Introduction to Algorithms

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU)

Introduction to Algorithms

All-Pairs Shortest Paths

- Shortest Paths and Matrix Multiplication
- The Floyd-Warshall Algorithm
- Johnson's Algorithm for Sparse Graphs

The All-Pairs Shortest Paths Problem

- Consider a weighted, directed graph G = (V, E), with a weight function $w : E \to \mathbb{R}$, that maps edges to real-valued weights.
- We wish to find, for every pair of vertices u, v ∈ V, a shortest (least-weight) path from u to v, where the weight of a path is the sum of the weights of its constituent edges.
- We typically want the output in tabular form:

The entry in u's row and v's column should be the weight of a shortest path from u to v.

All-Pairs via Exhaustive Single Pair

- We can solve an all-pairs shortest-paths problem by running a single source shortest-paths algorithm |V| times, once for each vertex as the source.
 - If all edge weights are nonnegative, we can use Dijkstra's algorithm.
 - If we use the linear-array implementation of the min-priority queue, the running time is $O(|V|^3 + |V||E|) = O(|V|^3)$.
 - The binary min-heap implementation of the min-priority queue yields a running time of $O(|V||E|\log |V|)$, which is an improvement if the graph is sparse.
 - If the graph has negative-weight edges, we must run the slower Bellman-Ford algorithm once from each vertex.

The resulting running time is O $(|V|^2|E|)$, which on a dense graph is O $(|V|^4)$.

The Set Up and the Variables

- We mostly use an adjacency matrix representation.
- Assume that the vertices are numbered $1, 2, \ldots, |V|$.
- Then the input is an $n \times n$ matrix $W = (w_{ij})$, representing the edge weights of the *n*-vertex directed graph G = (V, E),

$$w_{ij} = \begin{cases} 0, & \text{if } i = j \\ \text{the weight of directed edge } (i,j), & \text{if } i \neq j \text{ and } (i,j) \in E \\ \infty, & \text{if } i \neq j \text{ and } (i,j) \notin E \end{cases}$$

- We allow negative-weight edges, but we assume for the time being that the input graph contains no negative-weight cycles.
- The tabular output of the all-pairs shortest-paths algorithms is an n × n matrix D = (d_{ij}), where entry d_{ij} contains the weight of a shortest path from vertex i to vertex j.
- If we let $\delta(i, j)$ denote the shortest path weight from vertex *i* to vertex *j*, then $d_{ij} = \delta(i, j)$ at termination.

Predecessor Matrix and Predecessor Subgraph

- To solve the all-pairs shortest-paths problem on an input adjacency matrix, we need to compute not only the shortest-path weights but also a **predecessor matrix** $\Pi = (\pi_{ij})$, where:
 - π_{ij} is NIL if either i = j or there is no path from i to j;
 - π_{ij} is the predecessor of j on some shortest path from i, otherwise.
- For each vertex $i \in V$, we define the **predecessor subgraph of** *G* for *i* as $G_{\pi,i} = (V_{\pi,i}, E_{\pi,i})$, where:

•
$$V_{\pi,i} = \{j \in V : \pi_{ij} \neq \mathsf{NIL}\} \cup \{i\};$$

•
$$E_{\pi,i} = \{(\pi_{ij},j) : j \in V_{\pi,i} - \{i\}\}.$$

• Just as the predecessor subgraph G_{π} is a shortest-paths tree for a given source vertex, the predecessor subgraph $G_{\pi,i}$ of G for i (induced by the *i*-th row of the Π matrix) should be a shortest-paths tree with root i.

Print All Pairs Shortest Paths Procedure

 If G_{π,i} is a shortest-paths tree, then the following procedure prints a shortest path from vertex *i* to vertex *j*.

PRINTALLPAIRSSHORTESTPATH(Π, i, j)

- 1. if i == j
- 2. print i
- 3. elseif $\pi_{ij} == \text{NIL}$
- 4. print "no path from" *i* "to" *j* "exists"
- 5. else PRINTALLPAIRSSHORTESTPATH(Π , *i*, π_{ij})
- 6. print j

Conventions and Notation

- We assume that the input graph G = (V, E) has *n* vertices, so that n = |V|.
- We use the convention of denoting matrices by uppercase letters, such as W, L or D, and their individual elements by subscripted lowercase letters, such as w_{ij}, l_{ij} or d_{ij}.
- Some matrices will have parenthesized superscripts, e.g., $L^{(m)} = (\ell_{ij}^{(m)})$ or $D^{(m)} = (d_{ij}^{(m)})$, to indicate iterates.
- Finally, for a given $n \times n$ matrix A, we assume that the value of n is stored in the attribute A.rows.

