
Introduction to Algorithms

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 1 / 42

Outline

1 All-Pairs Shortest Paths
Shortest Paths and Matrix Multiplication
The Floyd-Warshall Algorithm
Johnson’s Algorithm for Sparse Graphs

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 2 / 42

All-Pairs Shortest Paths

The All-Pairs Shortest Paths Problem

Consider a weighted, directed graph G = (V ,E), with a weight
function w : E → R, that maps edges to real-valued weights.

We wish to find, for every pair of vertices u, v ∈ V , a shortest
(least-weight) path from u to v , where the weight of a path is the
sum of the weights of its constituent edges.

We typically want the output in tabular form:

The entry in u’s row and v ’s column should be the weight of a
shortest path from u to v .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 3 / 42

All-Pairs Shortest Paths

All-Pairs via Exhaustive Single Pair

We can solve an all-pairs shortest-paths problem by running a single
source shortest-paths algorithm |V | times, once for each vertex as the
source.

If all edge weights are nonnegative, we can use Dijkstra’s algorithm.

If we use the linear-array implementation of the min-priority queue, the
running time is O

(
|V |3 + |V ||E |

)
= O

(
|V |3

)
.

The binary min-heap implementation of the min-priority queue yields a
running time of O (|V ||E | log |V |), which is an improvement if the
graph is sparse.

If the graph has negative-weight edges, we must run the slower
Bellman-Ford algorithm once from each vertex.

The resulting running time is O
(
|V |2|E |

)
, which on a dense graph is

O
(
|V |4

)
.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 4 / 42

All-Pairs Shortest Paths

The Set Up and the Variables

We mostly use an adjacency matrix representation.

Assume that the vertices are numbered 1, 2, . . . , |V |.

Then the input is an n × n matrix W = (wij), representing the edge
weights of the n-vertex directed graph G = (V ,E),

wij =





0, if i = j

the weight of directed edge (i , j), if i 6= j and (i , j) ∈ E

∞, if i 6= j and (i , j) 6∈ E

We allow negative-weight edges, but we assume for the time being
that the input graph contains no negative-weight cycles.

The tabular output of the all-pairs shortest-paths algorithms is an
n × n matrix D = (dij), where entry dij contains the weight of a
shortest path from vertex i to vertex j .

If we let δ(i , j) denote the shortest path weight from vertex i to
vertex j , then dij = δ(i , j) at termination.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 5 / 42

All-Pairs Shortest Paths

Predecessor Matrix and Predecessor Subgraph

To solve the all-pairs shortest-paths problem on an input adjacency
matrix, we need to compute not only the shortest-path weights but
also a predecessor matrix Π = (πij), where:

πij is NIL if either i = j or there is no path from i to j ;
πij is the predecessor of j on some shortest path from i , otherwise.

For each vertex i ∈ V , we define the predecessor subgraph of G for
i as Gπ,i = (Vπ,i ,Eπ,i), where:

Vπ,i = {j ∈ V : πij 6= NIL} ∪ {i};
Eπ,i = {(πij , j) : j ∈ Vπ,i − {i}}.

Just as the predecessor subgraph Gπ is a shortest-paths tree for a
given source vertex, the predecessor subgraph Gπ,i of G for i (induced
by the i -th row of the Π matrix) should be a shortest-paths tree with
root i .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 6 / 42

All-Pairs Shortest Paths

Print All Pairs Shortest Paths Procedure

If Gπ,i is a shortest-paths tree, then the following procedure prints a
shortest path from vertex i to vertex j .

PrintAllPairsShortestPath(Π, i , j)

1. if i == j

2. print i

3. elseif πij == NIL

4. print “no path from” i “to” j “exists”

5. else PrintAllPairsShortestPath(Π, i , πij)

6. print j

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 7 / 42

All-Pairs Shortest Paths

Conventions and Notation

We assume that the input graph G = (V ,E) has n vertices, so that
n = |V |.

We use the convention of denoting matrices by uppercase letters,
such as W , L or D, and their individual elements by subscripted
lowercase letters, such as wij , ℓij or dij .

