Introduction to Algorithms

George Voutsadakis®

Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 1/65

o The Bellman-Ford Algorithm

o Single-Source Shortest Paths in Directed Acyclic Graphs
o Dijkstra’s Algorithm

o Difference Constraints and Shortest Paths

o Proofs of Shortest-Paths Properties

George Voutsadakis (LSSU) Introduction to Algorithms

Single-Source Shortest Paths

o In a shortest-paths problem, we are given a weighted, directed
graph G = (V, E), with weight function w : E — R mapping edges
to real-valued weights.

o The weight w(p) of path p = (v, v1,..., vk) is the sum of the
weights of its constituent edges: w(p) = Zf'(:l w(vi_1, vj).

o We define the shortest-path weight 6(u, v) from v to v by
e, vl = { min {w(p) : u % v}, if there_ is a path from u to v

0, otherwise

o A shortest path from vertex u to vertex v is defined as any path

u % v with weight w(p) = d(u, v).

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o The single-source shortest-paths problem:
Given a graph G = (V, E), we want to find a shortest path from a
given source vertex s € V to each vertex v € V.
o The algorithm for this problem can solve other variants also.
o Single-destination shortest-paths problem:
Find a shortest path to a given destination vertex t from each vertex v.
o Single-pair shortest-path problem:
Find a shortest path from u to v for given vertices u and v.
o All-pairs shortest-paths problem:
Find a shortest path from u to v for every pair of vertices u and v.

The last variant can be solved by running a single source algorithm
once from each vertex, but there is a faster algorithm.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o Shortest-paths algorithms typically rely on the property that a shortest
path between two vertices contains other shortest paths within it.

o Optimal substructure is one of the key indicators that dynamic
programming and the greedy method might apply.

Given a weighted, directed graph G = (V, E) with weight function

w:E — R, let p= (v, vi,...,vk) be a shortest path from vertex vy to
vertex vk and, for any i and j such that 0 </ < j < k, let pjj = (vi, vit1,
..., Vj) be the subpath of p from vertex v; to vertex v;. Then, pj is a
shortest path from v; to v;.

o Decompose p into vy & v; A vj % V. Then w(p) = w(poi) + w(pj)

+w(pjk). Suppose there was a path p,’-j from v; to vj with weight

o Pi Pk
w(pj;) < w(pjj). Then, v R v 4 vj % v is a path from v to v
with weight w(po) + w(pj;) + w(pjx) < w(p), a contradiction.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o Some instances of the single-source shortest-paths problem may
include edges whose weights are negative.

o If the graph G = (V.E) contains no negative weight cycles reachable
from the source s, then, for all v € V/, the shortest-path weight (s, v)
remains well defined, even if it has a negative value.

o If the graph contains a negative-weight cycle reachable from s,
however, shortest-path weights are not well defined.

No path from s to a vertex on the cycle can be a shortest path, since
we can always find a path with lower weight by following the proposed
“shortest” path and then traversing the negative-weight cycle.

o If there is a negative weight cycle on some path from s to v, we
define (s, v) = —c0.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o There is only one path from s to a.
So we have i(s,a) = w(s,a) = 3.

o There is only one path from s to b.
So 4(s, b) = w(s,a) + w(a, b)
=3+ (—4)=-1

o There are infinitely many paths from s to ¢ : (s, ¢), (s, ¢, d, c),
(s,c,d,c,d,c), and so on.

The cycle (c, d, c¢) has weight 6 + (—3) = 3 > 0. So the shortest path
from s to c is (s, ¢), with weight d(s,c) = w(s,c) =5.

o Similarly, he shortest path from s to d is (s, ¢, d), with weight
o(s,d) = w(s,c) + w(c,d) =11.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o There are infinitely many paths
from s to e: (s,e), (s,e, f,e),
(s,e,f,e,f,e), and so on.

The cycle (e, f, e) has weight
34 (—6) = —3 < 0. So there
is no shortest path from s to e.

By traversing the negative weight cycle (e, f, e) arbitrarily many
times, we can find paths from s to e with arbitrarily large negative
weights. So d(s, e) = —o0.

o Similarly, d(s, f) = —oc.

o Because g is reachable from f, we can also find paths with arbitrarily
large negative weights from s to g. So (s, g) = —c0.

o Vertices h,i and j also form a negative-weight cycle. However, hey
are not reachable from s. So (s, h) = d(s, i) = d(s,j) = 0.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o A shortest path cannot contain a negative weight cycle.

o Nor can it contain a positive weight cycle.

Suppose p = (vp, v1,..., V) is a path and ¢ = (v;, Viq1,...,Vvj) is a
positive weight cycle on this path (so that v; = v; and w(c) > 0).
Then the path p’ = (vo, vi,..., Vi, Vi1, Vjit2,. .., vk) has weight
w(p') = w(p) — w(c) < w(p). So p cannot be a shortest path from
Vo to vg.

o That leaves only 0-weight cycles. We can remove a 0-weight cycle
from any path to produce another path whose weight is the same.

o Therefore, without loss of generality we can assume that when we are
finding shortest paths, they have no cycles.
Since any acyclic path in a graph G = (V, E) contains at most |V/|
distinct vertices, it also contains at most |V| — 1 edges.

