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Sorting in Linear Time

Comparison Sorts and n log n Bound

We have now introduced several algorithms that can sort n numbers
in O (n log n) time.

Merge sort and heapsort achieve this upper bound in the worst case.
Quicksort achieves it on average.

Moreover, for each of these algorithms, we can produce a sequence of
n input numbers that causes the algorithm to run in Θ(n log n) time.

These algorithms share the property that the sorted order they
determine is based only on comparisons between the input elements.

Such sorting algorithms are called comparison sorts.

We show next that any comparison sort must make Ω(n log n)
comparisons in the worst case to sort n elements.

Thus, merge sort and heapsort are asymptotically optimal.

Then we examine three sorting algorithms that use operations other
than comparisons and run in linear time.
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Sorting in Linear Time Lower Bounds for Sorting

Subsection 1

Lower Bounds for Sorting
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Sorting in Linear Time Lower Bounds for Sorting

Comparisons Performed by a Comparison Sort

In a comparison sort, we use only comparisons between elements to
gain order information about an input sequence 〈a1, a2, . . . , an〉 i.e.,
given two elements ai and aj , we perform one of the tests ai < aj ,
ai ≤ aj , ai = aj , ai ≥ aj , or ai > aj to determine their relative order.

We may not inspect the values of the elements or gain order
information about them in any other way.

If all the input elements are distinct, comparisons of the form ai = aj
are useless, so we can assume that no comparisons of this form are
made.

We also note that the comparisons ai ≤ aj , ai ≥ aj , ai > aj , and
ai < aj are all equivalent in that they yield identical information
about the relative order of ai and aj .

We therefore assume that all comparisons have the form ai ≤ aj .
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Sorting in Linear Time Lower Bounds for Sorting

The Decision Tree Model

A decision tree is a full binary tree that represents the comparisons
between elements that are performed by a particular sorting algorithm.

The figure shows the decision
tree corresponding to a sort-
ing algorithm operating on an
input sequence of three ele-
ments.

In a decision tree, each internal node is annotated by i : j for some i

and j in the range 1 ≤ i , j ≤ n, where n is the number of elements in
the input sequence.

Each leaf is annotated by a permutation 〈π(1), π(2), . . . , π(n)〉.

The execution of the sorting algorithm corresponds to tracing a path
from the root of the decision tree to a leaf.
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Sorting in Linear Time Lower Bounds for Sorting

Correctness of a Sorting Algorithm

At each internal node, a comparison ai ≤ aj is made.

The left subtree then dictates subsequent comparisons for ai ≤ aj .
The right subtree dictates subsequent comparisons for ai > aj .

When we come to a leaf, the sorting algorithm has established the
ordering a

π(1) ≤ a
π(2) ≤ · · · ≤ a

π(n).

Because any correct sorting algorithm must be able to produce each
permutation of its input, a necessary condition for a comparison sort
to be correct is that:

Each of the n! permutations on n elements must appear as one of the
leaves of the decision tree; and
each of these leaves must be reachable from the root by a path
corresponding to an actual execution of the comparison sort. (We refer
to such leaves as “reachable”.)

Thus, we shall consider only decision trees in which each permutation
appears as a reachable leaf.
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Sorting in Linear Time Lower Bounds for Sorting

Using Trees to Lower Bound Comparison Sorts

The length of the longest simple path from the root of a decision tree
to any of its reachable leaves represents the worst-case number of
comparisons that the corresponding sorting algorithm performs.

Consequently, the worst-case number of comparisons for a given
comparison sort algorithm equals the height of its decision tree.

A lower bound on the heights of all decision trees in which each
permutation appears as a reachable leaf is therefore a lower bound on
the running time of any comparison sort algorithm.
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Sorting in Linear Time Lower Bounds for Sorting

A Lower Bound for the Worst Case

Theorem

Any comparison sort algorithm requires Ω(n log n) comparisons in the
worst case.

From the preceding discussion, it suffices to determine the height of a
decision tree in which each permutation appears as a reachable leaf.
Consider a decision tree of height h with ℓ reachable leaves
corresponding to a comparison sort on n elements. Because each of
the n! permutations of the input appears as some leaf, we have
n! ≤ ℓ. Since a binary tree of height h has no more than 2h leaves, we
have n! ≤ ℓ ≤ 2h. Taking logs, h ≥ log (n!) = Ω(n log n).

Corollary

Heapsort and merge sort are asymptotically optimal comparison sorts.

