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Single-Source Shortest Paths

Shortest Paths and Weights

In a shortest-paths problem, we are given a weighted, directed
graph G = (V ,E ), with weight function w : E → R mapping edges
to real-valued weights.

The weight w(p) of path p = 〈v0, v1, . . . , vk〉 is the sum of the
weights of its constituent edges: w(p) =

∑k
i=1 w(vi−1, vi).

We define the shortest-path weight δ(u, v) from u to v by

δ(u, v) =

{

min {w(p) : u
p
 v}, if there is a path from u to v

∞, otherwise

A shortest path from vertex u to vertex v is defined as any path

u
p
 v with weight w(p) = δ(u, v).
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Single-Source Shortest Paths

Variants

The single-source shortest-paths problem:

Given a graph G = (V ,E ), we want to find a shortest path from a
given source vertex s ∈ V to each vertex v ∈ V .

The algorithm for this problem can solve other variants also.
Single-destination shortest-paths problem:

Find a shortest path to a given destination vertex t from each vertex v .

Single-pair shortest-path problem:

Find a shortest path from u to v for given vertices u and v .

All-pairs shortest-paths problem:

Find a shortest path from u to v for every pair of vertices u and v .

The last variant can be solved by running a single source algorithm
once from each vertex, but there is a faster algorithm.
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Single-Source Shortest Paths

Optimal Substructure of a Shortest Path

Shortest-paths algorithms typically rely on the property that a shortest
path between two vertices contains other shortest paths within it.

Optimal substructure is one of the key indicators that dynamic
programming and the greedy method might apply.

Lemma (Subpaths of Shortest Paths are Shortest Paths)

Given a weighted, directed graph G = (V ,E ) with weight function
w : E → R, let p = 〈v0, v1, . . . , vk〉 be a shortest path from vertex v0 to
vertex vk and, for any i and j such that 0 ≤ i ≤ j ≤ k , let pij = 〈vi , vi+1,

. . . , vj〉 be the subpath of p from vertex vi to vertex vj . Then, pij is a
shortest path from vi to vj .

Decompose p into v0
p0i
 vi

pij
 vj

pjk
 vk . Then w(p) = w(p0i ) + w(pij)

+w(pjk). Suppose there was a path p′ij from vi to vj with weight

w(p′ij) < w(pij ). Then, v0
p0i
 vi

p′
ij
 vj

pjk
 vk is a path from v0 to vk

with weight w(p0i ) + w(p′ij) + w(pjk) < w(p), a contradiction.
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Single-Source Shortest Paths

Negative-Weight Edges

Some instances of the single-source shortest-paths problem may
include edges whose weights are negative.

If the graph G = (V .E ) contains no negative weight cycles reachable
from the source s, then, for all v ∈ V , the shortest-path weight δ(s, v)
remains well defined, even if it has a negative value.
If the graph contains a negative-weight cycle reachable from s,
however, shortest-path weights are not well defined.
No path from s to a vertex on the cycle can be a shortest path, since
we can always find a path with lower weight by following the proposed
“shortest” path and then traversing the negative-weight cycle.

If there is a negative weight cycle on some path from s to v , we
define δ(s, v) = −∞.
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Single-Source Shortest Paths

The Effect of Negative-Weight Edges

There is only one path from s to a.
So we have δ(s, a) = w(s, a) = 3.

There is only one path from s to b.
So δ(s, b) = w(s, a) + w(a, b)
= 3 + (−4) = −1.

There are infinitely many paths from s to c : 〈s, c〉, 〈s, c , d , c〉,
〈s, c , d , c , d , c〉, and so on.

The cycle 〈c , d , c〉 has weight 6+ (−3) = 3 > 0. So the shortest path
from s to c is 〈s, c〉, with weight δ(s, c) = w(s, c) = 5.

Similarly, he shortest path from s to d is 〈s, c , d〉, with weight
δ(s, d) = w(s, c) + w(c , d) = 11.
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Single-Source Shortest Paths

The Effect of Negative-Weight Edges (Cont’d)

There are infinitely many paths
from s to e: 〈s, e〉, 〈s, e, f , e〉,
〈s, e, f , e, f , e〉, and so on.
The cycle 〈e, f , e〉 has weight
3 + (−6) = −3 < 0. So there
is no shortest path from s to e.

By traversing the negative weight cycle 〈e, f , e〉 arbitrarily many
times, we can find paths from s to e with arbitrarily large negative
weights. So δ(s, e) = −∞.

Similarly, δ(s, f ) = −∞.

Because g is reachable from f , we can also find paths with arbitrarily
large negative weights from s to g . So δ(s, g) = −∞.

Vertices h, i and j also form a negative-weight cycle. However, hey
are not reachable from s. So δ(s, h) = δ(s, i) = δ(s, j) = ∞.
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Single-Source Shortest Paths

Cycles

A shortest path cannot contain a negative weight cycle.

Nor can it contain a positive weight cycle.

Suppose p = 〈v0, v1, . . . , vk〉 is a path and c = 〈vi , vi+1, . . . , vj〉 is a
positive weight cycle on this path (so that vi = vj and w(c) > 0).
Then the path p′ = 〈v0, v1, . . . , vi , vj+1, vj+2, . . . , vk〉 has weight
w(p′) = w(p)− w(c) < w(p). So p cannot be a shortest path from
v0 to vk .

That leaves only 0-weight cycles. We can remove a 0-weight cycle
from any path to produce another path whose weight is the same.

Therefore, without loss of generality we can assume that when we are
finding shortest paths, they have no cycles.