We can restrict attention to shortest paths of at most |V/| — 1 edges.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o Given a graph G = (V, E), we maintain for each vertex v € V a
predecessor v.7 that is either another vertex or NIL.

o The shortest paths algorithms we study set the 7 attributes so that
the chain of predecessors originating at a vertex v runs backwards
along a shortest path from s to v.

o Thus, given a vertex v for which v.w # NIL, the procedure
PRINTPATH(G, s, v) will print a shortest path from s to v.

o In the midst of executing a shortest paths algorithm, however, the
m-values might not indicate shortest paths.

o As in breadth first search, we shall be interested in the predecessor
subgraph G, = (V;, E;) induced by the 7 values:

o We define the vertex set V. as the set of vertices of G with non-NIL
predecessors, plus s: Vi ={v e V:v.r #NIL} U {s}.

o The directed edge set E; is the set of edges induced by the 7 values for
vertices in Vi Ex ={(v.m,v) € E:v eV, —{s}}.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o We prove that the 7 values produced by our algorithms have the
property that at termination G, is a “shortest-paths tree”, a rooted
tree containing a shortest path from the source s to every vertex that
is reachable from s.

o Let G = (V, E) be a weighted, directed graph with weight function
w:E—R.

Assume that G contains no negative weight cycles reachable from the
source vertex s € V, so that shortest paths are well defined.
o A shortest paths tree rooted at s is a directed subgraph G’ = (V/,
E’), where V/ C V and E’ C E, such that:
V' is the set of vertices reachable from s in G;
G’ forms a rooted tree with root s;
For all v € V’, the unique simple path from s to v in G’ is a shortest
path from s to v in G.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o Shortest paths are not necessarily unique, and neither are shortest
paths trees.

George Voutsadakis (LSSU) Introduction to Algorithms

Single-Source Shortest Paths

o The algorithms we present use the technique of relaxation.

o For each vertex v € V, we maintain an attribute v.d, which is an
upper bound on the weight of a shortest path from source s to v.

We call v.d a shortest path estimate.
o We initialize the shortest-path estimates and predecessors by the
following ©(V)-time procedure:

for each vertex v € G.V

v.d = c©
v.r = NIL
s.d=0

o After initialization, v.mr = NIL, for all v € V,
s.d =0, and v.d = 0, for v € V — {s}.

Single-Source Shortest Paths

o The process of relaxing an edge (u, v) consists of testing whether we
can improve the shortest path to v found so far by going through u
and, if so, updating v.d and v.7.

o A relaxation step may decrease the value of the shortest-path
estimate v.d and update v's predecessor field v.7.

if vid > u.d + w(u,v)
v.d = u.d+ w(u,v)

V.T = u
u v u 5 v
O——©® O——®
_é_RELAx(u,v,w) E‘RELAX(M,V,W)
u : v u ? VvV

——0 O——®

George Voutsadakis (LSSU) Introduction to Algorithms

Single-Source Shortest Paths

o Suppose the graph is initialized by INITIALIZESINGLESOURCE(G, s)
and that shortest path estimates and the predecessor subgraph
change only due to relaxation steps.

o Triangle Inequality: For all (u,v) € E, §(s,v) < d(s, u) + w(u, v).

o Upper-Bound Property: We always have v.d > (s, v), for all vertices
v € V, and once v.d achieves the value (s, v), it never changes.

o No-Path Property: If there is no path from s to v, then we always
have v.d = §(s, v) = co.

o Convergence Property: If s ~» u — v is a shortest path in G, for
some u,v € V, and if u.d = §(s, u) at any time prior to relaxing edge
(u,v), then v.d = §(s, v) at all times afterward.

o Path-Relaxation Property: If p = (v, v1,..., vk) is a shortest path
from s = vy to vk, and we relax the edges of p in the order (v, v1),
(vi,va), ..., (vk—1, vk), then vx.d = 6(s, vk). This property holds
regardless of any other relaxation steps that occur.

o Predecessor-Subgraph Property: Once v.d = §(s, v), for all v € V,
the predecessor subgraph is a shortest paths tree rooted at s.

George Voutsadakis (LSSU)

Single-Source Shortest Paths [SFhe Bellman-Ford Algorithm

Subsection 1

The Bellman-Ford Algorithm

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 16 / 65

Single-Source Shortest Paths

o The Bellman-Ford algorithm solves the single-source shortest-paths
problem in the general case in which edge weights may be negative.

o Given a weighted, directed graph G = (V/, E), with source s and
weight function w : E — R, the Bellman-Ford algorithm returns a

boolean value indicating whether or not there is a negative-weight
cycle that is reachable from the source.

o If there is such a cycle, the algorithm indicates that no solution exists.
o If there is no such cycle, the algorithm produces the shortest paths and
their weights.
o The algorithm relaxes edges, progressively decreasing an estimate v.d
on the weight of a shortest path from the source s to each vertex
v € V, until it achieves the actual shortest path weight d(s, v).

