Introduction to Analytic Number Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

- Dirichlet's Theorem on Primes in Arithmetic Progressions
 - Introduction
 - Dirichlet's Theorem for Primes of the Form 4n-1 and 4n+1
 - The Plan of the Proof of Dirichlet's Theorem
 - Proof of Lemma 1
 - Proof of Lemma 2
 - Proof of Lemma 3
 - Proof of Lemma 5
 - Proof of Lemma 4
 - Distribution of Primes in Arithmetic Progressions

Introduction

Introducing Dirichlet's Theorem

- The arithmetic progression of odd numbers $1, 3, 5, \ldots, 2n + 1, \ldots$ contains infinitely many primes.
- It is natural to ask whether other arithmetic progressions have this property.
- An arithmetic progression with first term h and common difference k consists of all numbers of the form kn + h, n = 0, 1, 2, ...
- A necessary condition for the existence of infinitely many primes in the arithmetic progression is that (h, k) = 1.
 - Suppose h and k have a common factor d > 1.
 - Then each term of the progression is divisible by d.
 - So there can be no more than one prime in the progression.
- Dirichlet proved that the condition is also sufficient.
 If (h, k) = 1 the arithmetic progression kn + h contains infinitely many primes.

<u>Dirichlet's Theorem</u> for Primes of the Form 4n-1 and 4n+1

Dirichlet's Theorem for Primes of the Form 4n-1

Theorem

There are infinitely many primes of the form 4n-1.

• Assume there are only a finite number of such primes.

Let p be the largest, and set $N = 2^2 \cdot 3 \cdot 5 \cdots p - 1$.

The product $3 \cdot 5 \cdots p$ contains all the odd primes $\leq p$ as factors.

Since N is of the form 4n-1, it cannot be prime because N > p.

No prime $\leq p$ divides N.

So all the prime factors of N must exceed p.

But all of the prime factors of N cannot be of the form 4n + 1 because the product of two such numbers is again of the same form.

Hence, some prime factor of N must be of the form 4n - 1.

This is a contradiction.

Dirichlet's Theorem for Primes of the Form 4n + 1

Theorem

There are infinitely many primes of the form 4n + 1.

• Let N be any integer > 1.

We show that there is a prime p > N, such that $p \equiv 1 \pmod{4}$.

Let

$$m = (N!)^2 + 1.$$

Then m is odd, m > 1.

Let p be the smallest prime factor of m.

As none of the numbers $2, 3, \ldots, N$ divides m, p > N.

Also, we have

$$(N!)^2 \equiv -1 \pmod{p}.$$

Dirichlet's Theorem for Primes 4n + 1 (Cont'd)

• Raise both members to the $\frac{p-1}{2}$ power,

$$(N!)^{p-1} \equiv (-1)^{\frac{p-1}{2}} \pmod{p}.$$

By the Euler-Fermat Theorem, $(N!)^{p-1} \equiv 1 \pmod{p}$.

This gives

$$(-1)^{\frac{p-1}{2}} \equiv 1 \pmod{p}.$$

Now the difference $(-1)^{\frac{p-1}{2}} - 1$ is either 0 or -2.

It cannot be -2, because it is divisible by p. So it must be 0.

That is,

$$(-1)^{\frac{p-1}{2}} = 1.$$

This means that $\frac{p-1}{2}$ is even. So $p \equiv 1 \pmod{4}$.

So, for each N > 1, there is a prime p > N, such that $p \equiv 1 \pmod{4}$.

Therefore, there are infinitely many primes of the form 4n + 1.

The Plan of the Proof of Dirichlet's Theorem

The End Theorem

• Dirichlet's Theorem follows from an asymptotic formula.

Theorem

If k > 0 and (h, k) = 1, we have, for all x > 1,

$$\sum_{\substack{p \leq x \\ (\text{mod } k)}} \frac{\log p}{p} = \frac{1}{\varphi(k)} \log x + O(1),$$

where the sum is extended over those primes $p \le x$ which are congruent to $h \mod k$.

- Since $\log x \to \infty$ as $x \to \infty$, this relation implies that there are infinitely many primes $p \equiv h \pmod{k}$.
- So, there are infinitely many primes in nk + h, n = 0, 1, 2, ...

Remarks

Consider again the sum

$$\sum_{\substack{p \leq x \\ p \equiv h \pmod{k}}} \frac{\log p}{p} = \frac{1}{\varphi(k)} \log x + O(1),$$

extended over those primes $p \le x$ which are congruent to $h \mod k$.

