Introduction to Algorithms

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

(1) All-Pairs Shortest Paths

- Shortest Paths and Matrix Multiplication
- The Floyd-Warshall Algorithm
- Johnson's Algorithm for Sparse Graphs

The All-Pairs Shortest Paths Problem

- Consider a weighted, directed graph $G=(V, E)$, with a weight function $w: E \rightarrow \mathbb{R}$, that maps edges to real-valued weights.
- We wish to find, for every pair of vertices $u, v \in V$, a shortest (least-weight) path from u to v, where the weight of a path is the sum of the weights of its constituent edges.
- We typically want the output in tabular form:

The entry in u 's row and v 's column should be the weight of a shortest path from u to v.

All-Pairs via Exhaustive Single Pair

- We can solve an all-pairs shortest-paths problem by running a single source shortest-paths algorithm $|V|$ times, once for each vertex as the source.
- If all edge weights are nonnegative, we can use Dijkstra's algorithm.
- If we use the linear-array implementation of the min-priority queue, the running time is $\mathrm{O}\left(|V|^{3}+|V||E|\right)=\mathrm{O}\left(|V|^{3}\right)$.
- The binary min-heap implementation of the min-priority queue yields a running time of $O(|V||E| \log |V|)$, which is an improvement if the graph is sparse.
- If the graph has negative-weight edges, we must run the slower Bellman-Ford algorithm once from each vertex.

The resulting running time is $\mathrm{O}\left(|V|^{2}|E|\right)$, which on a dense graph is O $\left(|V|^{4}\right)$.

The Set Up and the Variables

- We mostly use an adjacency matrix representation.
- Assume that the vertices are numbered $1,2, \ldots,|V|$.
- Then the input is an $n \times n$ matrix $W=\left(w_{i j}\right)$, representing the edge weights of the n-vertex directed graph $G=(V, E)$,

$$
w_{i j}= \begin{cases}0, & \text { if } i=j \\ \text { the weight of directed edge }(i, j), & \text { if } i \neq j \text { and }(i, j) \in E \\ \infty, & \text { if } i \neq j \text { and }(i, j) \notin E\end{cases}
$$

- We allow negative-weight edges, but we assume for the time being that the input graph contains no negative-weight cycles.
- The tabular output of the all-pairs shortest-paths algorithms is an $n \times n$ matrix $D=\left(d_{i j}\right)$, where entry $d_{i j}$ contains the weight of a shortest path from vertex i to vertex j.
- If we let $\delta(i, j)$ denote the shortest path weight from vertex i to vertex j, then $d_{i j}=\delta(i, j)$ at termination.

Predecessor Matrix and Predecessor Subgraph

- To solve the all-pairs shortest-paths problem on an input adjacency matrix, we need to compute not only the shortest-path weights but also a predecessor matrix $\Pi=\left(\pi_{i j}\right)$, where:
- $\pi_{i j}$ is NIL if either $i=j$ or there is no path from i to j;
- $\pi_{i j}$ is the predecessor of j on some shortest path from i, otherwise.
- For each vertex $i \in V$, we define the predecessor subgraph of G for i as $G_{\pi, i}=\left(V_{\pi, i}, E_{\pi, i}\right)$, where:
- $V_{\pi, i}=\left\{j \in V: \pi_{i j} \neq\right.$ NIL $\} \cup\{i\} ;$
- $E_{\pi, i}=\left\{\left(\pi_{i j}, j\right): j \in V_{\pi, i}-\{i\}\right\}$.
- Just as the predecessor subgraph G_{π} is a shortest-paths tree for a given source vertex, the predecessor subgraph $G_{\pi, i}$ of G for i (induced by the i-th row of the Π matrix) should be a shortest-paths tree with root i.

Print All Pairs Shortest Paths Procedure

- If $G_{\pi, i}$ is a shortest-paths tree, then the following procedure prints a shortest path from vertex i to vertex j.

