Introduction to Algorithms

George Voutsadakis®

Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 1/22

Qo

o The Divide-and-Conquer Approach
o Analyzing Merge Sort

George Voutsadakis (LSSU) Introduction to Algorithms

Merge Sort The Divide-and-Conquer Approach

Subsection 1

The Divide-and-Conquer Approach

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 3/22

o To solve a given problem, many algorithms call themselves recursively
one or more times to deal with closely related subproblems.
o These algorithms typically follow a divide-and-conquer approach
involving three steps:
o Divide the problem into a number of subproblems that are smaller
instances of the same problem.
o Conquer the subproblems by solving them recursively.
o Combine the solutions into the solution for the original problem.
o The merge sort algorithm closely follows the divide-and-conquer
paradigm operating as follows:
o Divide: Divide the n-element sequence to be sorted into two
subsequences of 7 elements each.
o Conquer: Sort the two subsequences recursively using merge sort.
o Combine: Merge the two sorted subsequences to obtain the answer.
The recursion “bottoms out” when the sequence to be sorted has
length 1, in which case there is no work to be done.

George Voutsadakis (LSSU)

o The key operation of the merge sort algorithm is the merging of two
sorted sequences in the “combine” step.

o To perform the merging, we use an auxiliary procedure
MERGE(A, p, g, r), where A is an array and p, g and r are indices
numbering elements of the array such that p < g < r.

o The procedure takes sorted subarrays A[p...q], A[g+1...r].
o It merges them to a sorted subarray replacing A[p...r].

o The MERGE procedure takes time ©(n), where n =r — p+ 1 is the
number of elements being merged.

o To merge the two arrays into a single sorted array, it chooses the
smaller of the two smallest numbers, removing it from its array and
placing this card to the first position in the combined array. The step
is repeated until one input array is empty. At that time the remaining
input array is merged at the end of the output array.

o Each basic step takes constant time checking just the two smallest
elements. With at most n basic steps, merging takes ©(n) time.

George Voutsadakis (LSSU)

o The following pseudocode implements the above idea.

o In addition, it avoids having to check whether either subarray is
empty in each basic step by placing at the “bottom” of each a special
value cc.

o Once all arrays show oo, all the other elements have already been
placed onto the output array.

o Since we know in advance that exactly r — p + 1 cards will be placed
onto the output array, we can stop once we have performed that
many basic steps.

George Voutsadakis (LSSU)

MERGE(A, p, g, r)

m=q—p+1
m=r—gq
let L[1...n1 + 1] and R[1... ny + 1] be new arrays
fori=1tom
L[] = Al -+~ 1]
for j=1to m
RU] = Alg +]
[nl—l—l]—oo
R[n2+1]
=1
j=1
for k=ptor
if L[/] < R[]
ATK] = L[]
i=i+1
else A[k] = R[j]
J=Jj+1

George Voutsadakis (LSSU) Introduction to Algorithms

o MERGE procedure works as follows:

o Line 1 computes the length n; of the subarray A[p...q], and Line 2
computes the length ny of the subarray A[g+1...r].

o In Line 3 we create arrays L and R of lengths n; + 1 and n, + 1,
respectively.

o The for loop of Lines 4-5 copies the subarray A[p...q] into L[1...m].

o The for loop of Lines 6-7 copies the subarray A[g+1...r] into
R[l 000 n2].

o Lines 8-9 put the co's at the ends of the arrays L and R.

o Lines 10-17 perform the r — p + 1 basic steps by maintaining the
following loop invariant:

o At the start of each iteration of the for loop of Lines 12-17, the
subarray A[p. ..k — 1] contains the k — p smallest elements of
L[1...n + 1] and R[1...n2 + 1], in sorted order.

o Moreover, L[i] and R[j] are the smallest elements of their arrays that
have not been copied back into A.