Since any acyclic path in a graph G = (V ,E ) contains at most |V |
distinct vertices, it also contains at most |V | − 1 edges.

We can restrict attention to shortest paths of at most |V | − 1 edges.
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Single-Source Shortest Paths

Representing Shortest Paths

Given a graph G = (V ,E ), we maintain for each vertex v ∈ V a
predecessor v .π that is either another vertex or NIL.

The shortest paths algorithms we study set the π attributes so that
the chain of predecessors originating at a vertex v runs backwards
along a shortest path from s to v .

Thus, given a vertex v for which v .π 6= NIL, the procedure
PrintPath(G , s, v) will print a shortest path from s to v .

In the midst of executing a shortest paths algorithm, however, the
π-values might not indicate shortest paths.

As in breadth first search, we shall be interested in the predecessor
subgraph Gπ = (Vπ,Eπ) induced by the π values:

We define the vertex set Vπ as the set of vertices of G with non-NIL
predecessors, plus s: Vπ = {v ∈ V : v .π 6= NIL} ∪ {s}.
The directed edge set Eπ is the set of edges induced by the π values for
vertices in Vπ: Eπ = {(v .π, v) ∈ E : v ∈ Vπ − {s}}.
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Single-Source Shortest Paths

Shortest-Paths Trees

We prove that the π values produced by our algorithms have the
property that at termination Gπ is a “shortest-paths tree”, a rooted
tree containing a shortest path from the source s to every vertex that
is reachable from s.

Let G = (V ,E ) be a weighted, directed graph with weight function
w : E → R.

Assume that G contains no negative weight cycles reachable from the
source vertex s ∈ V , so that shortest paths are well defined.

A shortest paths tree rooted at s is a directed subgraph G ′ = (V ′,
E ′), where V ′ ⊆ V and E ′ ⊆ E , such that:

1. V ′ is the set of vertices reachable from s in G ;
2. G ′ forms a rooted tree with root s;
3. For all v ∈ V ′, the unique simple path from s to v in G ′ is a shortest

path from s to v in G .
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Single-Source Shortest Paths

Illustrating Shortest-Paths Trees

Shortest paths are not necessarily unique, and neither are shortest
paths trees.
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Single-Source Shortest Paths

Relaxation: Initialization

The algorithms we present use the technique of relaxation.

For each vertex v ∈ V , we maintain an attribute v .d , which is an
upper bound on the weight of a shortest path from source s to v .

We call v .d a shortest path estimate.

We initialize the shortest-path estimates and predecessors by the
following Θ(V )-time procedure:

InitializeSingleSource(G , s)

1. for each vertex v ∈ G .V

2. v .d = ∞

3. v .π = NIL

4. s.d = 0

After initialization, v .π = NIL, for all v ∈ V ,

s.d = 0, and v .d = ∞, for v ∈ V − {s}.
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Single-Source Shortest Paths

Relaxation: The Evolution

The process of relaxing an edge (u, v) consists of testing whether we
can improve the shortest path to v found so far by going through u

and, if so, updating v .d and v .π.

A relaxation step may decrease the value of the shortest-path
estimate v .d and update v ’s predecessor field v .π.

Relax(u, v ,w)

1. if v .d > u.d + w(u, v)
2. v .d = u.d + w(u, v)
3. v .π = u
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Single-Source Shortest Paths

Properties of Shortest Paths and Relaxation

Suppose the graph is initialized by InitializeSingleSource(G , s)
and that shortest path estimates and the predecessor subgraph
change only due to relaxation steps.

Triangle Inequality: For all (u, v) ∈ E , δ(s, v) ≤ δ(s, u) + w(u, v).
Upper-Bound Property: We always have v .d ≥ δ(s, v), for all vertices
v ∈ V , and once v .d achieves the value δ(s, v), it never changes.
No-Path Property: If there is no path from s to v , then we always
have v .d = δ(s, v) = ∞.
Convergence Property: If s  u → v is a shortest path in G , for
some u, v ∈ V , and if u.d = δ(s, u) at any time prior to relaxing edge
(u, v), then v .d = δ(s, v) at all times afterward.
Path-Relaxation Property: If p = 〈v0, v1, . . . , vk〉 is a shortest path
from s = v0 to vk , and we relax the edges of p in the order (v0, v1),
(v1, v2), . . . , (vk−1, vk), then vk .d = δ(s, vk ). This property holds
regardless of any other relaxation steps that occur.
Predecessor-Subgraph Property: Once v .d = δ(s, v), for all v ∈ V ,
the predecessor subgraph is a shortest paths tree rooted at s.
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Single-Source Shortest Paths The Bellman-Ford Algorithm

Subsection 1

The Bellman-Ford Algorithm
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Single-Source Shortest Paths The Bellman-Ford Algorithm

Setting Up the Bellman-Ford Algorithm

The Bellman-Ford algorithm solves the single-source shortest-paths
problem in the general case in which edge weights may be negative.

Given a weighted, directed graph G = (V ,E ), with source s and
weight function w : E → R, the Bellman-Ford algorithm returns a
boolean value indicating whether or not there is a negative-weight
cycle that is reachable from the source.

If there is such a cycle, the algorithm indicates that no solution exists.
If there is no such cycle, the algorithm produces the shortest paths and
their weights.

The algorithm relaxes edges, progressively decreasing an estimate v .d

on the weight of a shortest path from the source s to each vertex
v ∈ V , until it achieves the actual shortest path weight δ(s, v).