PrintAllPairsShortestPath(Π, i, j)

1. if $i==j$
2. print i
3. elseif $\pi_{i j}==$ NIL
4. print "no path from" i "to" j "exists"
5. else PrintAllPairsShortestPath($\Pi, i, \pi_{i j}$)
6. print j

Conventions and Notation

- We assume that the input graph $G=(V, E)$ has n vertices, so that $n=|V|$.
- We use the convention of denoting matrices by uppercase letters, such as W, L or D, and their individual elements by subscripted lowercase letters, such as $w_{i j}, \ell_{i j}$ or $d_{i j}$.
- Some matrices will have parenthesized superscripts, e.g., $L^{(m)}=\left(\ell_{i j}^{(m)}\right)$ or $D^{(m)}=\left(d_{i j}^{(m)}\right)$, to indicate iterates.
- Finally, for a given $n \times n$ matrix A, we assume that the value of n is stored in the attribute A.rows.

Subsection 1

Shortest Paths and Matrix Multiplication

Dynamic Programming for All-Pairs Shortest Paths

- We present a dynamic programming algorithm for the all-pairs shortest paths problem on a directed graph $G=(V, E)$.
- Each major loop of the dynamic program will invoke an operation that is very similar to matrix multiplication, so that the algorithm will look like repeated matrix multiplication.
- We first develop a $\Theta\left(|V|^{4}\right)$-time algorithm for the all-pairs shortest paths problem and then improve its running time to $\Theta\left(|V|^{3} \log |V|\right)$.
- Recall the steps for developing a dynamic programming algorithm:

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom-up fashion.
4. Construct an optimal solution from computed information.

This step will not be carried out in detail.

The Structure of a Shortest Path

- We characterize the structure of an optimal solution.
- For the all-pairs shortest paths problem on a graph $G=(V, E)$, we have proven that all subpaths of a shortest path are shortest paths.
- Suppose we represent the graph by an adjacency matrix $W=\left(w_{i j}\right)$.
- Consider a shortest path p from vertex i to vertex j, and suppose that p contains at most m edges.
Assuming that there are no negative-weight cycles, m is finite.
- If $i=j$, then p has weight 0 and no edges.
- If $i \neq j$, then we decompose p into $i \stackrel{p^{\prime}}{\sim} k \rightarrow j$, where p^{\prime} contains at most $m-1$ edges. We proved that p^{\prime} is a shortest path from i to k. So

$$
\delta(i, j)=\delta(i, k)+w_{k j} .
$$

A Recursive Solution to All-Pairs Shortest-Paths

- Let $\ell_{i j}^{(m)}$ be the minimum weight of any path from vertex i to vertex j that contains at most m edges.
- When $m=0$, there is a shortest path from i to j with no edges if and only if $i=j$. Thus, $\ell_{i j}^{(0)}=\left\{\begin{array}{ll}0, & \text { if } i=j \\ 1, & \text { if } i \neq j\end{array}\right.$.
- For $m \geq 1$, we compute $\ell_{i j}^{(m)}$ as the minimum of $\ell_{i j}^{(m-1)}$ (the weight of a shortest path from i to j consisting of at most $m-1$ edges) and the minimum weight of any path from i to j consisting of at most m edges, obtained by looking at all possible predecessors k of j.
Thus, we recursively define

$$
\begin{aligned}
\ell_{i j}^{(m)} & =\min \left(\ell_{i j}^{(m-1)}, \min _{1 \leq k \leq n}\left\{\ell_{i k}^{(m-1)}+w_{k j}\right\}\right) \\
& =\min _{1 \leq k \leq n}\left\{\ell_{i k}^{(m-1)}+w_{k j}\right\}
\end{aligned}
$$

The latter equality follows since $w_{j j}=0$, for all j.

The Shortest Path Weights $\delta(i, j)$

- If the graph contains no negative-weight cycles, then, for every pair of vertices i and j for which $\delta(i, j)<\infty$, there is a shortest path from i to j that is simple and, thus, contains at most $n-1$ edges.
- A path from vertex i to vertex j with more than $n-1$ edges cannot have lower weight than a shortest path from i to j.
- The actual shortest-path weights are therefore given by

$$
\delta(i, j)=\ell_{i j}^{(n-1)}=\ell_{i j}^{(n)}=\ell_{i j}^{(n+1)}=\cdots
$$

Extending Shortest Paths

- With input $W=\left(w_{i j}\right)$, we compute $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$.
- The final matrix $L^{(n-1)}$ contains the actual shortest-path weights.
- Observe that $\ell_{i j}^{(1)}=w_{i j}$, for all vertices $i, j \in V$, whence $L^{(1)}=W$.
- The following procedure, given $L^{(m-1)}$ and W, returns $L^{(m)}$, i.e., it extends the shortest paths computed so far by one more edge.