George Voutsadakis (LSSU)

Merge Sort | The Divide-and-Conquer Approach

[[lustration of MERGE-SORT

8.0 10 11 12 13 14 15 15.17 8 9 10 11 12 13 14 15 16 17 8 9 10 11 12 13 14 15 16 17
A A s A .12
k k k
1 2 3 45 1.2 .3 4.5 1 2 3 4 5 12 3 4 5 i 2 3 4 5 5
c[2[4[s[7]=] e[12]3]6]=] c[2[4]s]7]~] #[20306[=] :[@+[5[7]- =
J i I i

12 3 4
Y BEOE
J

\ 8 ? 12012| 12 13 14 15 16 :7 4 fll 14 15 16 l7 B B 9 120 121 13214 15 16 17
-k k k
i 3 3 4 3 | 2 3 4 5 L2 3 & L2 54 3 1) 3 4 5 1 2 3 4 5
q DEuDEN HGDEE BEUCER DS & [< -]
i J i i
9 10 ll 12 13 14 15 16 17 10 11 12 13 14 15 16 17 9 10 11 12 13 14 15 16 17
Illlllﬂﬂ I RREL L.
k k

1 2 3 4 5 12 3 4 5 1. 2 3 4.5 2. 3 4

1 2 3 4 5 T S A0 W |
[7]=] « EEe]-] - B -] L BT _
j 1

l

i

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 9/22

o We must show that:

o The loop invariant holds prior to the first iteration of the for loop of
Lines 12-17.

o Each iteration of the loop maintains the invariant.

o The invariant provides a useful property to show correctness when the
loop terminates.

o Initialization: Prior to the first iteration of the loop, we have k = p.
So the subarray A[p... k — 1] is empty. This empty subarray contains
the kK — p = 0 smallest elements of L and R. Since i = j = 1, both
L[/] and R[j] are the smallest elements of their arrays that have not
been copied back into A.

George Voutsadakis (LSSU)

o Maintenance: To see that each iteration maintains the loop invariant,
suppose, first, that L[/] < R[j]. Then L[/] is the smallest element not
yet copied back into A. Because A[p...k — 1] contains the k — p
smallest elements, after Line 14 copies L[i] into A[k], the subarray
Alp...k] will contain the k — p + 1 smallest elements. Incrementing
k (in the for loop update) and i (in Line 15) reestablishes the loop
invariant for the next iteration. If, instead, L[/] > R[], then Lines
16-17 perform the appropriate action to maintain the loop invariant.

o Termination: At termination, k = r 4+ 1. By the loop invariant, the
subarray A[p. ..k — 1], which is A[p...r], contains the k — p = r—
p + 1 smallest elements of L[1...n; + 1] and R[1... ny + 1], in sorted
order. The arrays L and R together contain ny +np+2=r—p+3
elements. All but the two largest have been copied back into A, and
these two largest elements are the oo's.

George Voutsadakis (LSSU)

o To see that the MERGE procedure runs in ©(n) time, where
n=r— p-+1, observe that:
o Each of Lines 1-3 and 8-11 takes constant time;
o The for loops of Lines 4-7 take ©(n; + n2) = ©(n) time;
o There are n iterations of the for loop of Lines 12-.17, each of which
takes constant time.

George Voutsadakis (LSSU) Introduction to Algorithms

o The procedure MERGE-SORT(A, p, r), which uses MERGE as a
subroutine, sorts the elements in the subarray A[p...r].
o If p > r, the subarray has at most one element and is therefore already
sorted.
o Otherwise, the divide step simply computes an index g that partitions
Alp...r] into two subarrays:
o Alp...q], containing [§] elements;
o Alg+1...r], containing | 5] elements.

George Voutsadakis (LSSU)

MERGE-SORT(A, p, r)
ifp<r
a=(p+r)/2
MERGE-SORT(A, p, q)
MERGE-SORT(A, g+ 1,r)
MERGE(A, p, g, r)

o To sort the entire sequence A = (A[1],A[2],...,A[n]), we make the
initial call MERGE-SORT(A, 1, length[A]), where length[A] = n.