o The algorithm returns TRUE if and only if the graph contains no
negative-weight cycles that are reachable from the source.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

BELLMANFORD(G, w, s)

INITIALIZESINGLESOURCE(G, s)
fori=1to|G.V|—1
for each edge (u,v) € G.E
RELAX(u, v, w)
for each edge (u,v) € G.E
if vid > u.d + w(u,v)
return FALSE
return TRUE

George Voutsadakis (LSSU) Introduction to Algorithms

ithms

=
4=
=
=
o
o0
<
°
o
[
<
c
1]
£
©
o
o
=
=

Introduction to Algori

rtest Paths

Sho

Single-Source

lllustrating the Bellman-Ford Procedure

Single-Source Shortest Paths

o In Line 1, the d and 7 values of all vertices are initialized.
o Then the algorithm makes |V/| — 1 passes over the edges of the graph.

Each pass is one iteration of the for loop of Lines 2-4 and consists of
relaxing each edge of the graph once.

o After making |V| — 1 passes, Lines 5-8 check for a negative-weight
cycle and return the appropriate boolean value.
o The Bellman-Ford algorithm runs in time O (|V||E|).

o The initialization in Line 1 takes ©(|V/|) time;

o Each of the |V| — 1 passes over the edges in Lines 2-4 takes ©(|E|)
time;

o The for loop of Lines 5-7 takes O (|E|) time.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o If there are no negative-weight cycles, the algorithm computes correct
shortest-path weights for all vertices reachable from the source.

Let G = (V, E) be a weighted, directed graph with source s and weight
function w : E — R, and assume that G contains no negative-weight
cycles that are reachable from s. Then, after the |V/| — 1 iterations of the
for loop of Lines 2-4 of BELLMANFORD, we have v.d = (s, v), for all
vertices v that are reachable from s.

o Consider a v reachable from s. Let p = (v, vi,..., vk), where vog = s
and v, = v, be any acyclic shortest path from s to v. Path p has at
most |V| — 1 edges. So k < |V/|—1. Each of the |V| — 1 iterations of
the for loop of Lines 2-4 relaxes all E edges. Among the edges relaxed
in the ith iteration, for i = 1,2,... k, is (vi_1, v;). By the Path
Relaxation Property, therefore, v.d = vi.d = (s, vx) = d(s, v).

George Voutsadakis (LSSU)

Single-Source Shortest Paths

Let G = (V, E) be a weighted, directed graph, with source vertex s and
weight function w : E — R, and assume that G contains no negative
weight cycles that are reachable from s. Then, for each vertex v € V,
there is a path from s to v if and only if BELLMANFORD terminates with

v.d < oo when it is run on G.

o BELLMANFORD terminates with v.d < co when it is run on G
iff, by the Lemma, BELLMANFORD terminates with d(s, v) < oo
when it is run on G
iff, by definition, there is a path from s to v in G.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

Let BELLMANFORD be run on a weighted, directed graph G = (V, E),
with source s and weight function w : E — R. If G contains no negative
weight cycles that are reachable from s, then the algorithm returns TRUE,
we have v.d = (s, v), for all vertices v € V/, and the predecessor
subgraph G; is a shortest paths tree rooted at s. If G does contain a
negative weight cycle reachable from s, then the algorithm returns FALSE.

o Suppose that graph G contains no negative weight cycles that are
reachable from the source s.
Claim: At termination, v.d = J(s, v), for all vertices v € V.

If vertex v is reachable from s, then use the Lemma. If v is not
reachable from s, then the claim follows from the No-Path Property.

The Predecessor-Subgraph Property, along with the Claim, implies
that G, is a shortest paths tree.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

We use the claim to show that BELLMANFORD returns TRUE.

At termination, we have, for all edges (u,v) € E,

v.d i(s,v)
d(s,u) + w(u,v) (by the triangle inequality)

u.d+ w(u,v).

Al

So none of the tests in Line 6 causes BELLMANFORD to return
FALSE. Therefore, it returns TRUE.

George Voutsadakis (LSSU) Introduction to Algorithms

Single-Source Shortest Paths

o Suppose that G contains a negative weight cycle reachable from s.

Let this cycle be ¢ = (vp, v1,. .., vk), where vy = vi. Then,

fozl w(vi_1,v;) < 0. Assume the algorithm returns TRUE. Thus,
vi.d <vi_1.d+w(vi_1,v;), for i=1,2,... k. Summing the
inequalities around cycle c gives us

Yigvid < 3X[vierd + w(viog,)]
= Zf'(:1 vi-1.d + Zf'(:l w(vi-1, V).

Since vp = vk, each vertex in ¢ appears exactly once in each of

k k k k
Yoiqviidand Y viiid. So)y i vid =) vi1.d.
Moreover, by the Corollary, v;.d is finite for i = 1,2,..., k.
Thus, 0 < fozl w(vi_1,Vv;), a contradiction.