Some matrices will have parenthesized superscripts, e.g.,

L(m) = (ℓ
(m)
ij) or D(m) = (d

(m)
ij), to indicate iterates.

Finally, for a given n × n matrix A, we assume that the value of n is
stored in the attribute A.rows.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 8 / 42

All-Pairs Shortest Paths Shortest Paths and Matrix Multiplication

Subsection 1

Shortest Paths and Matrix Multiplication

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 9 / 42

All-Pairs Shortest Paths Shortest Paths and Matrix Multiplication

Dynamic Programming for All-Pairs Shortest Paths

We present a dynamic programming algorithm for the all-pairs
shortest paths problem on a directed graph G = (V ,E).

Each major loop of the dynamic program will invoke an operation
that is very similar to matrix multiplication, so that the algorithm will
look like repeated matrix multiplication.

We first develop a Θ(|V |4)-time algorithm for the all-pairs shortest
paths problem and then improve its running time to Θ(|V |3 log |V |).

Recall the steps for developing a dynamic programming algorithm:

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal solution.
3. Compute the value of an optimal solution in a bottom-up fashion.
4. Construct an optimal solution from computed information.

This step will not be carried out in detail.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 10 / 42

All-Pairs Shortest Paths Shortest Paths and Matrix Multiplication

The Structure of a Shortest Path

We characterize the structure of an optimal solution.

For the all-pairs shortest paths problem on a graph G = (V ,E), we
have proven that all subpaths of a shortest path are shortest paths.

Suppose we represent the graph by an adjacency matrix W = (wij).

Consider a shortest path p from vertex i to vertex j , and suppose that
p contains at most m edges.

Assuming that there are no negative-weight cycles, m is finite.

If i = j , then p has weight 0 and no edges.

If i 6= j , then we decompose p into i
p′

 k → j , where p′ contains at
most m− 1 edges. We proved that p′ is a shortest path from i to k . So

δ(i , j) = δ(i , k) + wkj .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 11 / 42

All-Pairs Shortest Paths Shortest Paths and Matrix Multiplication

A Recursive Solution to All-Pairs Shortest-Paths

Let ℓ
(m)
ij be the minimum weight of any path from vertex i to vertex j

that contains at most m edges.

When m = 0, there is a shortest path from i to j with no edges if and

only if i = j . Thus, ℓ
(0)
ij =

{
0, if i = j

1, if i 6= j
.

For m ≥ 1, we compute ℓ
(m)
ij as the minimum of ℓ

(m−1)
ij (the weight of

a shortest path from i to j consisting of at most m − 1 edges) and the
minimum weight of any path from i to j consisting of at most m edges,
obtained by looking at all possible predecessors k of j .
Thus, we recursively define

ℓ
(m)
ij = min (ℓ

(m−1)
ij , min

1≤k≤n
{ℓ

(m−1)
ik + wkj})

= min
1≤k≤n

{ℓ
(m−1)
ik + wkj}.

The latter equality follows since wjj = 0, for all j .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 12 / 42

All-Pairs Shortest Paths Shortest Paths and Matrix Multiplication

The Shortest Path Weights δ(i , j)

If the graph contains no negative-weight cycles, then, for every pair of
vertices i and j for which δ(i , j) < ∞, there is a shortest path from i

to j that is simple and, thus, contains at most n − 1 edges.

A path from vertex i to vertex j with more than n − 1 edges cannot
have lower weight than a shortest path from i to j .

The actual shortest-path weights are therefore given by

δ(i , j) = ℓ
(n−1)
ij = ℓ

(n)
ij = ℓ

(n+1)
ij = · · · .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 13 / 42

All-Pairs Shortest Paths Shortest Paths and Matrix Multiplication

Extending Shortest Paths

With input W = (wij), we compute L(1), L(2), . . . , L(n−1).

The final matrix L(n−1) contains the actual shortest-path weights.

Observe that ℓ
(1)
ij = wij , for all vertices i , j ∈ V , whence L(1) = W .

