among the edges relaxed in the ith iteration, for $i=1,2, \ldots, k$, is $\left(v_{i-1}, v_{i}\right)$. By the Path Relaxation Property, therefore, $v . d=v_{k} \cdot d=\delta\left(s, v_{k}\right)=\delta(s, v)$.

Consequence of Correctness

Corollary

Let $G=(V, E)$ be a weighted, directed graph, with source vertex s and weight function $w: E \rightarrow \mathbb{R}$, and assume that G contains no negative weight cycles that are reachable from s. Then, for each vertex $v \in V$, there is a path from s to v if and only if BellmanFord terminates with $v . d<\infty$ when it is run on G.

- BellmanFord terminates with v.d $<\infty$ when it is run on G iff, by the Lemma, BellmanFord terminates with $\delta(s, v)<\infty$ when it is run on G
iff, by definition, there is a path from s to v in G.

Correctness of the Bellman-Ford Algorithm

Theorem (Correctness of the Bellman-Ford algorithm)

Let BellmanFord be run on a weighted, directed graph $G=(V, E)$, with source s and weight function $w: E \rightarrow \mathbb{R}$. If G contains no negative weight cycles that are reachable from s, then the algorithm returns TRUE, we have $v . d=\delta(s, v)$, for all vertices $v \in V$, and the predecessor subgraph G_{π} is a shortest paths tree rooted at s. If G does contain a negative weight cycle reachable from s, then the algorithm returns FALSE.

- Suppose that graph G contains no negative weight cycles that are reachable from the source s.
Claim: At termination, v.d $=\delta(s, v)$, for all vertices $v \in V$.
If vertex v is reachable from s, then use the Lemma. If v is not reachable from s, then the claim follows from the No-Path Property.
The Predecessor-Subgraph Property, along with the Claim, implies that G_{π} is a shortest paths tree.

Correctness of the Bellman-Ford Algorithm (Cont'd)

We use the claim to show that BellmanFord returns TRUE. At termination, we have, for all edges $(u, v) \in E$,

$$
\begin{aligned}
v . d & =\delta(s, v) \\
& \leq \delta(s, u)+w(u, v) \quad \text { (by the triangle inequality) } \\
& =u \cdot d+w(u, v) .
\end{aligned}
$$

So none of the tests in Line 6 causes BellmanFord to return FALSE. Therefore, it returns TRUE.

Correctness of the Bellman-Ford (Second Case)

- Suppose that G contains a negative weight cycle reachable from s.

Let this cycle be $c=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $v_{0}=v_{k}$. Then, $\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)<0$. Assume the algorithm returns TRUE. Thus, $v_{i} . d \leq v_{i-1} . d+w\left(v_{i-1}, v_{i}\right)$, for $i=1,2, \ldots, k$. Summing the inequalities around cycle c gives us

$$
\begin{aligned}
\sum_{i=1}^{k} v_{i} \cdot d & \leq \sum_{i=1}^{k}\left[v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)\right] \\
& =\sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{aligned}
$$

Since $v_{0}=v_{k}$, each vertex in c appears exactly once in each of $\sum_{i=1}^{k} v_{i} . d$ and $\sum_{i=1}^{k} v_{i-1} . d$. So $\sum_{i=1}^{k} v_{i} . d=\sum_{i=1}^{k} v_{i-1} . d$. Moreover, by the Corollary, $v_{i} . d$ is finite for $i=1,2, \ldots, k$.
Thus, $0 \leq \sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$, a contradiction.

Subsection 2

Single-Source Shortest Paths in Directed Acyclic Graphs

Shortest Paths in DAGs

- By relaxing the edges of a weighted DAG (directed acyclic graph) $G=(V, E)$ according to a topological sort of its vertices, we can compute shortest paths from a single source in $\Theta(|V|+|E|)$ time.
- Shortest paths are always well defined in a DAG, since even if there are negative-weight edges, no negative-weight cycles can exist.
- The algorithm does the following:
- Topologically sorts the DAG;
- Makes just one pass over the vertices in the topologically sorted order; As it processes each vertex, it relax each edge that leaves the vertex.