George Voutsadakis (LSSU)

Single-Source Shortest Paths [Single=Source Shortest Paths'in Directed Acyclic Graphs

Subsection 2

Single-Source Shortest Paths in Directed Acyclic Graphs

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 26 /65

Single-Source Shortest Paths

o By relaxing the edges of a weighted DAG (directed acyclic graph)
G = (V, E) according to a topological sort of its vertices, we can
compute shortest paths from a single source in (| V| + |E|) time.

o Shortest paths are always well defined in a DAG, since even if there
are negative-weight edges, no negative-weight cycles can exist.

o The algorithm does the following:

o Topologically sorts the DAG;
o Makes just one pass over the vertices in the topologically sorted order;
As it processes each vertex, it relax each edge that leaves the vertex.

topologically sort the vertices of G
INITIALIZESINGLESOURCE(G, s)
for each vertex u, taken in topologically sorted order
for each vertex v € G.Adj[u]
RELAX(u, v, w)

George Voutsadakis (LSSU)

Single-Source Shortest Paths

George Voutsadakis (LSSU) Introduction to Algorithms

Single-Source Shortest Paths

The topological sort of Line 1 takes ©(| V| + |E]) time.
The call of INITIALIZESINGLESOURCE in Line 2 takes ©(|V/|) time.

The for loop of Lines 3-5 makes one iteration per vertex.

© ©6 o o

Altogether, the for loop of Lines 4-5 relaxes each edge exactly once
(aggregate analysis).
Each iteration of the inner for loop takes ©(1) time.

o It follows that the total running time is ©(|V/| + |E|), which is linear
in the size of an adjacency-list representation of the graph.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

If a weighted, directed graph G = (V/, E) has source vertex s and no
cycles, then at the termination of the DAGSHORTESTPATHS procedure,
v.d = (s, v), for all vertices v € V, and the predecessor subgraph G; is a
shortest-paths tree.

o We first show that, at termination, v.d = d(s,v), for all v € V.

o If v is not reachable from s, then v.d = (s, v) = co by the No-Path
Property.

o If v is reachable from s, there is a shortest path p = (vo, v1, ..., Vk),
where vog = s and v, = v. Because we process the vertices in
topologically sorted order, the edges on p are relaxed in the order
(vo,v1), (vi,v2),...,(vk—1, vk). The Path-Relaxation Property implies
that v;.d = é(s, v;) at termination, for i = 0,1,..., k.

By the Predecessor Subgraph Property, G, is a shortest-paths tree.

George Voutsadakis (LSSU)

Single-Source Shortest Paths Dijkstra's Algorithm

Subsection 3

Dijkstra’s Algorithm

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 31/65

Single-Source Shortest Paths

o Solves the single-source shortest-paths problem on a weighted,
directed graph G = (V/, E) with all edge weights nonnegative.
o The algorithm maintains a set S of vertices whose final shortest path
weights from the source s have already been determined.
o Repeatedly select u € V — S with the minimum shortest-path estimate:
add u to S, and relax all edges leaving u.

o We use a min-priority queue @ of vertices, keyed by their d values.

INITIALIZESINGLESOURCE(G, 5)
S=10
Q=G.V
while Q # 0
u = EXTRACTMIN(Q)
S=Su{u}
for each vertex v € G.Adj[u]
RELAX(u, v, w)

George Voutsadakis (LSSU)

Single-Source Shortest Paths

Introduction to Algorithms

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o Line 1 initializes the d and 7 values.

o Line 2 initializes the set S to the empty set.

o The algorithm maintains the invariant that @ = V — S at the start of
each iteration of the while loop of Lines 4-8.

o Line 3 initializes the min-priority queue Q to contain all vertices in V.
Since S = (), the invariant is true after Line 3.
o Each time through the while loop of Lines 4-8, Line 5 extracts a vertex
u from @ =V — S and Line 6 adds it to S, maintaining the invariant.
Vertex u, therefore, has the smallest shortest-path estimate of any
vertex in V — S.

o Then, Lines 7-8 relax each edge (u, v) leaving u, thus updating the
estimate v.d and the predecessor v.7 if we can improve the shortest
path to v found so far by going through u.

o Observe that the algorithm never inserts vertices into @ after Line 3
and that each vertex is extracted from @ and added to S exactly
once, so that the while loop of Lines 4-8 iterates exactly | V| times.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

Dijkstra’s algorithm, run on a weighted, directed graph G = (V/, E) with
nonnegative weight function w and source s, terminates with u.d =
0(s, u), for all vertices u € V.

o We use the following loop invariant:

At the start of each iteration of the while loop of Lines 4-8,
v.d = (s, v), for each vertex v € S.

It suffices to show for each vertex u € V, we have u.d = §(s, u) at
the time when v is added to set S.

Once we show that u.d = (s, u), we rely on the Upper-Bound
Property to show that the equality holds at all times thereafter.

o Initialization: Initially, S = (). So the invariant is trivially true.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o Maintenance: We wish to show that in each iteration, u.d = (s, u)
for the vertex added to set S. For the purpose of contradiction, let u
be the first vertex for which u.d # d(s, u) when it is added to set S.
We look at the beginning of the iteration of the while loop in which u
is added to S. We derive the contradiction that u.d = d(s, u) at that
time by examining a shortest path from s to u.