The algorithm returns TRUE if and only if the graph contains no
negative-weight cycles that are reachable from the source.
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Single-Source Shortest Paths The Bellman-Ford Algorithm

The Bellman-Ford Procedure

BellmanFord(G ,w , s)

1. InitializeSingleSource(G , s)

2. for i = 1 to |G .V | − 1

3. for each edge (u, v) ∈ G .E

4. Relax(u, v ,w)

5. for each edge (u, v) ∈ G .E

6. if v .d > u.d + w(u, v)

7. return FALSE

8. return TRUE
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Single-Source Shortest Paths The Bellman-Ford Algorithm

Illustrating the Bellman-Ford Procedure
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Single-Source Shortest Paths The Bellman-Ford Algorithm

How the Bellman-Ford Procedure Works

In Line 1, the d and π values of all vertices are initialized.

Then the algorithm makes |V | − 1 passes over the edges of the graph.

Each pass is one iteration of the for loop of Lines 2-4 and consists of
relaxing each edge of the graph once.

After making |V | − 1 passes, Lines 5-8 check for a negative-weight
cycle and return the appropriate boolean value.

The Bellman-Ford algorithm runs in time O (|V ||E |).

The initialization in Line 1 takes Θ(|V |) time;
Each of the |V | − 1 passes over the edges in Lines 2-4 takes Θ(|E |)
time;
The for loop of Lines 5-7 takes O (|E |) time.
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Single-Source Shortest Paths The Bellman-Ford Algorithm

Correctness without Negative-Weight Cycles

If there are no negative-weight cycles, the algorithm computes correct
shortest-path weights for all vertices reachable from the source.

Lemma

Let G = (V ,E ) be a weighted, directed graph with source s and weight
function w : E → R, and assume that G contains no negative-weight
cycles that are reachable from s. Then, after the |V | − 1 iterations of the
for loop of Lines 2-4 of BellmanFord, we have v .d = δ(s, v), for all
vertices v that are reachable from s.

Consider a v reachable from s. Let p = 〈v0, v1, . . . , vk〉, where v0 = s

and vk = v , be any acyclic shortest path from s to v . Path p has at
most |V | − 1 edges. So k ≤ |V | − 1. Each of the |V | − 1 iterations of
the for loop of Lines 2-4 relaxes all E edges. Among the edges relaxed
in the ith iteration, for i = 1, 2, . . . , k , is (vi−1, vi ). By the Path
Relaxation Property, therefore, v .d = vk .d = δ(s, vk ) = δ(s, v).
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Single-Source Shortest Paths The Bellman-Ford Algorithm

Consequence of Correctness

Corollary

Let G = (V ,E ) be a weighted, directed graph, with source vertex s and
weight function w : E → R, and assume that G contains no negative
weight cycles that are reachable from s. Then, for each vertex v ∈ V ,
there is a path from s to v if and only if BellmanFord terminates with
v .d < ∞ when it is run on G .

BellmanFord terminates with v .d < ∞ when it is run on G

iff, by the Lemma, BellmanFord terminates with δ(s, v) < ∞
when it is run on G

iff, by definition, there is a path from s to v in G .
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Single-Source Shortest Paths The Bellman-Ford Algorithm

Correctness of the Bellman-Ford Algorithm

Theorem (Correctness of the Bellman-Ford algorithm)

Let BellmanFord be run on a weighted, directed graph G = (V ,E ),
with source s and weight function w : E → R. If G contains no negative
weight cycles that are reachable from s, then the algorithm returns TRUE,
we have v .d = δ(s, v), for all vertices v ∈ V , and the predecessor
subgraph Gπ is a shortest paths tree rooted at s. If G does contain a
negative weight cycle reachable from s, then the algorithm returns FALSE.

Suppose that graph G contains no negative weight cycles that are
reachable from the source s.

Claim: At termination, v .d = δ(s, v), for all vertices v ∈ V .

If vertex v is reachable from s, then use the Lemma. If v is not
reachable from s, then the claim follows from the No-Path Property.

The Predecessor-Subgraph Property, along with the Claim, implies
that Gπ is a shortest paths tree.
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Single-Source Shortest Paths The Bellman-Ford Algorithm

Correctness of the Bellman-Ford Algorithm (Cont’d)

We use the claim to show that BellmanFord returns TRUE.

At termination, we have, for all edges (u, v) ∈ E ,

v .d = δ(s, v)
≤ δ(s, u) + w(u, v) (by the triangle inequality)
= u.d + w(u, v).

So none of the tests in Line 6 causes BellmanFord to return
FALSE. Therefore, it returns TRUE.
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Single-Source Shortest Paths The Bellman-Ford Algorithm

Correctness of the Bellman-Ford (Second Case)

Suppose that G contains a negative weight cycle reachable from s.

Let this cycle be c = 〈v0, v1, . . . , vk〉, where v0 = vk . Then,
∑k

i=1 w(vi−1, vi) < 0. Assume the algorithm returns TRUE. Thus,
vi .d ≤ vi−1.d + w(vi−1, vi ), for i = 1, 2, . . . , k . Summing the
inequalities around cycle c gives us

∑k
i=1 vi .d ≤

∑k
i=1[vi−1.d + w(vi−1, vi )]

=
∑k

i=1 vi−1.d +
∑k

i=1w(vi−1, vi ).

Since v0 = vk , each vertex in c appears exactly once in each of
∑k

i=1 vi .d and
∑k

i=1 vi−1.d . So
∑k

i=1 vi .d =
∑k

i=1 vi−1.d .