ExtendShortestPaths(L, W)

1. $n=$ L.rows
2. let $L^{\prime}=\left(\ell_{i j}^{\prime}\right)$ be a new $n \times n$ matrix
3. for $i=1$ to n
4. for $j=1$ to n
5. $\quad \ell_{i j}^{\prime}=\infty$
for $k=1$ to n

$$
\ell_{i j}^{\prime}=\min \left(\ell_{i j}^{\prime}, \ell_{i k}+w_{k j}\right)
$$

8. return L^{\prime}

Computing the Shortest-Path Weights Bottom Up

- For all-pairs shortest paths, we compute the shortest-path weights by extending shortest paths edge by edge.
Letting $A \cdot B$ denote ExtendShortestPaths (A, B), we compute the sequence of $n-1$ matrices

$$
L^{(1)}=L^{(0)} W=W, L^{(2)}=L^{(1)} W=W^{2}, \ldots, L^{(n-1)}=L^{(n-2)} W=W^{n-1}
$$

- The matrix $L^{(n-1)}=W^{n-1}$ contains the shortest-path weights.
- The following procedure computes this sequence in $\Theta\left(n^{4}\right)$ time.

Slow AllPairsShortestPaths(W)

1. $n=W$.rows
2. $L^{(1)}=W$
3. for $m=2$ to $n-1$
4. let $L^{(m)}$ be a new $n \times n$ matrix
5. $L^{(m)}=$ ExtendShortestPaths $\left(L^{(m-1)}, W\right)$
6. return $L^{(n-1)}$

An Example

- A graph and the matrices $L^{(m)}$ computed by the procedure SlowAllPairsShortestPaths.

Improving the Running Time

- We are interested in $L^{(n-1)}$; not in all $L^{(m)}$.
- Without negative-weight cycles, $L^{(m)}=L^{(n-1)}$, for all $m \geq n-1$.
- Since the ExtendShortestPaths operation (".") is associative, we can compute $L^{(n-1)}$ with only $\lceil\log (n-1)\rceil$ matrix products by computing:

$$
\begin{aligned}
L^{(1)} & =W \\
L^{(2)} & =W^{2}=W \cdot W ; \\
L^{(4)} & =W^{4}=W^{2} \cdot W^{2} ; \\
& \vdots \\
L\left(2^{\lceil\log (n-1)\rceil}\right) & =W^{2^{\lceil\log (n-1)\rceil}}=W^{2^{\lceil\log (n-1)\rceil}-1} \cdot W^{2^{\lceil\log (n-1)\rceil}-1} .
\end{aligned}
$$

- Since $2^{\lceil\log (n-1)\rceil} \geq n-1$, the product $L^{\left(2^{\lceil\log (n-1)\rceil}\right)}$ is equal to $L^{(n-1)}$.

Computing the Sequence of Matrices

FasterAllPairsShortestPaths(W)

1. $n=W$.rows
2. $L^{(1)}=W$
3. $m=1$
4. while $m<n-1$
5. let $L^{(2 m)}$ be a new $n \times n$ matrix
$L^{(2 m)}=\operatorname{ExtendShortestPaths}\left(L^{(m)}, L^{(m)}\right)$
6. $m=2 m$
7. return $L^{(m)}$

Correctness and Time Requirements

- In each iteration of the while loop of Lines 4-7, we compute $L^{(2 m)}=\left(L^{(m)}\right)^{2}$, starting with $m=1$.
- At the end of each iteration, we double the value of m.
- The final iteration computes $L^{(n-1)}$ by actually computing $L^{(2 m)}$, for some $n-1 \leq 2 m<2 n-2$, whence $L^{(2 m)}=L^{(n-1)}$.
- The next time the test in Line 4 is performed, m has been doubled, So $m \geq n-1$ and the "while" test fails.

The procedure returns the last matrix it computed.

- The running time of FasterAllPairsShortestPaths is $\Theta\left(n^{3} \log n\right)$, since each of the $\lceil\log (n-1)\rceil$ matrix products takes $\Theta\left(n^{3}\right)$ time.

