
Introduction to Algorithms

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 1 / 52

Outline

1 Maximum Flow
Flow Networks
The Ford-Fulkerson Method
The Edmonds-Karp Algorithm
Maximum Bipartite Matching

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 2 / 52

Maximum Flow Flow Networks

Subsection 1

Flow Networks

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 3 / 52

Maximum Flow Flow Networks

Flow Networks

A flow network G = (V ,E) is a directed graph in which each edge
(u, v) ∈ E has a nonnegative capacity c(u, v) ≥ 0.

We require that if E contains (u, v), then there is no edge (v , u).
If (u, v) 6∈ E , then we define c(u, v) = 0, and disallow self-loops.

We distinguish a source vertex s and a sink vertex t.

For convenience, we assume that each vertex lies on some path from
the source to the sink. That is, for each vertex v ∈ V , the flow
network contains a path s v t.

The graph is therefore connected and, since each vertex other than s

has at least one entering edge, |E | ≥ |V | − 1.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 4 / 52

Maximum Flow Flow Networks

Flows and the Max Flow Problem

Let G = (V ,E) be a flow network with a capacity function c .

Let s be the source of the network, and let t be the sink.

A flow in G is a real-valued function f : V × V → R that satisfies
the following two properties:

Capacity constraint: For all u, v ∈ V , 0 ≤ f (u, v) ≤ c(u, v).

Flow conservation: For all u ∈ V − {s, t},
∑

v∈V

f (v , u) =
∑

v∈V

f (u, v).

When (u, v) 6∈ E , there can be no flow from u to v , and f (u, v) = 0.

We call f (u, v) the flow from u to v .

The value of f is defined as |f | =
∑

v∈V f (s, v)−
∑

v∈V f (v , s).

Maximum Flow Problem:

Given a flow network G with source s and sink t, find a flow of
maximum value.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 5 / 52

Maximum Flow Flow Networks

Example of Network Flow

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 6 / 52

Maximum Flow Flow Networks

Modeling Problems with Antiparallel Edges

We call two edges (v1, v2) and (v2, v1) antiparallel.

Since we disallowed such edges in a flow network, to model such
edges, we transform the network into an equivalent one not
containing antiparallel edges.

We choose one of the two antiparallel edges, say (v1, v2), and split it by
adding a new vertex v ′;
We replace edge (v1, v2) with the pair of edges (v1, v

′) and (v ′, v2).
We set the capacity of both new edges to the capacity of the original.

The resulting network is equivalent to the original one and satisfies
the flow network conditions.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 7 / 52

Maximum Flow Flow Networks

Networks with Multiple Sources and Sinks

A maximum-flow problem may have several sources {s1, s2, . . . , sm}
and sinks {t1, t2, . . . , tn}, rather than just one of each.

We can reduce the problem of determining a maximum flow in a
network with multiple sources and multiple sinks to an ordinary
maximum-flow problem.

We convert such a network to an ordinary flow network.

We add a supersource s and add a
directed edge (s, si) with capacity
c(s, si) = ∞, for i = 1, 2, . . . ,m.

We add a supersink t and a directed
edge (ti , t), with capacity c(ti , t) =
∞, for each i = 1, 2, . . . , n.

The single source s simply provides as much flow as desired for the
multiple sources si , and the single sink t likewise consumes as much
flow as desired for the multiple sinks ti .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 8 / 52

Maximum Flow The Ford-Fulkerson Method

Subsection 2

The Ford-Fulkerson Method

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 9 / 52

Maximum Flow The Ford-Fulkerson Method

The Ford-Fulkerson Method

The Ford-Fulkerson method for solving the maximum flow problem
iteratively increases the value of the flow.

Start with f (u, v) = 0, for all u, v ∈ V , giving an initial flow of value 0.
At each iteration, increase the flow value in G by finding an
“augmenting path” in an associated “residual network” Gf .
Once we know the edges of an augmenting path in Gf , we can easily
identify specific edges in G for which we can change the flow so that
we increase the value of the flow.

Although each iteration of the Ford-Fulkerson method increases the
value of the flow, we shall see that the flow on any particular edge of
G may increase or decrease.

Decreasing the flow on some edges may be necessary in order to enable
an algorithm to send more flow from the source to the sink.

We repeatedly augment the flow until the residual network has no
more augmenting paths.