Moreover, by the Corollary, vi .d is finite for i = 1, 2, . . . , k .

Thus, 0 ≤
∑k

i=1w(vi−1, vi ), a contradiction.
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Single-Source Shortest Paths Single-Source Shortest Paths in Directed Acyclic Graphs

Subsection 2

Single-Source Shortest Paths in Directed Acyclic Graphs
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Single-Source Shortest Paths Single-Source Shortest Paths in Directed Acyclic Graphs

Shortest Paths in DAGs

By relaxing the edges of a weighted DAG (directed acyclic graph)
G = (V ,E ) according to a topological sort of its vertices, we can
compute shortest paths from a single source in Θ(|V |+ |E |) time.

Shortest paths are always well defined in a DAG, since even if there
are negative-weight edges, no negative-weight cycles can exist.

The algorithm does the following:
Topologically sorts the DAG;
Makes just one pass over the vertices in the topologically sorted order;
As it processes each vertex, it relax each edge that leaves the vertex.

DAGShortestPaths(G ,w , s)

1. topologically sort the vertices of G
2. InitializeSingleSource(G , s)
3. for each vertex u, taken in topologically sorted order
4. for each vertex v ∈ G .Adj[u]
5. Relax(u, v ,w)
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Single-Source Shortest Paths Single-Source Shortest Paths in Directed Acyclic Graphs

Illustrating the DAG Shortest Paths Procedure
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Single-Source Shortest Paths Single-Source Shortest Paths in Directed Acyclic Graphs

Running Time of DAGShortestPaths

The topological sort of Line 1 takes Θ(|V |+ |E |) time.

The call of InitializeSingleSource in Line 2 takes Θ(|V |) time.

The for loop of Lines 3-5 makes one iteration per vertex.

Altogether, the for loop of Lines 4-5 relaxes each edge exactly once
(aggregate analysis).

Each iteration of the inner for loop takes Θ(1) time.

It follows that the total running time is Θ(|V |+ |E |), which is linear
in the size of an adjacency-list representation of the graph.
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Single-Source Shortest Paths Single-Source Shortest Paths in Directed Acyclic Graphs

Correctness of DAGShortestPaths

Theorem

If a weighted, directed graph G = (V ,E ) has source vertex s and no
cycles, then at the termination of the DAGShortestPaths procedure,
v .d = δ(s, v), for all vertices v ∈ V , and the predecessor subgraph Gπ is a
shortest-paths tree.

We first show that, at termination, v .d = δ(s, v), for all v ∈ V .

If v is not reachable from s, then v .d = δ(s, v) = ∞ by the No-Path
Property.
If v is reachable from s, there is a shortest path p = 〈v0, v1, . . . , vk〉,
where v0 = s and vk = v . Because we process the vertices in
topologically sorted order, the edges on p are relaxed in the order
(v0, v1), (v1, v2), . . . , (vk−1, vk). The Path-Relaxation Property implies
that vi .d = δ(s, vi ) at termination, for i = 0, 1, . . . , k .

By the Predecessor Subgraph Property, Gπ is a shortest-paths tree.
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Single-Source Shortest Paths Dijkstra’s Algorithm

Subsection 3

Dijkstra’s Algorithm
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Single-Source Shortest Paths Dijkstra’s Algorithm

Dijkstra’s Algorithm

Solves the single-source shortest-paths problem on a weighted,
directed graph G = (V ,E ) with all edge weights nonnegative.
The algorithm maintains a set S of vertices whose final shortest path
weights from the source s have already been determined.

Repeatedly select u ∈ V − S with the minimum shortest-path estimate:
add u to S , and relax all edges leaving u.

We use a min-priority queue Q of vertices, keyed by their d values.

Dijkstra(G ,w , s)

1. InitializeSingleSource(G , s)
2. S = ∅
3. Q = G .V

4. while Q 6= ∅
5. u = ExtractMin(Q)
6. S = S ∪ {u}
7. for each vertex v ∈ G .Adj[u]
8. Relax(u, v ,w)
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Single-Source Shortest Paths Dijkstra’s Algorithm

Illustrating Dijkstra’s Algorithm
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Single-Source Shortest Paths Dijkstra’s Algorithm

How Dijkstra’s Algorithm Works

Line 1 initializes the d and π values.

Line 2 initializes the set S to the empty set.
The algorithm maintains the invariant that Q = V − S at the start of
each iteration of the while loop of Lines 4-8.

Line 3 initializes the min-priority queue Q to contain all vertices in V .
Since S = ∅, the invariant is true after Line 3.
Each time through the while loop of Lines 4-8, Line 5 extracts a vertex
u from Q = V − S and Line 6 adds it to S , maintaining the invariant.

Vertex u, therefore, has the smallest shortest-path estimate of any
vertex in V − S .

Then, Lines 7-8 relax each edge (u, v) leaving u, thus updating the
estimate v .d and the predecessor v .π if we can improve the shortest
path to v found so far by going through u.

Observe that the algorithm never inserts vertices into Q after Line 3
and that each vertex is extracted from Q and added to S exactly
once, so that the while loop of Lines 4-8 iterates exactly |V | times.
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Single-Source Shortest Paths Dijkstra’s Algorithm

Correctness of Dijkstra’s Algorithm

Theorem (Correctness of Dijkstra’s Algorithm)

Dijkstra’s algorithm, run on a weighted, directed graph G = (V ,E ) with
nonnegative weight function w and source s, terminates with u.d =
δ(s, u), for all vertices u ∈ V .

