
Introduction to Algorithms

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 1 / 19

Outline

1 Insertion Sort
The Algorithm
Correctness of the Algorithm
Analysis of the Algorithm

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 2 / 19

Insertion Sort The Algorithm

Subsection 1

The Algorithm

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 3 / 19

Insertion Sort The Algorithm

The Sorting Problem

Insertion sort sorts n given numbers:

Input: A sequence of n numbers 〈a1, a2, . . . , an〉.
Output: A permutation (reordering) 〈a′1, a

′

2, . . . , a
′

n〉 of the input
sequence such that a′1 ≤ a′2 ≤ · · · ≤ a′n.

The numbers that we wish to sort are also known as the keys.

Although conceptually we are sorting a sequence, the input comes to
us in the form of an array with n elements.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 4 / 19

Insertion Sort The Algorithm

Idea Behind Insertion Sort

Insertion sort is an efficient algorithm for sorting a small number of
elements and works in the same way we sort a hand of playing cards.

We start with an empty left hand and
the cards face down on the table.

We then remove one card at a time from
the table and insert it into the correct
position in the left hand.

To find the correct position for a card, we compare it with each of the
cards already in the hand, from right to left.
At all times, the cards held in the left hand are sorted, and these cards
were originally the top cards of the pile on the table.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 5 / 19

Insertion Sort The Algorithm

The procedure InsertionSort

It takes as a parameter an array A[1 . . . n] containing a sequence of
length n that is to be sorted.

The number n of elements in A is denoted by A.length.

The input numbers are sorted in place: The numbers are rearranged
within the array A, with at most a constant number of them stored
outside the array at any time.

At the end, the input array A contains the sorted output.

InsertionSort(A)

1. for j = 2 to A.length

2. key = A[j]

3. // Insert A[j] into the sorted sequence A[1 . . . j − 1].

4. i = j − 1

5. while i > 0 and A[i] > key

6. A[i + 1] = A[i]

7. i = i − 1

8. A[i + 1] = key

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 6 / 19

Insertion Sort The Algorithm

Illustration of Insertion Sort

We illustrate how the algorithm works for A = 〈5, 2, 4, 6, 1, 3〉.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 7 / 19

Insertion Sort Correctness of the Algorithm

Subsection 2

Correctness of the Algorithm

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 8 / 19

Insertion Sort Correctness of the Algorithm

The Loop Invariant

The index j indicates the “current card” being inserted into the hand.

At the beginning of each iteration of the for loop, which is indexed by
j , the subarray consisting of elements A[1 . . . j − 1] constitutes the
currently sorted hand.
The remaining subarray A[j + 1 . . . n] corresponds to the pile of cards
still on the table.
The elements A[1 . . . j − 1] are the elements originally in positions 1
through j − 1, but now in sorted order.

We state these properties of A[1 . . . j − 1] formally as a loop invariant:

At the start of each iteration of the for loop of Lines 1-8, the subarray
A[1 . . . j − 1] consists of the elements originally in A[1 . . . j − 1], but in
sorted order.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 9 / 19

Insertion Sort Correctness of the Algorithm

Using the Loop Invariant for Correctness

We must show three things about a loop invariant:

Initialization: It is true prior to the first iteration of the loop.
Maintenance: If it is true before an iteration of the loop, it remains
true before the next iteration.
Termination: When the loop terminates, the invariant gives us a
useful property that helps show that the algorithm is correct.

When the first two properties hold, the loop invariant is true prior to
every iteration of the loop.

By analogy with mathematical induction:

The invariant holding before the first iteration corresponds to the base
case;
Showing that the invariant holds from iteration to iteration corresponds
to the inductive step.

The third property is the most important one, since we are using the
loop invariant to show correctness.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 10 / 19

Insertion Sort Correctness of the Algorithm

Initialization and Maintenance for Insertion Sort

Let us see how these properties hold for insertion sort:

Initialization: We start by showing that the loop invariant holds before
the first loop iteration, when j = 2. The subarray A[1 . . . j − 1],
therefore, consists of just the single element A[1]. This is in fact the
original element in A[1]. Moreover, this subarray is sorted. This shows
that the loop invariant holds prior to the first iteration of the loop.
Maintenance: Next, we show that each iteration maintains the loop
invariant. Informally, the body of the for loop works by moving
A[j − 1], A[j − 2], A[j − 3], and so on by one position to the right until
it finds the proper position for A[j] (Lines 4-7), at which point it inserts
the value of A[j] (Line 8). The subarray A[1 . . . j] then consists of the
elements originally in A[1 . . . j], but in sorted order. Incrementing j for
the next iteration of the for loop then preserves the loop invariant.
A more formal treatment of the second property would require us to
state and show a loop invariant for the while loop of Lines 5-7.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 11 / 19

Insertion Sort Correctness of the Algorithm

Termination and Correctness for Insertion Sort

Termination: Finally, we examine what happens when the loop
terminates. The condition causing the for loop to terminate is that
j > A.length = n. Because each loop iteration increases j by 1, we
must have j = n + 1 at that time. Substituting n + 1 for j in the
wording of loop invariant, we have that the subarray A[1 . . . n] consists
of the elements originally in A[1 . . . n], but in sorted order. Observing
that the subarray A[1 . . . n] is the entire array, we conclude that the
entire array is sorted.

