
Introduction to Algorithms

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 1 / 33



Outline

1 Heapsort
Heaps
Maintaining the Heap Property
Building a Heap
The Heapsort Algorithm
Priority Queues

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 2 / 33



Heapsort Heaps

Subsection 1

Heaps

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 3 / 33



Heapsort Heaps

Heap

The (binary) heap data structure is an array object that we can view
as a nearly complete binary tree:

Each node of the tree corresponds to an
element of the array.
The tree is completely filled on all levels
except possibly the lowest, which is filled
from the left up to a point.

An array A that represents a heap is an object with two attributes:

A.length, which gives the number of elements in the array;
A.heap-size, which represents how many elements in the heap are
stored within array A.

I.e., although A[1 . . .A.length] may contain numbers, only the
elements in A[1 . . .A.heap-size], where 0 ≤ A.heap-size ≤ A.length,
are valid elements of the heap.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 4 / 33



Heapsort Heaps

Navigating the Heap

The root of the tree is A[1].

Given the index i of a node, we can easily compute the indices of its
parent, left child, and right child:

PARENT(i) LEFT(i) RIGHT(i)

return ⌊i/2⌋ return 2i return 2i + 1

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 5 / 33



Heapsort Heaps

Max Heaps and Min Heaps

There are two kinds of binary heaps: max heaps and min heaps.

They both satisfy a specific heap property:

Max Heap Property: For every node i other than the root,
A[PARENT(i)] ≥ A[i ], i.e., the value of a node is at most the value of
its parent.
It follows that the largest element in a max heap is stored at the root
and the subtree rooted at a node contains values no larger than than
contained at the node itself.
Min Heap Property: For every node i other than the root,
A[PARENT(i)] ≤ A[i ].
The smallest element in a min-heap is at the root.

For the heapsort algorithm, we use max-heaps.

Min-heaps commonly implement priority queues.

When properties apply to either max-heaps or min-heaps, we just use
the term “heap”.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 6 / 33



Heapsort Heaps

Height of a Heap

Viewing a heap as a tree, we define the height of a node in a heap to
be the number of edges on the longest simple downward path from
the node to a leaf.

We define the height of the heap to be the height of its root.

Since a heap of n elements is based on a complete binary tree, its
height is Θ(log n).

We shall see that the basic operations on heaps run in time at most
proportional to the height of the tree and, thus, take O (log n) time.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 7 / 33



Heapsort Heaps

Heap Procedures

The look at the following basic procedures and how they are used in a
sorting algorithm and a priority-queue data structure:

The Max-Heapify procedure, which runs in O (log n) time, is the key
to maintaining the max-heap property.
The Build-Max-Heap procedure, which runs in linear time, produces
a maxheap from an unordered input array.
The Heapsort procedure, which runs in O (n log n) time, sorts an
array in place.
The Max-Heap-Insert, Heap-Extract-Max, Heap-Increase-

Key, and Heap-Maximum procedures, which run in O (log n) time,
allow the heap data structure to implement a priority queue.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 8 / 33



Heapsort Maintaining the Heap Property

Subsection 2

Maintaining the Heap Property

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 9 / 33



Heapsort Maintaining the Heap Property

Description of the Procedure Max-Heapify

In order to maintain the max-heap property, we call the procedure
Max-Heapify.

Its inputs are an array A and an index i into the array.

When called, Max-Heapify assumes that the binary trees rooted at
Left(i) and Right(i) are maxheaps, but that A[i ] might be smaller
than its children, thus violating the max-heap property.

Max-Heapify lets the value at A[i ] “float down” in the max-heap
so that the subtree rooted at index i obeys the max-heap property.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 10 / 33



Heapsort Maintaining the Heap Property

The Procedure Max-Heapify

Max-Heapify(A, i)

1. ℓ = Left(i)

2. r = Right(i)

3. if ℓ ≤ A.heap-size and A[ℓ] > A[i ]

4. largest = ℓ

5. else largest = i

6. if r ≤ A.heap-size and A[r ] > A[largest]

7. largest = r

8. if largest 6= i

9. exchange A[i ] with A[largest]

10. Max-Heapify(A, largest)

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 11 / 33



Heapsort Maintaining the Heap Property

Illustration of Max-Heapify

At each step, the largest of the elements A[i ], A[Left(i)] and
A[Right(i)] is determined, and its index is stored in largest.

If A[i ] is largest, then the subtree rooted at node i is already a
max-heap and the procedure terminates.
Otherwise, one of the two children has the largest element, and A[i ] is
swapped with A[largest], which causes node i and its children to satisfy
the max-heap property.

The node indexed by largest has the original value A[i ] and, hence, the
subtree rooted at largest might violate the max-heap property. So
Max-Heapify is called recursively on that subtree.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 12 / 33



Heapsort Maintaining the Heap Property

The Running Time of Max-Heapify

The running time of Max-Heapify on a subtree of size n rooted at
given node i consists of

the Θ(1) time to fix up the relationships among the elements A[i ],
A[Left(i)], and A[Right(i)],
plus the time to run Max-Heapify on a subtree rooted at one of the
children of node i .
The children’s subtrees each have size at most 2n

3 . The worst case
occurs when the last row of the tree is exactly half full.

