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Congruences Definition and Basic Properties of Congruences

Congruence Modulo a Positive Integer

Unless otherwise indicated, small latin and Greek letters will denote
integers (positive, negative or zero).

Definition

Given integers a, b,m, with m > 0, we say that a is congruent to b

modulo m, and we write

a ≡ b (mod m),

if m divides the difference a − b. The number m is called the modulus of
the congruence.
In other words, the congruence a ≡ b (mod m) is equivalent to the
divisibility relation

m | (a − b).
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Congruences Definition and Basic Properties of Congruences

Remarks

According to the definition,

a ≡ 0 (mod m) if, and only if, m | a.

Hence,

a ≡ b (mod m) if, and only if, a − b ≡ 0 (mod m).

If m ∤ (a − b), we write

a 6≡ b (mod m)

and say that a and b are incongruent mod m.
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Congruences Definition and Basic Properties of Congruences

Examples

1. 19 ≡ 7 (mod 12), 1 ≡ −1 (mod 2), 32 ≡ −1 (mod 5).

2. n is even if, and only if, n ≡ 0 (mod 2).

3. n is odd if, and only if, n ≡ 1 (mod 2).

4. a ≡ b (mod 1), for every a and b.

5. If a ≡ b (mod m), then a ≡ b (mod d), when d | m, d > 0.
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Congruences Definition and Basic Properties of Congruences

Equivalence Property of Congruences

The symbol ≡ was chosen by Gauss to suggest analogy with =.

Congruences possess many of the formal properties of equations.

Theorem

Congruence is an equivalence relation. That is, we have:

(a) a ≡ a (mod m) (reflexivity);

(b) a ≡ b (mod m) implies b ≡ a (mod m) (symmetry);

(c) a ≡ b (mod m) and b ≡ c (mod m) imply a ≡ c (mod m) (transitivity).

The proofs follow from the following properties of divisibility:

(a) m | 0.
(b) If m | (a − b), then m | (b − a).
(c) If m | (a − b) and m | (b − c), then m | (a − b) + (b − c) = a− c .
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Congruences Definition and Basic Properties of Congruences

Algebraic Congruence Property of Congruences

Theorem

If a ≡ b (mod m) and α ≡ β (mod m), then we have:

(a) ax + αy ≡ bx + βy (mod m), for all integers x and y ;

(b) aα ≡ bβ (mod m);

(c) an ≡ bn (mod m), for every positive integer n;

(d) f (a) ≡ f (b) (mod m), for every polynomial f with integer
coefficients.

(a) By hypothesis, m | (a − b) and m | (α− β).

Therefore, m | x(a − b) + y(α− β) = (ax + αy)− (bx + βy).

(b) We have aα− bβ = α(a − b) + b(α− β) ≡ 0 (mod m) by Part (a).

(c) Take α = a and β = b in Part (b) and use induction on n.

(d) Use the preceding parts and induction on the degree of f .
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Congruences Definition and Basic Properties of Congruences

Example: Test for Divisibility by 9

Claim: An integer n > 0 is divisible by 9 if, and only if, the sum of its
digits in its decimal expansion is divisible by 9.

This property is easily proved using congruences.

If the digits of n in decimal notation are a0, a1, . . . , ak , then

n = a0 + 10a1 + 102a2 + · · ·+ 10kak .

Using the preceding theorem, we have, modulo 9,

10 ≡ 1, 102 ≡ 1, . . . , 10k ≡ 1 (mod 9).

So
n ≡ a0 + a1 + · · · + ak (mod 9).

Note that all these congruences hold modulo 3 as well. So a number
is divisible by 3 if, and only if, the sum of its digits is divisible by 3.
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Congruences Definition and Basic Properties of Congruences

Example: The Fermat Numbers

The Fermat numbers are Fn = 22
n
+ 1.

The first five are primes:

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65, 537.

We show that F5 is divisible by 641 without explicitly calculating F5.

We consider the successive powers 22
n
modulo 641. We have

22 = 4, 24 = 16, 28 = 256, 216 = 65, 536 ≡ 154 (mod 641).

So
232 ≡ (154)2 = 23, 716 ≡ 640 ≡ −1 (mod 641).

Therefore, F5 = 232 + 1 ≡ 0 (mod 641).

So F5 is composite.
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Congruences Definition and Basic Properties of Congruences

Cancelations In General

Common nonzero factors cannot always be canceled from both
members of a congruence as they can in equations.

Example: Consider the congruence

48 ≡ 18 (mod 10).

Both sides are divisible by 6.

But, if we cancel the common factor 6, we get an incorrect result,

8 ≡ 3 (mod 10).
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Congruences Definition and Basic Properties of Congruences

Cancelations Given Divisibility of the Modulus

A common factor can be canceled if the modulus is also divisible by
this factor.

Theorem

If c > 0, then

a ≡ b (mod m) if, and only if, ac ≡ bc (mod mc).

We have

m | (b − a) if, and only if, cm | c(b − a).
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Congruences Definition and Basic Properties of Congruences

Cancelation Law

The next theorem describes a cancelation law which can be used
when the modulus is not divisible by the common factor.

Theorem (Cancelation Law)

If ac ≡ bc (mod m) and if d = (m, c), then

a ≡ b (mod
m

d
).

In other words, a common factor c can be canceled provided the modulus
is divided by d = (m, c). In particular, a common factor which is relatively
prime to the modulus can always be canceled.

Since ac ≡ bc (mod m), we have m | c(a − b). So m
d
| c
d
(a − b).