Subsection 2

The Floyd-Warshall Algorithm

Idea Behind the Floyd-Warshall Algorithm

- In the Floyd-Warshall algorithm, we again characterize the structure of a shortest path.
- The Floyd-Warshall algorithm considers the intermediate vertices of a shortest path, where an intermediate vertex of a simple path $p=\left\langle v_{1}, v_{2}, \ldots, v_{\ell}\right\rangle$ is any vertex in the set $\left\{v_{2}, v_{3}, \ldots, v_{\ell-1}\right\}$.
- The Floyd-Warshall algorithm relies on the following observation:
- Under our assumption that the vertices of G are $V=\{1,2, \ldots, n\}$, let us consider a subset $\{1,2, \ldots, k\}$ of vertices for some k.
- For any pair of vertices $i, j \in V$, consider all paths from i to j whose intermediate vertices are all drawn from $\{1,2, \ldots, k\}$, and let p be a minimum weight path among them (p is simple).
- The Floyd-Warshall algorithm exploits a relationship between path p and shortest paths from i to j with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$. This relationship depends on whether or not k is an intermediate vertex of path p.

The Two Cases Considered by Floyd-Warshall

- If k is not an intermediate vertex of path p, then all intermediate vertices of path p are in the set $\{1,2, \ldots, k-1\}$.
Thus, a shortest path from vertex i to vertex j with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$ is also a shortest path from i to j with all intermediate vertices in the set $\{1,2, \ldots, k\}$.
- If k is an intermediate vertex of path p, then we decompose p into
$i \stackrel{p_{1}}{\rightsquigarrow} k \stackrel{p_{2}}{\rightsquigarrow} j$. Then p_{1} is a shortest path from i to k with all intermediate vertices in the set $\{1,2, \ldots, k\}$.

p : all intermediate vertices in $\{1,2, \ldots, k\}$

Note that all intermediate vertices of p_{1} are in the set $\{1,2, \ldots, k-1\}$. Therefore, p_{1} is a shortest path from i to k with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$.

Similarly, p_{2} is a shortest path from vertex k to vertex j with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$.

A Recursive Solution to the All-Pairs Shortest-Paths

- We define a recursive formulation of shortest path estimates.
- Let $d_{i j}^{(k)}$ be the weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in the set $\{1,2, \ldots, k\}$.
- When $k=0$, a path from vertex i to vertex j with no intermediate vertex numbered higher than 0 has no intermediate vertices at all.
Such a path has at most one edge, and hence $d_{i j}^{(0)}=w_{i j}$.
- Define $d_{i j}^{(k)}$ recursively by

$$
d_{i j}^{(k)}= \begin{cases}w_{i j}, & \text { if } k=0 \\ \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right), & \text { if } k \geq 1\end{cases}
$$

- Because for any path, all intermediate vertices are in $\{1,2, \ldots, n\}$, the matrix $D^{(n)}=\left(d_{i j}^{(n)}\right)$ gives $d_{i j}^{(n)}=\delta(i, j)$, for all $i, j \in V$.

Computing Shortest-Path Weights Bottom Up

- We can use the following bottom-up procedure to compute the values $d_{i j}^{(k)}$ in order of increasing values of k.
- Its input is an $n \times n$ matrix W.
- The procedure returns the matrix $D^{(n)}$ of shortest path weights.

FloydWarshall(W)

1. $n=W$.rows
2. $D^{(0)}=W$
3. for $k=1$ to n
4. let $D^{(k)}=\left(d_{i j}^{(k)}\right)$ be a new $n \times n$ matrix
5. for $i=1$ to n
6. for $j=1$ to n
7. $d_{i j}^{(k)}=\min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right)$
8. return $D^{(n)}$

Running Time

- The running time of the Floyd-Warshall algorithm is determined by the triply nested for loops of Lines 3-7.
- Because each execution of Line 7 takes $\mathrm{O}(1)$ time, the algorithm runs in time $\Theta\left(n^{3}\right)$.
- The code is tight, with no elaborate data structures, and so the constant hidden in the Θ-notation is small.
- Thus, the Floyd-Warshall algorithm is quite practical for even moderate-sized input graphs.