The running time of Max-Heapify can therefore be described by
the recurrence

T (n) ≤ T

(

2n

3

)

+Θ(1).

The solution to this recurrence is T (n) = O (log n).

Alternatively, we can characterize the running time of Max-Heapify

on a node of height h as O (h).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 13 / 33



Heapsort Building a Heap

Subsection 3

Building a Heap

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 14 / 33



Heapsort Building a Heap

Building a Max Heap

We can use the procedure Max-Heapify in a bottom-up manner to
convert an array A[1 . . . n], where n = length[A], into a max-heap.

The elements in the subarray A[(⌊n2⌋+ 1) . . . n] are all leaves of the
tree, and so each is a 1-element heap to begin with.

The procedure Build-Max-Heap goes through the remaining nodes
of the tree and runs Max-Heapify on each one:

Build-Max-Heap(A)

1. heap-size[A]← length[A]

2. for i ← ⌊length[A]/2⌋ downto 1

3. do Max-Heapify(A, i)

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 15 / 33



Heapsort Building a Heap

Example of the Action of Build-Max-Heap

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 16 / 33



Heapsort Building a Heap

Correctness of Build-Max-Heap(A)

To show why Build-Max-Heap works correctly, we use the
following loop invariant:

At the start of each iteration of the for loop of lines 2-3, each node
i + 1, i + 2, . . . , n is the root of a max-heap.

We need to show that:

This invariant is true prior to the first loop iteration.
Each iteration of the loop maintains the invariant.
The invariant provides a useful property to show correctness when the
loop terminates.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 17 / 33



Heapsort Building a Heap

Correctness of Build-Max-Heap(A) (Cont’d)

Initialization: Prior to the first iteration of the loop, i = ⌊n/2⌋.

Each node ⌊n/2⌋ + 1, ⌊n/2⌋ + 2, . . . , n is a leaf.

It is, thus, the root of a trivial max-heap.

Maintenance: To see that each iteration maintains the loop invariant,
observe that the children of node i are numbered higher than i . By
the loop invariant, therefore, they are both roots of max-heaps. This
is precisely the condition required for the call Max-Heapify(A, i) to
make node i a max-heap root. Moreover, the Max-Heapify call
preserves the property that nodes i + 1, i + 2, . . . , n are all roots of
max-heaps. Decrementing i in the for loop update reestablishes the
loop invariant for the next iteration.

Termination: At termination, i = 0. By the loop invariant, each node
1, 2, . . . , n is the root of a max-heap. In particular, node 1 is.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 18 / 33



Heapsort Building a Heap

Running Time of Build-Max-Heap(A)

We can compute a simple upper bound on the running time of
Build-Max-Heap:

Each call to Max-Heapify costs O (log n) time, and there are O (n)
such calls. Thus, the running time is O (n log n).

This upper bound is not asymptotically tight. To derive a tighter
bound, observe that the time for Max-Heapify to run at a node
varies with the height of the node in the tree, and the heights of most
nodes are small. Note, also, that an n-element heap has:

height ⌊log n⌋;
at most ⌈ n

2h+1 ⌉ nodes of any height h.

The time required by Max-Heapify when called on a node of
height h is O (h). Thus, we can express the total cost of

Build-Max-Heap as
∑⌊log n⌋

h=0 ⌈
n

2h+1 ⌉O (h) = O
(

n
∑⌊log n⌋

h=0
h

2h

)

. But
∑∞

h=0
h

2h
= 1/2

(1−1/2)2
= 2. So, we obtain the bound O (n). Thus a

max-heap can be built from an unordered array in linear time.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 19 / 33



Heapsort The Heapsort Algorithm

Subsection 4

The Heapsort Algorithm

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 20 / 33



Heapsort The Heapsort Algorithm

Description of the Heapsort Algorithm

The heapsort algorithm starts by using Build-Max-Heap to build a
max-heap on the input array A[1 . . . n], where n = length[A].

Since the maximum element of the array is stored at the root A[1], it
can be put into its correct final position by exchanging it with A[n].

If we now “discard” node n from the heap (by decrementing
heap-size[A]), we observe that A[1 . . . (n− 1)] can easily be made into
a max-heap:

The children of the root remain max-heaps, but the new root element
may violate the max-heap property. All that is needed to restore the
max-heap property, however, is one call to Max-Heapify(A, 1), which
leaves a max-heap in A[1 . . . (n − 1)].