We use the following loop invariant:

At the start of each iteration of the while loop of Lines 4-8,
v .d = δ(s, v), for each vertex v ∈ S .

It suffices to show for each vertex u ∈ V , we have u.d = δ(s, u) at
the time when u is added to set S .

Once we show that u.d = δ(s, u), we rely on the Upper-Bound
Property to show that the equality holds at all times thereafter.

Initialization: Initially, S = ∅. So the invariant is trivially true.
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Single-Source Shortest Paths Dijkstra’s Algorithm

Maintenance

Maintenance: We wish to show that in each iteration, u.d = δ(s, u)
for the vertex added to set S . For the purpose of contradiction, let u
be the first vertex for which u.d 6= δ(s, u) when it is added to set S .
We look at the beginning of the iteration of the while loop in which u

is added to S . We derive the contradiction that u.d = δ(s, u) at that
time by examining a shortest path from s to u.

We must have u 6= s because s is the first vertex added to set S and
s.d = δ(s, s) = 0 at that time. Because u 6= s, we also have that
S 6= ∅ just before u is added to S . There must be some path from s

to u, for otherwise u.d = δ(s, u) = ∞ by the No-Path Property,
which would violate our assumption that u.d 6= δ(s, u). Because there
is at least one path, there is a shortest path p from s to u. Prior to
adding u to S , path p connects a vertex in S , namely s, to a vertex in
V − S , namely u. Let us consider the first vertex y along p, such that
y ∈ V − S , and let x ∈ S be y ’s predecessor.
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Single-Source Shortest Paths Dijkstra’s Algorithm

Maintenance (Cont’d)

p can be decomposed as s
p1
 x → y

p2
 u.

Claim: y .d = δ(s, y) when u is added to S .
To prove this, observe that x ∈ S . Then,
because u is chosen as the first vertex for

which u.d 6= δ(s, u) when it is added to S , we had x .d = δ(s, x)
when x was added to S . Edge (x , y) was relaxed at that time, so the
claim follows from the Convergence Property.

We can now obtain a contradiction to prove that u.d = δ(s, u).

Because y appears before u on a shortest path from s to u and all
edge weights are nonnegative, we have δ(s, y) ≤ δ(s, u). Thus,
y .d = δ(s, y) ≤ δ(s, u) ≤ u.d (by the Upper-Bound Property). But
because both u and y were in V − S when u was chosen in Line 5, we
have u.d ≤ y .d . Hence, y .d = δ(s, y) = δ(s, u) = u.d . Consequently,
u.d = δ(s, u). This contradicts our choice of u.
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Termination

We conclude that u.d = δ(s, u) when u is added to S , and that this
equality is maintained at all times thereafter.

Termination: At termination, Q = ∅. Along with our earlier invariant
that Q = V − S , implies that S = V . Thus, u.d = δ(s, u), for all
vertices u ∈ V .

Corollary

If we run Dijkstra’s algorithm on a weighted, directed graph G = (V ,E )
with nonnegative weight function w and source s, then at termination, the
predecessor subgraph Gπ is a shortest-paths tree rooted at s.
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Aggregate Analysis Based on Operations

Dijkstra’s algorithm maintains the min-priority queue Q by calling
three priority-queue operations.

Insert (implicit in Line 3);
ExtractMin (Line 5);
DecreaseKey (implicit in Relax, which is called in Line 8).

The algorithm calls both Insert and ExtractMin once per vertex.

Each vertex u ∈ V is added to set S exactly once.

Thus, each edge in the adjacency list Adj[u] is examined in the for
loop of Lines 7-8 exactly once during the course of the algorithm.

Since the total number of edges in all the adjacency lists is |E |, this
for loop iterates a total of |E | times.

Thus, the algorithm calls DecreaseKey at most |E | times overall.
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Analysis and Implementation

The running time of Dijkstra’s algorithm depends on how we
implement the min-priority queue:

Suppose we maintain the min-priority queue by taking advantage of
the vertices being numbered 1 to |V |.

We simply store v .d in the v th entry of an array.

Each Insert and DecreaseKey operation takes O (1) time.

Each ExtractMin operation takes O (|V |) time (since we have to
search through the entire array).

Thus, total time is O
(

|V |2 + |E |
)

= O
(

|V |2
)

.
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Subsection 4

Difference Constraints and Shortest Paths
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Linear Programming

The general linear programming problem:

Given an m × n matrix A, an m-vector b and an n-vector c , find a
vector x of n elements that maximizes the objective function
∑n

i=1 cixi subject to the m constraints given by Ax ≤ b.

Importance of understanding the setup of linear-programming
problems:

If we know that we can cast a given problem as a polynomial-sized
linear-programming problem, then we immediately have a polynomial
time algorithm to solve the problem.
Faster algorithms exist for many special cases of linear programming,
e.g., the single-pair shortest-path problem and the maximum-flow
problem.

In a feasibility problem, we only wish to find any feasible solution,
i.e., any vector x that satisfies Ax ≤ b, or to determine that no
feasible solution exists.
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Systems of Difference Constraints

In a system of difference constraints, each row of the linear
programming matrix A contains one 1 and one −1, and all other
entries of A are 0.

Thus, the constraints given by Ax ≤ b are a set of m difference

constraints involving n unknowns, in which each constraint is a
simple linear inequality of the form xj − xi ≤ bk , where 1 ≤ i , j ≤ n,
i 6= j and 1 ≤ k ≤ m.