The O (n log n) upper bounds on the running times for heapsort and
merge sort match our Ω(n log n) worst-case lower bound.
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Sorting in Linear Time Counting Sort

Subsection 2

Counting Sort
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Sorting in Linear Time Counting Sort

Basic Idea and Input

Counting sort assumes that each of the n input elements is an integer
in the range 0 to k , for some integer k .

When k = O (n), the sort runs in Θ(n) time.

Counting sort determines, for each input element x , the number of
elements less than x .

It uses this information to place element x directly into its position in
the output array.

For example, if 17 elements are less than x , then x belongs in output
position 18.
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Sorting in Linear Time Counting Sort

Modification and Data Structures

We must modify the preceding scheme slightly to handle the situation
in which several elements have the same value, since we do not want
to put them all in the same position.

In the code for counting sort, we assume that the input is an array
A[1 . . . n].

So A.length = n.

We require two other arrays:

The array B[1 . . . n] holds the sorted output;
The array C[0 . . . k ] provides temporary working storage.
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Sorting in Linear Time Counting Sort

The Counting Sort Algorithm

CountingSort(A,B , k)

1. let C[0 . . . k] be a new array

2. for i = 0 to k

3. C[i ] = 0

4. for j = 1 to A.length

5. C[A[j]] = C[A[j]] + 1

6. // C[i ] now contains the number of elements equal to i .

7. for i = 1 to k

8. C[i ] = C[i ] + C[i − 1]

9. // C[i ] now contains the number of elements less than or equal to i .

10. for j = A.length downto 1

11. B[C[A[j]]] = A[j]

12. C[A[j]] = C[A[j]] − 1
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Sorting in Linear Time Counting Sort

How Counting Sort Works

The for loop of Lines 2-3 initializes the array C to all zeros;

The for loop of Lines 4-5 inspects each input element.

If the value of an input element is i , we increment C[i ].
Thus, after Line 5, C[i ] holds the number of input elements equal to i

for each integer i = 0, 1, . . . , k .

Lines 7-8 determine for each i = 0, 1, . . . , k how many input elements
are less than or equal to i by keeping a running sum of the array C.

Finally, the for loop of Lines 10-12 places each element A[j] into its
correct sorted position in the output array B.

If all n elements are distinct, then when we first enter Line 10, for each
A[j ], the value C[A[j ]] is the correct final position of A[j ] in the output
array, since there are C[A[j ]] elements less than or equal to A[j ].
Because the elements might not be distinct, we decrement C[A[j ]] each
time we place a value A[j ] into the B array. Decrementing C[A[j ]]
causes the next input element with a value equal to A[j ], if one exists,
to go to the position immediately before A[j ] in the output array.
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Sorting in Linear Time Counting Sort

Illustration of Counting Sort
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Sorting in Linear Time Counting Sort

Time Requirements

The for loop of Lines 2-3 takes time Θ(k).

The for loop of Lines 4-5 takes time Θ(n).

The for loop of Lines 7-8 takes time Θ(k).

The for loop of Lines 10-12 takes time Θ(n).

Thus, the overall time is Θ(n).

In practice, we usually use counting sort when we have k = O(n), in
which case the running time is Θ(n).
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Sorting in Linear Time Counting Sort

Remarks

Counting sort beats the lower bound of Ω(n log n) because it is not a
comparison sort.

No comparisons between input elements occur anywhere in the code.

Instead, counting sort uses the actual values of the elements to index
into an array.

An important property of counting sort is that it is stable:

Numbers with the same value appear in the output array in the same
order as they do in the input array.
I.e., ties are broken between two numbers by the rule that whichever
number appears first in the input array appears first in the output array.

Counting sort’s stability is important because counting sort is often
used as a subroutine in radix sort.

For radix sort to work correctly, counting sort must be stable.
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Sorting in Linear Time Radix Sort

Subsection 3

Radix Sort
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Sorting in Linear Time Radix Sort

Punch Cards

Radix sort is the algorithm used by the card-sorting machines you now
find only in computer museums.

The cards have 80 columns, and in each column a machine can punch
a hole in one of 12 places.

The sorter can be mechanically “programmed” to examine a given
column of each card in a deck and distribute the card into one of 12
bins depending on which place has been punched.

An operator can then gather the cards bin by bin, so that cards with
the first place punched are on top of cards with the second place
punched, and so on.
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Sorting in Linear Time Radix Sort

Numbers in Decimal

For decimal digits, each column uses only 10 places.

A d -digit number would then occupy a field of d columns.