Subsection 1

Shortest Paths and Matrix Multiplication

Dynamic Programming for All-Pairs Shortest Paths

- We present a dynamic programming algorithm for the all-pairs shortest paths problem on a directed graph G = (V, E).
- Each major loop of the dynamic program will invoke an operation that is very similar to matrix multiplication, so that the algorithm will look like repeated matrix multiplication.
- We first develop a Θ(|V|⁴)-time algorithm for the all-pairs shortest paths problem and then improve its running time to Θ(|V|³ log |V|).
- Recall the steps for developing a dynamic programming algorithm:
 - 1. Characterize the structure of an optimal solution.
 - 2. Recursively define the value of an optimal solution.
 - 3. Compute the value of an optimal solution in a bottom-up fashion.
 - 4. Construct an optimal solution from computed information. This step will not be carried out in detail.

The Structure of a Shortest Path

- We characterize the structure of an optimal solution.
- For the all-pairs shortest paths problem on a graph G = (V, E), we have proven that all subpaths of a shortest path are shortest paths.
- Suppose we represent the graph by an adjacency matrix $W = (w_{ij})$.
- Consider a shortest path *p* from vertex *i* to vertex *j*, and suppose that *p* contains at most *m* edges.

Assuming that there are no negative-weight cycles, m is finite.

- If i = j, then p has weight 0 and no edges.
- If i ≠ j, then we decompose p into i ^{p'}→ k → j, where p' contains at most m-1 edges. We proved that p' is a shortest path from i to k. So

$$\delta(i,j) = \delta(i,k) + w_{kj}.$$

A Recursive Solution to All-Pairs Shortest-Paths

- Let l^(m)_{ij} be the minimum weight of any path from vertex i to vertex j that contains at most m edges.
 - When m = 0, there is a shortest path from i to j with no edges if and only if i = j. Thus, $\ell_{ij}^{(0)} = \begin{cases} 0, & \text{if } i = j \\ 1, & \text{if } i \neq j \end{cases}$.
 - For m ≥ 1, we compute l^(m)_{ij} as the minimum of l^(m-1)_{ij} (the weight of a shortest path from i to j consisting of at most m − 1 edges) and the minimum weight of any path from i to j consisting of at most m edges, obtained by looking at all possible predecessors k of j. Thus, we recursively define

$$\begin{split} \ell_{ij}^{(m)} &= \min\left(\ell_{ij}^{(m-1)}, \min_{1 \leq k \leq n} \{\ell_{ik}^{(m-1)} + w_{kj}\}\right) \\ &= \min_{1 \leq k \leq n} \{\ell_{ik}^{(m-1)} + w_{kj}\}. \end{split}$$

The latter equality follows since $w_{jj} = 0$, for all *j*.

The Shortest Path Weights $\delta(i,j)$

- If the graph contains no negative-weight cycles, then, for every pair of vertices *i* and *j* for which δ(*i*, *j*) < ∞, there is a shortest path from *i* to *j* that is simple and, thus, contains at most *n* − 1 edges.
- A path from vertex *i* to vertex *j* with more than *n* − 1 edges cannot have lower weight than a shortest path from *i* to *j*.
- The actual shortest-path weights are therefore given by

$$\delta(i,j) = \ell_{ij}^{(n-1)} = \ell_{ij}^{(n)} = \ell_{ij}^{(n+1)} = \cdots$$

Extending Shortest Paths

- With input $W = (w_{ij})$, we compute $L^{(1)}, L^{(2)}, \ldots, L^{(n-1)}$.
- The final matrix $L^{(n-1)}$ contains the actual shortest-path weights.
- Observe that $\ell_{ij}^{(1)} = w_{ij}$, for all vertices $i, j \in V$, whence $L^{(1)} = W$.
- The following procedure, given $L^{(m-1)}$ and W, returns $L^{(m)}$, i.e., it extends the shortest paths computed so far by one more edge.