Example: The problem of finding a 5-vector x = (xi ) that satisfies
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Example (Cont’d)

This problem is equivalent to finding values for the unknowns
x1, x2, x3, x4, x5, satisfying the following 8 difference constraints:

x1 − x2 ≤ 0
x1 − x5 ≤ −1
x2 − x5 ≤ 1
x3 − x1 ≤ 5
x4 − x1 ≤ 4
x4 − x3 ≤ −1
x5 − x3 ≤ −3
x5 − x4 ≤ −3

One solution to this problem is x = (−5,−3, 0,−1,−4), which you
can verify directly by checking each inequality. In fact, this problem
has more than one solution. Another is x ′ = (0, 2, 5, 4, 1). These two
solutions are related: each component of x ′ is 5 larger than the
corresponding component of x . This fact is not mere coincidence.
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Adding Constants to Solutions

Lemma

Let x = 〈x1, x2, . . . , xn〉 be a solution to a system Ax ≤ b of difference
constraints, and let d be any constant. Then x + d = 〈x1 + d , x2 + d ,

. . . , xn + d〉 is a solution to Ax ≤ b as well.

For each xi and xj , we have

(xj + d)− (xi + d) = xj − xi .

Thus, if x satisfies Ax ≤ b, so does x + d .
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Constraint Graphs

We can interpret systems of difference constraints from a graph
theoretic point of view.

In a system Ax ≤ b of difference constraints, we view the m× n linear
programming matrix A as the transpose of an incidence matrix for a
graph with n vertices and m edges.

Each vertex vi in the graph, for i = 1, 2, . . . , n, corresponds to one of
the n unknown variables xi .
Each directed edge in the graph corresponds to one of the m

inequalities involving two unknowns.

More formally, given a system Ax ≤ b of difference constraints, the
corresponding constraint graph is a weighted, directed graph
G = (V ,E ), where:

V = {v0, v1, . . . , vn};
E = {(vi , vj ) : xj − xi ≤ bk is a constraint} ∪ {(v0, v1), (v0, v2), . . . ,
(v0, vn)}.
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An Example

The vertex set V consists of a vertex vi for each unknown xi , plus an
additional vertex v0.

The edge set E contains an edge for each difference constraint, plus
an edge (v0, vi ) for each unknown xi .

If xj − xi ≤ bk is a difference constraint, then the weight of edge
(vi , vj) is w(vi , vj) = bk .
The weight of each edge leaving v0 is 0.

Example:
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Feasible Solutions and the Constraint Graph

Theorem

Given a system Ax ≤ b of difference constraints, let G = (V ,E ) be the
corresponding constraint graph. If G contains no negative-weight cycles,
then x = (δ(v0, v1), δ(v0, v2), δ(v0, v3), . . . , δ(v0, vn)) is a feasible solution
for the system. If G contains a negative-weight cycle, then there is no
feasible solution for the system.

Claim: If the constraint graph contains no negative-weight cycles,
then x = (δ(v0, v1), δ(v0, v2), δ(v0, v3), . . . , δ(v0, vn)) is a feasible
solution.

Consider any edge (vi , vj) ∈ E . By the triangle inequality,
δ(v0, vj ) ≤ δ(v0, vi ) + w(vi , vj), i.e., δ(v0, vj)− δ(v0, vi ) ≤ w(vi , vj).
Thus, the values xi = δ(v0, vi), xj = δ(v0, vj) satisfy the difference
constraint xj − xi ≤ w(vi , vj ) that corresponds to edge (vi , vj).
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Feasible Solutions and the Constraint Graph (Cont’d)

We show that if the constraint graph contains a negative-weight
cycle, then the system has no feasible solution.

Without loss of generality, let the negative-weight cycle be
c = 〈v1, v2, . . . , vk〉, where v1 = vk . c corresponds to:

x2 − x1 ≤ w(v1, v2)
x3 − x2 ≤ w(v2, v3)

...
xk−1 − xk−2 ≤ w(vk−2, vk−1)
xk − xk−1 ≤ w(vk−1, vk)

We assume that x has a solution satisfying each of these k

inequalities and derive a contradiction. The solution must also satisfy
the inequality that results when we sum the k inequalities. The
left-hand side of the sum is 0. The right-hand side sums to w(c).
Thus, 0 ≤ w(c). Since c is a negative-weight cycle, w(c) < 0.
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Solving Systems of Difference Constraints

The Theorem tells us that we can use the Bellman-Ford algorithm to
solve a system of difference constraints.

Because the constraint graph contains edges from the source vertex
v0 to all other vertices, any negative-weight cycle in the constraint
graph is reachable from v0.

If the Bellman-Ford algorithm returns TRUE, then the shortest-path
weights give a feasible solution to the system.
If the Bellman-Ford algorithm returns FALSE, there is no feasible
solution to the system of difference constraints.

A system of difference constraints with m constraints on n unknowns
produces a graph with n + 1 vertices and n +m edges.

Using the Bellman-Ford algorithm, we can solve the system in
O ((n + 1)(n +m)) = O

(

n2 + nm
)

time.
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Subsection 5

Proofs of Shortest-Paths Properties
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The Triangle Inequality

Lemma (Triangle Inequality)

Let G = (V ,E ) be a weighted, directed graph with weight function
w : E → R and source vertex s. Then, for all edges (u, v) ∈ E , we have
δ(s, v) ≤ δ(s, u) + w(u, v).

Suppose that p is a shortest path from source s to vertex v . Then p

has no more weight than any other path from s to v . Specifically,
path p has no more weight than the particular path that takes a
shortest path from source s to vertex u and then takes edge (u, v).