Constructing a Shortest Path

- There are a variety of different methods for constructing shortest paths in the Floyd-Warshall algorithm.
- One way is to compute the matrix D of shortest-path weights and then construct the predecessor matrix Π from the D matrix. Given Π, the PrintAllPairsShortestPath procedure will print the vertices on a given shortest path.
- Alternatively, we can compute the predecessor matrix Π while the algorithm computes the matrices $D^{(k)}$. Specifically, we compute a sequence of matrices $\Pi^{(0)}, \Pi^{(1)}, \ldots, \Pi^{(n)}$, where $\Pi=\Pi^{(n)}$ and we define $\pi_{i j}^{(k)}$ as the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in the set $\{1,2, \ldots, k\}$.

Constructing a Shortest Path (The Recursive Formulas)

- When $k=0$, a shortest path from i to j has no intermediate vertices at all.

$$
\pi_{i j}^{(0)}= \begin{cases}\text { NIL, }, & \text { if } i=j \text { or } w_{i j}=\infty \\ i, & \text { if } i \neq j \text { and } w_{i j}<\infty\end{cases}
$$

- For $k \geq 1$:
- If we take the path $i \leq k \leq j$, where $k \neq j$, then the predecessor of j we choose is the same as the predecessor of j we chose on a shortest path from k with all intermediate vertices in the set $\{1,2, \ldots, k-1\}$.
- Otherwise, we choose the same predecessor of j that we chose on a shortest path from i with all intermediate vertices in the set

$$
\{1,2, \ldots, k-1\}
$$

Formally, for $k \geq 1$,

$$
\pi_{i j}^{(k)}=\left\{\begin{array}{ll}
\pi_{i j}^{(k-1)}, & \text { if } d_{i j}^{(k-1)} \leq d_{i k}^{(k-1)}+d_{k j}^{(k-1)} \\
\pi_{k j}^{(k-1)}, & \text { if } d_{i j}^{(k-1)}>d_{i k}^{(k-1)}+d_{k j}^{(k-1)}
\end{array} .\right.
$$

Example

Transitive Closure of a Directed Graph

- Given a directed graph $G=(V, E)$ with vertex set $V=\{1,2, \ldots, n\}$, we define the transitive closure of G as the graph $G^{*}=\left(V, E^{*}\right)$, where

$$
E^{*}=\{(i, j): \text { there is a path from vertex } i \text { to vertex } j \text { in } G\} .
$$

- One way to compute G^{*} in $\Theta\left(n^{3}\right)$ time is to assign a weight of 1 to each edge of E and run the Floyd-Warshall algorithm.
- If there is a path from vertex i to vertex j, we get $d_{i j}<n$.
- Otherwise, we get $d_{i j}=\infty$.

Transitive Closure: Alternative Way

- For $i, j, k=1,2, \ldots, n$, define $t_{i j}^{(k)}$ to be 1 if there exists a path in graph G from vertex i to vertex j with all intermediate vertices in the set $\{1,2, \ldots, k\}$, and 0 otherwise.
- Then $G^{*}=\left(V, E^{*}\right)$ has (i, j) in E^{*} if and only if $t_{i j}^{(n)}=1$.
- A recursive definition of $t_{i j}^{(k)}$ is:
- For $k=0$,

$$
t_{i j}^{(0)}=\left\{\begin{array}{ll}
0, & \text { if } i \neq j \text { and }(i, j) \notin E \\
1, & \text { if } i=j \text { or }(i, j) \in E
\end{array} .\right.
$$

- For $k \geq 1$,

$$
t_{i j}^{(k)}=t_{i j}^{(k-1)} \vee\left(t_{i k}^{(k-1)} \wedge t_{k j}^{(k-1)}\right)
$$

Computing the Transitive Closure

TransitiveClosure(G)

1. $n=|G . V|$
2. let $T^{(0)}=\left(t_{i j}^{(0)}\right)$ be a new $n \times n$ matrix
3. for $i=1$ to n
4. for $j=1$ to n
5. if $i==j$ or $(i, j) \in G . E$
$t_{i j}^{(0)}=1$
6. else $t_{i j}^{(0)}=0$
7. for $k=1$ to n
8. let $T^{(k)}=\left(t_{i j}^{(k)}\right)$ be a new $n \times n$ matrix
9. for $i=1$ to n
10. for $j=1$ to n
11. $t_{i j}^{(k)}=t_{i j}^{(k-1)} \vee\left(t_{i k}^{(k-1)} \wedge t_{k j}^{(k-1)}\right)$
12. return $T^{(n)}$