EXTENDSHORTESTPATHS(L, W)

1.
$$n = L$$
.rows
2. let $L' = (\ell'_{ij})$ be a new $n \times n$ matrix
3. for $i = 1$ to n
4. for $j = 1$ to n
5. $\ell'_{ij} = \infty$
6. for $k = 1$ to n
7. $\ell'_{ij} = \min(\ell'_{ij}, \ell_{ik} + w_{kj})$
8. return L'

Computing the Shortest-Path Weights Bottom Up

• For all-pairs shortest paths, we compute the shortest-path weights by extending shortest paths edge by edge.

Letting $A \cdot B$ denote EXTENDSHORTESTPATHS(A, B), we compute the sequence of n - 1 matrices

 $L^{(1)} = L^{(0)}W = W, \ L^{(2)} = L^{(1)}W = W^2, \dots, L^{(n-1)} = L^{(n-2)}W = W^{n-1}.$

- The matrix $L^{(n-1)} = W^{n-1}$ contains the shortest-path weights.
- The following procedure computes this sequence in $\Theta(n^4)$ time.

SLOWALLPAIRSSHORTESTPATHS(W)

- 1. n = W.rows
- 2. $L^{(1)} = W$
- 3. for m = 2 to n 1
- 4. let $L^{(m)}$ be a new $n \times n$ matrix
- 5. $L^{(m)} = \text{ExtendShortestPaths}(L^{(m-1)}, W)$
- 6. return $L^{(n-1)}$

An Example

• A graph and the matrices $L^{(m)}$ computed by the procedure SLOWALLPAIRSSHORTESTPATHS.

Improving the Running Time

- We are interested in $L^{(n-1)}$; not in all $L^{(m)}$.
- Without negative-weight cycles, $L^{(m)} = L^{(n-1)}$, for all $m \ge n-1$.
- Since the EXTENDSHORTESTPATHS operation (".") is associative, we can compute L⁽ⁿ⁻¹⁾ with only ⌈log (n − 1)⌉ matrix products by computing:

$$L^{(1)} = W;$$

$$L^{(2)} = W^{2} = W \cdot W;$$

$$L^{(4)} = W^{4} = W^{2} \cdot W^{2};$$

$$\vdots$$

$$2^{\lceil \log(n-1) \rceil} = W^{2^{\lceil \log(n-1) \rceil}} = W^{2^{\lceil \log(n-1) \rceil} - 1} \cdot W^{2^{\lceil \log(n-1) \rceil} - 1}.$$

• Since $2^{\lceil \log (n-1) \rceil} \ge n-1$, the product $L^{(2^{\lceil \log (n-1) \rceil})}$ is equal to $L^{(n-1)}$.

L(

Computing the Sequence of Matrices

FASTERALLPAIRSSHORTESTPATHS(W)

- 1. n = W.rows
- 2. $L^{(1)} = W$
- 3. m = 1
- 4. while m < n 1
- 5. let $L^{(2m)}$ be a new $n \times n$ matrix
- 6. $L^{(2m)} = \text{EXTENDSHORTESTPATHS}(L^{(m)}, L^{(m)})$
- $7. \quad m=2m$
- 8. return $L^{(m)}$

Correctness and Time Requirements

- In each iteration of the while loop of Lines 4-7, we compute $L^{(2m)} = (L^{(m)})^2$, starting with m = 1.
- At the end of each iteration, we double the value of *m*.
- The final iteration computes L⁽ⁿ⁻¹⁾ by actually computing L^(2m), for some n − 1 ≤ 2m < 2n − 2, whence L^(2m) = L⁽ⁿ⁻¹⁾.
- The next time the test in Line 4 is performed, m has been doubled, So m ≥ n − 1 and the "while" test fails.

The procedure returns the last matrix it computed.

• The running time of FASTERALLPAIRSSHORTESTPATHS is $\Theta(n^3 \log n)$, since each of the $\lceil \log (n-1) \rceil$ matrix products takes $\Theta(n^3)$ time.