But (m
d
, c
d
) = 1. Hence m

d
| (a − b).
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Congruences Definition and Basic Properties of Congruences

Consequences of Congruence

Theorem

Assume a ≡ b (mod m). If d | m and d | a, then d | b.

It suffices to assume d > 0.

If d | m, then a ≡ b (mod m) implies a ≡ b (mod d).

If d | a, then a ≡ 0 (mod d).

We conclude that b ≡ 0 (mod d).
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Congruences Definition and Basic Properties of Congruences

More Consequences of Congruence

Theorem

If a ≡ b (mod m), then (a,m) = (b,m). In other words, numbers which
are congruent mod m have the sane gcd with m.

Let d = (a,m) and e = (b,m).

Then d | m and d | a. So d | b. Hence d | e.

Similarly, e | m, e | b. So e | a. Hence e | d .

So d = e.

Theorem

If a ≡ b (mod m) and if 0 ≤ |b − a| < m, then a = b.

Since m | (a − b), we have m ≤ |a − b| unless a − b = 0.
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Congruences Definition and Basic Properties of Congruences

Even More Consequences of Congruence

Theorem

We have a ≡ b (mod m) if and only if a and b give the same remainder
when divided by m.

Write a = mq + r , b = mQ + R , where 0 ≤ r < m and 0 ≤ R < m.

Then a − b ≡ r − R (mod m) and 0 ≤ |r − R | < m.

Now use the preceding theorem.

Theorem

If a ≡ b (mod m) and a ≡ b (mod n), where (m, n) = 1, then a ≡ b

(mod mn).

By hypothesis, both m and n divide a− b.

Since (m, n) = 1, so does their product.
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Subsection 2

Residue Classes and Complete Residue Systems
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Congruences Residue Classes and Complete Residue Systems

Residue Classes Modulo m

Definition

Consider a fixed modulus m > 0. We denote by â the set of all integers x ,
such that x ≡ a (mod m) and we call â the residue class a modulo m.

Thus, â consists of all integers of the form a +mq, where
q = 0,±1,±2, . . .,

â = {a +mq : q = 0,±1,±2, . . .}.
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Congruences Residue Classes and Complete Residue Systems

Properties of Residue Classes

Theorem

For a given modulus m we have:

(a) â = b̂ if, and only if, a ≡ b (mod m).

(b) Two integers x and y are in the same residue class if, and only if,
x ≡ y (mod m).

(c) The m residue classes 1̂, 2̂, . . . , m̂ are disjoint and their union is the
set of all integers.

Parts (a) and (b) follow at once from the definition.

(c) Note that the numbers 0, 1, 2, ...,m − 1 are incongruent modulo m.

Hence, by Part (b), the residue classes 0̂, 1̂, . . . , m̂ − 1 are disjoint.

Now, for every integer x , x = qm + r , where 0 ≤ r < m.

So x ≡ r (mod m). Hence, x ∈ r̂ .

Since 0̂ = m̂, this proves Part (c).
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Congruences Residue Classes and Complete Residue Systems

Complete Residue Systems

Definition

A set of m representatives, one from each of the residue classes
1̂, 2̂, . . . , m̂, is called a complete residue system modulo m.

Example: Any set consisting of m integers, incongruent mod m, is a
complete residue system mod m.

For example, the following are complete residue systems mod m:

{1, 2, . . . ,m};
{0, 1, 2, . . . ,m − 1};
{1,m+ 2, 2m+ 3, 3m+ 4, . . . ,m2}.
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Congruences Residue Classes and Complete Residue Systems

Another Complete Residue System

Theorem

Assume (k ,m) = 1. If {a1, . . . , am} is a complete residue system modulo
m, so is {ka1, . . . , kam}.

Suppose kai ≡ kaj (mod m).

Since (k ,m) = 1, ai ≡ aj (mod m)

Thus, no two elements in {ka1, . . . , kam} are congruent modulo m.

But there are m elements in this set.

So it forms a complete residue system.
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Subsection 3

Linear Congruences
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Congruences Linear Congruences

Polynomial Congruences

Polynomial congruences deal with polynomials f (x) with integer
coefficients.

The values of these polynomials are integers when x is an integer.

An integer x satisfying a polynomial congruence

f (x) ≡ 0 (mod m)

is called a solution of the congruence.

If x ≡ y (mod m), then f (x) ≡ f (y) (mod m).

So every congruence having one solution has infinitely many.

For this reason, we adopt the convention that solutions belonging to
the same residue class will not be counted as distinct.
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Congruences Linear Congruences

Number of Solutions of Polynomial Congruences

When we speak of the number of solutions of a congruence we shall
mean the number of incongruent solutions.

That is, the number of solutions contained in the set {1, 2, . . . ,m} or
in any other complete residue system modulo m.

Therefore, every polynomial congruence modulo m has at most m
solutions.
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Congruences Linear Congruences

Examples

Example: The linear congruence 2x ≡ 3 (mod 4) has no solutions.

Note that 2x − 3 is odd, for every x .

Therefore it cannot be divisible by 4.

Example: The quadratic congruence

x2 ≡ 1 (mod 8)

has exactly four solutions.

They are given by
x ≡ 1, 3, 5, 7 (mod 8).
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Congruences Linear Congruences

Linear Congruences: Sufficient Condition

Theorem

Assume (a,m) = 1. Then the linear congruence

ax ≡ b (mod m)

has exactly one solution.

We need only test the numbers 1, 2, . . . ,m, since they constitute a
complete residue system. Form the products a, 2a, . . . ,ma.

Since (a,m) = 1, they constitute a complete residue system.

Hence, exactly one of these products is congruent to b modulo m.

