
Introduction to Algorithms

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 400

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 1 / 20

Outline

1 Functions
Description of Quicksort
Performance of Quicksort
A Randomized Version of Quicksort

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 2 / 20

Functions Description of Quicksort

Subsection 1

Description of Quicksort

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 3 / 20

Functions Description of Quicksort

Description of QuickSort

Quicksort, like merge sort, applies the divide-and-conquer paradigm.

The three-step divide-and-conquer process for sorting a typical
subarray A[p . . . r]:

Divide: Partition (rearrange) the array A[p . . . r] into two (possibly
empty) subarrays A[p . . . q − 1] and A[q + 1 . . . r], such that each
element of A[p . . . q − 1] is less than or equal to A[q], which is, in turn,
less than or equal to each element of A[q + 1 . . . r]. Compute the index
q as part of this partitioning procedure.
Conquer: Sort the two subarrays A[p . . . q − 1] and A[q + 1 . . . r] by
recursive calls to quicksort.
Combine: Because the subarrays are already sorted, no work is needed
to combine them: The entire array A[p . . . r] is now sorted.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 4 / 20

Functions Description of Quicksort

The Procedure QuickSort

QuickSort(A, p, r)

1. if p < r

2. q = Partition(A, p, r)

3. QuickSort(A, p, q − 1)

4. QuickSort(A, q + 1, r)

To sort an array A, the initial call is QuickSort(A, 1,A.length).

The key to the algorithm is the Partition procedure, which
rearranges the subarray A[p . . . r] in place.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 5 / 20

Functions Description of Quicksort

The Partition Procedure

Partition(A, p, r)

1. x = A[r]

2. i = p − 1

3. for j = p to r − 1

4. if A[j] ≤ x

5. i = i + 1

6. exchange A[i] with A[j]

7. exchange A[i + 1] with A[r]

8. return i + 1

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 6 / 20

Functions Description of Quicksort

How Partition Works

Partition always selects an element x = A[r] as a pivot element
around which to partition the subarray A[p . . . r].

As the procedure runs, it partitions the array into four (possibly
empty) regions that satisfy a loop invariant:

For any array index k ,

1. If p ≤ k ≤ i , then A[k] ≤ x .
2. If i + 1 ≤ k ≤ j − 1, then A[k] > x .
3. If k = r , then A[k] = x .

The indices between j and r − 1 are not covered by any of the three
cases, and these values have no particular relationship to the pivot x .

We need to show that this loop invariant (a) is true prior to the first
iteration, (b) is maintained by each iteration, (c) provides a helps in
showing correctness when the loop terminates.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 7 / 20

Functions Description of Quicksort

Initialization and Maintenance

Initialization: Prior to the first iteration of the loop, i = p − 1, and
j = p. There are no values between p and i , and no values between
i + 1 and j − 1, so the first two conditions of the loop invariant are
trivially satisfied. The assignment in Line 1 satisfies the third
condition.

Maintenance: There are two cases to consider, depending on the
outcome of the test in Line 4:

If A[j] > x , the only action in the loop is to increment j . After j is
incremented, Condition 2 holds for A[j − 1] and all other entries remain
unchanged.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 8 / 20

Functions Description of Quicksort

Maintenance (Cont’d)

Maintenance: There are two cases to consider, depending on the
outcome of the test in Line 4:

If A[j] ≤ x , i is incremented, A[i] and A[j] are swapped, and then j is
incremented. Because of the swap, we now have that A[i] ≤ x , and
Condition 1 is satisfied. Similarly, we also have that A[j − 1] > x , since
the item that was swapped into A[j − 1] is, by the loop invariant,
greater than x .

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 9 / 20

Functions Description of Quicksort

Termination and Running Time

Termination: At termination, j = r . Therefore, every entry in the
array is in one of the three sets described by the invariant, and we
have partitioned the values in the array into three sets:

those less than or equal to x ;
those greater than x ;
a singleton set containing x .

The final two lines of Partition move the pivot element into its
place in the middle of the array by swapping it with the leftmost
element that is greater than x .

The output of Partition now satisfies the specifications given for
the divide step.

The running time of Partition on the subarray A[p . . . r] is Θ(n),
where n = r − p + 1.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 10 / 20

Functions Performance of Quicksort

Subsection 2

Performance of Quicksort

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 11 / 20

Functions Performance of Quicksort

Worst-Case Partitioning

The worst-case behavior for quicksort occurs when the partitioning
produces one subproblem with n− 1 and one with 0 elements.

Let us assume that this unbalanced partitioning arises in each
recursive call.

The partitioning costs Θ(n) time.
A recursive call on an array of size 0 takes T (0) = Θ(1).

Thus, the recurrence for the running time is

T (n) = T (n − 1) + T (0) + Θ(n) = T (n − 1) + Θ(n).

Using the substitution method we can prove that the recurrence
T (n) = T (n − 1) + Θ(n) has the solution

T (n) = Θ(n2).