Subsection 2

The Floyd-Warshall Algorithm

Idea Behind the Floyd-Warshall Algorithm

- In the **Floyd-Warshall algorithm**, we again characterize the structure of a shortest path.
- The Floyd-Warshall algorithm considers the intermediate vertices of a shortest path, where an intermediate vertex of a simple path *ρ* = ⟨*v*₁, *v*₂,..., *v*_ℓ⟩ is any vertex in the set {*v*₂, *v*₃,..., *v*_{ℓ-1}}.
- The Floyd-Warshall algorithm relies on the following observation:
 - Under our assumption that the vertices of G are V = {1,2,...,n}, let us consider a subset {1,2,...,k} of vertices for some k.
 - For any pair of vertices i, j ∈ V, consider all paths from i to j whose intermediate vertices are all drawn from {1, 2, ..., k}, and let p be a minimum weight path among them (p is simple).
 - The Floyd-Warshall algorithm exploits a relationship between path p and shortest paths from i to j with all intermediate vertices in the set $\{1, 2, \ldots, k-1\}$. This relationship depends on whether or not k is an intermediate vertex of path p.

The Two Cases Considered by Floyd-Warshall

If k is not an intermediate vertex of path p, then all intermediate vertices of path p are in the set {1, 2, ..., k − 1}.

Thus, a shortest path from vertex *i* to vertex *j* with all intermediate vertices in the set $\{1, 2, ..., k - 1\}$ is also a shortest path from *i* to *j* with all intermediate vertices in the set $\{1, 2, ..., k\}$.

 If k is an intermediate vertex of path p, then we decompose p into *i* ^{p₁} → *k* ^{p₂} *j*. Then p₁ is a shortest path from *i* to k with all intermediate vertices in the set {1, 2, ..., k}.

p: all intermediate vertices in $\{1, 2, \dots, k\}$

Note that all intermediate vertices of p_1 are in the set $\{1, 2, ..., k - 1\}$. Therefore, p_1 is a shortest path from *i* to *k* with all intermediate vertices in the set $\{1, 2, ..., k - 1\}$.

Similarly, p_2 is a shortest path from vertex k to vertex j with all intermediate vertices in the set $\{1, 2, ..., k - 1\}$.

A Recursive Solution to the All-Pairs Shortest-Paths

- We define a recursive formulation of shortest path estimates.
- Let d_{ij}^(k) be the weight of a shortest path from vertex i to vertex j for which all intermediate vertices are in the set {1,2,...,k}.
- When k = 0, a path from vertex i to vertex j with no intermediate vertex numbered higher than 0 has no intermediate vertices at all.

Such a path has at most one edge, and hence $d_{ij}^{(0)} = w_{ij}$.

• Define $d_{ij}^{(k)}$ recursively by

$$d_{ij}^{(k)} = \begin{cases} w_{ij}, & \text{if } k = 0\\ \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right), & \text{if } k \ge 1 \end{cases}$$

 Because for any path, all intermediate vertices are in {1,2,...,n}, the matrix D⁽ⁿ⁾ = (d⁽ⁿ⁾_{ij}) gives d⁽ⁿ⁾_{ij} = δ(i,j), for all i, j ∈ V.

Computing Shortest-Path Weights Bottom Up

- We can use the following bottom-up procedure to compute the values $d_{ii}^{(k)}$ in order of increasing values of k.
 - Its input is an $n \times n$ matrix W.
 - The procedure returns the matrix $D^{(n)}$ of shortest path weights.

FLOYDWARSHALL(W)

1. n = W.rows

2.
$$D^{(0)} = W$$

- 3. for k = 1 to n
- 4. let $D^{(k)} = (d_{ii}^{(k)})$ be a new $n \times n$ matrix
- 5. for i = 1 to n

6. for
$$j = 1$$
 to n
7. $d_{ii}^{(k)} = \min(d_{ii}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)})$

8. return $D^{(n)}$

Running Time

- The running time of the Floyd-Warshall algorithm is determined by the triply nested for loops of Lines 3-7.
 - Because each execution of Line 7 takes O(1) time, the algorithm runs in time $\Theta(n^3)$.
- The code is tight, with no elaborate data structures, and so the constant hidden in the Θ-notation is small.
- Thus, the Floyd-Warshall algorithm is quite practical for even moderate-sized input graphs.