DAGShortestPaths(G, w, s)

1. topologically sort the vertices of G
2. InitializeSingleSource (G, s)
3. for each vertex u, taken in topologically sorted order for each vertex $v \in G . \operatorname{Adj}[u]$
$\operatorname{Relax}(u, v, w)$

Illustrating the DAG Shortest Paths Procedure

Running Time of DAGShortestPaths

- The topological sort of Line 1 takes $\Theta(|V|+|E|)$ time.
- The call of InitializeSingleSource in Line 2 takes $\Theta(|V|)$ time.
- The for loop of Lines 3-5 makes one iteration per vertex.
- Altogether, the for loop of Lines 4-5 relaxes each edge exactly once (aggregate analysis).
Each iteration of the inner for loop takes $\Theta(1)$ time.
- It follows that the total running time is $\Theta(|V|+|E|)$, which is linear in the size of an adjacency-list representation of the graph.

Correctness of DAGSHortestPaths

Theorem

If a weighted, directed graph $G=(V, E)$ has source vertex s and no cycles, then at the termination of the DAGShortestPaths procedure, $v . d=\delta(s, v)$, for all vertices $v \in V$, and the predecessor subgraph G_{π} is a shortest-paths tree.

- We first show that, at termination, $v . d=\delta(s, v)$, for all $v \in V$.
- If v is not reachable from s, then $v . d=\delta(s, v)=\infty$ by the No-Path Property.
- If v is reachable from s, there is a shortest path $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $v_{0}=s$ and $v_{k}=v$. Because we process the vertices in topologically sorted order, the edges on p are relaxed in the order $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$. The Path-Relaxation Property implies that $v_{i} \cdot d=\delta\left(s, v_{i}\right)$ at termination, for $i=0,1, \ldots, k$.
By the Predecessor Subgraph Property, G_{π} is a shortest-paths tree.

Subsection 3

Dijkstra's Algorithm

Dijkstra's Algorithm

- Solves the single-source shortest-paths problem on a weighted, directed graph $G=(V, E)$ with all edge weights nonnegative.
- The algorithm maintains a set S of vertices whose final shortest path weights from the source s have already been determined.
- Repeatedly select $u \in V-S$ with the minimum shortest-path estimate: add u to S, and relax all edges leaving u.
- We use a min-priority queue Q of vertices, keyed by their d values.

DiJkstra(G, w, s)

1. InitializeSingleSource (G, s)
2. $S=\emptyset$
$Q=G . V$
while $Q \neq \emptyset$
$u=\operatorname{Extract} \operatorname{Min}(Q)$
$S=S \cup\{u\}$
for each vertex $v \in G . \operatorname{Adj}[u]$
$\operatorname{Relax}(u, v, w)$

|llustrating Dijkstra's Algorithm

How Dijkstra's Algorithm Works

- Line 1 initializes the d and π values.
- Line 2 initializes the set S to the empty set.
- The algorithm maintains the invariant that $Q=V-S$ at the start of each iteration of the while loop of Lines 4-8.
- Line 3 initializes the min-priority queue Q to contain all vertices in V. Since $S=\emptyset$, the invariant is true after Line 3 .
- Each time through the while loop of Lines 4-8, Line 5 extracts a vertex u from $Q=V-S$ and Line 6 adds it to S, maintaining the invariant. Vertex u, therefore, has the smallest shortest-path estimate of any vertex in $V-S$.
- Then, Lines 7-8 relax each edge (u, v) leaving u, thus updating the estimate $v . d$ and the predecessor $v . \pi$ if we can improve the shortest path to v found so far by going through u.
- Observe that the algorithm never inserts vertices into Q after Line 3 and that each vertex is extracted from Q and added to S exactly once, so that the while loop of Lines 4-8 iterates exactly $|V|$ times.

Correctness of Dijkstra's Algorithm

Theorem (Correctness of Dijkstra's Algorithm)

Dijkstra's algorithm, run on a weighted, directed graph $G=(V, E)$ with nonnegative weight function w and source s, terminates with $u . d=$ $\delta(s, u)$, for all vertices $u \in V$.