The following procedure, given L(m−1) and W , returns L(m), i.e., it
extends the shortest paths computed so far by one more edge.

ExtendShortestPaths(L,W)

1. n = L.rows

2. let L′ = (ℓ′ij) be a new n × n matrix

3. for i = 1 to n

4. for j = 1 to n

5. ℓ′ij = ∞

6. for k = 1 to n

7. ℓ′ij = min (ℓ′ij , ℓik + wkj)

8. return L′

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 14 / 42

All-Pairs Shortest Paths Shortest Paths and Matrix Multiplication

Computing the Shortest-Path Weights Bottom Up

For all-pairs shortest paths, we compute the shortest-path weights by
extending shortest paths edge by edge.

Letting A · B denote ExtendShortestPaths(A,B), we compute
the sequence of n − 1 matrices

L
(1) = L

(0)
W = W , L

(2) = L
(1)
W = W

2
, . . . , L

(n−1) = L
(n−2)

W = W
n−1

.

The matrix L(n−1) = W n−1 contains the shortest-path weights.

The following procedure computes this sequence in Θ(n4) time.

SlowAllPairsShortestPaths(W)

1. n = W .rows

2. L(1) = W

3. for m = 2 to n − 1

4. let L(m) be a new n× n matrix

5. L(m) = ExtendShortestPaths(L(m−1),W)

6. return L(n−1)

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 15 / 42

All-Pairs Shortest Paths Shortest Paths and Matrix Multiplication

An Example

A graph and the matrices L(m) computed by the procedure
SlowAllPairsShortestPaths.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 16 / 42

All-Pairs Shortest Paths Shortest Paths and Matrix Multiplication

Improving the Running Time

We are interested in L(n−1); not in all L(m).

Without negative-weight cycles, L(m) = L(n−1), for all m ≥ n− 1.

Since the ExtendShortestPaths operation (“·”) is associative,
we can compute L(n−1) with only ⌈log (n − 1)⌉ matrix products by
computing:

L(1) = W ;

L(2) = W 2 = W ·W ;

L(4) = W 4 = W 2 ·W 2;
...

L(2⌈log (n−1)⌉) = W 2⌈log (n−1)⌉
= W 2⌈log (n−1)⌉−1 ·W 2⌈log (n−1)⌉−1.

Since 2⌈log (n−1)⌉ ≥ n − 1, the product L(2
⌈log (n−1)⌉) is equal to L(n−1).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 17 / 42

All-Pairs Shortest Paths Shortest Paths and Matrix Multiplication

Computing the Sequence of Matrices

FasterAllPairsShortestPaths(W)

1. n = W .rows

2. L(1) = W

3. m = 1

4. while m < n − 1

5. let L(2m) be a new n × n matrix

6. L(2m) = ExtendShortestPaths(L(m), L(m))

7. m = 2m

8. return L(m)

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 18 / 42

All-Pairs Shortest Paths Shortest Paths and Matrix Multiplication

Correctness and Time Requirements

In each iteration of the while loop of Lines 4-7, we compute
L(2m) = (L(m))2, starting with m = 1.

At the end of each iteration, we double the value of m.

The final iteration computes L(n−1) by actually computing L(2m), for
some n − 1 ≤ 2m < 2n − 2, whence L(2m) = L(n−1).

The next time the test in Line 4 is performed, m has been doubled,

So m ≥ n − 1 and the “while” test fails.

The procedure returns the last matrix it computed.

The running time of FasterAllPairsShortestPaths is
Θ(n3 log n), since each of the ⌈log (n − 1)⌉ matrix products takes
Θ(n3) time.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 19 / 42

All-Pairs Shortest Paths The Floyd-Warshall Algorithm

Subsection 2

The Floyd-Warshall Algorithm

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 20 / 42

All-Pairs Shortest Paths The Floyd-Warshall Algorithm

Idea Behind the Floyd-Warshall Algorithm

In the Floyd-Warshall algorithm, we again characterize the structure
of a shortest path.

The Floyd-Warshall algorithm considers the intermediate vertices of a
shortest path, where an intermediate vertex of a simple path
p = 〈v1, v2, . . . , vℓ〉 is any vertex in the set {v2, v3, . . . , vℓ−1}.

