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Insertion Sort The Algorithm
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Insertion Sort

o Insertion sort sorts n given numbers:

o Input: A sequence of n numbers (aj, as, ..., ap).
o Output: A permutation (reordering) (a}, a5, ..., a,) of the input
sequence such that a] < a) <.-- < al.

o The numbers that we wish to sort are also known as the keys.

o Although conceptually we are sorting a sequence, the input comes to
us in the form of an array with n elements.
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Insertion Sort

o Insertion sort is an efficient algorithm for sorting a small number of
elements and works in the same way we sort a hand of playing cards.

o We start with an empty left hand and
the cards face down on the table.

o We then remove one card at a time from
the table and insert it into the correct
position in the left hand.

o To find the correct position for a card, we compare it with each of the
cards already in the hand, from right to left.

o At all times, the cards held in the left hand are sorted, and these cards
were originally the top cards of the pile on the table.
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Insertion Sort

o It takes as a parameter an array A[l... n] containing a sequence of
length n that is to be sorted.

The number n of elements in A is denoted by A.length.

o The input numbers are sorted in place: The numbers are rearranged
within the array A, with at most a constant number of them stored
outside the array at any time.

o At the end, the input array A contains the sorted output.

for j = 2 to A.length
key = A[j]
// Insert A[j] into the sorted sequence A[1l...j —1].
i=j—1
while i > 0 and A[i] > key
Ali 4+ 1] = A[f]
i=i—1
Ali + 1] = key
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Insertion Sort

o We illustrate how the algorithm works for A = (5,2,4,6,1, 3).

1 2 3 4 5 6 1 2 3 4 5 6
SpR4|6|1]|3 215 6|13
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Insertion Sort Correctness of the Algorithm

Subsection 2

Correctness of the Algorithm
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Insertion Sort

o The index j indicates the “current card” being inserted into the hand.

o At the beginning of each iteration of the for loop, which is indexed by
J, the subarray consisting of elements A[1...j — 1] constitutes the
currently sorted hand.

o The remaining subarray A[j + 1. .. n] corresponds to the pile of cards
still on the table.

o The elements A[1...j — 1] are the elements originally in positions 1
through j — 1, but now in sorted order.

o We state these properties of A[L... j — 1] formally as a loop invariant:

At the start of each iteration of the for loop of Lines 1-8, the subarray
A[l...j — 1] consists of the elements originally in A[1...j — 1], but in
sorted order.
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Insertion Sort

o We must show three things about a loop invariant:
o Initialization: It is true prior to the first iteration of the loop.
o Maintenance: If it is true before an iteration of the loop, it remains
true before the next iteration.
o Termination: When the loop terminates, the invariant gives us a
useful property that helps show that the algorithm is correct.
o When the first two properties hold, the loop invariant is true prior to
every iteration of the loop.
o By analogy with mathematical induction:
o The invariant holding before the first iteration corresponds to the base
case;
o Showing that the invariant holds from iteration to iteration corresponds
to the inductive step.
o The third property is the most important one, since we are using the
loop invariant to show correctness.
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Insertion Sort

o Let us see how these properties hold for insertion sort:

o Initialization: We start by showing that the loop invariant holds before
the first loop iteration, when j = 2. The subarray A[1...j — 1],
therefore, consists of just the single element A[1]. This is in fact the
original element in A[1]. Moreover, this subarray is sorted. This shows
that the loop invariant holds prior to the first iteration of the loop.

o Maintenance: Next, we show that each iteration maintains the loop
invariant. Informally, the body of the for loop works by moving
Alj — 1], A[j — 2], A[j — 3], and so on by one position to the right until
it finds the proper position for A[j] (Lines 4-7), at which point it inserts
the value of A[j] (Line 8). The subarray A[l...j] then consists of the
elements originally in A[L...j], but in sorted order. Incrementing j for
the next iteration of the for loop then preserves the loop invariant.

A more formal treatment of the second property would require us to
state and show a loop invariant for the while loop of Lines 5-7.
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Insertion Sort

o Termination: Finally, we examine what happens when the loop
terminates. The condition causing the for loop to terminate is that
J > A.length = n. Because each loop iteration increases j by 1, we
must have j = n+ 1 at that time. Substituting n+ 1 for j in the
wording of loop invariant, we have that the subarray A[l...n] consists
of the elements originally in A[1...n], but in sorted order. Observing
that the subarray A[1...n] is the entire array, we conclude that the
entire array is sorted.