That is, there is exactly one x satisfying the given congruence.
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Congruences Linear Congruences

Comments

The theorem tells us that the linear congruence

ax ≡ b (mod m)

has a unique solution, if (a,m) = 1.

However, it does not tell us how to determine this solution.

If (a,m) = 1, the unique solution of the congruence

ax ≡ 1 (mod m)

is called the reciprocal of a modulo m.

If (a,m) = 1 and a′ is the reciprocal of a, then ba′ is the unique
solution of

ax ≡ b (mod m).
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Congruences Linear Congruences

Linear Congruences: Necessary and Sufficient Condition

Theorem

Assume (a,m) = d . Then the linear congruence

ax ≡ b (mod m)

has solutions if, and only if, d | b.

Suppose a solution x exists.

Then, for some k , b = ax + km.

Since d | a and d | m, we get d | b.

Conversely, suppose d | b. Then, ( a
d
, m
d
) = 1.

It follows that the congruence

a

d
x ≡

b

d
(mod

m

d
)

has a solution. This solution is also a solution of ax ≡ b (mod m).
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Congruences Linear Congruences

Linear Congruences: Number of Solutions

Theorem

Assume (a,m) = d and suppose that d | b. Then the linear congruence

ax ≡ b (mod m)

has exactly d solutions modulo m. These are given by

t, t +
m

d
, t + 2

m

d
, . . . , t + (d − 1)

m

d
,

where t is the solution, unique modulo m
d
, of the linear congruence

a

d
x ≡

b

d
(mod

m

d
).
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Congruences Linear Congruences

Linear Congruences: Number of Solutions (Cont’d)

Every solution of the last equation is also a solution of the first.

Conversely, every solution of the first satisfies the last.

Now the d numbers listed are solutions of the last.

So they are also solutions of the first.

We show that no two of these are congruent modulo m.

Suppose

t + r
m

d
≡ t + s

m

d
(mod m),

with 0 ≤ r < d , 0 ≤ s < d .

Then r m
d
≡ s m

d
(mod m).

Hence, r ≡ s (mod d).

But 0 ≤ |r − s| < d .

So r = s.
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Congruences Linear Congruences

Linear Congruences: Number of Solutions (Cont’d)

It remains to show that the first equation has no solutions except
those listed.

Suppose y is a solution of ax ≡ b (mod m).

Then ay ≡ at (mod m).

So y ≡ t (mod m
d
).

Hence, y = t + k m
d
, for some k .

But k ≡ r (mod d), for some r satisfying 0 ≤ r < d .

Thus,

k
m

d
≡ r

m

d
(mod m).

So y ≡ t + r m
d

(mod m).

Hence, y is congruent modulo m to one of the numbers in the list.
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Congruences Linear Congruences

Greatest Common Divisor and Congruences

Theorem

If (a, b) = d , there exist integers x and y , such that

ax + by = d .

The linear congruence ax ≡ d (mod b) has a solution.

Hence, there is an integer y , such that

d − ax = by .

This gives ax + by = d , as required.

Note: Geometrically, the pairs (x , y) satisfying ax + by = d are
lattice points lying on a straight line.

The x-coordinate of each of these points is a solution of the
congruence ax ≡ d (mod b).
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Subsection 4

Reduced Residue Systems and the Euler-Fermat Theorem
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Congruences Reduced Residue Systems and the Euler-Fermat Theorem

Reduced Residue Systems

Definition

By a reduced residue system modulo m we mean any set of ϕ(m)
integers, incongruent modulo m, each of which is relatively prime to m.

Theorem

If {a1, a2, . . . , aϕ(m)} is a reduced residue system modulo m and if
(k ,m) = 1, then {ka1, ka2, . . . , kaϕ(m)} is also a reduced residue system
modulo m.

No two of the numbers kai are congruent modulo m.

Also, since (ai ,m) = (k ,m) = 1, we have (kai ,m) = 1.

So each kai is relatively prime to m.
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Congruences Reduced Residue Systems and the Euler-Fermat Theorem

Euler-Fermat Theorem

Theorem (Euler-Fermat Theorem)

Assume (a,m) = 1. Then we have

aϕ(m) ≡ 1 (mod m).

Let {b1, b2, . . . , bϕ(m)} be a reduced residue system modulo m.

Then {ab1, ab2, . . . , abϕ(m)} is also a reduced residue system.

Hence the product of all the integers in the first set is congruent to
the product of those in the second set. Therefore,

b1 · · · bϕ(m) ≡ aϕ(m)b1 · · · bϕ(m) (mod m).

Each bi is relatively prime to m.

So we can cancel each bi to obtain the theorem.
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Congruences Reduced Residue Systems and the Euler-Fermat Theorem

A Consequence

Theorem

If a prime p does not divide a, then

ap−1 ≡ 1 (mod p).

For p a prime, ϕ(p) = p − 1.

So , by the theorem,

ap−1 ≡ 1 (mod p).
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Congruences Reduced Residue Systems and the Euler-Fermat Theorem

Little Fermat Theorem

Theorem (Little Fermat Theorem)

For any integer a and any prime p, we have

ap ≡ a (mod p).

If p ∤ a, this is the preceding theorem.

If p | a, then both ap and a are congruent to 0 (mod p).
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Congruences Reduced Residue Systems and the Euler-Fermat Theorem

Linear Congruences

Theorem

If (a,m) = 1, the solution (unique mod m) of the linear congruence

ax ≡ b (mod m)

is given by
x ≡ baϕ(m)−1 (mod m).

By the Euler-Fermat Theorem,

a · baϕ(m)−1 = baϕ(m) ≡ b (mod m).