The Floyd-Warshall algorithm relies on the following observation:

Under our assumption that the vertices of G are V = {1, 2, . . . , n}, let
us consider a subset {1, 2, . . . , k} of vertices for some k .
For any pair of vertices i , j ∈ V , consider all paths from i to j whose
intermediate vertices are all drawn from {1, 2, . . . , k}, and let p be a
minimum weight path among them (p is simple).
The Floyd-Warshall algorithm exploits a relationship between path p

and shortest paths from i to j with all intermediate vertices in the set
{1, 2, . . . , k − 1}. This relationship depends on whether or not k is an
intermediate vertex of path p.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 21 / 42

All-Pairs Shortest Paths The Floyd-Warshall Algorithm

The Two Cases Considered by Floyd-Warshall

If k is not an intermediate vertex of path p, then all intermediate
vertices of path p are in the set {1, 2, . . . , k − 1}.

Thus, a shortest path from vertex i to vertex j with all intermediate
vertices in the set {1, 2, . . . , k − 1} is also a shortest path from i to j

with all intermediate vertices in the set {1, 2, . . . , k}.

If k is an intermediate vertex of path p, then we decompose p into

i
p1
 k

p2
 j . Then p1 is a shortest path from i to k with all

intermediate vertices in the set {1, 2, . . . , k}.

Note that all intermediate vertices of
p1 are in the set {1, 2, . . . , k − 1}.
Therefore, p1 is a shortest path from
i to k with all intermediate vertices in
the set {1, 2, . . . , k − 1}.

Similarly, p2 is a shortest path from vertex k to vertex j with all
intermediate vertices in the set {1, 2, . . . , k − 1}.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 22 / 42

All-Pairs Shortest Paths The Floyd-Warshall Algorithm

A Recursive Solution to the All-Pairs Shortest-Paths

We define a recursive formulation of shortest path estimates.

Let d
(k)
ij be the weight of a shortest path from vertex i to vertex j for

which all intermediate vertices are in the set {1, 2, . . . , k}.

When k = 0, a path from vertex i to vertex j with no intermediate
vertex numbered higher than 0 has no intermediate vertices at all.

Such a path has at most one edge, and hence d
(0)
ij = wij .

Define d
(k)
ij recursively by

d
(k)
ij =

{
wij , if k = 0

min (d
(k−1)
ij , d

(k−1)
ik

+ d
(k−1)
kj

), if k ≥ 1

Because for any path, all intermediate vertices are in {1, 2, . . . , n},

the matrix D(n) = (d
(n)
ij) gives d

(n)
ij = δ(i , j), for all i , j ∈ V .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 23 / 42

All-Pairs Shortest Paths The Floyd-Warshall Algorithm

Computing Shortest-Path Weights Bottom Up

We can use the following bottom-up procedure to compute the values

d
(k)
ij in order of increasing values of k .

Its input is an n × n matrix W .
The procedure returns the matrix D(n) of shortest path weights.

FloydWarshall(W)

1. n = W .rows

2. D(0) = W

3. for k = 1 to n

4. let D(k) = (d
(k)
ij) be a new n × n matrix

5. for i = 1 to n

6. for j = 1 to n

7. d
(k)
ij = min (d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj)

8. return D(n)

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 24 / 42

All-Pairs Shortest Paths The Floyd-Warshall Algorithm

Running Time

The running time of the Floyd-Warshall algorithm is determined by
the triply nested for loops of Lines 3-7.

Because each execution of Line 7 takes O (1) time, the algorithm runs
in time Θ(n3).

The code is tight, with no elaborate data structures, and so the
constant hidden in the Θ-notation is small.

Thus, the Floyd-Warshall algorithm is quite practical for even
moderate-sized input graphs.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 25 / 42

All-Pairs Shortest Paths The Floyd-Warshall Algorithm

Constructing a Shortest Path

There are a variety of different methods for constructing shortest
paths in the Floyd-Warshall algorithm.