- We use the following loop invariant:

At the start of each iteration of the while loop of Lines 4-8, $v . d=\delta(s, v)$, for each vertex $v \in S$.
It suffices to show for each vertex $u \in V$, we have $u . d=\delta(s, u)$ at the time when u is added to set S.
Once we show that $u . d=\delta(s, u)$, we rely on the Upper-Bound Property to show that the equality holds at all times thereafter.

- Initialization: Initially, $S=\emptyset$. So the invariant is trivially true.

Maintenance

- Maintenance: We wish to show that in each iteration, u.d $=\delta(s, u)$ for the vertex added to set S. For the purpose of contradiction, let u be the first vertex for which $u . d \neq \delta(s, u)$ when it is added to set S. We look at the beginning of the iteration of the while loop in which u is added to S. We derive the contradiction that $u \cdot d=\delta(s, u)$ at that time by examining a shortest path from s to u.
We must have $u \neq s$ because s is the first vertex added to set S and $s . d=\delta(s, s)=0$ at that time. Because $u \neq s$, we also have that $S \neq \emptyset$ just before u is added to S. There must be some path from s to u, for otherwise $u . d=\delta(s, u)=\infty$ by the No-Path Property, which would violate our assumption that $u \cdot d \neq \delta(s, u)$. Because there is at least one path, there is a shortest path p from s to u. Prior to adding u to S, path p connects a vertex in S, namely s, to a vertex in $V-S$, namely u. Let us consider the first vertex y along p, such that $y \in V-S$, and let $x \in S$ be y 's predecessor.

Maintenance (Cont'd)

- p can be decomposed as $s \stackrel{p_{1}}{\rightsquigarrow} x \rightarrow y \stackrel{p_{2}}{\rightsquigarrow} u$. Claim: $y . d=\delta(s, y)$ when u is added to S. To prove this, observe that $x \in S$. Then, because u is chosen as the first vertex for
 which $u . d \neq \delta(s, u)$ when it is added to S, we had $x . d=\delta(s, x)$ when x was added to S. Edge (x, y) was relaxed at that time, so the claim follows from the Convergence Property.
We can now obtain a contradiction to prove that $u \cdot d=\delta(s, u)$.
Because y appears before u on a shortest path from s to u and all edge weights are nonnegative, we have $\delta(s, y) \leq \delta(s, u)$. Thus, $y . d=\delta(s, y) \leq \delta(s, u) \leq u . d$ (by the Upper-Bound Property). But because both u and y were in $V-S$ when u was chosen in Line 5, we have $u . d \leq y . d$. Hence, $y . d=\delta(s, y)=\delta(s, u)=u . d$. Consequently, $u . d=\delta(s, u)$. This contradicts our choice of u.

Termination

- We conclude that $u . d=\delta(s, u)$ when u is added to S, and that this equality is maintained at all times thereafter.
- Termination: At termination, $Q=\emptyset$. Along with our earlier invariant that $Q=V-S$, implies that $S=V$. Thus, $u . d=\delta(s, u)$, for all vertices $u \in V$.

Corollary

If we run Dijkstra's algorithm on a weighted, directed graph $G=(V, E)$ with nonnegative weight function w and source s, then at termination, the predecessor subgraph G_{π} is a shortest-paths tree rooted at s.

Aggregate Analysis Based on Operations

- Dijkstra's algorithm maintains the min-priority queue Q by calling three priority-queue operations.
- Insert (implicit in Line 3);
- ExtractMin (Line 5);
- DecreaseKey (implicit in Relax, which is called in Line 8).

The algorithm calls both Insert and ExtractMin once per vertex.
Each vertex $u \in V$ is added to set S exactly once.
Thus, each edge in the adjacency list $\operatorname{Adj}[u]$ is examined in the for loop of Lines 7-8 exactly once during the course of the algorithm.
Since the total number of edges in all the adjacency lists is $|E|$, this for loop iterates a total of $|E|$ times.
Thus, the algorithm calls Decreasekey at most $|E|$ times overall.