The case in which there is no shortest path from s to v can be easily
handled.
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Effects of Relaxation: The Upper Bound Property

Lemma (Upper-Bound Property)

Let G = (V ,E ) be a weighted, directed graph with weight function
w : E → R. Let s ∈ V be the source vertex, and let the graph be
initialized by InitializeSingleSource(G , s). Then, v .d ≥ δ(s, v), for
all v ∈ V , and this invariant is maintained over any sequence of relaxation
steps on the edges of G . Moreover, once v .d achieves its lower bound
δ(s, v), it never changes.

We prove the invariant v .d ≥ δ(s, v), for all vertices v ∈ V , by
induction over the number of relaxation steps.

For the basis, v .d ≥ δ(s, v) is certainly true after initialization:

v .d = ∞ implies v .d ≥ δ(s, v), for all v ∈ V − {s};
s.d = 0 ≥ δ(s, s) (note that δ(s, s) = −∞, if s is on a negative-weight
cycle, and 0, otherwise).
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Effects of Relaxation: The Upper Bound Property (Cont’d)

For the inductive step, consider the relaxation of an edge (u, v).
By the inductive hypothesis, x .d ≥ δ(s, x), for all x ∈ V , prior to the
relaxation. The only d value that may change is v .d .
If it changes, we have

v .d = u.d + w(u, v)
≥ δ(s, u) + w(u, v) (by inductive hypothesis)
≥ δ(s, v). (by triangle inequality)

So the invariant is maintained.

To see that the value of v .d never changes once v .d = δ(s, v), note
that:

v .d cannot decrease because we have just shown that v .d ≥ δ(s, v);
It cannot increase because relaxation steps do not increase d values.
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Effects of Relaxation: No-Path Property

Corollary (No-Path Property)

Suppose that in a weighted, directed graph G = (V ,E ) with weight
function w : E → R, no path connects a source vertex s ∈ V to a given
v ∈ V . Then, after initialization by InitializeSingleSource(G , s), we
have v .d = δ(s, v) = ∞, and this equality is maintained as an invariant
over any sequence of relaxation steps on the edges of G .

By the Upper-Bound Property, ∞ = δ(s, v) ≤ v .d .

It follows that v .d = ∞ = δ(s, v).
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The Convergence Property: A Lemma

Lemma

Let G = (V ,E ) be a weighted, directed graph with weight function
w : E → R, and let (u, v) ∈ E . Then, immediately after relaxing edge
(u, v) by executing Relax(u, v ,w), we have v .d ≤ u.d + w(u, v).

If, just prior to relaxing edge (u, v), we have

v .d > u.d + w(u, v), then v .d = u.d + w(u, v) afterward.
v .d ≤ u.d + w(u, v), then neither u.d nor v .d changes.
So v .d ≤ u.d + w(u, v) afterward.
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The Convergence Property

Lemma (Convergence Property)

Let G = (V ,E ) be a weighted, directed graph with weight function
w : E → R, s ∈ V a source vertex and s  u → v a shortest path in G

for some vertices u, v ∈ V . Suppose that G is initialized by Initialize

SingleSource(G , s) and then a sequence of relaxation steps that
includes the call Relax(u, v ,w) is executed on the edges of G . If
u.d = δ(s, u) at any time prior to the call, then v .d = δ(s, v) at all times
after the call.

By the Upper-Bound Property, if u.d = δ(s, u) at some point prior to
relaxing edge (u, v), then this equality holds thereafter. In particular,
after relaxing edge (u, v), we have v .d ≤ u.d + w(u, v) (by the
Lemma) = δ(s, u) + w(u, v) = δ(s, v) (by the Subpaths Lemma). By
the Upper-Bound Property, v .d ≥ δ(s, v). Therefore, v .d = δ(s, v),
and this equality is maintained thereafter.
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The Path-Relaxation Property

Lemma (Path-Relaxation Property)

Let G = (V ,E ) be a weighted, directed graph with weight function
w : E → R, and let s ∈ V be a source vertex. Consider any shortest path
p = 〈v0, v1, . . . , vk〉 from s = v0 to vk . If G is initialized by Initialize

SingleSource(G , s) and then a sequence of relaxation steps occurs that
includes, in order, relaxing the edges (v0, v1), (v1, v2), . . . , (vk−1, vk), then
vk .d = δ(s, vk ) after these relaxations and at all times afterward. This
property holds no matter what other edge relaxations occur, including
relaxations that are intermixed with relaxations of the edges of p.

We show, by induction, that after the i -th edge of path p is relaxed,
we have vi .d = δ(s, vi ).
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The Path-Relaxation Property (Cont’d)

For the basis, i = 0, and before any edges of p have been relaxed, we
have from the initialization that

v0.d = s.d = 0 = δ(s, s).

By the Upper-Bound Property, the value of s.d never changes after
initialization.

For the inductive step, we assume that vi−1.d = δ(s, vi−1), and we
examine what happens when we relax edge (vi−1, vi).

By the Convergence Property, after relaxing this edge, we have
vi .d = δ(s, vi ), and this equality is maintained at all times thereafter.
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Relaxation and Shortest-Paths Trees I

Lemma

Let G = (V ,E ) be a weighted, directed graph with weight function
w : E → R, let s ∈ V be a source vertex, and assume that G contains no
negative-weight cycles that are reachable from s. Then, after the graph is
initialized by InitializeSingleSource(G , s), the predecessor subgraph
Gπ forms a rooted tree with root s, and any sequence of relaxation steps
on edges of G maintains this property as an invariant.