George Voutsadakis (LSSU) Introduction to Algorithms

Merge Sort The Divide-and-Conquer Approach

[[lustration of MERGE-SORT

sorted sequence

initial sequence

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 15 /22

Merge Sort |[WARalyzing Merge Sort

Subsection 2

Analyzing Merge Sort

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 16 /22

o Assume that the size of the original problem is a power of 2.

o The recurrence for T(n), the worst-case running time of merge sort
on n numbers, is obtained by the following reasoning:
o Merge sort on just one element takes constant time.
o When we have n > 1 elements, we break down the running time as
follows:
Divide: The divide step just computes the middle of the subarray,
which takes constant time, whence D(n) = ©(1).
Conquer: We recursively solve two subproblems, each of size 7, which
contributes 2T (5) to the running time.
Combine: We have already noted that the MERGE procedure on an
n-element subarray takes time ©(n), so C(n) = ©(n).
Adding D(n) and C(n), we get a linear function of n, that is, ©(n).
Adding it to the 2T (%) term from the “conquer” step gives the
recurrence for the worst-case running time T(n) of merge sort.

o(1), ifn=1

DS ELE TR S { 2T(2) +O(n), ifn>1

George Voutsadakis (LSSU)

: [eq), ifn=1

o We rewrite the recurrence T(n) = { 2T(2) + O(n), if n>1

c, ifn=1

T(n) = { 2T(2) +cn, fn>1

the time required to solve problems of size 1 as well as the time per
array element of the divide and combine steps.

as

, Where the constant ¢ represents

T(n) is expanded into an equiv- cn

alent tree representing the recur-

rence. The cn term is the root (the

cost at the top level of recursion),

and the two subtrees of the root are

the two smaller recurrences T(5). T(n/2) T(n/2)

George Voutsadakis (LSSU)

Merge Sort

o This process carried one step further by expanding T(3).

AN

cn/2 cnf2

AVENA

T(n/4) T(n/4) T(n/4) T(n/4)

The cost for each of the two subnodes at the second level of recursion
8 n
IS CE'

o We continue expanding each node in the tree by breaking it into its
constituent parts as determined by the recurrence, until the problem
sizes get down to 1, each with a cost of c.

George Voutsadakis (LSSU)

Merge Sort |[WARalyzing Merge Sort

[llustration of the Entire Tree

A / cn \ cn
cnf2 cnf2 e e

logn / \ / \
cnf4 cnf4 cn/4 cnf4 wwnime cp
Yo . ¢ ¢ ¢ ¢ eee ¢ c e cn

Total: cn logn + cn

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 20/22

o We now add the costs across each level of the tree.

o The top level has total cost cn; O S e cn

o The next level down has total / \
g n _— N cnf2 Cnf2 w————— - cn
cost C3 + Cy; = ¢cn, i /
o The level after that has total cost ,, /\ / \
n n n n _— . cnld en cnft cnfAd i cn
Cz+Cz+Cz+Cz—Cn, //“\ //“\ //4\ //4\
o Level i from the top has 2/ nodes, /A T A S N A
each contributing a cost of c2,, TSI o
so that the /i-th level below the D O
top has total cost 2 - ¢ £ = cn. e

Total: cn logn + cn

o At the bottom level, there are n nodes, each contributing a cost of c,
for a total cost of cn.

George Voutsadakis (LSSU)

o The total number of levels of the “recursion tree” is logn + 1.
This fact is easily seen by an informal inductive argument.

o The base case occurs when n =1, in which case there is only one level.

Since log1 = 0, we have that log n + 1 gives the correct number of
levels.

o Now assume as an inductive hypothesis that the number of levels of a
recursion tree for 2’ nodes is log2' +1 =i + 1.

o Because we are assuming that the original input size is a power of 2,
the next input size to consider is 2/ 1. A tree with 271 nodes has one
more level than a tree of 27 nodes, and so the total number of levels is
(i+1)+1=log2*!+1.

o To compute the total cost, we simply add up the costs of all the
levels: There are log n + 1 levels, each costing cn, for a total cost of
cn(logn+ 1) = cnlog n+ cn. Ignoring the low-order term and the
constant ¢ gives the desired result of ©(nlog n).

George Voutsadakis (LSSU)

	Outline
	Merge Sort
	The Divide-and-Conquer Approach
	Analyzing Merge Sort