So the number x given satisfies the linear congruence.

The solution is unique mod m, since (a,m) = 1.
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Congruences Reduced Residue Systems and the Euler-Fermat Theorem

Example

Solve the congruence 5x ≡ 3 (mod 24).

Since (5, 24) = 1, there is a unique solution.

Note that
ϕ(24) = ϕ(3)ϕ(8) = 2 · 4 = 8.

Using the preceding theorem,

x ≡ 3 · 5ϕ(24)−1 ≡ 3 · 57 (mod 24).

Modulo 24 we have 52 ≡ 1, and 54 ≡ 56 ≡ 1.

So, 57 ≡ 5.

So x ≡ 15 (mod 24).
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Congruences Reduced Residue Systems and the Euler-Fermat Theorem

Example

Solve the congruence 25x ≡ 15 (mod 120).

Note that d = (25, 120) = 5 and d | 15.

So the congruence has exactly five solutions modulo 120.

To find them we divide by 5 and solve the congruence

5x ≡ 3 (mod 24).

Using the preceding example and a previous theorem, we find that the
five solutions are given by

x ≡ 15 + 24k , k = 0, 1, 2, 3, 4.

These are
x ≡ 15, 39, 63, 87, 111 (mod 120).
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Subsection 5

Polynomial Congruences Modulo p. Lagrange’s Theorem

George Voutsadakis (LSSU) Analytic Number Theory May 2024 41 / 87



Congruences Polynomial Congruences Modulo p. Lagrange’s Theorem

Number of Solutions of a Polynomial Congruence

The fundamental theorem of algebra states that, for every polynomial
f of degree n ≥ 1, the equation f (x) = 0 has n solutions among the
complex numbers.

There is no direct analog of this theorem for polynomial congruences.

Some linear congruences have no solutions;
Some have exactly one solution;
Some have more than one.

Thus, even in this special case, there appears to be no simple relation
between the number of solutions and the degree of the polynomial.

For congruences modulo a prime there exists a theorem of Lagrange
on the number of solutions.
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Congruences Polynomial Congruences Modulo p. Lagrange’s Theorem

Lagrange’s Theorem

Theorem (Lagrange)

Given a prime p, let

f (x) = c0 + c1x + · · ·+ cnx
n

be a polynomial of degree n with integer coefficients, such that cn 6≡ 0
(mod p). Then the polynomial congruence

f (x) ≡ 0 (mod p)

has at most n solutions.

Note: This result is not true for composite moduli.

Example: Consider the quadratic congruence x2 ≡ 1 (mod 8).

It has 4 solutions, 1, 3, 5, 7 (mod 8).
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Congruences Polynomial Congruences Modulo p. Lagrange’s Theorem

Proof of Lagrange’s Theorem

We use induction on n, the degree of f .

When n = 1 the congruence is linear, c1x + c0 ≡ 0 (mod p).

By hypothesis, c1 6≡ 0 (mod p). So (c1, p) ≡ 1.

We know that, then, there is exactly one solution.

Assume that the theorem holds for polynomials of degree n− 1.

Suppose, towards a contradiction, that the congruence f (x) ≡ 0
(mod p) has n+ 1 incongruent solutions modulo p.

Say x0, x1, . . . , xn are such that, for all k = 0, 1, . . . , n,

f (xk) ≡ 0 (mod p).
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Congruences Polynomial Congruences Modulo p. Lagrange’s Theorem

Proof of Lagrange’s Theorem (Cont’d)

We have the algebraic identity

f (x)− f (x0) =
n∑

r=1

cr (x
r − x r0) = (x − x0)g(x),

where g(x) is a polynomial of degree n− 1 with integer coefficients
and with leading coefficient cn.

But f (xk) ≡ f (x0) ≡ 0 (mod p).

Therefore,

f (xk)− f (x0) = (xk − x0)g(xk) ≡ 0 (mod p).

Now, for k 6= 0, xk − x0 6≡ 0 (mod p).

So we must have g(xk) ≡ 0 (mod p), for each k 6= 0.

This means that the congruence g(x) ≡ 0 (mod p) has n incongruent
solutions modulo p, contradicting the induction hypothesis.
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Subsection 6

Applications of Lagrange’s Theorem
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Congruences Applications of Lagrange’s Theorem

Multitude of Roots

Theorem

If f (x) = c0 + c1x + · · ·+ cnx
n is a polynomial of degree n with integer

coefficients, and if the congruence

f (x) ≡ 0 (mod p)

has more than n solutions, where p is prime, then every coefficient of f is
divisible by p.

Suppose there is some coefficient not divisible by p.

Let ck be the one with largest index.

Then k ≤ n and the congruence

c0 + c1x + · · ·+ ckx
k ≡ 0 (mod p)

has more than k solutions.

So, by Lagrange’s Theorem, p | ck , a contradiction.
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Congruences Applications of Lagrange’s Theorem

A Special Polynomial

Theorem (Special Polynomial Theorem)

For any prime p, all the coefficients of the polynomial

f (x) = (x − 1)(x − 2) · · · (x − p + 1)− xp−1 + 1

are divisible by p.

Let g(x) = (x − 1)(x − 2) · · · (x − p + 1). The roots of g are the
numbers 1, 2, . . . , p − 1. Hence they satisfy the congruence

g(x) ≡ 0 (mod p).

By the Euler-Fermat Theorem, these numbers also satisfy the
congruence h(x) ≡ 0 (mod p), where h(x) = xp−1 − 1.

The difference, f (x) = g(x)− h(x) has degree p − 2 but the
congruence f (x) ≡ 0 (mod p) has p − 1 solutions, 1, 2, . . . , p − 1.