Analysis and Implementation

- The running time of Dijkstra's algorithm depends on how we implement the min-priority queue:
- Suppose we maintain the min-priority queue by taking advantage of the vertices being numbered 1 to $|V|$.
We simply store $v . d$ in the v th entry of an array.
- Each Insert and DecreaseKey operation takes O (1) time.
- Each ExtractMin operation takes $\mathrm{O}(|V|)$ time (since we have to search through the entire array).
- Thus, total time is $\mathrm{O}\left(|V|^{2}+|E|\right)=\mathrm{O}\left(|V|^{2}\right)$.

Subsection 4

Difference Constraints and Shortest Paths

Linear Programming

- The general linear programming problem:

Given an $m \times n$ matrix A, an m-vector b and an n-vector c, find a vector x of n elements that maximizes the objective function $\sum_{i=1}^{n} c_{i} x_{i}$ subject to the m constraints given by $A x \leq b$.

- Importance of understanding the setup of linear-programming problems:
- If we know that we can cast a given problem as a polynomial-sized linear-programming problem, then we immediately have a polynomial time algorithm to solve the problem.
- Faster algorithms exist for many special cases of linear programming, e.g., the single-pair shortest-path problem and the maximum-flow problem.
- In a feasibility problem, we only wish to find any feasible solution, i.e., any vector x that satisfies $A x \leq b$, or to determine that no feasible solution exists.

Systems of Difference Constraints

- In a system of difference constraints, each row of the linear programming matrix A contains one 1 and one -1 , and all other entries of A are 0 .
- Thus, the constraints given by $A x \leq b$ are a set of m difference constraints involving n unknowns, in which each constraint is a simple linear inequality of the form $x_{j}-x_{i} \leq b_{k}$, where $1 \leq i, j \leq n$, $i \neq j$ and $1 \leq k \leq m$.
Example: The problem of finding a 5-vector $x=\left(x_{i}\right)$ that satisfies

$$
\left(\begin{array}{rrrrr}
1 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & -1 \\
-1 & 0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1 & 0 \\
0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right) \leq\left(\begin{array}{r}
0 \\
-1 \\
1 \\
5 \\
4 \\
-1 \\
-3 \\
-3
\end{array}\right)
$$

Example (Cont'd)

- This problem is equivalent to finding values for the unknowns $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$, satisfying the following 8 difference constraints:

One solution to this problem is $x=(-5,-3,0,-1,-4)$, which you can verify directly by checking each inequality. In fact, this problem has more than one solution. Another is $x^{\prime}=(0,2,5,4,1)$. These two solutions are related: each component of x^{\prime} is 5 larger than the corresponding component of x. This fact is not mere coincidence.

Adding Constants to Solutions

Lemma

Let $x=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ be a solution to a system $A x \leq b$ of difference constraints, and let d be any constant. Then $x+d=\left\langle x_{1}+d, x_{2}+d\right.$, $\left.\ldots, x_{n}+d\right\rangle$ is a solution to $A x \leq b$ as well.

- For each x_{i} and x_{j}, we have

$$
\left(x_{j}+d\right)-\left(x_{i}+d\right)=x_{j}-x_{i}
$$

Thus, if x satisfies $A x \leq b$, so does $x+d$.

Constraint Graphs

- We can interpret systems of difference constraints from a graph theoretic point of view.
- In a system $A x \leq b$ of difference constraints, we view the $m \times n$ linear programming matrix A as the transpose of an incidence matrix for a graph with n vertices and m edges.
- Each vertex v_{i} in the graph, for $i=1,2, \ldots, n$, corresponds to one of the n unknown variables x_{i}.
- Each directed edge in the graph corresponds to one of the m inequalities involving two unknowns.
- More formally, given a system $A x \leq b$ of difference constraints, the corresponding constraint graph is a weighted, directed graph $G=(V, E)$, where:
- $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$;
- $E=\left\{\left(v_{i}, v_{j}\right): x_{j}-x_{i} \leq b_{k}\right.$ is a constraint $\} \cup\left\{\left(v_{0}, v_{1}\right),\left(v_{0}, v_{2}\right), \ldots\right.$, $\left.\left(v_{0}, v_{n}\right)\right\}$.