Since the card sorter can look at only one column at a time, the
problem of sorting n cards on a d -digit number requires a sorting
algorithm.

Intuitively, you might sort numbers on their most significant digit,
sort each of the resulting bins recursively, and then combine the decks
in order.

Unfortunately, since the cards in 9 of the 10 bins must be put aside to
sort each of the bins, this procedure generates many intermediate
piles of cards that you would have to keep track of.
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Sorting in Linear Time Radix Sort

Idea of Radix Sort

Radix sort solves the problem of card sorting by sorting on the least
significant digit first.

The algorithm then combines the cards into a single deck, with the
cards in the 0 bin preceding the cards in the 1 bin preceding the cards
in the 2 bin, and so on.

Then it sorts the entire deck again on the second-least significant
digit and recombines the deck in a like manner.

The process continues until the cards have been sorted on all d digits.

In order for radix sort to work cor-
rectly, the digit sorts must be sta-
ble. The sort performed by a card
sorter is stable, but the operator has
to be wary about not changing the

order of the cards as they come out of a bin, even though all the
cards in a bin have the same digit in the chosen column.
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Sorting in Linear Time Radix Sort

The Procedure RadixSort

The following procedure for radix sort assumes that each element in
the n-element array A has d digits, where digit 1 is the lowest-order
digit and digit d is the highest-order digit.

RadixSort(A, d)

1. for i = 1 to d

2. use a stable sort to sort array A on digit i
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Sorting in Linear Time Radix Sort

Correctness and Performance of RadixSort

Lemma

Given n d -digit numbers in which each digit can take on up to k possible
values, RadixSort correctly sorts these numbers in Θ(d(n + k)) time if
the stable sort it uses takes Θ(n + k) time.

The correctness of radix sort follows by induction on the column
being sorted.

The analysis of the running time depends on the stable sort used as
the intermediate sorting algorithm. When each digit is in the range 0
to k − 1 (so that it can take on k possible values), and k is not too
large, counting sort is the obvious choice.

Each pass over n d-digit numbers then takes time Θ(n+ k).
There are d passes.

So the total time for radix sort is Θ(d(n + k)).
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Sorting in Linear Time Radix Sort

Flexibility in Breaking Keys into Digits

When d is constant and k = O (n), radix sort can run in linear time.

More generally, we have some flexibility in how to break each key into
digits.

Lemma

Given n b-bit numbers and any positive integer r ≤ b, RadixSort

correctly sorts these numbers in Θ(b
r
(n + 2r )) time if the stable sort it

uses takes Θ(n + k) time for inputs in the range 0 to k .

For a value r ≤ b, we view each key as having d = ⌈b
r
⌉ digits of r

bits each. Each digit is an integer in the range 0 to 2r − 1. So, we
can use counting sort with k = 2r − 1. For example, we can view a
32-bit word as having four 8-bit digits, so that b = 32, r = 8, k = 255
and d = b

r
= 4. Each pass of counting sort takes time Θ(n+ k) =

Θ(n + 2r ). There are d passes, for a total running time of
Θ(d(n + 2r )) = Θ(b

r
(n + 2r )).
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Sorting in Linear Time Radix Sort

Choosing r to Minimize Running Time

For given values of n and b, we wish to choose the value of r , with
r ≤ b, that minimizes the expression b

r
(n + 2r ).

If b < ⌊log n⌋, then for any value of r ≤ b, we have that
n+ 2r = Θ(n). Thus, choosing r = b yields a running time of
b
b
(n + 2b) = Θ(n), which is asymptotically optimal.

If b ≥ ⌊log n⌋, then choosing r = ⌊log n⌋ gives the best time to within
a constant factor:

Choosing r = ⌊log n⌋ yields a running time of Θ( bn

log n
).

As we increase r above ⌊log n⌋, the 2r term in the numerator increases
faster than the r term in the denominator. So increasing r above
⌊log n⌋ yields a running time of Ω( bn

log n
).

If instead we were to decrease r below ⌊log n⌋, then the b

r
term

increases and the n + 2r term remains at Θ(n).
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Sorting in Linear Time Bucket Sort

Subsection 4

Bucket Sort
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Sorting in Linear Time Bucket Sort

Idea Behind Bucket Sort

Bucket sort assumes that the input is drawn from a uniform
distribution and has an average-case running time of O (n).

Like counting sort, bucket sort is fast because it assumes something
about the input:

Counting sort assumes that the input consists of integers in a small
range;
Bucket sort assumes that the input is generated by a random process
that distributes elements uniformly and independently over the interval
[0, 1).