Constructing a Shortest Path

- There are a variety of different methods for constructing shortest paths in the Floyd-Warshall algorithm.
 - One way is to compute the matrix D of shortest-path weights and then construct the predecessor matrix Π from the D matrix.
 Given Π, the PRINTALLPAIRSSHORTESTPATH procedure will print the vertices on a given shortest path.
 - Alternatively, we can compute the predecessor matrix Π while the algorithm computes the matrices $D^{(k)}$. Specifically, we compute a sequence of matrices $\Pi^{(0)}, \Pi^{(1)}, \ldots, \Pi^{(n)}$, where $\Pi = \Pi^{(n)}$ and we define $\pi_{ij}^{(k)}$ as the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in the set $\{1, 2, \ldots, k\}$.

Constructing a Shortest Path (The Recursive Formulas)

• When k = 0, a shortest path from *i* to *j* has no intermediate vertices at all.

$$au_{ij}^{(0)} = \left\{ egin{array}{cc} \mathsf{NIL}, & ext{if } i=j ext{ or } w_{ij} = \infty \ i, & ext{if } i
eq j ext{ and } w_{ij} < \infty \end{array}
ight.$$

• For $k \geq 1$:

- If we take the path i ≤ k ≤ j, where k ≠ j, then the predecessor of j we choose is the same as the predecessor of j we chose on a shortest path from k with all intermediate vertices in the set {1,2,..., k − 1}.
- Otherwise, we choose the same predecessor of *j* that we chose on a shortest path from *i* with all intermediate vertices in the set {1, 2, ..., *k* − 1}.

Formally, for $k \geq 1$,

$$\pi_{ij}^{(k)} = \left\{ egin{array}{c} \pi_{ij}^{(k-1)}, & ext{if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \ \pi_{kj}^{(k-1)}, & ext{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \end{array}
ight..$$

Example

) ⁽²⁾ =	$\begin{pmatrix} 0 \\ \infty \\ \infty \\ 2 \\ \infty \end{pmatrix}$	3 0 4 5 ∞		4 1 5 0 6	$\begin{pmatrix} -4 \\ 7 \\ 11 \\ -2 \\ 0 \end{pmatrix}$	$\Pi^{(2)} =$	NIL NIL NIL 4 NIL	1 NIL 3 1 NIL	1 NIL NIL 4 NIL	2 2 2 NIL 5	$\begin{pmatrix} 1 \\ 2 \\ 2 \\ 1 \\ NIL \end{pmatrix}$	$D^{(5)} =$	$\begin{pmatrix} 0\\ 3\\ 7\\ 2\\ 8 \end{pmatrix}$	$ \begin{array}{c} 1 \\ 0 \\ 4 \\ -1 \\ 5 \end{array} $	$-3 \\ -4 \\ 0 \\ -5 \\ 1$	2 1 5 0 6	$\begin{pmatrix} -4 \\ -1 \\ 3 \\ -2 \\ 0 \end{pmatrix}$	$\Pi^{(5)} =$	(NIL 4 4 4 4	3 NIL 3 3 3	4 4 NIL 4 4	5 2 2 NIL 5	1 1 1 NIL	$\Big)$
	(∞)	∞	∞	6	0 /		NIL	NIL	NIL	5	NIL /		(8	2	1	6	0)		4	5	4	2	NIL)	/

George Voutsadakis (LSSU)

Introduction to Algorithms

June 2023

Transitive Closure of a Directed Graph

Given a directed graph G = (V, E) with vertex set V = {1, 2, ..., n}, we define the transitive closure of G as the graph G* = (V, E*), where

 $E^* = \{(i, j) : \text{there is a path from vertex } i \text{ to vertex } j \text{ in } G\}.$

- One way to compute G* in Θ(n³) time is to assign a weight of 1 to each edge of E and run the Floyd-Warshall algorithm.
 - If there is a path from vertex *i* to vertex *j*, we get $d_{ij} < n$.
 - Otherwise, we get $d_{ij} = \infty$.