The heapsort algorithm then repeats this process for the maxheap of
size n− 1 down to a heap of size 2.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 21 / 33



Heapsort The Heapsort Algorithm

The Heapsort Algorithm

HeapSort(A)

1. Build-Max-Heap(A)

2. for i ← length[A] downto 2

3. do exchange A[1]↔ A[i ]

4. heap-size[A]← heap-size[A]− 1

5. Max-Heapify(A, 1)

Complexity: The HeapSort procedure takes time O (n log n), since
the call to Build-Max-Heap takes time O (n) and each of the
n − 1 calls to Max-Heapify takes time O (log n).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 22 / 33



Heapsort The Heapsort Algorithm

Illustration of Heap Sort

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 23 / 33



Heapsort Priority Queues

Subsection 5

Priority Queues

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 24 / 33



Heapsort Priority Queues

Priority Queues

One of the most popular applications of a heap is as an efficient
priority queue.

As with heaps, priority queues come in two forms: max-priority
queues and min-priority queues.

We focus on max-priority queues, which are based on maxheaps;

A priority queue is a data structure for maintaining a set S of
elements, each with an associated value called a key.

A max-priority queue supports the following operations:
Insert(S , x) inserts the element x into the set S , which is equivalent
to the operation S = S ∪ {x}.
Maximum(S) returns the element of S with the largest key.
Extract-Max(S) removes and returns the element of S with the
largest key.
Increase-Key(S , x , k) increases the value of element x ’s key to the
new value k , which is assumed to be at least as large as x ’s current key
value.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 25 / 33



Heapsort Priority Queues

Sample Application: Scheduling

We can use max-priority queues to schedule jobs on a shared
computer.

The max-priority queue keeps track of the jobs to be performed and
their relative priorities.
When a job is finished or interrupted, the scheduler selects the
highest-priority pending job by calling Extract-Max.
The scheduler can add a new job to the queue by calling Insert.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 26 / 33



Heapsort Priority Queues

Sample Application: Event-Driven Simulator

A min-priority queue supports the operations Insert, Minimum,
Extract-Min, and Decrease-Key.

A min-priority queue can be used in an event-driven simulator.

The items in the queue are events to be simulated, each with an
associated time of occurrence that serves as its key.
They must be simulated in order of time of occurrence, because the
simulation of an event can cause other events to be simulated in the
future.
The simulation program calls Extract-Min at each step to choose
the next event to simulate.
As new events are produced, the simulator inserts them into the
min-priority queue by calling Insert.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 27 / 33



Heapsort Priority Queues

Heap-Maximum

The procedure Heap-Maximum implements the Maximum

operation in Θ(1) time.

Heap-Maximum(A)

1. return A[1]

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 28 / 33



Heapsort Priority Queues

Heap-Extract-Max

The procedure Heap-Extract-Max implements the
Extract-Max operation.

Heap-Extract-Max(A)

1. if A.heap-size < 1

2. error “heap underflow”

3. max = A[1]

4. A[1] = A[A.heap-size]

5. A.heap-size = A.heap-size− 1

6. Max-Heapify(A, 1)

7. return max

The running time of Heap-Extract-Max is O (log n), since it
performs only a constant amount of work on top of the O (log n) time
for Max-Heapify.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 29 / 33



Heapsort Priority Queues

Description of Heap-Increase-Key

The procedure Heap-Increase-Key implements the
Increase-Key operation.

An index i into the array identifies the priority-queue element whose
key we wish to increase.

The procedure first updates the key of element A[i ] to its new value.
Because increasing the key of A[i ] might violate the max-heap property,
the procedure then traverses a simple path from this node toward the
root to find a proper place for the newly increased key.
As Heap-Increase-Key traverses this path, it repeatedly compares
an element to its parent:

If the element’s key is larger, it exchanges their keys and continues;

If the element’s key is smaller, it terminates, since the max-heap

property now holds.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 30 / 33



Heapsort Priority Queues

Heap-Increase-Key

Heap-Increase-Key(A, i , key)

1. if key < A[i ]

2. error “new key is smaller than current key”

3. A[i ] = key

4. while i > 1 and A[Parent(i)] < A[i ]

5. exchange A[i ] with A[Parent(i)]

6. i = Parent(i)

The running time of Heap-Increase-Key on an n-element heap is
O (log n), since the path traced from the node updated in line 3 to
the root has length O (log n).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 31 / 33



Heapsort Priority Queues

Illustration of Heap-Increase-Key

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 32 / 33



Heapsort Priority Queues

Max-Heap-Insert

The procedure Max-Heap-Insert implements the Insert

operation.
It takes as an input the key of the new element to be inserted into
max-heap A.

It first expands the max-heap by adding to the tree a new leaf whose
key is −∞.
Then it calls Heap-Increase-Key to set the key of this new node to
its correct value and maintain the max-heap property.

Max-Heap-Insert(A, key)

1. A.heap-size = A.heap-size + 1

2. A[A.heap-size] = −∞

3. Heap-Increase-Key(A,A.heap-size, key)

The running time of Max-Heap-Insert on an n-element heap is
O (log n).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 33 / 33


	Outline
	Heapsort
	Heaps
	Maintaining the Heap Property
	Building a Heap
	The Heapsort Algorithm
	Priority Queues