We must have u # s because s is the first vertex added to set S and
s.d = 0(s,s) = 0 at that time. Because u # s, we also have that

S # () just before u is added to S. There must be some path from s
to u, for otherwise u.d = (s, u) = oo by the No-Path Property,
which would violate our assumption that u.d # d(s, u). Because there
is at least one path, there is a shortest path p from s to u. Prior to
adding v to S, path p connects a vertex in S, namely s, to a vertex in
V — S, namely u. Let us consider the first vertex y along p, such that
y €V —5,and let x € S be y's predecessor.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o p can be decomposed as s Bx— y & .
Claim: y.d = (s, y) when u is added to S.
To prove this, observe that x € S. Then,
because u is chosen as the first vertex for
which u.d # (s, u) when it is added to S, we had x.d = (s, x)
when x was added to S. Edge (x,y) was relaxed at that time, so the
claim follows from the Convergence Property.

We can now obtain a contradiction to prove that u.d = d(s, u).

Because y appears before u on a shortest path from s to u and all
edge weights are nonnegative, we have d(s,y) < d(s, u). Thus,

y.d =46(s,y) <(s,u) < u.d (by the Upper-Bound Property). But
because both v and y were in V — S when u was chosen in Line 5, we
have u.d < y.d. Hence, y.d = d(s,y) = d(s,u) = u.d. Consequently,
u.d = (s, u). This contradicts our choice of wu.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o We conclude that u.d = d(s, u) when u is added to S, and that this
equality is maintained at all times thereafter.

o Termination: At termination, @ = (). Along with our earlier invariant
that Q = V — S, implies that S = V. Thus, u.d = (s, u), for all
vertices u € V.

Corollary

If we run Dijkstra's algorithm on a weighted, directed graph G = (V, E)
with nonnegative weight function w and source s, then at termination, the
predecessor subgraph G, is a shortest-paths tree rooted at s.

George Voutsadakis (LSSU) Introduction to Algorithms

Single-Source Shortest Paths

o Dijkstra’s algorithm maintains the min-priority queue @ by calling
three priority-queue operations.
o INSERT (implicit in Line 3);
o EXTRACTMIN (Line 5);
o DECREASEKEY (implicit in RELAX, which is called in Line 8).

The algorithm calls both INSERT and EXTRACTMIN once per vertex.
Each vertex u € V is added to set S exactly once.

Thus, each edge in the adjacency list Adj[u] is examined in the for
loop of Lines 7-8 exactly once during the course of the algorithm.

Since the total number of edges in all the adjacency lists is |E|, this
for loop iterates a total of |E| times.

Thus, the algorithm calls DECREASEKEY at most |E| times overall.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o The running time of Dijkstra’s algorithm depends on how we
implement the min-priority queue:

o Suppose we maintain the min-priority queue by taking advantage of
the vertices being numbered 1 to |V/|.

We simply store v.d in the vth entry of an array.
o Each INSERT and DECREASEKEY operation takes O (1) time.

o Each EXTRACTMIN operation takes O (|V/|) time (since we have to
search through the entire array).

o Thus, total time is O (|[V|? + |E|) = O (|V[?).

George Voutsadakis (LSSU)

Single-Source Shortest Paths Difference Constraints and Shortest Paths

Subsection 4

Difference Constraints and Shortest Paths

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 41 /65

Single-Source Shortest Paths

o The general linear programming problem:
Given an m X n matrix A, an m-vector b and an n-vector ¢, find a
vector x of n elements that maximizes the objective function
27:1 ¢ix; subject to the m constraints given by Ax < b.
o Importance of understanding the setup of linear-programming
problems:

o If we know that we can cast a given problem as a polynomial-sized
linear-programming problem, then we immediately have a polynomial
time algorithm to solve the problem.

o Faster algorithms exist for many special cases of linear programming,
e.g., the single-pair shortest-path problem and the maximum-flow
problem.

o In a feasibility problem, we only wish to find any feasible solution,
i.e., any vector x that satisfies Ax < b, or to determine that no
feasible solution exists.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o In a system of difference constraints, each row of the linear
programming matrix A contains one 1 and one —1, and all other
entries of A are 0.

o Thus, the constraints given by Ax < b are a set of m difference
constraints involving n unknowns, in which each constraint is a
simple linear inequality of the form x; — x; < by, where 1 </,j < n,
i#jand 1< k< m.