Transitive Closure: Alternative Way

- For i, j, k = 1, 2, ..., n, define t^(k)_{ij} to be 1 if there exists a path in graph G from vertex i to vertex j with all intermediate vertices in the set {1, 2, ..., k}, and 0 otherwise.
- Then $G^* = (V, E^*)$ has (i, j) in E^* if and only if $t_{ij}^{(n)} = 1$.
- A recursive definition of $t_{ij}^{(k)}$ is:

$$= 0,$$

$$t_{ij}^{(0)} = \begin{cases} 0, & \text{if } i \neq j \text{ and } (i,j) \notin E \\ 1, & \text{if } i = j \text{ or } (i,j) \in E \end{cases}$$

• For $k \geq 1$,

• For k

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \lor (t_{ik}^{(k-1)} \land t_{kj}^{(k-1)}).$$

Computing the Transitive Closure

TRANSITIVECLOSURE(G)

1.
$$n = |G.V|$$

2. let $T^{(0)} = (t_{ij}^{(0)})$ be a new $n \times n$ matrix
3. for $i = 1$ to n
4. for $j = 1$ to n
5. if $i == j$ or $(i, j) \in G.E$
6. $t_{ij}^{(0)} = 1$
7. else $t_{ij}^{(0)} = 0$
8. for $k = 1$ to n
9. let $T^{(k)} = (t_{ij}^{(k)})$ be a new $n \times n$ matrix
10. for $i = 1$ to n
11. for $j = 1$ to n
12. $t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})$
13. return $T^{(n)}$

Example

Subsection 3

Johnson's Algorithm for Sparse Graphs

Goal of Johnson's Algorithm

- Johnson's algorithm finds shortest paths between all pairs in $O(|V|^2 \log |V| + |V||E|)$ time.
- For sparse graphs, it is asymptotically faster than either repeated squaring of matrices or the Floyd-Warshall algorithm.
- The algorithm either returns a matrix of shortest-path weights for all pairs of vertices or reports that the input graph contains a negative weight cycle.
- Johnson's algorithm uses as subroutines both Dijkstra's algorithm and the Bellman-Ford algorithm.

Johnson's Algorithm and Reweighting

• Johnson's algorithm uses the technique of reweighting:

• If all edge weights w in a graph G = (V, E) are nonnegative, we can find shortest paths between all pairs of vertices by running Dijkstra's algorithm once from each vertex.

With an efficient implementation of a min-priority queue, the running time of this all-pairs algorithm is $O(|V|^2 \log |V| + |V||E|)$.

- If G has negative-weight edges but no negative-weight cycles, we compute a new set of nonnegative edge weights \widehat{w} that allows us to use the same method, which must satisfy:
 - 1. For all pairs of vertices $u, v \in V$, a path p is a shortest path from u to v using weight function w if and only if p is also a shortest path from u to v using weight function \widehat{w} .
 - 2. For all edges (u, v), the new weight $\widehat{w}(u, v)$ is nonnegative.

We can preprocess G to determine the new weight function \hat{w} in O(|V||E|) time.

Preserving Shortest Paths by Reweighting

• We use:

- δ for shortest-path weights derived from w;
- $\hat{\delta}$ for shortest-path weights derived from \hat{w} .

Lemma (Reweighting does not Change Shortest Paths)

Given a weighted, directed graph G = (V, E) with weight function $w : E \to \mathbb{R}$, let $h : V \to \mathbb{R}$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, define

$$\widehat{w}(u,v) = w(u,v) + h(u) - h(v).$$

Let $p = \langle v_0, v_1, \dots, v_k \rangle$ be any path from vertex v_0 to vertex v_k . Then p is a shortest path from v_0 to v_k with weight function w if and only if it is a shortest path with weight function \hat{w} . That is, $w(p) = \delta(v_0, v_k)$ if and only if $w(p) = \hat{\delta}(v_0, v_k)$.

Furthermore, G has a negative-weight cycle using weight function w if and only if G has a negative-weight cycle using weight function \hat{w} .

George Voutsadakis (LSSU)

Introduction to Algorithms

Preserving Shortest Paths by Reweighting (Proof)

• We start by showing that $\widehat{w}(p) = w(p) + h(v_0) - h(v_k)$.

$$\widehat{w}(p) = \sum_{i=1}^{k} \widehat{w}(v_{i-1}, v_i) = \sum_{i=1}^{k} (w(v_{i-1}, v_i) + h(v_{i-1}) - h(v_i)) = \sum_{i=1}^{k} w(v_{i-1}, v_i) + h(v_0) - h(v_k) = w(p) + h(v_0) - h(v_k).$$

Any path p from v_0 to v_k has $\widehat{w}(p) = w(p) + h(v_0) - h(v_k)$.

 $h(v_0)$ and $h(v_k)$ do not depend on the path. So, if one path from v_0 to v_k is shorter than another using weight function w, then it is also shorter using \widehat{w} . Thus, $w(p) = \delta(v_0, v_k)$ iff $\widehat{w}(p) = \widehat{\delta}(v_0, v_k)$.