An Example

- The vertex set V consists of a vertex v_{i} for each unknown x_{i}, plus an additional vertex v_{0}.
- The edge set E contains an edge for each difference constraint, plus an edge (v_{0}, v_{i}) for each unknown x_{i}.
- If $x_{j}-x_{i} \leq b_{k}$ is a difference constraint, then the weight of edge $\left(v_{i}, v_{j}\right)$ is $w\left(v_{i}, v_{j}\right)=b_{k}$.
- The weight of each edge leaving v_{0} is 0 .

Example:

Feasible Solutions and the Constraint Graph

Theorem

Given a system $A x \leq b$ of difference constraints, let $G=(V, E)$ be the corresponding constraint graph. If G contains no negative-weight cycles, then $x=\left(\delta\left(v_{0}, v_{1}\right), \delta\left(v_{0}, v_{2}\right), \delta\left(v_{0}, v_{3}\right), \ldots, \delta\left(v_{0}, v_{n}\right)\right)$ is a feasible solution for the system. If G contains a negative-weight cycle, then there is no feasible solution for the system.

Claim: If the constraint graph contains no negative-weight cycles, then $x=\left(\delta\left(v_{0}, v_{1}\right), \delta\left(v_{0}, v_{2}\right), \delta\left(v_{0}, v_{3}\right), \ldots, \delta\left(v_{0}, v_{n}\right)\right)$ is a feasible solution.
Consider any edge $\left(v_{i}, v_{j}\right) \in E$. By the triangle inequality, $\delta\left(v_{0}, v_{j}\right) \leq \delta\left(v_{0}, v_{i}\right)+w\left(v_{i}, v_{j}\right)$, i.e., $\delta\left(v_{0}, v_{j}\right)-\delta\left(v_{0}, v_{i}\right) \leq w\left(v_{i}, v_{j}\right)$. Thus, the values $x_{i}=\delta\left(v_{0}, v_{i}\right), x_{j}=\delta\left(v_{0}, v_{j}\right)$ satisfy the difference constraint $x_{j}-x_{i} \leq w\left(v_{i}, v_{j}\right)$ that corresponds to edge ($\left.v_{i}, v_{j}\right)$.

Feasible Solutions and the Constraint Graph (Cont'd)

- We show that if the constraint graph contains a negative-weight cycle, then the system has no feasible solution.
Without loss of generality, let the negative-weight cycle be $c=\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$, where $v_{1}=v_{k} . c$ corresponds to:

$$
\begin{aligned}
x_{2}-x_{1} & \leq w\left(v_{1}, v_{2}\right) \\
x_{3}-x_{2} & \leq w\left(v_{2}, v_{3}\right) \\
& \vdots \\
x_{k-1}-x_{k-2} & \leq w\left(v_{k-2}, v_{k-1}\right) \\
x_{k}-x_{k-1} & \leq w\left(v_{k-1}, v_{k}\right)
\end{aligned}
$$

We assume that x has a solution satisfying each of these k inequalities and derive a contradiction. The solution must also satisfy the inequality that results when we sum the k inequalities. The left-hand side of the sum is 0 . The right-hand side sums to $w(c)$. Thus, $0 \leq w(c)$. Since c is a negative-weight cycle, $w(c)<0$.

Solving Systems of Difference Constraints

- The Theorem tells us that we can use the Bellman-Ford algorithm to solve a system of difference constraints.
- Because the constraint graph contains edges from the source vertex v_{0} to all other vertices, any negative-weight cycle in the constraint graph is reachable from v_{0}.
- If the Bellman-Ford algorithm returns TRUE, then the shortest-path weights give a feasible solution to the system.
- If the Bellman-Ford algorithm returns FALSE, there is no feasible solution to the system of difference constraints.
- A system of difference constraints with m constraints on n unknowns produces a graph with $n+1$ vertices and $n+m$ edges.
Using the Bellman-Ford algorithm, we can solve the system in $\mathrm{O}((n+1)(n+m))=\mathrm{O}\left(n^{2}+n m\right)$ time.

Subsection 5

Proofs of Shortest-Paths Properties

The Triangle Inequality

Lemma (Triangle Inequality)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$ and source vertex s. Then, for all edges $(u, v) \in E$, we have $\delta(s, v) \leq \delta(s, u)+w(u, v)$.