One way is to compute the matrix D of shortest-path weights and then
construct the predecessor matrix Π from the D matrix.
Given Π, the PrintAllPairsShortestPath procedure will print
the vertices on a given shortest path.
Alternatively, we can compute the predecessor matrix Π while the
algorithm computes the matrices D(k).
Specifically, we compute a sequence of matrices Π(0),Π(1), . . . ,Π(n),

where Π = Π(n) and we define π
(k)
ij as the predecessor of vertex j on a

shortest path from vertex i with all intermediate vertices in the set
{1, 2, . . . , k}.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 26 / 42

All-Pairs Shortest Paths The Floyd-Warshall Algorithm

Constructing a Shortest Path (The Recursive Formulas)

When k = 0, a shortest path from i to j has no intermediate vertices
at all.

π
(0)
ij =

{
NIL, if i = j or wij = ∞
i , if i 6= j and wij < ∞

.

For k ≥ 1:
If we take the path i ≤ k ≤ j , where k 6= j , then the predecessor of j
we choose is the same as the predecessor of j we chose on a shortest
path from k with all intermediate vertices in the set {1, 2, . . . , k − 1}.
Otherwise, we choose the same predecessor of j that we chose on a
shortest path from i with all intermediate vertices in the set
{1, 2, . . . , k − 1}.

Formally, for k ≥ 1,

π
(k)
ij =

{
π
(k−1)
ij , if d

(k−1)
ij ≤ d

(k−1)
ik + d

(k−1)
kj

π
(k−1)
kj , if d

(k−1)
ij > d

(k−1)
ik + d

(k−1)
kj

.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 27 / 42

All-Pairs Shortest Paths The Floyd-Warshall Algorithm

Example

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 28 / 42

All-Pairs Shortest Paths The Floyd-Warshall Algorithm

Transitive Closure of a Directed Graph

Given a directed graph G = (V ,E) with vertex set V = {1, 2, . . . , n},
we define the transitive closure of G as the graph G ∗ = (V ,E ∗),
where

E ∗ = {(i , j) : there is a path from vertex i to vertex j in G}.

One way to compute G ∗ in Θ(n3) time is to assign a weight of 1 to
each edge of E and run the Floyd-Warshall algorithm.

If there is a path from vertex i to vertex j , we get dij < n.
Otherwise, we get dij = ∞.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 29 / 42

All-Pairs Shortest Paths The Floyd-Warshall Algorithm

Transitive Closure: Alternative Way

For i , j , k = 1, 2, . . . , n, define t
(k)
ij to be 1 if there exists a path in

graph G from vertex i to vertex j with all intermediate vertices in the
set {1, 2, . . . , k}, and 0 otherwise.

Then G ∗ = (V ,E ∗) has (i , j) in E ∗ if and only if t
(n)
ij = 1.

A recursive definition of t
(k)
ij is:

For k = 0,

t
(0)
ij =

{
0, if i 6= j and (i , j) 6∈ E

1, if i = j or (i , j) ∈ E
.

For k ≥ 1,
t
(k)
ij = t

(k−1)
ij ∨ (t

(k−1)
ik ∧ t

(k−1)
kj).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 30 / 42

All-Pairs Shortest Paths The Floyd-Warshall Algorithm

Computing the Transitive Closure

TransitiveClosure(G)

1. n = |G .V |

2. let T (0) = (t
(0)
ij) be a new n × n matrix

3. for i = 1 to n

4. for j = 1 to n

5. if i == j or (i , j) ∈ G .E

6. t
(0)
ij = 1

7. else t
(0)
ij = 0

8. for k = 1 to n

9. let T (k) = (t
(k)
ij) be a new n× n matrix

10. for i = 1 to n

11. for j = 1 to n

12. t
(k)
ij = t

(k−1)
ij ∨ (t

(k−1)
ik ∧ t

(k−1)
kj)

13. return T (n)

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 31 / 42

All-Pairs Shortest Paths The Floyd-Warshall Algorithm

Example

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 32 / 42

All-Pairs Shortest Paths Johnson’s Algorithm for Sparse Graphs

Subsection 3

Johnson’s Algorithm for Sparse Graphs

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 33 / 42

All-Pairs Shortest Paths Johnson’s Algorithm for Sparse Graphs

Goal of Johnson’s Algorithm

Johnson’s algorithm finds shortest paths between all pairs in
O
(
|V |2 log |V |+ |V ||E |

)
time.