Example

$$
\begin{aligned}
& T^{(1)}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{array}\right) \quad T^{(2)}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
1 \\
0 & 1 & 1
\end{array}\right) \\
& 1 \\
& 0
\end{aligned} 1
$$

Subsection 3

Johnson's Algorithm for Sparse Graphs

Goal of Johnson's Algorithm

- Johnson's algorithm finds shortest paths between all pairs in $\mathrm{O}\left(|V|^{2} \log |V|+|V||E|\right)$ time.
- For sparse graphs, it is asymptotically faster than either repeated squaring of matrices or the Floyd-Warshall algorithm.
- The algorithm either returns a matrix of shortest-path weights for all pairs of vertices or reports that the input graph contains a negative weight cycle.
- Johnson's algorithm uses as subroutines both Dijkstra's algorithm and the Bellman-Ford algorithm.

Johnson's Algorithm and Reweighting

- Johnson's algorithm uses the technique of reweighting:
- If all edge weights w in a graph $G=(V, E)$ are nonnegative, we can find shortest paths between all pairs of vertices by running Dijkstra's algorithm once from each vertex.
With an efficient implementation of a min-priority queue, the running time of this all-pairs algorithm is $\mathrm{O}\left(|V|^{2} \log |V|+|V||E|\right)$.
- If G has negative-weight edges but no negative-weight cycles, we compute a new set of nonnegative edge weights \widehat{w} that allows us to use the same method, which must satisfy:

1. For all pairs of vertices $u, v \in V$, a path p is a shortest path from u to v using weight function w if and only if p is also a shortest path from u to v using weight function \widehat{w}.
2. For all edges (u, v), the new weight $\widehat{w}(u, v)$ is nonnegative.

We can preprocess G to determine the new weight function \widehat{w} in $\mathrm{O}(|V||E|)$ time.

Preserving Shortest Paths by Reweighting

- We use:
- δ for shortest-path weights derived from w;
- $\widehat{\delta}$ for shortest-path weights derived from \widehat{w}.

Lemma (Reweighting does not Change Shortest Paths)

Given a weighted, directed graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$, let $h: V \rightarrow \mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, define

$$
\widehat{w}(u, v)=w(u, v)+h(u)-h(v) .
$$

Let $p=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$ be any path from vertex v_{0} to vertex v_{k}. Then p is a shortest path from v_{0} to v_{k} with weight function w if and only if it is a shortest path with weight function \widehat{w}. That is, $w(p)=\delta\left(v_{0}, v_{k}\right)$ if and only if $w(p)=\widehat{\delta}\left(v_{0}, v_{k}\right)$.
Furthermore, G has a negative-weight cycle using weight function w if and only if G has a negative-weight cycle using weight function \widehat{w}.

Preserving Shortest Paths by Reweighting (Proof)

- We start by showing that $\widehat{w}(p)=w(p)+h\left(v_{0}\right)-h\left(v_{k}\right)$.

$$
\begin{aligned}
\widehat{w}(p) & =\sum_{i=1}^{k} \widehat{w}\left(v_{i-1}, v_{i}\right) \\
& =\sum_{i=1}^{k}\left(w\left(v_{i-1}, v_{i}\right)+h\left(v_{i-1}\right)-h\left(v_{i}\right)\right) \\
& =\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)+h\left(v_{0}\right)-h\left(v_{k}\right) \\
& =w(p)+h\left(v_{0}\right)-h\left(v_{k}\right) .
\end{aligned}
$$

Any path p from v_{0} to v_{k} has $\widehat{w}(p)=w(p)+h\left(v_{0}\right)-h\left(v_{k}\right)$. $h\left(v_{0}\right)$ and $h\left(v_{k}\right)$ do not depend on the path. So, if one path from v_{0} to v_{k} is shorter than another using weight function w, then it is also shorter using \widehat{w}. Thus, $w(p)=\delta\left(v_{0}, v_{k}\right)$ iff $\widehat{w}(p)=\widehat{\delta}\left(v_{0}, v_{k}\right)$.