The max-flow min-cut theorem assures a max flow at termination.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 10 / 52

Maximum Flow The Ford-Fulkerson Method

The Ford-Fulkerson Procedure

FordFulkersonMethod(G , s, t)

1. initialize flow f to 0

2. while there exists an augmenting path p in the residual network Gf

3. augment flow f along p

4. return f

Intuitively, given a flow network G and a flow f , the residual network
Gf consists of edges with capacities that represent how we can
change the flow on edges of G .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 11 / 52

Maximum Flow The Ford-Fulkerson Method

Description of the Residual Networks

An edge of the flow network can admit an amount of additional flow
equal to the edge’s capacity minus the flow on that edge.

If that value is positive, we place that edge into Gf with a “residual
capacity” of cf (u, v) = c(u, v)− f (u, v).

The only edges of G in Gf are those that can admit more flow;
Those edges (u, v) whose flow equals their capacity have cf (u, v) = 0,
and they are not in Gf .
Gf may also contain edges that are not in G :

To increase the total flow, we may need to decrease the flow f (u, v) on
a particular edge in G .
So we place an edge (v , u) into Gf with residual capacity
cf (v , u) = f (u, v), i.e., an edge that can admit flow in the opposite
direction to (u, v), at most canceling out the flow on (u, v).
These reverse edges in the residual network allow an algorithm to send
back flow it has already sent along an edge amounting to decreasing
the flow on the edge.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 12 / 52

Maximum Flow The Ford-Fulkerson Method

Formal Treatment of Residual Networks

Consider a flow network G = (V ,E) with source s and sink t.

Let f be a flow in G , and consider a pair of vertices u, v ∈ V .

We define the residual capacity cf (u, v) by

cf (u, v) =







c(u, v)− f (u, v), if (u, v) ∈ E

f (v , u), if (v , u) ∈ E

0, otherwise

Since (u, v) ∈ E implies (v , u) 6∈ E , exactly one case in the preceding
equation applies to each ordered pair of vertices.

Given a flow network G = (V ,E) and a flow f , the residual network

of G induced by f is Gf = (V ,Ef), where

Ef = {(u, v) ∈ V × V : cf (u, v) > 0}.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 13 / 52

Maximum Flow The Ford-Fulkerson Method

Example

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 14 / 52

Maximum Flow The Ford-Fulkerson Method

Augmentations

Observe that the residual network Gf is similar to a flow network with
capacities given by cf .

It does not satisfy our definition of a flow network because it may
contain both an edge (u, v) and its reversal (v , u).

Other than this difference, a residual network has the same properties
as a flow network, and we can define a flow in the residual network Gf

with respect to capacities cf .

If f is a flow in G and f ′ is a flow in the corresponding residual
network Gf , we define f ↑ f ′, the augmentation of flow f by f ′, to
be a function from V × V to R, defined by

(f ↑ f ′)(u, v) =

{

f (u, v) + f ′(u, v)− f ′(v , u), if (u, v) ∈ E

0, otherwise

The flow on (u, v) is increased by f ′(u, v);
The flow on (u, v) is decreased by f ′(v , u) (cancelation).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 15 / 52

Maximum Flow The Ford-Fulkerson Method

Flow After Augmentation (Capacities)

Lemma

Let G = (V ,E) be a flow network with source s and sink t and let f be a
flow in G . Let Gf be the residual network of G induced by f and let f ′ be
a flow in Gf . Then f ↑ f ′ is a flow in G with value |f ↑ f ′| = |f |+ |f ′|.

Claim: f ↑ f ′ obeys the capacity constraint for each edge in E and
flow conservation at each vertex in V − {s, t}.

For the capacity constraint, if (u, v) ∈ E , then cf (v , u) = f (u, v).
Hence f ′(v , u) ≤ cf (v , u) = f (u, v). So we get

(f ↑ f ′)(u, v) = f (u, v) + f ′(u, v)− f ′(v , u)
≥ f (u, v) + f ′(u, v)− f (u, v) = f ′(u, v) ≥ 0.

(f ↑ f ′)(u, v) = f (u, v) + f ′(u, v)− f ′(v , u)
≤ f (u, v) + f ′(u, v) ≤ f (u, v) + cf (u, v)
= f (u, v) + c(u, v)− f (u, v) = c(u, v).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 16 / 52

Maximum Flow The Ford-Fulkerson Method

Flow After Augmentation (Flow Conservation)

For flow conservation, because both f and f ′ obey flow conservation,
we have, for all u ∈ V − {s, t},

∑

v∈V (f ↑ f ′)(u, v) =
∑

v∈V (f (u, v) + f ′(u, v)− f ′(v , u))
=

∑

v∈V f (u, v) +
∑

v∈V f ′(u, v)
−

∑

v∈V f ′(v , u)
=

∑

v∈V f (v , u) +
∑

v∈V f ′(v , u)
−

∑

v∈V f ′(u, v)
(by flow conservation)

=
∑

v∈V (f (v , u) + f ′(v , u)− f ′(u, v))
=

∑

v∈V (f ↑ f ′)(v , u).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 17 / 52

Maximum Flow The Ford-Fulkerson Method

Value of Flow After Augmentation

Finally, we compute the value of (f ↑ f ′).