For sparse graphs, it is asymptotically faster than either repeated
squaring of matrices or the Floyd-Warshall algorithm.

The algorithm either returns a matrix of shortest-path weights for all
pairs of vertices or reports that the input graph contains a negative
weight cycle.

Johnson’s algorithm uses as subroutines both Dijkstra’s algorithm and
the Bellman-Ford algorithm.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 34 / 42

All-Pairs Shortest Paths Johnson’s Algorithm for Sparse Graphs

Johnson’s Algorithm and Reweighting

Johnson’s algorithm uses the technique of reweighting:

If all edge weights w in a graph G = (V ,E) are nonnegative, we can
find shortest paths between all pairs of vertices by running Dijkstra’s
algorithm once from each vertex.
With an efficient implementation of a min-priority queue, the running
time of this all-pairs algorithm is O

(
|V |2 log |V | + |V ||E |

)
.

If G has negative-weight edges but no negative-weight cycles, we
compute a new set of nonnegative edge weights ŵ that allows us to
use the same method, which must satisfy:

1. For all pairs of vertices u, v ∈ V , a path p is a shortest path from u to
v using weight function w if and only if p is also a shortest path from u

to v using weight function ŵ .
2. For all edges (u, v), the new weight ŵ(u, v) is nonnegative.

We can preprocess G to determine the new weight function ŵ in
O (|V ||E |) time.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 35 / 42

All-Pairs Shortest Paths Johnson’s Algorithm for Sparse Graphs

Preserving Shortest Paths by Reweighting

We use:
δ for shortest-path weights derived from w ;
δ̂ for shortest-path weights derived from ŵ .

Lemma (Reweighting does not Change Shortest Paths)

Given a weighted, directed graph G = (V ,E) with weight function
w : E → R, let h : V → R be any function mapping vertices to real
numbers. For each edge (u, v) ∈ E , define

ŵ(u, v) = w(u, v) + h(u)− h(v).

Let p = 〈v0, v1, . . . , vk〉 be any path from vertex v0 to vertex vk . Then p

is a shortest path from v0 to vk with weight function w if and only if it is
a shortest path with weight function ŵ . That is, w(p) = δ(v0, vk) if and
only if w(p) = δ̂(v0, vk).
Furthermore, G has a negative-weight cycle using weight function w if and
only if G has a negative-weight cycle using weight function ŵ .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 36 / 42

All-Pairs Shortest Paths Johnson’s Algorithm for Sparse Graphs

Preserving Shortest Paths by Reweighting (Proof)

We start by showing that ŵ(p) = w(p) + h(v0)− h(vk).

ŵ(p) =
∑k

i=1 ŵ(vi−1, vi)

=
∑k

i=1(w(vi−1, vi) + h(vi−1)− h(vi))

=
∑k

i=1 w(vi−1, vi) + h(v0)− h(vk)
= w(p) + h(v0)− h(vk).

Any path p from v0 to vk has ŵ(p) = w(p) + h(v0)− h(vk).

h(v0) and h(vk) do not depend on the path. So, if one path from v0
to vk is shorter than another using weight function w , then it is also
shorter using ŵ . Thus, w(p) = δ(v0, vk) iff ŵ(p) = δ̂(v0, vk).

Finally, we show that G has a negative-weight cycle using w if and
only if G has a negative-weight cycle using ŵ .

Consider any cycle c = 〈v0, v1, . . . , vk〉, where v0 = vk . We have
ŵ(c) = w(c) + h(v0)− h(vk) = w(c). Thus c has negative weight
using w if and only if it has negative weight using ŵ .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 37 / 42

All-Pairs Shortest Paths Johnson’s Algorithm for Sparse Graphs

Producing Nonnegative Weights by Reweighting I

Next, we ensure ŵ(u, v) is nonnegative, for all edges (u, v) ∈ E .