- Suppose that p is a shortest path from source s to vertex v. Then p has no more weight than any other path from s to v. Specifically, path p has no more weight than the particular path that takes a shortest path from source s to vertex u and then takes edge (u, v).
The case in which there is no shortest path from s to v can be easily handled.

Effects of Relaxation: The Upper Bound Property

Lemma (Upper-Bound Property)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$. Let $s \in V$ be the source vertex, and let the graph be initialized by InitializeSingleSource (G, s). Then, $v . d \geq \delta(s, v)$, for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps on the edges of G. Moreover, once $v . d$ achieves its lower bound $\delta(s, v)$, it never changes.

- We prove the invariant $v . d \geq \delta(s, v)$, for all vertices $v \in V$, by induction over the number of relaxation steps.
- For the basis, $v . d \geq \delta(s, v)$ is certainly true after initialization:
- v. $d=\infty$ implies $v . d \geq \delta(s, v)$, for all $v \in V-\{s\}$;
- $s . d=0 \geq \delta(s, s)$ (note that $\delta(s, s)=-\infty$, if s is on a negative-weight cycle, and 0 , otherwise).

Effects of Relaxation: The Upper Bound Property (Cont'd)

- For the inductive step, consider the relaxation of an edge (u, v). By the inductive hypothesis, $x . d \geq \delta(s, x)$, for all $x \in V$, prior to the relaxation. The only d value that may change is $v . d$.
If it changes, we have

$$
\begin{aligned}
v . d & =u . d+w(u, v) \\
& \geq \delta(s, u)+w(u, v) \quad \text { (by inductive hypothesis) } \\
& \geq \delta(s, v) . \quad \text { (by triangle inequality) }
\end{aligned}
$$

So the invariant is maintained.
To see that the value of $v . d$ never changes once $v . d=\delta(s, v)$, note that:

- v.d cannot decrease because we have just shown that $v . d \geq \delta(s, v)$;
- It cannot increase because relaxation steps do not increase d values.

Effects of Relaxation: No-Path Property

Corollary (No-Path Property)

Suppose that in a weighted, directed graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$, no path connects a source vertex $s \in V$ to a given $v \in V$. Then, after initialization by InitializeSingleSource (G, s), we have $v . d=\delta(s, v)=\infty$, and this equality is maintained as an invariant over any sequence of relaxation steps on the edges of G.

- By the Upper-Bound Property, $\infty=\delta(s, v) \leq v . d$. It follows that $v . d=\infty=\delta(s, v)$.

The Convergence Property: A Lemma

Lemma

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$, and let $(u, v) \in E$. Then, immediately after relaxing edge (u, v) by executing $\operatorname{Relax}(u, v, w)$, we have $v . d \leq u \cdot d+w(u, v)$.

- If, just prior to relaxing edge (u, v), we have
- $v . d>u . d+w(u, v)$, then $v . d=u . d+w(u, v)$ afterward.
- $v . d \leq u . d+w(u, v)$, then neither $u . d$ nor $v . d$ changes. So $v . d \leq u . d+w(u, v)$ afterward.

The Convergence Property

Lemma (Convergence Property)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}, s \in V$ a source vertex and $s \rightsquigarrow u \rightarrow v$ a shortest path in G for some vertices $u, v \in V$. Suppose that G is initialized by Initialize $\operatorname{SingleSource}(G, s)$ and then a sequence of relaxation steps that includes the call $\operatorname{Relax}(u, v, w)$ is executed on the edges of G. If $u . d=\delta(s, u)$ at any time prior to the call, then $v . d=\delta(s, v)$ at all times after the call.

- By the Upper-Bound Property, if $u \cdot d=\delta(s, u)$ at some point prior to relaxing edge (u, v), then this equality holds thereafter. In particular, after relaxing edge (u, v), we have $v . d \leq u . d+w(u, v)$ (by the Lemma) $=\delta(s, u)+w(u, v)=\delta(s, v)$ (by the Subpaths Lemma). By the Upper-Bound Property, v.d $\geq \delta(s, v)$. Therefore, v. $d=\delta(s, v)$, and this equality is maintained thereafter.