By the preceding theorem, each coefficient of f (x) is divisible by p.
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Wilson’s Theorem

Theorem (Wilson’s Theorem)

For any prime p we have

(p − 1)! ≡ −1 (mod p).

The constant term of the polynomial

f (x) = (x − 1)(x − 2) · · · (x − p + 1)− xp−1 + 1

in the preceding theorem is (p − 1)! + 1.

Note: The converse of Wilson’s theorem also holds:

If n > 1 and (n − 1)! ≡ −1 (mod n), then n is prime.
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Wolstenholme’s Theorem

Theorem (Wolstenholme’s Theorem)

For any prime p ≥ 5, we have

p−1∑

k=1

(p − 1)!

k
≡ 0 (mod p2).

The sum
∑p−1

k=1
(p−1)!

k
is the sum of the products of the numbers

1, 2, . . . , p − 1 taken p − 2 at a time.

It is also equal to the coefficient of −x in

g(x) = (x − 1)(x − 2) · · · (x − p + 1).
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Wolstenholme’s Theorem (Cont’d)

The polynomial g(x) = (x − 1)(x − 2) · · · (x − p + 1) can be written
in the form

g(x) = xp−1 − S1x
p−2 + S2x

p−3 − · · ·+ Sp−3x
2 − Sp−2x + (p − 1)!,

where Sk is the k-th elementary symmetric function of the roots.

That is, Sk is the sum of the products of the numbers 1, 2, . . . , p − 1,
taken k at a time.

By the Special Polynomial Theorem, each of S1,S2, . . . ,Sp−2 is
divisible by p.
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Wolstenholme’s Theorem (Cont’d)

We wish to show that Sp−2 is divisible by p2.

The product for g(x) = (x − 1)(x − 2) · · · (x − p + 1) shows that

g(p) = (p − 1)!.

So

(p − 1)! = pp−1 − S1p
p−2 + · · ·+ Sp−3p

2 − Sp−2p + (p − 1)!.

Canceling (p − 1)!, we get

pp−1 − S1p
p−2 + · · · + Sp−3p

2 − Sp−2p = 0.

Reducing the equation mod p3 we get, since p ≥ 5,

pSp−2 ≡ 0 (mod p3).

Hence Sp−2 ≡ 0 (mod p2).
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Subsection 7

Simultaneous Linear Congruences. Chinese Remainder Theorem
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Systems of Linear Congruences

A system of two or more linear congruences need not have a solution,
even though each individual congruence has a solution.

Example: Consider the system

x ≡ 1 (mod 2)
x ≡ 0 (mod 4)

Each of these equations has a solution.

However, there is no x simultaneously satisfying both.

Note that the moduli 2 and 4 are not relatively prime.

We will prove that any system of two or more linear congruences
which can be solved separately with unique solutions can also be
solved simultaneously, if the moduli are relatively prime in pairs.
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The Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem)

Assume m1, . . . ,mr are positive integers, relatively prime in pairs,
(mi ,mk) = 1, if i 6= k . Let b1, . . . , br be arbitrary integers. Then the
system of congruences

x ≡ b1 (mod m1)
...

x ≡ br (mod mr )

has exactly one solution modulo the product m1 · · ·mr .

Let M = m1 · · ·mr and set Mk = M
mk

.

Since the mi ’s are relatively prime in pairs, (Mk ,mk) = 1.

So each Mk has a unique reciprocal M ′
k modulo mk .
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The Chinese Remainder Theorem (Cont’d)

Let
x = b1M1M

′
1 + b2M2M

′
2 + · · · + brMrM

′
r .

Consider each term in this sum modulo mk .

If i 6= k , Mi ≡ 0 (mod mk).

So we have
x ≡ bkMkM

′
k ≡ bk (mod mk).

Hence, x satisfies every congruence in the system.

Claim: The system has only one solution mod M.

Suppose x and y are two solutions of the system.

Then we have x ≡ y (mod mk), for each k .

But the mk are relatively prime in pairs.

So we also have x ≡ y (mod M).
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Extension of the Chinese Remainder Theorem

Theorem

Assume m1, . . . ,mr are relatively prime in pairs. Let b1, . . . , br be
arbitrary integers and let a1, . . . , ar satisfy (ak ,mk) = 1, for
k = 1, 2, . . . , r . Then the linear system of congruences

a1x ≡ b1 (mod m1)
...

arx ≡ br (mod mr )

has exactly one solution modulo m1m2 · · ·mr .

Since (ak ,mk) = 1, ak has a reciprocal a′k modulo mk .

Then akx ≡ bk (mod mk) is equivalent to x ≡ bka
′
k (mod mk).

Now apply the Chinese Remainder Theorem.
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Subsection 8

Applications of the Chinese Remainder Theorem
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Polynomial Congruences With Composite Moduli

Theorem

Let f be a polynomial with integer coefficients. Let m1,m2, . . . ,mr be
positive integers relatively prime in pairs. Let m = m1m2 . . .mr . Then the
congruence

f (x) ≡ 0 (mod m)

has a solution if, and only if, each of the congruences

f (x) ≡ 0 (mod mi ), i = 1, 2, . . . , r ,

has a solution. Moreover, if v(m) and v(mi ) denote the number of
solutions, respectively, then

v(m) = v(m1)v(m2) · · · v(mr ).

George Voutsadakis (LSSU) Analytic Number Theory May 2024 59 / 87



Congruences Applications of the Chinese Remainder Theorem

Polynomial Congruences With Composite Moduli (Cont’d)

If f (a) ≡ 0 (mod m), then f (a) ≡ 0 (mod mi), for each i .