Recall that we disallow antiparallel edges in G (but not in Gf).

Hence, for each vertex v ∈ V , we know that there can be an edge
(s, v) or (v , s), but never both.

We define:
V1 = {v : (s, v) ∈ E}, the set of vertices with edges from s;
V2 = {v : (v , s) ∈ E}, the set of vertices with edges to s.

We have V1 ∪ V2 ⊆ V and, since we disallow antiparallel edges,
V1 ∩ V2 = ∅.

We now compute

|f ↑ f ′| =
∑

v∈V (f ↑ f ′)(s, v) −
∑

v∈V (f ↑ f ′)(v , s)

=
∑

v∈V1
(f ↑ f ′)(s, v)−

∑

v∈V2
(f ↑ f ′)(v , s).

((f ↑ f ′)(w , x) = 0, if (w , x) 6∈ E .)

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 18 / 52

Maximum Flow The Ford-Fulkerson Method

Value of Flow After Augmentation (Cont’d)

Next, we apply the definition of f ↑ f ′ to the preceding equation, and
then reorder and group terms to obtain

|f ↑ f ′| =
∑

v∈V1
(f (s, v) + f ′(s, v)− f ′(v , s))

−
∑

v∈V2
(f (v , s) + f ′(v , s)− f ′(s, v))

=
∑

v∈V1
f (s, v) +

∑

v∈V1
f ′(s, v)−

∑

v∈V1
f ′(v , s)

−
∑

v∈V2
f (v , s)−

∑

v∈V2
f ′(v , s) +

∑

v∈V2
f ′(s, v)

=
∑

v∈V1
f (s, v)−

∑

v∈V2
f (v , s) +

∑

v∈V1
f ′(s, v)

+
∑

v∈V2
f ′(s, v)−

∑

v∈V1
f ′(v , s)−

∑

v∈V2
f ′(v , s)

=
∑

v∈V1
f (s, v)−

∑

v∈V2
f (v , s)

+
∑

v∈V1∪V2
f ′(s, v)−

∑

v∈V1∪V2
f ′(v , s).

We can extend all four summations to sum over V , since each
additional term has value 0. We thus have

|f ↑ f ′| =
∑

v∈V

f (s, v)−
∑

v∈V

f (v , s)+
∑

v∈V

f ′(s, v)−
∑

v∈V

f ′(v , s) = |f |+ |f ′|.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 19 / 52

Maximum Flow The Ford-Fulkerson Method

Augmenting Paths and Residual Capacity

Given a flow network G = (V ,E) and a flow f , an augmenting path

p is a simple path from s to t in the residual network Gf .

By the definition of the residual net-
work, we may increase the flow on an
edge (u, v) of an augmenting path by
up to cf (u, v) without violating a ca-
pacity constraint in G .

We call the maximum amount by which we can increase the flow on
each edge in an augmenting path p the residual capacity of p, given
by cf (p) = min {cf (u, v) : (u, v) is on p}.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 20 / 52

Maximum Flow The Ford-Fulkerson Method

Flow Along an Augmenting Path

Lemma

Let G = (V ,E) be a flow network, f a flow in G and p an augmenting
path in Gf . Define a function fp : V × V → R by

fp(u, v) =

{

cf (p), if (u, v) is on p

0, otherwise
.

Then, fp is a flow in Gf with value |fp| = cf (p) > 0.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 21 / 52

Maximum Flow The Ford-Fulkerson Method

Increasing a Flow via Augmenting Paths

The following corollary shows that if we augment f by fp, we get
another flow in G whose value is closer to the maximum.

Corollary

Let G = (V ,E) be a flow network, f a flow in G and p an augmenting
path in Gf . Let fp be the flow along path p, and suppose that we augment
f by fp. Then the function f ↑ fp is a flow in G with value

|f ↑ fp| = |f |+ |fp | > |f |.

Immediate from preceding lemmas.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 22 / 52

Maximum Flow The Ford-Fulkerson Method

Cuts of Flow Networks

The Ford-Fulkerson method repeatedly augments the flow along
augmenting paths until it has found a maximum flow.

When the algorithm terminates, we have actually found a maximum
flow, since the max-flow min-cut theorem tells us that a flow is
maximum if and only if its residual network contains no augmenting
path.