Initially, the only vertex in Gπ is s, and the lemma is trivially true.

Consider a predecessor subgraph Gπ that arises after a sequence of
relaxation steps. We shall first prove that Gπ is acyclic. Suppose that
some relaxation step creates a cycle c = 〈v0, v1, . . . , vk〉 in the graph
Gπ, where vk = v0. Then, vi .π = vi−1, for i = 1, 2, . . . , k . Without
loss of generality, assume that relaxing (vk−1, vk) created the cycle in
Gπ. We claim that all vertices on c are reachable from s.
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Relaxation and Shortest-Paths Trees II

Claim: All vertices on cycle c are reachable from the source s.

Each vertex on c has a non-NIL predecessor. So each vertex on c was
assigned a finite shortest path estimate when it was assigned its
non-NIL π value. By the Upper-Bound Property, each vertex on cycle
c has a finite shortest path weight. This implies that it is reachable
from s.

We examine the shortest path estimates on c just prior to the call
Relax(vk−1, vk ,w) and show that c is a negative weight cycle,
thereby contradicting the assumption that G contains no negative
weight cycles that are reachable from the source.

Just before the call, we have vi .π = vi−1, for i = 1, 2, . . . , k − 1.

Thus, for i = 1, 2, . . . , k − 1, the last update to vi .d was by the
assignment vi .d = vi−1.d + w(vi−1, vi ). If vi−1.d changed since then,
it decreased. Therefore, just before the call Relax(vk−1, vk ,w), we
have vi .d ≥ vi−1.d + w(vi−1, vi ), for all i = 1, 2, . . . , k − 1.
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Relaxation and Shortest-Paths Trees III

Because vk .π is changed by the call, immediately beforehand we also
have the strict inequality vk .d > vk−1.d + w(vk−1, vk).

Summing this strict inequality with the preceding k − 1 inequalities,
we obtain the sum of the shortest path estimates around cycle c :

∑k
i=1 vi .d >

∑k
i=1(vi−1.d + w(vi−1, vi ))

=
∑k

i=1 vi−1.d +
∑k

i=1w(vi−1, vi ).

But
∑k

i=1 vi .d =
∑k

i=1 vi−1.d , since each vertex in the cycle c

appears exactly once in each summation. This equality implies
0 >

∑k
i=1 w(vi−1, vi ). Thus, the sum of weights around the cycle c is

negative, a contradiction.

We have now proven that Gπ is a directed, acyclic graph.
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Relaxation and Shortest-Paths Trees IV

To show that Vπ forms a rooted tree with root s, it suffices to prove
that for each vertex v ∈ Vπ, there is a unique path from s to v in Gπ.

We first must show that a path from s exists for each vertex in Vπ. The
vertices in Vπ are those with non-NIL π values, plus s. The idea here is
to prove by induction that a path exists from s to all vertices in Vπ.
To complete the proof of the lemma, we must now show that for any
vertex v ∈ Vπ, there is at most one path from s to v in the graph Gπ.
Suppose there are two simple paths from s to some vertex v :

p1, which can be decomposed into s  u  x → z  v ;
p2, which can be decomposed into s  u  y → z  v , where x 6= y .

Then, z .π = x and z .π = y , which implies the contradiction that
x = y . Hence, there exists a unique simple path in Gπ from s to v .

Thus, Gπ forms a rooted tree with root s.
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The Predecessor-Subgraph Property

Lemma (Predecessor-Subgraph Property)

Let G = (V ,E ) be a weighted, directed graph with weight function
w : E → R, let s ∈ V be a source vertex, and assume that G contains no
negative-weight cycles that are reachable from s. Let us call Initialize
SingleSource(G , s) and then execute any sequence of relaxation steps
on edges of G that produces v .d = δ(s, v), for all v ∈ V . Then, the
predecessor subgraph Gπ is a shortest-paths tree rooted at s.

The three properties of shortest-paths trees hold for Gπ.

To show the first property, we must show that Vπ is the set of vertices
reachable from s. By definition, a shortest-path weight δ(s, v) is finite
if and only if v is reachable from s. Thus, the vertices that are
reachable from s are exactly those with finite d values. But a vertex
v ∈ V − {s} has been assigned a finite value for v .d if and only if
v .π 6= NIL. Thus, the vertices in Vπ are exactly those reachable from s.
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The Predecessor-Subgraph Property (Cont’d)

The second property follows directly from the lemma.

It remains to prove the last property of shortest-paths trees, i.e., that

for each vertex v ∈ Vπ, the unique simple path s
p
 v in Gπ is a

shortest path from s to v in G . Let p = 〈v0, v1, . . . , vk〉, where v0 = s

and vk = v . For i = 1, 2, . . . , k , we have both vi .d = δ(s, vi ) and
vi .d ≥ vi−1.d + w(vi−1, vi ). So w(vi−1, vi ) ≤ δ(s, vi )− δ(s, vi−1).
Summing the weights along path p yields

w(p) =
∑k

i=1 w(vi−1, vi )

≤
∑k

i=1(δ(s, vi )− δ(s, vi−1))
= δ(s, vk)− δ(s, v0) (because the sum telescopes)
= δ(s, vk). (because δ(s, v0) = δ(s, s) = 0)

Thus, w(p) ≤ δ(s, vk ). Since δ(s, vk ) is a lower bound on the weight
of any path from s to vk , we conclude that w(p) = δ(s, vk ). Thus, p
is a shortest path from s to v = vk .
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