Example: The problem of finding a 5-vector x = (x;) that satisfies

1 -1 0 0 0 0
1 0 0 0 -1 1
0 1 0 0 -1 E 1

1 0 1 0 0 . 5

1 0 0 1 0 2 =
0 0 -1 1 0 4 1
0 0 -1 o0 1 = -3
0 0 0 -1 1 -3

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o This problem is equivalent to finding values for the unknowns
X1, X2, X3, X4, X5, satisfying the following 8 difference constraints:

X1 — X2 S 0
X1 — X5 S -1
Xo— X5 < 1
X3 — X1 S 5
X4 — X1 S 4
X4 — X3 S -1
X5 — X3 S -3
X5 — X4 S -3

One solution to this problem is x = (—5,—3,0, —1, —4), which you
can verify directly by checking each inequality. In fact, this problem
has more than one solution. Another is x' = (0,2,5,4,1). These two
solutions are related: each component of x’ is 5 larger than the
corresponding component of x. This fact is not mere coincidence.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

Lemma

Let x = (x1,x2,...,X,) be a solution to a system Ax < b of difference
constraints, and let d be any constant. Then x +d = (x; + d, x2 + d,
..., Xp+ d) is a solution to Ax < b as well.

o For each x; and x;, we have
(g + d) — (i + d) =) —

Thus, if x satisfies Ax < b, so does x + d.

George Voutsadakis (LSSU) Introduction to Algorithms

Single-Source Shortest Paths

o We can interpret systems of difference constraints from a graph
theoretic point of view.

o In a system Ax < b of difference constraints, we view the m X n linear
programming matrix A as the transpose of an incidence matrix for a
graph with n vertices and m edges.

o Each vertex v; in the graph, for i =1,2,..., n, corresponds to one of
the n unknown variables x;.

o Each directed edge in the graph corresponds to one of the m
inequalities involving two unknowns.

o More formally, given a system Ax < b of difference constraints, the
corresponding constraint graph is a weighted, directed graph
G = (V,E), where:
o V=A{w,vi,...,Va};
o E={(vi,vj): x; —x; < by is a constraint} U {(vo, v1), (vo, v2), . - .,

(vo, va)}-

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o The vertex set V consists of a vertex v; for each unknown x;, plus an
additional vertex vp.
o The edge set E contains an edge for each difference constraint, plus
an edge (vp, v;) for each unknown x;.
o If x; —x; < by is a difference constraint, then the weight of edge
(vi, vj) is w(vi, vj) = bx.
o The weight of each edge leaving v is 0.
Example:

George Voutsadakis (LSSU)

Single-Source Shortest Paths

Given a system Ax < b of difference constraints, let G = (V, E) be the
corresponding constraint graph. If G contains no negative-weight cycles,
then x = (0(vo, v1), d(vo, v2),d(vo, v3),...,d(vo, vn)) is a feasible solution
for the system. If G contains a negative-weight cycle, then there is no
feasible solution for the system.

Claim: If the constraint graph contains no negative-weight cycles,
then x = (6(vo, v1), 6(vo, v2), 0(vo, v3), ..., d(vo, vp)) is a feasible
solution.

Consider any edge (vj, vj) € E. By the triangle inequality,

d(vo, vj) < (v, vi) + w(vi, vj), ie., 0(vo, vj) — 0(vo, vi) < w(vi, v;).
Thus, the values x; = §(v, vi), x; = d(wo, v;) satisfy the difference
constraint x; — x; < w(v;, vj) that corresponds to edge (vj, v;).

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o We show that if the constraint graph contains a negative-weight
cycle, then the system has no feasible solution.
Without loss of generality, let the negative-weight cycle be

¢ = (vi,va,..., V), where vi = v,. c corresponds to:
xx—x1 < w(wv,wn)
xx—x2 < w(va,ws)

Xk—1 — Xk—2
Xk — Xk—1

w(Vk—2, Vk—1)
W(Vk_1, Vk)

IA IA =

We assume that x has a solution satisfying each of these k
inequalities and derive a contradiction. The solution must also satisfy
the inequality that results when we sum the k inequalities. The
left-hand side of the sum is 0. The right-hand side sums to w(c).
Thus, 0 < w(c). Since c is a negative-weight cycle, w(c) < 0.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o The Theorem tells us that we can use the Bellman-Ford algorithm to
solve a system of difference constraints.
o Because the constraint graph contains edges from the source vertex

vp to all other vertices, any negative-weight cycle in the constraint
graph is reachable from vg.

o If the Bellman-Ford algorithm returns TRUE, then the shortest-path
weights give a feasible solution to the system.
o If the Bellman-Ford algorithm returns FALSE, there is no feasible
solution to the system of difference constraints.
o A system of difference constraints with m constraints on n unknowns
produces a graph with n+ 1 vertices and n + m edges.

Using the Bellman-Ford algorithm, we can solve the system in
O((n+1)(n+ m)) =0 (n*+ nm) time.

George Voutsadakis (LSSU)

Single-Source Shortest Paths Proofs of Shortest-Paths Properties

Subsection 5

Proofs of Shortest-Paths Properties

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 51 /65

Single-Source Shortest Paths

Let G = (V, E) be a weighted, directed graph with weight function
w : E — R and source vertex s. Then, for all edges (u,v) € E, we have
o(s,v) < d(s,u) + w(u,v).

o Suppose that p is a shortest path from source s to vertex v. Then p
has no more weight than any other path from s to v. Specifically,
path p has no more weight than the particular path that takes a
shortest path from source s to vertex u and then takes edge (u, v).