Thus, if the partitioning is maximally unbalanced at every recursive
level of the algorithm, the running time is Θ(n2).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 12 / 20

Functions Performance of Quicksort

Best-Case Partitioning

In the most even possible split, Partition produces two
subproblems, each of size no more than n

2 , since one is of size ⌊n2⌋
and one of size ⌈n2⌉ − 1.

In this case, quicksort runs much faster.

The recurrence for the running time is then

T (n) = 2T
(n

2

)

+Θ(n),

where we tolerate the sloppiness from ignoring the floor and ceiling
and from subtracting 1.

This recurrence has the solution

T (n) = n log n.

By equally balancing the two sides of the partition at every level of
the recursion, we get an asymptotically faster algorithm.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 13 / 20

Functions Performance of Quicksort

Balanced Partitioning

The average-case running time of quicksort is much closer to the best
case than to the worst case.

The key to understand why is to understand how the balance of the
partitioning is reflected in the recurrence for the running time.

Suppose, for example, that the partitioning algorithm always produces
a 9-to-1 proportional split, which seems quite unbalanced. We then
obtain the recurrence

T (n) = T

(

9n

10

)

+ T
(n

10

)

+ cn

on the running time of quicksort, where we have explicitly included
the constant c hidden in the Θ(n) term.

Every level of the tree has cost cn, until a boundary condition is
reached at depth log10 n = Θ(log n). Then the levels have cost at
most cn. The recursion terminates at depth log10/9 n = Θ(log n).
The total cost of quicksort is therefore O (n log n).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 14 / 20

Functions Performance of Quicksort

Balanced Partitioning (Cont’d)

Even a 99-to-1 split yields an O (n log n) running time, since any split
of constant proportionality yields a recursion tree of depth Θ(log n),
where the cost at each level is O (n).

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 15 / 20

Functions Performance of Quicksort

Intuition for the Average Case

To develop a clear notion of the average case for quicksort, we must
make an assumption about how frequently we expect to encounter
the various inputs.

The behavior of quicksort is determined by the relative ordering of the
values in the array and not by the particular values.

We will assume for now that all permutations of the input numbers
are equally likely.

When we run quicksort on a random input array, it is unlikely that the
partitioning always happens in the same way at every level: We
expect that some of the splits will be reasonably well balanced
(“good”) and that some will be fairly unbalanced (“bad”).

In a recursion tree for an average-case execution of Partition, the
good and bad splits are distributed randomly throughout the tree.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 16 / 20

Functions Performance of Quicksort

Intuition for the Average Case (Cont’d)

Suppose that the good and bad splits alternate levels, the good splits
are best-case splits and the bad splits are worst-case splits:

At the root of the tree, the cost is n for partitioning, and the
subarrays produced have sizes n − 1 and 0: the worst case.

At the next level, the subarray of size n − 1 is best-case partitioned
into subarrays of size n−1

2 − 1 and n−1
2 .

If the boundary-condition cost is 1 for the subarray of size 0, the
combination produces three subarrays of sizes 0, n−1

2 − 1 and n−1
2 at a

combined partitioning cost of Θ(n) + Θ(n − 1) = Θ(n).

This situation is no worse than a single level of balanced partitioning
that produces two subarrays of size n−1

2 , at a cost of Θ(n)!

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 17 / 20

Functions A Randomized Version of Quicksort

Subsection 3

A Randomized Version of Quicksort

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 18 / 20

Functions A Randomized Version of Quicksort

Introducing Random Sampling in Quicksort

We employ a randomization technique, called random sampling, to
analyze a randomized version of quicksort.

Instead of always using A[r] as the pivot, we will select a randomly
chosen element from the subarray A[p . . . r].

We do so by first exchanging element A[r] with an element chosen at
random from A[p . . . r].

By randomly sampling the range p, . . . , r , we ensure that the pivot
element x = A[r] is equally likely to be any of the r − p + 1 elements
in the subarray.

Because we randomly choose the pivot element, we expect the split of
the input array to be reasonably well balanced on average.

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 19 / 20

Functions A Randomized Version of Quicksort

RandomizedQuickSort

The changes to Partition and QuickSort are small.
In the new partition procedure, we simply implement the swap before
actually partitioning:

RandomizedPartition(A, p, r)

1. i = RANDOM(p, r)

2. exchange A[r] with A[i]

3. return Partition(A, p, r)

The new quicksort calls RandomizedPartition in place of
Partition:

RandomizedQuickSort(A, p, r)

1. if p < r

2. q = RandmizedPartition(A, p, r)

3. RandomizedQuickSort(A,p, q − 1)

4. RandomizedQuickSort(A,q + 1, r)

George Voutsadakis (LSSU) Introduction to Algorithms June 2023 20 / 20

	Outline
	Functions
	Description of Quicksort
	Performance of Quicksort
	A Randomized Version of Quicksort