A cut (S ,T) of flow network G = (V ,E) is a partition of V into S

and T = V − S , such that s ∈ S and t ∈ T .

If f is a flow, then the net flow f (S ,T) across the cut (S ,T) is
defined to be

f (S ,T) =
∑

u∈S

∑

v∈T

f (u, v)−
∑

u∈S

∑

v∈T

f (v , u).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 23 / 52

Maximum Flow The Ford-Fulkerson Method

Capacity of Cuts and Minimum Cuts

The capacity of a cut (S ,T) is

c(S ,T) =
∑

u∈S

∑

v∈T

c(u, v).

A minimum cut of a network is a cut whose capacity is minimum
over all cuts of the network.
Note the following important difference:

For capacity we count only the edges going from S to T ;
For flow, we consider flow from S to T minus flow from T to S .

Example: Consider the cut ({s, v1, v2}, {v3, v4, t}) of the figure.

The net flow across this cut is
f (v1, v3)+ f (v2, v4)− f (v3, v2) =
12 + 11− 4 = 19.
The capacity of the cut is
c(v1, v3) + c(v2, v4) = 12+ 14 =
26.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 24 / 52

Maximum Flow The Ford-Fulkerson Method

Cuts and Flows

Lemma

Let f be a flow in a flow network G with source s and sink t and let
(S ,T) be any cut of G . Then the net flow across (S ,T) is f (S ,T) = |f |.

We can rewrite the flow conservation condition for any node
u ∈ V − {s, t} as

∑

v∈V f (u, v)−
∑

v∈V f (v , u) = 0.

Taking the definition of |f | and adding the left-hand side of the
preceding equation, summed over all vertices in S − {s}, gives

|f | =
∑

v∈V f (s, v)−
∑

v∈V f (v , s)
+

∑

u∈S−{s}(
∑

v∈V f (u, v)−
∑

v∈V f (v , u))

=
∑

v∈V f (s, v)−
∑

v∈V f (v , s)
+

∑

u∈S−{s}

∑

v∈V f (u, v)−
∑

u∈S−{s}

∑

v∈V f (v , u)

=
∑

v∈V (f (s, v) +
∑

u∈S−{s} f (u, v))

−
∑

v∈V (f (v , s) +
∑

u∈S−{s} f (v , u))

=
∑

v∈V

∑

u∈S f (u, v)−
∑

v∈V

∑

u∈S f (v , u).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 25 / 52

Maximum Flow The Ford-Fulkerson Method

Cuts and Flows (Cont’d)

Because V = S ∪ T and S ∩ T = ∅, we can split each summation
over V into summations over S and T .

|f | =
∑

v∈S

∑

u∈S f (u, v) +
∑

v∈T

∑

u∈S f (u, v)
−

∑

v∈S

∑

u∈S f (v , u)−
∑

v∈T

∑

u∈S f (v , u)
=

∑

v∈T

∑

u∈S f (u, v)−
∑

v∈T

∑

u∈S f (v , u)
+ (

∑

v∈S

∑

u∈S f (u, v)−
∑

v∈S

∑

u∈S f (v , u)).

The two summations within the parentheses are actually the same,
since for all x , y ∈ V , f (x , y) appears once in each summation.

Hence, these summations cancel, and we have

|f | =
∑

u∈S

∑

v∈T

f (u, v)−
∑

u∈S

∑

v∈T

f (v , u) = f (S ,T).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 26 / 52

Maximum Flow The Ford-Fulkerson Method

Cut Capacities Bound the Value of a Flow

Corollary

The value of any flow f in a flow network G is bounded from above by the
capacity of any cut of G .

Let (S ,T) be any cut of G and let f be any flow. By the lemma and
the capacity constraint,

|f | = f (S ,T)
=

∑

u∈S

∑

v∈T f (u, v)−
∑

u∈S

∑

v∈T f (v , u)
≤

∑

u∈S

∑

v∈T f (u, v)
≤

∑

u∈S

∑

v∈T c(u, v)
= c(S ,T).

Therefore, the value of a maximum flow in a network is bounded from
above by the capacity of a minimum cut of the network.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 27 / 52

Maximum Flow The Ford-Fulkerson Method

The Max-Flow Min-Cut Theorem

The value of a maximum flow is in fact equal to the capacity of a
minimum cut.

Theorem (The Max-Flow Min-Cut Theorem)

If f is a flow in a flow network G = (V ,E) with source s and sink t, then
the following conditions are equivalent:

1. f is a maximum flow in G .