Hence, every solution of f (x) ≡ 0 (mod m) is also a solution of
f (x) ≡ 0 (mod mi ).

Conversely, let ai be a solution of f (x) ≡ 0 (mod mi).

By the Chinese Remainder Theorem, there exists an integer a, such
that

a ≡ ai (mod mi ), i = 1, 2, . . . , r .

So f (a) ≡ f (ai) ≡ 0 (mod mi ).

But the moduli are relatively prime in pairs.

So we also have f (a) ≡ 0 (mod m).

Therefore, if each of f (x) ≡ 0 (mod mi) has a solution, so does
f (x) ≡ 0 (mod m).
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Polynomial Congruences With Composite Moduli (Cont’d)

We also know, by a previous theorem, that each r -tuple of solutions
(a1, . . . , ar ) of the last congruences gives rise to a unique integer a
mod m satisfying a ≡ ai (mod mi), i = 1, . . . , r .

By hypothesis, each ai runs through v(mi ) solutions.

So the number of integers a which satisfy these congruences, and
hence the last congruence, is v(m1) · · · v(mr ).

Note: If m has the prime power decomposition at m = pα1
1 · · · pαr

r , we
can take mi = p

αi

i in the theorem.

So the problem of solving a polynomial congruence for a composite
modulus is reduced to that for prime power moduli.

Later we will show that the problem can be reduced further to
polynomial congruences with prime moduli plus a set of linear
congruences.
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Lattice Points Visible from the Origin

Theorem

The set of lattice points in the plane visible from the origin contains
arbitrarily large square gaps. That is, given any integer k > 0 there exists
a lattice point (a, b), such that none of the lattice points

(a + r , b + s), 0 < r ≤ k , 0 < s ≤ k ,

is visible from the origin.

Let p1, p2, . . ., be the sequence of primes.
Given k > 0, consider the k × k matrix whose entries consist of:

The first k primes in the first row;
The next k primes in the second row; etc.

Let mi be the product of the primes in the i -th row;

Let Mi be the product of the primes in the i -th column.

Then the numbers mi are relatively prime in pairs, as are the Mi .
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Lattice Points Visible from the Origin (Cont’d)

Consider the set of congruences

x ≡ −1 (mod m1)
x ≡ −2 (mod m2)

...
x ≡ −k (mod mk)

This system has a solution a which is unique mod m1 · · ·mk .
Similarly, the system

y ≡ −1 (mod M1)
...

y ≡ −k (mod Mk)

has a solution b which is unique mod M1 · · ·Mk = m1 · · ·mk .
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Lattice Points Visible from the Origin (Conclusion)

Consider the square with opposite vertices (a, b), (a + k , b + k).

Any lattice point inside this square has the form

(a + r , b + s), where 0 < r < k , 0 < s < k .

Those points with r = k or s = k lie on the boundary of the square.

Claim: No such point is visible from the origin.

Consider the point (a + r , b + s).

We have a ≡ −r (mod mr ) and b ≡ −s (mod Ms).

So the prime in the intersection of row r and column s divides both
a + r and b + s.

Hence, a + r and b + s are not relatively prime.

Therefore, the lattice point (a+ r , b+ s) is not visible from the origin.
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Subsection 9

Polynomial Congruences with Prime Power Moduli
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Congruences Modulo a Prime Power

We saw that the problem of solving a polynomial congruence

f (x) ≡ 0 (mod m)

can be reduced to that of solving a system of congruences

f (x) ≡ 0 (mod p
αi

i ), i = 1, 2, . . . , r ,

where m = pα1
1 · · · pαr

r .

In this section we show that the problem can be further reduced to
congruences with prime moduli plus a set of linear congruences.
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Remainders Generated from Solutions

Let f be a polynomial with integer coefficients.

Suppose that for some prime p and some α ≥ 2 the congruence

f (x) ≡ 0 (mod pα)

has a solution, say x = a, where a is chosen so that it lies in the
interval 0 ≤ a < pα.

This solution also satisfies, for each β < α, the congruences

f (x) ≡ 0 (mod pβ).

In particular, a satisfies f (x) ≡ 0 (mod pα−1).

Divide a by pα−1 and write

a = qpα−1 + r , 0 ≤ r < pα−1.

The remainder r is said to be generated by a.
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Lifting Generated Remainders

Since r ≡ a (mod pα−1), r is a solution of f (x) ≡ 0 (mod pα−1).

In other words, every solution a of the congruence f (x) ≡ 0 mod pα

in the interval 0 ≤ a < pα generates a solution r of the congruence
f (x) ≡ 0 (mod pα−1) in the interval 0 ≤ r < pα−1.

Suppose we start with a solution r of f (x) ≡ 0 (mod pα−1) in the
interval 0 ≤ r < pα−1.

We ask whether there is a solution a of f (x) ≡ 0 mod pα in the
interval 0 ≤ a < pα, which generates r .

If this happens, we say that r can be lifted from pα−1 to pα.

The next theorem shows that the possibility of r being lifted depends
on f (r) mod pα and on the derivative f ′(r) mod p.
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Lifting of a Solution

Theorem

Assume α ≥ 2. Let r be a solution of the congruence

f (x) ≡ 0 (mod pα−1)

lying in the interval 0 ≤ r < pα−1.

(a) Assume f ′(r) 6≡ 0 (mod p).
Then r can be lifted in a unique way from pα−1 to pα.
That is, there is a unique a in the interval 0 ≤ a < pα, which
generates r and satisfies the congruence

f (x) ≡ 0 (mod pα).
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Lifting of a Solution (Cont’d)

Theorem (Cont’d)

(b) Assume f ′(r) ≡ 0 (mod p).