Given a weighted, directed graph G = (V ,E) with weight function
w : E → R, we construct G ′ = (V ′,E ′), where V ′ = V ∪ {s}, for
some new vertex s 6∈ V , and E ′ = E ∪ {(s, v) : v ∈ V }.

We extend the weight function w so that w(s, v) = 0, for all v ∈ V .
Note that because s has no edges that enter it, no shortest paths in
G ′, other than those with source s, contain s.
Moreover, G ′ has no negative-weight cycles if and only if G has no
negative-weight cycles.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 38 / 42

All-Pairs Shortest Paths Johnson’s Algorithm for Sparse Graphs

Producing Nonnegative Weights by Reweighting II

Now suppose that G and G ′ have no negative-weight cycles.

Let us define h(v) = δ(s, v), for all v ∈ V ′.

By the Triangle Inequality, we have h(v) ≤ h(u) + w(u, v), for all
edges (u, v) ∈ E ′.

Thus, if we define the new weights ŵ by reweighting according to
ŵ(u, v) = w(u, v) + h(u)− h(v), we have
ŵ(u, v) = w(u, v) + h(u)− h(v) ≥ 0, as was our goal.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 39 / 42

All-Pairs Shortest Paths Johnson’s Algorithm for Sparse Graphs

Johnson’s Procedure

Assume the edges are stored in adjacency lists.

Output is D = (dij), where dij = δ̂(i , j), or “negative-weight cycle”.

Johnson(G ,w)

1. compute G ′, where G ′.V = G .V ∪ {s}, G ′.E = G .E ∪ {(s, v) : v ∈ G .V },
and w(s, v) = 0, for all v ∈ G .V

2. if BellmanFord(G ′,w , s) == FALSE
3. print “the input graph contains a negative-weight cycle”
4. else for each vertex v ∈ G ′.V

5. set h(v) to the value of δ(s, v) computed by the Bellman-Ford algorithm
6. for each edge (u, v) ∈ G ′.E

7. ŵ(u, v) = w(u, v) + h(u)− h(v)
8. let D = (duv) be a new n× n matrix
9. for each vertex u ∈ G .V

10. run Dijkstra(G , ŵ , u) to compute δ̂(u, v), for all v ∈ G .V

11. for each vertex v ∈ G .V

12. duv = δ̂(u, v) + h(v)− h(u)
13. return D

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 40 / 42

All-Pairs Shortest Paths Johnson’s Algorithm for Sparse Graphs

How Johnson Works

Line 1 produces G ′.

Line 2 runs Bellman-Ford on G ′ with weight function w and source s.

If G ′, hence G , contains a negative-weight cycle, Line 3 reports this.
Lines 4-12 assume that G ′ contains no negative-weight cycles.

Lines 4-5 set h(v) to the shortest-path weight δ(s, v), computed by the
Bellman-Ford algorithm, for all v ∈ V ′.
Lines 6-7 compute the new weights ŵ .
For each pair of vertices u, v ∈ V , the for loop of Lines 9-12 computes
the shortest-path weight δ̂(u, v) by calling Dijkstra’s algorithm once
from each vertex in V .
Line 12 stores in duv the correct shortest-path weight δ(u, v).

Finally, Line 13 returns the completed D matrix.

If we implement the min-priority queue in Dijkstra’s algorithm
efficiently, Johnson runs in O

(
|V |2 log |V |+ |V ||E |

)
time.

Even a simpler minheap implementation yields O (|V ||E | log |V |), still
asymptotically faster than Floyd-Warshall, if the graph is sparse.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 41 / 42

All-Pairs Shortest Paths Johnson’s Algorithm for Sparse Graphs

Illustrating Johnson

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 42 / 42

	Outline
	All-Pairs Shortest Paths
	Shortest Paths and Matrix Multiplication
	The Floyd-Warshall Algorithm
	Johnson's Algorithm for Sparse Graphs