2. The residual network Gf contains no augmenting paths.

3. |f | = c(S ,T), for some cut (S ,T) of G .

1⇒2: Suppose for the sake of contradiction that f is a maximum flow
in G but that Gf has an augmenting path p. Then, the flow found by
augmenting f by fp is a flow in G with value strictly greater than |f |.
This contradicts the assumption that f is a maximum flow.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 28 / 52

Maximum Flow The Ford-Fulkerson Method

The Max-Flow Min-Cut Theorem (Cont’d)

2⇒3: Suppose that Gf has no augmenting path, that is, that Gf

contains no path from s to t.

Define

S = {v ∈ V : there exists a path from s to v in Gf };
T = V − S .

The partition (S ,T) is a cut: s ∈ S , and t 6∈ S because there is no
path from s to t in Gf .

Consider a pair of vertices u ∈ S , v ∈ T .

If (u, v) ∈ E , we must have f (u, v) = c(u, v), since otherwise
(u, v) ∈ Ef , which would place v in set S .
If (v , u) ∈ E , we must have f (v , u) = 0, because otherwise
cf (u, v) = f (v , u) would be positive and we would have (u, v) ∈ Ef ,
which would place v in S .
If neither (u, v) nor (v , u) is in E , then f (u, v) = f (v , u) = 0.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 29 / 52

Maximum Flow The Ford-Fulkerson Method

The Max-Flow Min-Cut Theorem (Conclusion)

We thus have

f (S ,T) =
∑

u∈S

∑

v∈T f (u, v)−
∑

v∈T

∑

u∈S f (v , u)

=
∑

u∈S

∑

v∈T c(u, v)−
∑

v∈T

∑

u∈S 0

= c(S ,T).

Therefore, |f | = f (S ,T) = c(S ,T).

3⇒1: |f | ≤ c(S ,T), for all cuts (S ,T). The condition |f | = c(S ,T),
thus, implies that f is a maximum flow.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 30 / 52

Maximum Flow The Ford-Fulkerson Method

The Basic Ford-Fulkerson Algorithm

In each iteration of the Ford-Fulkerson method, we find some
augmenting path p and use p to modify the flow f .

We replace f by f ↑ fp, obtaining a new flow of value |f |+ |fp|.
The following implementation computes the maximum flow in a flow
network G = (V ,E) by updating the flow attribute (u, v).f for each
edge (u, v) ∈ E .

If (u, v) 6∈ E , we assume implicitly that (u, v).f = 0.
We also assume that we are given the capacities c(u, v) along with the
flow network, and c(u, v) = 0, if (u, v) 6∈ E .

We compute the residual capacity in accordance with

cf (u, v) =







c(u, v)− f (u, v), if (u, v) ∈ E

f (v , u), if (v , u) ∈ E

0, otherwise
.

The expression cf (p) is a temporary variable that stores the residual
capacity of the path p.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 31 / 52

Maximum Flow The Ford-Fulkerson Method

The Basic Ford-Fulkerson Procedure

FordFulkerson(G , s, t)

1. for each edge (u, v) ∈ G .E

2. (u, v).f = 0

3. while there exists a path p from s to t in the residual network Gf

4. cf (p) = min {cf (u, v) : (u, v) is in p}

5. for each edge (u, v) in p

6. if (u, v) ∈ E

7. (u, v).f = (u, v).f + cf (p)

8. else (v , u).f = (v , u).f − cf (p)

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 32 / 52

Maximum Flow The Ford-Fulkerson Method

Illustrating the FordFulkerson

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 33 / 52

Maximum Flow The Ford-Fulkerson Method

How FordFulkerson Works

Lines 1-2 initialize the flow f to 0.

The while loop of Lines 3-8 repeatedly finds an augmenting path p in
Gf and augments flow f along p by the residual capacity cf (p).

Each residual edge in path p is either an edge in the original network
or the reversal of an edge in the original network.

Lines 6-8 update the flow in each case appropriately, adding flow when
the residual edge is an original edge and subtracting it otherwise.

When no augmenting paths exist, the flow f is a maximum flow.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 34 / 52

Maximum Flow The Ford-Fulkerson Method

Analysis of Ford-Fulkerson

The running time of FordFulkerson depends on how we find the
augmenting path p in Line 3.

If we find the augmenting path by using a breadth-first search, the
algorithm runs in polynomial time.

Before proving this result, we obtain a simple bound for the case in
which we choose the augmenting path arbitrarily and all capacities are
integers.