Hence, the algorithm is correct.
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Insertion Sort Analysis of the Algorithm

Subsection 3

Analysis of the Algorithm
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Insertion Sort

o We define input size depending on the problem:

o For many problems, such as sorting, the most natural measure is the
number of items in the input.

o For many other problems, such as multiplying two integers, the best
measure of input size is the total number of bits needed to represent
the input in ordinary binary notation.

o Sometimes, it is more appropriate to describe the size of the input with
two numbers rather than one. For instance, if the input to an
algorithm is a graph, the input size can be described by the numbers of
vertices and edges in the graph.

o The running time of an algorithm on a particular input is the
number of primitive operations or “steps” executed.

o A constant amount of time is required to execute each line of our
pseudocode.

o One line may take a different amount of time than another line, but we
assume that each execution of the i-th line takes time ¢;, where ¢; is a
constant.
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Insertion Sort

o We present INSERTIONSORT with the time “cost” of each statement
and the number of times each statement is executed:
o Foreach j =2,...,n, where n = A.length, let t; be the number of
times the while loop test in Line 5 is executed for that value of j.

INSERTIONSORT(A) With Costs and Times

INSERTION-SORT (A)

1 for j = 2to A.length

2 key = A[J]

3 // Insert A[/] into the sorted
sequence A[l..j —1].

while / > 0 and A[/] > key

4 i=j-1
o)

6 Ali + 1] = A[i]
7 i=i—1

8 Ali + 1] = key
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Insertion Sort

o The running time of the algorithm is the sum of running times for
each statement executed: a statement that takes ¢; steps to execute
and executes n times will contribute ¢;n to the total running time.

o The running time T(n) of INSERTIONSORT on an input of n values is:

T(n) = anton-1)+a(n-1)+cd,t
+Ce Zf:z(tj - 1)+ Zj:z(tj — 1)+ cg(n—1).
o In INSERTIONSORT, the best case occurs if the array is already sorted:
For each j =2,3,...,n, we then find that A[i] < key in Line 5 when i

has its initial value of j — 1. Thus, t; =1 for j =2,3,...,n. So the
best-case running time is

T(n) = an+ao—1)+aln—1)+c(n—1)+c(n—1)
= (at+taotatatae)n—(ca+atc+c)

We can express this running time as an + b, for constants a and b
that depend on the statement costs ¢;. This is a linear function of n.
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Insertion Sort

o If the array is in decreasing order the worst case results. We must
compare each element A[j] with each element in the entire sorted
subarray All...j—1]. So tj =, for j=2,3,...,n. Note
o= " "+1) —land 37 ,(j—1)= @ Thus, in the worst
case, the runnlng time of INSERTIONSORT is

T(n) = qn+qw—1y+q@_1y+%(mgg_l)
4G n(n2—1) + o n(n2—1) + Cg(n _ 1)
= (CS + 5 % 4 67) 2

—@+q+@+®-

We can express this worst-case running time as an® + bn + ¢ for
constants a, b and ¢ that again depend on the statement costs ¢;,

i.e., a quadratic function of n.
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Insertion Sort

o We usually concentrate on finding only the worst-case running time
for any input of size n:

o The worst-case running time of an algorithm gives us an upper bound
on the running time for any input.

o For some algorithms, the worst case occurs fairly often.

o The “average case” is often roughly as bad as the worst case.

o Suppose that we randomly choose n numbers and apply insertion
sort. On average, half the elements in A[1...j — 1] are less than A[j],
and half the elements are greater. On average, therefore, we check
half of the subarray A[1...j —1]. So t; is about . The resulting
average-case running time turns out to be a quadratic function of the
input size, just like the worst-case running time.
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Insertion Sort

o We used some simplifying abstractions to ease our analysis of the
INSERTIONSORT procedure.
o Instead of actual costs, we used the ¢;'s to represent them.
o Even these constants give us more detail than we really need:
o We expressed the worst-case running time as an® + bn + ¢, for some
constants a, b and ¢ that depend on the statement costs ¢;.
o We, thus, eventually ignored even the abstract costs ¢;.
o We simplify further by assuming we are only interested in the rate of
growth, or order of growth, of the running time.
o We therefore consider only the leading term of a formula (an?), since
the lower-order terms are relatively insignificant for large values of n.
o We also ignore the leading term’s constant coefficient, since constant
factors are less significant than the rate of growth in determining
computational efficiency for large inputs.

For insertion sort, we are left with the factor of n? from the leading

term. We write that insertion sort has a worst-case running time of
O(n?).
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