Hence, the algorithm is correct.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 12 / 19

Insertion Sort Analysis of the Algorithm

Subsection 3

Analysis of the Algorithm

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 13 / 19

Insertion Sort Analysis of the Algorithm

Size of Input and Running Time

We define input size depending on the problem:

For many problems, such as sorting, the most natural measure is the
number of items in the input.
For many other problems, such as multiplying two integers, the best
measure of input size is the total number of bits needed to represent
the input in ordinary binary notation.
Sometimes, it is more appropriate to describe the size of the input with
two numbers rather than one. For instance, if the input to an
algorithm is a graph, the input size can be described by the numbers of
vertices and edges in the graph.

The running time of an algorithm on a particular input is the
number of primitive operations or “steps” executed.

A constant amount of time is required to execute each line of our
pseudocode.
One line may take a different amount of time than another line, but we
assume that each execution of the i-th line takes time ci , where ci is a
constant.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 14 / 19

Insertion Sort Analysis of the Algorithm

InsertionSort(A) With Costs and Times of Execution

We present InsertionSort with the time “cost” of each statement
and the number of times each statement is executed:

For each j = 2, . . . , n, where n = A.length, let tj be the number of
times the while loop test in Line 5 is executed for that value of j .

InsertionSort(A) With Costs and Times

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 15 / 19

Insertion Sort Analysis of the Algorithm

Running Time: The Best Case

The running time of the algorithm is the sum of running times for
each statement executed: a statement that takes ci steps to execute
and executes n times will contribute cin to the total running time.

The running time T (n) of InsertionSort on an input of n values is:

T (n) = c1n + c2(n − 1) + c4(n − 1) + c5
∑n

j=2 tj

+c6
∑n

j=2(tj − 1) + c7
∑n

j=2(tj − 1) + c8(n − 1).

In InsertionSort, the best case occurs if the array is already sorted:

For each j = 2, 3, . . . , n, we then find that A[i] ≤ key in Line 5 when i

has its initial value of j − 1. Thus, tj = 1 for j = 2, 3, . . . , n. So the
best-case running time is

T (n) = c1n + c2(n − 1) + c4(n − 1) + c5(n − 1) + c8(n − 1)
= (c1 + c2 + c4 + c5 + c8)n − (c2 + c4 + c5 + c8).

We can express this running time as an + b, for constants a and b

that depend on the statement costs ci . This is a linear function of n.
George Voutsadakis (LSSU) Introduction to Algorithms June 2023 16 / 19

Insertion Sort Analysis of the Algorithm

Running Time: The Worst Case

If the array is in decreasing order the worst case results. We must
compare each element A[j] with each element in the entire sorted
subarray A[1 . . . j − 1]. So tj = j , for j = 2, 3, . . . , n. Note
∑n

j=2 j =
n(n+1)

2 − 1 and
∑n

j=2(j − 1) = n(n−1)
2 . Thus, in the worst

case, the running time of InsertionSort is

T (n) = c1n+ c2(n − 1) + c4(n − 1) + c5

(

n(n+1)
2 − 1

)

+ c6
n(n−1)

2 + c7
n(n−1)

2 + c8(n − 1)
= (c52 + c6

2 + c7
2)n

2

+ (c1 + c2 + c4 +
c5
2 − c6

2 − c7
2 + c8)n

− (c2 + c4 + c5 + c8).

We can express this worst-case running time as an2 + bn + c for
constants a, b and c that again depend on the statement costs ci ,
i.e., a quadratic function of n.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 17 / 19

Insertion Sort Analysis of the Algorithm

Worst-Case and Average-Case Analysis

We usually concentrate on finding only the worst-case running time
for any input of size n:

The worst-case running time of an algorithm gives us an upper bound
on the running time for any input.
For some algorithms, the worst case occurs fairly often.
The “average case” is often roughly as bad as the worst case.

Suppose that we randomly choose n numbers and apply insertion
sort. On average, half the elements in A[1 . . . j − 1] are less than A[j],
and half the elements are greater. On average, therefore, we check
half of the subarray A[1 . . . j − 1]. So tj is about

j
2 . The resulting

average-case running time turns out to be a quadratic function of the
input size, just like the worst-case running time.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 18 / 19

Insertion Sort Analysis of the Algorithm

Order of Growth

We used some simplifying abstractions to ease our analysis of the
InsertionSort procedure.

Instead of actual costs, we used the ci ’s to represent them.
Even these constants give us more detail than we really need:

We expressed the worst-case running time as an2 + bn+ c, for some

constants a, b and c that depend on the statement costs ci .

We, thus, eventually ignored even the abstract costs ci .

We simplify further by assuming we are only interested in the rate of
growth, or order of growth, of the running time.

We therefore consider only the leading term of a formula (an2), since
the lower-order terms are relatively insignificant for large values of n.
We also ignore the leading term’s constant coefficient, since constant
factors are less significant than the rate of growth in determining
computational efficiency for large inputs.

For insertion sort, we are left with the factor of n2 from the leading
term. We write that insertion sort has a worst-case running time of
Θ(n2).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 19 / 19

	Outline
	Insertion Sort
	The Algorithm
	Correctness of the Algorithm
	Analysis of the Algorithm