If f ∗ denotes a maximum flow in the transformed network, then a
straightforward implementation of FordFulkerson executes the
while loop of Lines 3-8 at most |f ∗| times, since the flow value
increases by at least one unit in each iteration.
We can perform the work done within the while loop efficiently if we
implement the flow network G = (V ,E) with the right data structure
and find an augmenting path by a linear-time algorithm.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 35 / 52

Maximum Flow The Ford-Fulkerson Method

Analysis of Ford-Fulkerson: Implementation Details

We assume that we keep a data structure corresponding to a directed
graph G ′ = (V ,E ′), where E ′ = {(u, v) : (u, v) ∈ E or (v , u) ∈ E}.

Edges in the network G are also edges in G ′, and therefore we can
easily maintain capacities and flows in this data structure.

Given a flow f on G , the edges in the residual network Gf consist of
all edges (u, v) of G ′, such that cf (u, v) > 0.

The time to find a path in a residual network is therefore
O (|V |+ |E ′|) = O (|E |), if we use either depth-first search or
breadth-first search.

Each iteration of the while loop thus takes O (|E |) time, as does the
initialization in Lines 1-2.

So the total running time of the FordFulkerson is O (|E ||f ∗|).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 36 / 52

Maximum Flow The Edmonds-Karp Algorithm

Subsection 3

The Edmonds-Karp Algorithm

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 37 / 52

Maximum Flow The Edmonds-Karp Algorithm

An Unfortunate Scenario

In the flow network a maximum flow has value 2,000,000:

1,000,000 units of flow traverse the path s → u → t;
Another 1,000,000 units traverse the path s → v → t.

If the first augmenting path found by FordFulkerson is
s → u → v → t, the flow has value 1 after the first iteration.

If the second iteration finds the augmenting path s → v → u → t,
the flow then has value 2.
If we continue choosing:

the augmenting path s → u → v → t in the odd-numbered iterations;
the augmenting path s → v → u → t in the even-numbered iterations,

we would perform a total of 2,000,000 augmentations, increasing the
flow value by only 1 unit in each.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 38 / 52

Maximum Flow The Edmonds-Karp Algorithm

The Edmonds-Karp Version

The bound on FordFulkerson can be improved if we implement
the computation of the augmenting path p in Line 3 using breadth
first search.

We choose the augmenting path as a shortest path from s to t in the
residual network, where each edge has unit distance (weight).

We call the Ford-Fulkerson method so implemented the
Edmonds-Karp algorithm.

We prove that the Edmonds-Karp algorithm runs in O
(

|V ||E |2
)

time.

The analysis depends on the distances to vertices in the residual
network Gf .

We use the notation δf (u, v) for the shortest-path distance from u to
v in Gf , where each edge has unit distance.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 39 / 52

Maximum Flow The Edmonds-Karp Algorithm

Monotonicity of the Shortest-Path Distance δf (s, v) in Gf

Lemma

If the Edmonds-Karp algorithm is run on a flow network G = (V ,E) with
source s and sink t, then for all vertices v ∈ V − {s, t}, the shortest-path
distance δf (s, v) in the residual network Gf increases monotonically with
each flow augmentation.

We will suppose that for some vertex v ∈ V − {s, t}, there is a flow
augmentation that causes the shortest-path distance from s to v to
decrease and derive a contradiction.

Let f be the flow just before the first augmentation that decreases
some shortest-path distance. Let f ′ be the flow just afterward. Let v
be the vertex with the minimum δf ′(s, v) whose distance was
decreased by the augmentation, so that δf ′(s, v) < δf (s, v).

Let p = s u → v be a shortest path from s to v in Gf ′ .

So (u, v) ∈ Ef ′ and δf ′(s, u) = δf ′(s, v)− 1.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 40 / 52

Maximum Flow The Edmonds-Karp Algorithm

Monotonicity of δf (s, v) (Cont’d)

Because of the choice of v , we know that the distance label of vertex
u did not decrease, i.e., δf ′(s, u) ≥ δf (s, u).

Claim: (u, v) 6∈ Ef .

If (u, v) ∈ Ef , then δf (s, v) ≤ δf (s, u) + 1 ≤ δf ′(s, u) + 1 = δf ′(s, v).
This contradicts our assumption that δf ′(s, v) < δf (s, v).

To have (u, v) 6∈ Ef and (u, v) ∈ Ef ′ , the augmentation must have
increased the flow from v to u. The Edmonds-Karp algorithm always
augments flow along shortest paths. Therefore the shortest path from
s to u in Gf has (v , u) as its last edge. So

δf (s, v) = δf (s, u)− 1 ≤ δf ′(s, u)− 1 = δf ′(s, v)− 2.

This contradicts the assumption that δf ′(s, v) < δf (s, v).