The case in which there is no shortest path from s to v can be easily
handled.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

Let G = (V, E) be a weighted, directed graph with weight function

w: E — R. Let s € V be the source vertex, and let the graph be
initialized by INITIALIZESINGLESOURCE(G, s). Then, v.d > i(s, v), for
all v € V, and this invariant is maintained over any sequence of relaxation
steps on the edges of G. Moreover, once v.d achieves its lower bound
(s, v), it never changes.

o We prove the invariant v.d > (s, v), for all vertices v € V/, by
induction over the number of relaxation steps.
o For the basis, v.d > d(s, v) is certainly true after initialization:
o v.d = oo implies v.d > §(s, v), for all v € V — {s};
o s.d=02>4(s,s) (note that §(s,s) = —oo, if s is on a negative-weight
cycle, and 0, otherwise).

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o For the inductive step, consider the relaxation of an edge (u, v).
By the inductive hypothesis, x.d > (s, x), for all x € V/, prior to the
relaxation. The only d value that may change is v.d.
If it changes, we have

v.d u.d+ w(u,v)
d(s,u) + w(u,v) (by inductive hypothesis)

d(s,v). (by triangle inequality)

VIV

So the invariant is maintained.

To see that the value of v.d never changes once v.d = §(s, v), note
that:
o v.d cannot decrease because we have just shown that v.d > d(s, v);
o It cannot increase because relaxation steps do not increase d values.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

Corollary (No-Path Property)

Suppose that in a weighted, directed graph G = (V/, E) with weight
function w : E — IR, no path connects a source vertex s € V to a given
v € V. Then, after initialization by INITIALIZESINGLESOURCE(G, s), we
have v.d = §(s, v) = oo, and this equality is maintained as an invariant
over any sequence of relaxation steps on the edges of G.

o By the Upper-Bound Property, oo = d(s,v) < v.d.
It follows that v.d = co = (s, v).

George Voutsadakis (LSSU) Introduction to Algorithms

Single-Source Shortest Paths

Lemma

Let G = (V, E) be a weighted, directed graph with weight function
w: E — R, and let (u,v) € E. Then, immediately after relaxing edge
(u, v) by executing RELAX(u, v, w), we have v.d < u.d + w(u, v).

o If, just prior to relaxing edge (u, v), we have
o v.d > u.d+ w(u,v), then v.d = u.d + w(u, v) afterward.
o v.d < u.d+ w(u,v), then neither u.d nor v.d changes.
So v.d < u.d + w(u, v) afterward.

George Voutsadakis (LSSU) Introduction to Algorithms

Single-Source Shortest Paths

Let G = (V, E) be a weighted, directed graph with weight function

w: E — R, s € V a source vertex and s ~> u — v a shortest path in G
for some vertices u,v € V. Suppose that G is initialized by INITIALIZE
SINGLESOURCE(G, s) and then a sequence of relaxation steps that
includes the call RELAX(u, v, w) is executed on the edges of G. If

u.d = 6(s, u) at any time prior to the call, then v.d = J(s, v) at all times
after the call.

o By the Upper-Bound Property, if u.d = d(s, u) at some point prior to
relaxing edge (u, v), then this equality holds thereafter. In particular,
after relaxing edge (u, v), we have v.d < u.d + w(u, v) (by the
Lemma) = (s, u) + w(u, v) = d(s, v) (by the Subpaths Lemma). By
the Upper-Bound Property, v.d > §(s, v). Therefore, v.d = (s, v),
and this equality is maintained thereafter.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

Let G = (V, E) be a weighted, directed graph with weight function

w: E— R, and let s € V be a source vertex. Consider any shortest path
p = (v, vi,...,Vvk) from s = vy to vk. If G is initialized by INITIALIZE
SINGLESOURCE(G, s) and then a sequence of relaxation steps occurs that
includes, in order, relaxing the edges (vp, v1), (vi,v2),..., (vk—1, vk), then
vk.d = 0(s, vi) after these relaxations and at all times afterward. This
property holds no matter what other edge relaxations occur, including
relaxations that are intermixed with relaxations of the edges of p.

o We show, by induction, that after the i-th edge of path p is relaxed,
we have v;.d = d(s, v;).

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o For the basis, i = 0, and before any edges of p have been relaxed, we
have from the initialization that

vo.d = s.d =0 =4(s,s).

By the Upper-Bound Property, the value of s.d never changes after
initialization.

o For the inductive step, we assume that v;_3.d = d(s, vj_1), and we
examine what happens when we relax edge (vj_1, v;).

By the Convergence Property, after relaxing this edge, we have
vi.d = (s, v;), and this equality is maintained at all times thereafter.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

Let G = (V, E) be a weighted, directed graph with weight function

w: E = R, let s € V be a source vertex, and assume that G contains no
negative-weight cycles that are reachable from s. Then, after the graph is
initialized by INITIALIZESINGLESOURCE(G, s), the predecessor subgraph
G, forms a rooted tree with root s, and any sequence of relaxation steps
on edges of G maintains this property as an invariant.

o Initially, the only vertex in G is s, and the lemma is trivially true.

o Consider a predecessor subgraph G, that arises after a sequence of
relaxation steps. We shall first prove that G, is acyclic. Suppose that
some relaxation step creates a cycle ¢ = (vp, vi,..., vk) in the graph
G, where v = vg. Then, vi.m = v;_1, for i = 1,2,..., k. Without
loss of generality, assume that relaxing (vx_1, vk) created the cycle in
G,. We claim that all vertices on ¢ are reachable from s.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

Claim: All vertices on cycle c are reachable from the source s.