The Path-Relaxation Property

Lemma (Path-Relaxation Property)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$, and let $s \in V$ be a source vertex. Consider any shortest path $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ from $s=v_{0}$ to v_{k}. If G is initialized by Initialize $\operatorname{SingleSource}(G, s)$ and then a sequence of relaxation steps occurs that includes, in order, relaxing the edges $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right)$, then $v_{k} \cdot d=\delta\left(s, v_{k}\right)$ after these relaxations and at all times afterward. This property holds no matter what other edge relaxations occur, including relaxations that are intermixed with relaxations of the edges of p.

- We show, by induction, that after the i-th edge of path p is relaxed, we have $v_{i} \cdot d=\delta\left(s, v_{i}\right)$.

The Path-Relaxation Property (Cont'd)

- For the basis, $i=0$, and before any edges of p have been relaxed, we have from the initialization that

$$
v_{0} \cdot d=s \cdot d=0=\delta(s, s)
$$

By the Upper-Bound Property, the value of s.d never changes after initialization.

- For the inductive step, we assume that $v_{i-1} \cdot d=\delta\left(s, v_{i-1}\right)$, and we examine what happens when we relax edge $\left(v_{i-1}, v_{i}\right)$.
By the Convergence Property, after relaxing this edge, we have $v_{i} \cdot d=\delta\left(s, v_{i}\right)$, and this equality is maintained at all times thereafter.

Relaxation and Shortest-Paths Trees I

Lemma

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$, let $s \in V$ be a source vertex, and assume that G contains no negative-weight cycles that are reachable from s. Then, after the graph is initialized by InitializeSingleSource (G, s), the predecessor subgraph G_{π} forms a rooted tree with root s, and any sequence of relaxation steps on edges of G maintains this property as an invariant.

- Initially, the only vertex in G_{π} is s, and the lemma is trivially true.
- Consider a predecessor subgraph G_{π} that arises after a sequence of relaxation steps. We shall first prove that G_{π} is acyclic. Suppose that some relaxation step creates a cycle $c=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ in the graph G_{π}, where $v_{k}=v_{0}$. Then, $v_{i} . \pi=v_{i-1}$, for $i=1,2, \ldots, k$. Without loss of generality, assume that relaxing (v_{k-1}, v_{k}) created the cycle in G_{π}. We claim that all vertices on c are reachable from s.

Relaxation and Shortest-Paths Trees II

Claim: All vertices on cycle c are reachable from the source s.
Each vertex on c has a non-NIL predecessor. So each vertex on c was assigned a finite shortest path estimate when it was assigned its non-NIL π value. By the Upper-Bound Property, each vertex on cycle c has a finite shortest path weight. This implies that it is reachable from s.

- We examine the shortest path estimates on c just prior to the call $\operatorname{RELAX}\left(v_{k-1}, v_{k}, w\right)$ and show that c is a negative weight cycle, thereby contradicting the assumption that G contains no negative weight cycles that are reachable from the source.
Just before the call, we have $v_{i} \cdot \pi=v_{i-1}$, for $i=1,2, \ldots, k-1$. Thus, for $i=1,2, \ldots, k-1$, the last update to $v_{i} . d$ was by the assignment $v_{i} . d=v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)$. If $v_{i-1} . d$ changed since then, it decreased. Therefore, just before the call $\operatorname{ReLAx}\left(v_{k-1}, v_{k}, w\right)$, we have $v_{i} . d \geq v_{i-1} . d+w\left(v_{i-1}, v_{i}\right)$, for all $i=1,2, \ldots, k-1$.

Relaxation and Shortest-Paths Trees III

- Because $v_{k} \cdot \pi$ is changed by the call, immediately beforehand we also have the strict inequality $v_{k} \cdot d>v_{k-1} \cdot d+w\left(v_{k-1}, v_{k}\right)$.
Summing this strict inequality with the preceding $k-1$ inequalities, we obtain the sum of the shortest path estimates around cycle c :

$$
\begin{aligned}
\sum_{i=1}^{k} v_{i} \cdot d & >\sum_{i=1}^{k}\left(v_{i-1} \cdot d+w\left(v_{i-1}, v_{i}\right)\right) \\
& =\sum_{i=1}^{k} v_{i-1} \cdot d+\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
\end{aligned}
$$

But $\sum_{i=1}^{k} v_{i} \cdot d=\sum_{i=1}^{k} v_{i-1} \cdot d$, since each vertex in the cycle c appears exactly once in each summation. This equality implies $0>\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)$. Thus, the sum of weights around the cycle c is negative, a contradiction.