So our assumption that such a vertex v exists is incorrect.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 41 / 52

Maximum Flow The Edmonds-Karp Algorithm

Number of Iterations of Edmonds-Karp Algorithm

Theorem

If the Edmonds-Karp algorithm is run on a flow network G = (V ,E) with
source s and sink t, then the total number of flow augmentations
performed by the algorithm is O (|V ||E |).

We say that an edge (u, v) in a residual network Gf is critical on an
augmenting path p if the residual capacity of p is the residual
capacity of (u, v), i.e., if cf (p) = cf (u, v).

After we have augmented flow along an augmenting path, any critical
edge on the path disappears from the residual network.
Moreover, at least one edge on any augmenting path must be critical.

Claim: Each of the |E | edges can become critical at most |V |
2 times.

Let u and v be vertices in V that are connected by an edge in E .
Since augmenting paths are shortest paths, when (u, v) is critical for
the first time, we have δf (s, v) = δf (s, u) + 1. Once the flow is
augmented, the edge (u, v) disappears from the residual network.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 42 / 52

Maximum Flow The Edmonds-Karp Algorithm

Number of Iterations of Edmonds-Karp (Cont’d)

Edge (u, v) cannot reappear until after the flow from u to v is
decreased, which occurs only if (v , u) appears on an augmenting
path. If f ′ is the flow in G when this event occurs, then we have
δf ′(s, u) = δf ′(s, v) + 1. Since δf (s, v) ≤ δf ′(s, v), we have
δf ′(s, u) = δf ′(s, v) + 1 ≥ δf (s, v) + 1 = δf (s, u) + 2.

Thus, between two critical appearances of (u, v), the distance of u
from s increases by at least 2. The intermediate vertices on a shortest
path from s to u cannot contain s, u or t. Therefore, until u becomes
unreachable from the source, if ever, its distance is at most |V | − 2.
Thus, after the first time that (u, v) becomes critical, it can become

critical at most |V |−2
2 = |V |

2 − 1 times more, for a total of ≤ |V |
2 times.

Hence, the total number of critical edges during the entire execution
is O (|V ||E |). Since each augmenting path has at least one critical
edge, the theorem follows.

We now get O
(

|V ||E |2
)

time for the Edmonds-Karp algorithm.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 43 / 52

Maximum Flow Maximum Bipartite Matching

Subsection 4

Maximum Bipartite Matching

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 44 / 52

Maximum Flow Maximum Bipartite Matching

The Maximum-Bipartite-Matching Problem

Given an undirected graph G = (V ,E), a matching is a subset of
edges M ⊆ E , such that for all vertices v ∈ V , at most one edge of
M is incident on v .

We say that a vertex v ∈ V is matched by the
matching M if some edge in M is incident on v ;
otherwise, v is unmatched.

A maximum matching is a matching of maximum
cardinality, that is, a matching M such that for any
matching M ′, we have |M| ≥ |M ′|.

We restrict our attention to finding maximum matchings in bipartite

graphs, i.e., graphs in which the vertex set can be partitioned into
V = L ∪ R , where L and R are disjoint and all edges in E go between
L and R .

We assume that every vertex in V has at least one incident edge.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 45 / 52

Maximum Flow Maximum Bipartite Matching

Finding a Maximum Bipartite Matching

We use Ford-Fulkerson to find a maximum matching in an undirected
bipartite graph G = (V ,E) in time polynomial in |V | and |E |.

We construct a flow network in which flows correspond to matchings.

We define the corresponding flow network
G ′ = (V ′,E ′) for the bipartite graph G as
follows:

We let the source s and sink t be new vertices
not in V .
We let V ′ = V ∪ {s, t}.

If the vertex partition of G is V = L ∪ R , the directed edges of G ′ are
the edges of E , directed from L to R , along with V new edges:

E ′ = {(s, u) : u ∈ L} ∪ {(u, v) : (u, v) ∈ E} ∪ {(v , t) : v ∈ R}.

We assign unit capacity to each edge in E ′.

Since each vertex in V has at least one incident edge, |E | ≥ |V |
2 .

Thus, |E | ≤ |E ′| = |E |+ |V | ≤ 3|E |. So |E ′| = Θ(E).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 46 / 52

Maximum Flow Maximum Bipartite Matching

Matchings in G Correspond to Flows in G
′

A flow f on a flow network G = (V ,E) is integer-valued if f (u, v) is
an integer, for all (u, v) ∈ V × V .