Each vertex on ¢ has a non-NIL predecessor. So each vertex on ¢ was
assigned a finite shortest path estimate when it was assigned its
non-NIL 7 value. By the Upper-Bound Property, each vertex on cycle
¢ has a finite shortest path weight. This implies that it is reachable
from s.

o We examine the shortest path estimates on ¢ just prior to the call
RELAX(vk_1, vk, w) and show that c is a negative weight cycle,
thereby contradicting the assumption that G contains no negative
weight cycles that are reachable from the source.

Just before the call, we have vt =v;_1, for i =1,2,..., k—1.
Thus, for i =1,2,...,k —1, the last update to v;.d was by the
assignment v;.d = vj_1.d + w(vj_1, ;). If vi_1.d changed since then,
it decreased. Therefore, just before the call RELAX(vk_1, vk, w), we
have v;.d > v;_1.d + W(V,',l, V,'), foralli=1,2,...,k—1.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o Because vi.7 is changed by the call, immediately beforehand we also
have the strict inequality vx.d > vk_1.d + w(vk_1, vk).
Summing this strict inequality with the preceding k — 1 inequalities,
we obtain the sum of the shortest path estimates around cycle c:

Zf'(:l vi.d > Zf.;:l(v,-_l.d + WS(Vi—la Vi))
= i Vi-1d + Yy w(vie1, vi).

But Zf-;l vi.d = Zf'(:1 vi_1.d, since each vertex in the cycle ¢
appears exactly once in each summation. This equality implies

0> Zf-;l w(vj_1,v;). Thus, the sum of weights around the cycle c is
negative, a contradiction.

o We have now proven that G; is a directed, acyclic graph.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o To show that V. forms a rooted tree with root s, it suffices to prove
that for each vertex v € V,, there is a unique path from s to v in G;.
o We first must show that a path from s exists for each vertex in V.. The
vertices in V. are those with non-NIL 7 values, plus s. The idea here is
to prove by induction that a path exists from s to all vertices in V.
o To complete the proof of the lemma, we must now show that for any
vertex v € V., there is at most one path from s to v in the graph G;.
Suppose there are two simple paths from s to some vertex v:

NP
e gl g ®

o p1, which can be decomposed into s ~~ u ~» x — z ~> v;
o p2, which can be decomposed into s ~» u ~» y — z ~~ v, where x # y.

Then, z.t = x and z.w = y, which implies the contradiction that
x = y. Hence, there exists a unique simple path in G, from s to v.
Thus, G, forms a rooted tree with root s.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

Let G = (V, E) be a weighted, directed graph with weight function

w: E — R, let s € V be a source vertex, and assume that G contains no
negative-weight cycles that are reachable from s. Let us call INITIALIZE
SINGLESOURCE(G, s) and then execute any sequence of relaxation steps
on edges of G that produces v.d = (s, v), for all v € V. Then, the
predecessor subgraph G is a shortest-paths tree rooted at s.

o The three properties of shortest-paths trees hold for G;.

o To show the first property, we must show that V. is the set of vertices
reachable from s. By definition, a shortest-path weight d(s, v) is finite
if and only if v is reachable from s. Thus, the vertices that are
reachable from s are exactly those with finite d values. But a vertex
v € V — {s} has been assigned a finite value for v.d if and only if
v.m # NIL. Thus, the vertices in V. are exactly those reachable from s.

George Voutsadakis (LSSU)

Single-Source Shortest Paths

o The second property follows directly from the lemma.

o It remains to prove the last property of shortest-paths trees, i.e., that
for each vertex v € V., the unique simple path s 2 vin Gy is a
shortest path from s to v in G. Let p = (v, v1,..., k), where vog = s
and vy = v. For i =1,2,..., k, we have both v;.d = d(s, v;) and
vi.d > vi_1.d + W(V,'_l7 V,'). So W(V,'_l7 V,') < (5(5, V,') = (5(5, V,'_1).
Summing the weights along path p yields

wip) = Y w(vi-1,v)

i (0(s, v) = 8(s, vi1))

0(s,vk) — (s, vo) (because the sum telescopes)
0(s, vk). (because d(s,vg) = d(s,s) =0)

IIA

Thus, w(p) < (s, vk). Since d(s, vk) is a lower bound on the weight
of any path from s to vk, we conclude that w(p) = d(s, vk). Thus, p
is a shortest path from s to v = v.

George Voutsadakis (LSSU)

	Outline
	Single-Source Shortest Paths
	The Bellman-Ford Algorithm
	Single-Source Shortest Paths in Directed Acyclic Graphs
	Dijkstra's Algorithm
	Difference Constraints and Shortest Paths
	Proofs of Shortest-Paths Properties