- We have now proven that G_{π} is a directed, acyclic graph.

Relaxation and Shortest-Paths Trees IV

- To show that V_{π} forms a rooted tree with root s, it suffices to prove that for each vertex $v \in V_{\pi}$, there is a unique path from s to v in G_{π}.
- We first must show that a path from s exists for each vertex in V_{π}. The vertices in V_{π} are those with non-NIL π values, plus s. The idea here is to prove by induction that a path exists from s to all vertices in V_{π}.
- To complete the proof of the lemma, we must now show that for any vertex $v \in V_{\pi}$, there is at most one path from s to v in the graph G_{π}. Suppose there are two simple paths from s to some vertex v :

- p_{1}, which can be decomposed into $s \rightsquigarrow u \rightsquigarrow x \rightarrow z \rightsquigarrow v$;
- p_{2}, which can be decomposed into $s \rightsquigarrow u \rightsquigarrow y \rightarrow z \rightsquigarrow v$, where $x \neq y$.

Then, $z . \pi=x$ and $z . \pi=y$, which implies the contradiction that $x=y$. Hence, there exists a unique simple path in G_{π} from s to v.
Thus, G_{π} forms a rooted tree with root s.

The Predecessor-Subgraph Property

Lemma (Predecessor-Subgraph Property)

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$, let $s \in V$ be a source vertex, and assume that G contains no negative-weight cycles that are reachable from s. Let us call Initialize $\operatorname{SingleSource}(G, s)$ and then execute any sequence of relaxation steps on edges of G that produces $v . d=\delta(s, v)$, for all $v \in V$. Then, the predecessor subgraph G_{π} is a shortest-paths tree rooted at s.

- The three properties of shortest-paths trees hold for G_{π}.
- To show the first property, we must show that V_{π} is the set of vertices reachable from s. By definition, a shortest-path weight $\delta(s, v)$ is finite if and only if v is reachable from s. Thus, the vertices that are reachable from s are exactly those with finite d values. But a vertex $v \in V-\{s\}$ has been assigned a finite value for $v . d$ if and only if $v . \pi \neq$ NIL. Thus, the vertices in V_{π} are exactly those reachable from s.

The Predecessor-Subgraph Property (Cont'd)

- The second property follows directly from the lemma.
- It remains to prove the last property of shortest-paths trees, i.e., that for each vertex $v \in V_{\pi}$, the unique simple path $s \stackrel{p}{\rightsquigarrow} v$ in G_{π} is a shortest path from s to v in G. Let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $v_{0}=s$ and $v_{k}=v$. For $i=1,2, \ldots, k$, we have both $v_{i} . d=\delta\left(s, v_{i}\right)$ and $v_{i} . d \geq v_{i-1} . d+w\left(v_{i-1}, v_{i}\right)$. So $w\left(v_{i-1}, v_{i}\right) \leq \delta\left(s, v_{i}\right)-\delta\left(s, v_{i-1}\right)$. Summing the weights along path p yields

$$
\begin{aligned}
w(p) & =\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right) \\
& \leq \sum_{i=1}^{k}\left(\delta\left(s, v_{i}\right)-\delta\left(s, v_{i-1}\right)\right) \\
& =\delta\left(s, v_{k}\right)-\delta\left(s, v_{0}\right) \quad \text { (because the sum telescopes) } \\
& \left.=\delta\left(s, v_{k}\right) \quad \text { (because } \delta\left(s, v_{0}\right)=\delta(s, s)=0\right)
\end{aligned}
$$

Thus, $w(p) \leq \delta\left(s, v_{k}\right)$. Since $\delta\left(s, v_{k}\right)$ is a lower bound on the weight of any path from s to v_{k}, we conclude that $w(p)=\delta\left(s, v_{k}\right)$. Thus, p is a shortest path from s to $v=v_{k}$.