Lemma

Let G = (V ,E) be a bipartite graph with vertex partition V = L ∪ R , and
let G ′ = (V ′,E ′) be its corresponding flow network. If M is a matching in
G , then there is an integer-valued flow f in G ′ with value |f | = |M|.
Conversely, if f is an integer-valued flow in G ′, then there is a matching M

in G with cardinality |M| = |f |.

We first show that a matching M in G corresponds to an
integer-valued flow in G ′. Define f as follows:

If (u, v) ∈ M , then f (s, u) = f (u, v) = f (v , t) = 1.
For all other edges (u, v) ∈ E ′, we define f (u, v) = 0.

One can easily verify that f satisfies the capacity constraints and flow
conservation.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 47 / 52

Maximum Flow Maximum Bipartite Matching

Matchings in G Correspond to Flows in G
′ (Cont’d)

Intuitively, each edge (u, v) ∈ M corresponds to one unit of flow in G ′

that traverses the path s → u → v → t. Moreover, the paths induced
by edges in M are vertex-disjoint, except for s and t. The net flow
across cut (L ∪ {s},R ∪ {t}) is equal to |M|, whence the value of the
flow is |f | = |M|.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 48 / 52

Maximum Flow Maximum Bipartite Matching

Matchings in G Correspond to Flows in G
′ (Converse)

To prove the converse, let f be an integer-valued flow in G ′, and let
M = {(u, v) : u ∈ L, v ∈ R and f (u, v) > 0}. Each vertex u ∈ L has
only one entering edge, namely (s, u) and its capacity is 1. Thus,
each u ∈ L has at most one unit of flow entering it. If one unit of
flow does enter, by flow conservation, one unit of flow must leave.
Furthermore, since f is integer-valued, for each u ∈ L, the one unit of
flow can enter on at most one edge and can leave on at most one
edge. Thus, one unit of flow enters u if and only if there is exactly
one vertex v ∈ R , such that f (u, v) = 1, and at most one edge
leaving each u ∈ L carries positive flow. A symmetric argument
applies to each v ∈ R . The set M is therefore a matching.
Next, observe that:

for every matched vertex u ∈ L, we have f (s, u) = 1;
for every edge (u, v) ∈ E −M , we have f (u, v) = 0.

Consequently, f (L ∪ {s},R ∪ {t}) = |M|. Hence, by a preceding
lemma, |f | = f (L ∪ {s},R ∪ {t}) = |M|.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 49 / 52

Maximum Flow Maximum Bipartite Matching

The Integrality Theorem

Finally, by showing that if |f | is an integer, the Ford-Fulkerson returns
a flow in G ′ for which every f (u, v) is an integer, we conclude that a
maximum matching in a bipartite graph G corresponds to a maximum
flow in its corresponding flow network G ′.

Theorem (Integrality Theorem)

If the capacity function c takes on only integral values, then the maximum
flow f produced by the Ford-Fulkerson method has the property that |f | is
an integer. Moreover, for all vertices u and v , the value of f (u, v) is an
integer.

The proof is by induction on the number of iterations and is omitted.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 50 / 52

Maximum Flow Maximum Bipartite Matching

Maximum Matchings and Maximum Flows

Corollary

The cardinality of a maximum matching M in a bipartite graph G equals
the value of a maximum flow f in its corresponding flow network G ′.

Suppose that M is a maximum matching in G and that the
corresponding flow f in G ′ is not maximum. Then there is a
maximum flow f ′ in G ′, such that |f ′| > |f |. Since the capacities in
G ′ are integer-valued, by the Integrality Theorem, we can assume that
f ′ is integer-valued. Thus, f ′ corresponds to a matching M ′ in G with
cardinality |M ′| = |f ′| > |f | = |M|. This contradicts our assumption
that M is a maximum matching.

In a similar manner, we can show that if f is a maximum flow in G ′,
its corresponding matching is a maximum matching on G .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 51 / 52

Maximum Flow Maximum Bipartite Matching

Maximum Matchings via Ford-Fulkerson

Thus, given a bipartite undirected graph G , we can find a maximum
matching by:

Creating the flow network G ′;
Running the Ford-Fulkerson method;
Obtaining a maximum matching M from the integer-valued maximum
flow f found.

Since any matching in a bipartite graph has cardinality at most
min (L,R) = O (|V |), the value of the maximum flow in G ′ is O (|V |).

We can therefore find a maximum matching in a bipartite graph in
time O (|V ||E ′|) = O (|V ||E |), since |E ′| = Θ(|E |).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 52 / 52

	Outline
	Maximum Flow
	Flow Networks
	The Ford-Fulkerson Method
	The Edmonds-Karp Algorithm
	Maximum Bipartite Matching