• Finally, we show that G has a negative-weight cycle using w if and only if G has a negative-weight cycle using \hat{w} .

Consider any cycle $c = \langle v_0, v_1, \ldots, v_k \rangle$, where $v_0 = v_k$. We have $\widehat{w}(c) = w(c) + h(v_0) - h(v_k) = w(c)$. Thus c has negative weight using w if and only if it has negative weight using \widehat{w} .

Producing Nonnegative Weights by Reweighting

- Next, we ensure $\widehat{w}(u, v)$ is nonnegative, for all edges $(u, v) \in E$.
- Given a weighted, directed graph G = (V, E) with weight function $w : E \to \mathbb{R}$, we construct G' = (V', E'), where $V' = V \cup \{s\}$, for some new vertex $s \notin V$, and $E' = E \cup \{(s, v) : v \in V\}$.
- We extend the weight function w so that w(s, v) = 0, for all $v \in V$.
 - Note that because *s* has no edges that enter it, no shortest paths in *G'*, other than those with source *s*, contain *s*.
 - Moreover, G' has no negative-weight cycles if and only if G has no negative-weight cycles.

Producing Nonnegative Weights by Reweighting II

- Now suppose that G and G' have no negative-weight cycles.
- Let us define $h(v) = \delta(s, v)$, for all $v \in V'$.
- By the Triangle Inequality, we have h(v) ≤ h(u) + w(u, v), for all edges (u, v) ∈ E'.
- Thus, if we define the new weights \hat{w} by reweighting according to $\hat{w}(u, v) = w(u, v) + h(u) h(v)$, we have $\hat{w}(u, v) = w(u, v) + h(u) h(v) \ge 0$, as was our goal.

Johnson's Procedure

- Assume the edges are stored in adjacency lists.
- Output is $D = (d_{ij})$, where $d_{ij} = \hat{\delta}(i, j)$, or "negative-weight cycle".

JOHNSON(G, w)

- 1. compute G', where $G'.V = G.V \cup \{s\}$, $G'.E = G.E \cup \{(s, v) : v \in G.V\}$, and w(s, v) = 0, for all $v \in G.V$
- 2. if BellmanFord(G', w, s) == FALSE
- print "the input graph contains a negative-weight cycle"
- 4. else for each vertex $v \in G'.V$
- 5. set h(v) to the value of $\delta(s, v)$ computed by the Bellman-Ford algorithm
- 6. for each edge $(u, v) \in G'.E$
- 7. $\widehat{w}(u,v) = w(u,v) + h(u) h(v)$
- 8. let $D = (d_{uv})$ be a new $n \times n$ matrix
- 9. for each vertex $u \in G.V$
- 10. run DIJKSTRA (G, \widehat{w}, u) to compute $\widehat{\delta}(u, v)$, for all $v \in G.V$
- 11. for each vertex $v \in G.V$

12.
$$d_{uv} = \hat{\delta}(u, v) + h(v) - h(u)$$

13. return D

How JOHNSON Works

- Line 1 produces G'.
- Line 2 runs Bellman-Ford on G' with weight function w and source s.
 - If G', hence G, contains a negative-weight cycle, Line 3 reports this.
 - Lines 4-12 assume that G' contains no negative-weight cycles.
 - Lines 4-5 set h(v) to the shortest-path weight $\delta(s, v)$, computed by the Bellman-Ford algorithm, for all $v \in V'$.
 - Lines 6-7 compute the new weights \widehat{w} .
 - For each pair of vertices u, v ∈ V, the for loop of Lines 9-12 computes the shortest-path weight δ(u, v) by calling Dijkstra's algorithm once from each vertex in V.
 - Line 12 stores in d_{uv} the correct shortest-path weight $\delta(u, v)$.
- Finally, Line 13 returns the completed D matrix.
- If we implement the min-priority queue in Dijkstra's algorithm efficiently, JOHNSON runs in O $(|V|^2 \log |V| + |V||E|)$ time.
- Even a simpler minheap implementation yields $O(|V||E|\log |V|)$, still asymptotically faster than Floyd-Warshall, if the graph is sparse.

George Voutsadakis (LSSU)

Illustrating JOHNSON