Then we have two possibilities:

(b1) If f (r) ≡ 0 (mod pα), r can be lifted from pα−1 to pα in p distinct
ways.

(b2) If f (r) 6≡ 0 (mod pα), r cannot be lifted from pα−1 to pα.

If n is the degree of f we have the identity (Taylor’s formula)

f (x + h) = f (x) + f ′(x)h +
f ′′(x)

2!
h2 + · · ·+

f (n)(x)

n!
hn,

for every x and h.

We note that each polynomial f (k)(x)
k! has integer coefficients.
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Lifting of a Solution (Cont’d)

Take x = r , where r is a solution of f (x) ≡ 0 (mod pα−1) in the
interval 0 ≤ r < pα−1.

Let h = qpα−1, where q is an integer to be specified.

Since α ≥ 2, the terms involving h2 and higher powers of h are
integer multiples of pα.

Therefore,

f (r + qpα−1) ≡ f (r) + f ′(r)qpα−1 (mod pα).

By hypothesis, f (r) = kpα−1, for some integer k .

So the last congruence becomes

f (r + qpα−1) ≡ {qf ′(r) + k}pα−1 (mod pα).
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Lifting of a Solution (Cases)

We showed f (r + qpα−1) ≡ {qf ′(r) + k}pα−1 (mod pα).

Let a = r + qpα−1.

Then a satisfies f (x) ≡ 0 (mod pα) if, and only if, q satisfies the
linear congruence qf ′(r) + k ≡ 0 (mod p).

Suppose f ′(r) 6≡ 0 (mod p).
Then qf ′(r) + k ≡ 0 (mod p) has a unique solution q mod p.
Choose q in the interval 0 ≤ q < p.
Then a = r + qpα−1 satisfies f (x) ≡ 0 (mod pα) and 0 ≤ a < pα.
Suppose f ′(r) ≡ 0 (mod p).
Then qf ′(r) + k ≡ 0 (mod p) has a solution q if, and only if, p | k .
Equivalently, if and only if f (r) ≡ 0 (mod pα).

If p ∤ k , there is no choice of q to make a satisfy f (x) ≡ 0 (mod pα).
If p | k , then the p values q = 0, 1, . . . , p − 1 give p solutions a of
f (x) ≡ 0 (mod pα) which generate r and lie in the interval 0 ≤ a < pα.
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The Procedure for Determining Solutions

We have a method for obtaining solutions of congruence f (x) ≡ 0
(mod pα) if solutions of f (x) ≡ 0 (mod pα−1) are known.

We solve the congruence f (x) ≡ 0 (mod p).
If the latter has no solutions, then the original has no solutions.
If the latter has solutions, we choose one, call it r , which lies in the
interval 0 ≤ r < p. Corresponding to r , there will be 0, 1, or p
solutions of the congruence f (x) ≡ 0 (mod p2), depending on the

numbers f ′(r) and k = f (r)
p
.

If p ∤ k and p | f ′(r) then r cannot be lifted to a solution.
In this case we begin anew with a different solution r .
If no r can be lifted, then f (x) ≡ 0 (mod p2) has no solution.
If p | k for some r , we examine the linear congruence qf ′(r) + k ≡ 0
(mod p). This has 1 or p solutions q according as p ∤ f ′(r) or p | f ′(r).
For each solution q the number a = r + qp gives a solution of f (x) ≡ 0
(mod p2).

For each such solution a similar procedure can be used to find all
solutions of f (x) ≡ 0 (mod p3), and so on.
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Subsection 10

Cross-Classification or Inclusion-Exclusion
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Notation

The principle of cross-classification or inclusion-exclusion is a
formula which counts the number of elements of a finite set S which
do not belong to certain prescribed subsets S1, . . . ,Sn.

If T is a subset of S , we write N(T ) for the number of elements of T .

Denote by S − T the set of those elements of S which are not in T .

Thus, S −
⋃n

i=1 Si consists of those elements of S which are not in
any of the subsets S1, . . . ,Sn.

For brevity we write:

SiSj for the intersection Si ∩ Sj ;
SiSjSk for the intersection Si ∩ Sj ∩ Sk ;
...
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Principle of Cross-Classification

Theorem (Principle of Cross-Classification)

If S1, . . . ,Sn are given subsets of a finite set S , then

N(S −
⋃n

i=1 Si) = N(S)−
∑

1≤i≤n N(Si ) +
∑

1≤i<j≤n N(SiSj)

−
∑

1≤i<j<k≤n N(SiSjSk) + · · · + (−1)nN(S1S2 · · · Sn).

If T ⊆ S let Nr (T ) denote the number of elements of T which are
not in any of the first r subsets S1, . . . ,Sr .

In this notation, N0(T ) is simply N(T ).

The elements enumerated by Nr−1(T ) fall into two disjoint sets,
those which are not in Sr and those which are in Sr .

Therefore we have Nr−1(T ) = Nr (T ) + Nr−1(TSr ).

Hence
Nr (T ) = Nr−1(T )− Nr−1(TSr ).
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Principle of Cross-Classification (Cont’d)

We obtained Nr (T ) = Nr−1(T )− Nr−1(TSr ).

Now take T = S .

Use the relation to express each term on the right in terms of Nr−2.

We obtain

Nr (S) = {Nr−2(S)− Nr−2(SSr−1)} − {Nr−2(Sr )− Nr−2(SrSr−1)}

= Nr−2(S)− Nr−2(Sr−1)− Nr−2(Sr ) + Nr−2(SrSr−1).