Bucket sort does the following:

It divides the interval [0, 1) into n equal-sized subintervals, or buckets,
and then distributes the n input numbers into the buckets. Since the
inputs are uniformly and independently distributed over [0, 1), we do
not expect many numbers to fall into each bucket.
To produce the output, we simply sort the numbers in each bucket and
then go through the buckets in order, listing the elements in each.
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Sorting in Linear Time Bucket Sort

The Procedure Bucket Sort

We assume the input is an n-element array A and that each element
A[i ] in the array satisfies 0 ≤ A[i ] < 1.

The code requires an auxiliary array B[0 . . . n− 1] of linked lists
(buckets) and assumes that there is a mechanism for maintaining
such lists.

BucketSort(A)

1. n = A.length

2. Let B[0 . . . n− 1] be a new array

3. for i = 0 to n − 1

4. make B[i ] an empty list

5. for i = 1 to n

6. insert A[i ] into list B[⌊nA[i ]⌋]

7. for i = 0 to n − 1

8. sort list B[i ] with insertion sort

9. concatenate the lists B[0],B[1], . . . ,B[n − 1] together in order
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Sorting in Linear Time Bucket Sort

Correctness of Bucket Sort

Consider two elements A[i ] and A[j].

Assume, without loss of generality, that A[i ] ≤ A[j].

Since ⌊nA[i ]⌋ ≤ ⌊nA[j]⌋, element A[i ] is placed either into the same
bucket as A[j] or into a bucket with a lower index.

If A[i ] and A[j ] are placed into the same bucket, then the for loop of
Lines 7-8 puts them into the proper order.
If A[i ] and A[j ] are placed into different buckets, then Line 9 puts them
into the proper order.

Therefore, bucket sort works correctly.
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Sorting in Linear Time Bucket Sort

The Running Time of Bucket Sort

All lines except Line 8 take O (n) time in the worst case.

To analyze the cost of the calls to insertion sort, let ni be the random
variable denoting the number of elements placed in bucket B[i ]. Since
insertion sort runs in quadratic time, the running time of bucket sort
is T (n) = Θ(n) +

∑n−1
i=0 O

(

n2i
)

. Taking expectations of both sides
and using linearity, we have

E [T (n)] = E
[

Θ(n) +
∑n−1

i=0 O
(

n2i
)

]

= Θ(n) +
∑n−1

i=0 E
[

O
(

n2i
)]

= Θ(n) +
∑n−1

i=0 O
(

E
[

n2i
])

.
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Sorting in Linear Time Bucket Sort

E [n2i ] = 2− 1
n
, i = 0, . . . , n − 1

We define indicator random variables Xij = I{A[j] falls in bucket i},
for i = 0, 1, . . . , n − 1 and j = 0, 2, . . . , n − 1. Thus, ni =

∑n−1
j=0 Xij .

To compute E [n2i ], we expand the square and regroup:

E [n2i ] = E

[

(

∑n−1
j=0 Xij

)2
]

= E
[

∑n−1
j=0

∑n−1
k=0 XijXik

]

= E

[

∑n−1
j=0 X 2

ij +
∑

0≤j≤n−1

∑

0≤k≤n−1
k 6=j

XijXik

]

=
∑n−1

j=0 E [X 2
ij ] +

∑

0≤j≤n−1

∑

0≤k≤n−1
k 6=j

E [XijXik ],

where the last line follows by linearity of expectation.

Indicator random variable Xij is 1 with probability 1
n
and 0 otherwise.

Thus, E [X 2
ij ] = 12 · 1

n
+ 02 · (1 − 1

n
) = 1

n
.

When k 6= j , the variables Xij and Xik are independent. Thus,
E [XijXik ] = E [Xij ]E [Xik ] =

1
n
· 1
n
= 1

n2
.
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Sorting in Linear Time Bucket Sort

Completing the Proof

We get overall

E [n2i ] =
∑n−1

j=0 E [X 2
ij ] +

∑

0≤j≤n−1

∑

0≤k≤n−1
k 6=j

E [XijXik ]

=
∑n−1

j=0
1
n
+

∑

0≤j≤n−1

∑

0≤k≤n−1
k 6=j

1
n2

= n · 1
n
+ n(n− 1) · 1

n2
= 1 + n−1

n
= 2− 1

n
.

Using this expected value, we conclude that the expected time for
bucket sort is

Θ(n) + n · O

(

2−
1

n

)

= Θ(n).

Thus, the entire bucket sort algorithm runs in linear expected time.
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