- Finally, we show that G has a negative-weight cycle using w if and only if G has a negative-weight cycle using \widehat{w}.
Consider any cycle $c=\left\langle v_{0}, v_{1}, \ldots, v_{k}\right\rangle$, where $v_{0}=v_{k}$. We have $\widehat{w}(c)=w(c)+h\left(v_{0}\right)-h\left(v_{k}\right)=w(c)$. Thus c has negative weight using w if and only if it has negative weight using \widehat{w}.

Producing Nonnegative Weights by Reweighting

- Next, we ensure $\widehat{w}(u, v)$ is nonnegative, for all edges $(u, v) \in E$.
- Given a weighted, directed graph $G=(V, E)$ with weight function $w: E \rightarrow \mathbb{R}$, we construct $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime}=V \cup\{s\}$, for some new vertex $s \notin V$, and $E^{\prime}=E \cup\{(s, v): v \in V\}$.
- We extend the weight function w so that $w(s, v)=0$, for all $v \in V$.
- Note that because s has no edges that enter it, no shortest paths in G^{\prime}, other than those with source s, contain s.
- Moreover, G^{\prime} has no negative-weight cycles if and only if G has no negative-weight cycles.

Producing Nonnegative Weights by Reweighting II

- Now suppose that G and G^{\prime} have no negative-weight cycles.
- Let us define $h(v)=\delta(s, v)$, for all $v \in V^{\prime}$.
- By the Triangle Inequality, we have $h(v) \leq h(u)+w(u, v)$, for all edges $(u, v) \in E^{\prime}$.
- Thus, if we define the new weights \widehat{w} by reweighting according to $\widehat{w}(u, v)=w(u, v)+h(u)-h(v)$, we have $\widehat{w}(u, v)=w(u, v)+h(u)-h(v) \geq 0$, as was our goal.

Johnson's Procedure

- Assume the edges are stored in adjacency lists.
- Output is $D=\left(d_{i j}\right)$, where $d_{i j}=\widehat{\delta}(i, j)$, or "negative-weight cycle".

Johnson(G, w)

compute G^{\prime}, where $G^{\prime} . V=G . V \cup\{s\}, G^{\prime} . E=G . E \cup\{(s, v): v \in G . V\}$, and $w(s, v)=0$, for all $v \in G . V$
if BellmanFord $\left(G^{\prime}, w, s\right)==$ FALSE
print "the input graph contains a negative-weight cycle" else for each vertex $v \in G^{\prime} . V$
set $h(v)$ to the value of $\delta(s, v)$ computed by the Bellman-Ford algorithm for each edge $(u, v) \in G^{\prime} . E$

$$
\widehat{w}(u, v)=w(u, v)+h(u)-h(v)
$$

let $D=\left(d_{u v}\right)$ be a new $n \times n$ matrix
for each vertex $u \in G . V$
run $\operatorname{DiJkstra}(G, \widehat{w}, u)$ to compute $\widehat{\delta}(u, v)$, for all $v \in G . V$
for each vertex $v \in G . V$

$$
d_{u v}=\widehat{\delta}(u, v)+h(v)-h(u)
$$

return D

How Johnson Works

- Line 1 produces G^{\prime}.
- Line 2 runs Bellman-Ford on G^{\prime} with weight function w and source s.
- If G^{\prime}, hence G, contains a negative-weight cycle, Line 3 reports this.
- Lines 4-12 assume that G^{\prime} contains no negative-weight cycles.
- Lines 4-5 set $h(v)$ to the shortest-path weight $\delta(s, v)$, computed by the Bellman-Ford algorithm, for all $v \in V^{\prime}$.
- Lines 6-7 compute the new weights \widehat{w}.
- For each pair of vertices $u, v \in V$, the for loop of Lines 9-12 computes the shortest-path weight $\widehat{\delta}(u, v)$ by calling Dijkstra's algorithm once from each vertex in V.
- Line 12 stores in $d_{u v}$ the correct shortest-path weight $\delta(u, v)$.
- Finally, Line 13 returns the completed D matrix.
- If we implement the min-priority queue in Dijkstra's algorithm efficiently, Johnson runs in $\mathrm{O}\left(|V|^{2} \log |V|+|V||E|\right)$ time.
- Even a simpler minheap implementation yields $\mathrm{O}(|V||E| \log |V|)$, still asymptotically faster than Floyd-Warshall, if the graph is sparse.

Illustrating JoHnson