Applying the previous equation, repeatedly we finally obtain

Nr (S) = N0(S)−
∑r

i=1N0(Si) +
∑

1≤i<j≤r N0(SiSj)

− · · ·+ (−1)rN0(S1 · · · Sr ).

When r = n, this gives the required formula.
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Example: Product Formula for Euler’s Totient

Let p1, . . . , pr denote the distinct prime divisors of n.

Let S = {1, 2, . . . , n} and let Sk be the subset of S consisting of
those integers divisible by pk .

The numbers in S relatively prime to n are those in none of the sets
S1, . . . ,Sr .

It follows that
ϕ(n) = N(S − ∪r

k=1Sk).
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Example: Product Formula for Euler’s Totient (Cont’d)

If d | n, there are n
d
multiples of d in the set S .

Hence:

N(Si) =
n
pi
;

N(SiSj) =
n

pipj
;

...
N(S1 · · · Sr ) =

n
p1···pr

.

So the Cross-Classification Principle gives us

ϕ(n) = n−
∑n

i=1
n
pi
+

∑
1≤i<j≤r

n
pipj

− · · ·+ (−1)r n
p1···pr

= n
∑

d|n
µ(d)
d

= n
∏

p|n(1−
1
p
).
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Number of Elements in a Reduced Residue System

Theorem

Given integers r , d and k , such that d | k , d > 0, k ≥ 1 and (r , d) = 1.
Then the number of elements in the set

S =

{
r + td : t = 1, 2, . . . ,

k

d

}

which are relatively prime to k is ϕ(k)
ϕ(d) .

Suppose a prime p divides k and r + td .

Then p ∤ d . Otherwise p | r , contradicting (r , d) = 1.

Therefore, the primes which divide k and elements of S are those
which divide k but do not divide d .

Call them p1, . . . , pm and let k ′ = p1p2 · · · pm.
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Elements in a Reduced Residue System (Cont’d)

Now the elements of S relatively prime to k are those not divisible by
any of p1, . . . , pm.

Let
Si = {x : x ∈ S and pi | x}, i = 1, 2, . . . ,m.

If x ∈ Si and x = r + td , then r + td ≡ 0 (mod pi ).

Since pi ∤ d , there is a unique t mod pi with this property.

Therefore, exactly one t in each of the intervals

[1, pi ], [pi + 1, 2pi ], . . . , [(q − 1)pi + 1, qpi ],

where qpi =
k
d
, satisfies r + td ≡ 0 (mod pi ).

So N(Si ) =
k/d
pi

.
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Elements in a Reduced Residue System (Cont’d)

Similarly, we obtain:

N(SiSj) =
k/d
pipj

;

...
N(S1 · · · Sm) =

k/d
p1···pm

.

Hence, by the Cross-Classification Principle, the number of integers in
S which are relatively prime to k is

N(S −
⋃m

i=1 Si) = k
d

∑
δ|k′

µ(δ)
δ

= k
d

∏
p|k′(1−

1
p
)

=
k
∏

p|k(1−
1
p
)

d
∏

p|d (1−
1
p
)

= ϕ(k)
ϕ(d) .
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Subsection 11

A Decomposition Property of Reduced Residue Systems
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Example

Let S be a reduced residue system mod 15, say

S = {1, 2, 4, 7, 8, 11, 13, 14}.

We display the 8 elements of S in a 4× 2 matrix as follows:



1 2
4 8
7 11

13 14


 .

Each row contains a reduced residue system mod 3.

The numbers in each column are congruent to each other mod 3.

Taking rows representing reduced systems modulo 5 and columns
with numbers congruent modulo 5, we get

[
1 2 4 8
11 7 14 13

]
.
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Decomposition Property of Reduced Residue Systems

Theorem

Let S be a reduced residue system mod k , and let d > 0 be a divisor of k .
Then we have the following decompositions of S :

(a) S is the union of ϕ(k)
ϕ(d) disjoint sets, each of which is a reduced residue

system mod d .

(b) S is the union of ϕ(d) disjoint sets, each of which consists of ϕ(k)
ϕ(d)

numbers congruent to each other mod d .

First we prove that properties (a) and (b) are equivalent.

Suppose (b) holds. Display the ϕ(k) elements of S as a matrix, using

the ϕ(d) disjoint sets of (b) as columns. This matrix has ϕ(k)
ϕ(d) rows.

Each row contains a reduced system mod d . These are the disjoint sets
required for part (a).
Similarly, it is easy to verify that Property (a) implies Property (b).
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Decomposition Property of Reduced Residue Systems (b)

We now prove Property (b).

Let Sd be a given reduced residue system mod d .

Suppose r ∈ Sd .

There are ϕ(d) values of r in Sd and ϕ(k) integers in S .

So there cannot be more than ϕ(k)
ϕ(d) integers n in S , distinct mod k ,

such that
n ≡ r (mod d).

To complete the proof it suffices to prove the following.

Claim: There are at least ϕ(k)
ϕ(d) integers n in S , distinct mod k , such

that
n ≡ r (mod d).
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Decomposition Property (Claim)

Claim: There are at least ϕ(k)
ϕ(d) integers n in S , distinct mod k , such

that n ≡ r (mod d).

The required numbers n are selected from the residue classes mod k ,
represented by the following k

d
integers:

r , r + d , r + 2d , . . . , r +
k

d
d .

These numbers are congruent to each other mod d and they are
incongruent mod k .

Since ∈ Sd , (r , d) = 1.

So the preceding theorem shows that ϕ(k)
ϕ(d) of the numbers in the list

are relatively prime to k .
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