- The principal term on the right of the equation is independent of h.
- Therefore, the theorem not only implies Dirichlet's Theorem but also shows that the primes in each of the $\varphi(k)$ reduced residue classes mod k make the same contribution to the principal term in

$$\sum_{p \le x} \frac{\log p}{p} = \log x + O(1).$$

Notation

- The positive integer k represents a fixed modulus.
- h is a fixed integer relatively prime to k.
- The $\varphi(k)$ Dirichlet characters mod k are denoted by $\chi_1, \chi_2, \ldots, \chi_{\varphi(k)}$, with χ_1 denoting the principal character.
- For $\chi \neq \chi_1$, we write $L(1,\chi)$ and $L'(1,\chi)$

$$L(1,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n}, \quad L'(1,\chi) = -\sum_{n=1}^{\infty} \frac{\chi(n) \log n}{n}.$$

- The convergence of each of these series was shown in the previous set.
- Moreover, we proved that $L(1,\chi) \neq 0$, if χ is real-valued.
- The symbol p denotes a prime, and $\sum_{p \le x}$ denotes a sum extended over all primes $p \le x$.

Lemma 1

For x > 1, we have

$$\sum_{\substack{p \leq x \\ p \equiv h \pmod{k}}} \frac{\log p}{p} = \frac{1}{\varphi(k)} \log x + \frac{1}{\varphi(k)} \sum_{r=2}^{\varphi(k)} \overline{\chi}_r(h) \sum_{p \leq x} \frac{\chi_r(p) \log p}{p} + O(1).$$

It is clear that Lemma 1 will imply the theorem if we show that

$$\sum_{p \le x} \frac{\chi(p) \log p}{p} = O(1),$$

for each $\chi \neq \chi_1$.

• The next lemma expresses $\sum_{p \le x} \frac{\chi(p) \log p}{p}$ in a form which is not extended over primes.

Lemma 2

For x > 1 and $\chi \neq \chi_1$, we have

$$\sum_{p \le x} \frac{\chi(p) \log p}{p} = -L'(1,\chi) \sum_{n \le x} \frac{\mu(n)\chi(n)}{n} + O(1).$$

• So Lemma 2 will imply $\sum_{p \leq x} \frac{\chi(p) \log p}{p} = O(1)$, for each $\chi \neq \chi_1$, if we show that

$$\sum_{n \in \mathbb{N}} \frac{\mu(n)\chi(n)}{n} = O(1).$$

• $\sum_{n \le x} \frac{\mu(n)\chi(n)}{n} = O(1)$ will be deduced from the following lemma.

Lemma 3

For x > 1 and $\chi \neq \chi_1$, we have

$$L(1,\chi)\sum_{n\leq x}\frac{\mu(n)\chi(n)}{n}=O(1).$$

- If $L(1,\chi) \neq 0$, we cancel $L(1,\chi)$ to obtain $\sum_{n \leq x} \frac{\mu(n)\chi(n)}{n} = O(1)$.
- Ultimately, we must show $L(1,\chi) \neq 0$, for all $\chi \neq \chi_1$.
- This was proved for real $\chi \neq \chi_1$ in a previous theorem.
- So it remains to prove that $L(1,\chi) \neq 0$, for all $\chi \neq \chi_1$ which take complex as well as real values.

Remark on Complex Valued Characters

• We let N(k) denote the number of nonprincipal characters $\chi \mod k$, such that

$$L(1,\chi) = 0.$$

• If $L(1,\chi)=0$, then

$$L(1,\overline{\chi})=\sum_{n=1}^{\infty}\frac{\overline{\chi}(n)}{n}=0.$$

- Moreover, if $L(1, \chi) = 0$, $\chi \neq \overline{\chi}$, since χ is not real.
- So the characters χ for which $L(1,\chi)=0$ occur in conjugate pairs.
- It follows that N(k) is even.
- Our goal is to prove that N(k) = 0.

• We deduce N(k) = 0 from the following asymptotic formula.

Lemma 4

For x > 1, we have

$$\sum_{\substack{p \leq x \\ p \equiv 1 \pmod{k}}} \frac{\log p}{p} = \frac{1 - N(k)}{\varphi(k)} \log x + O(1).$$

• If $N(k) \neq 0$, then $N(k) \geq 2$, since N(k) is even.

Hence, the coefficient of $\log x$ is negative.

So the right member $\to -\infty$ as $x \to \infty$.

This is a contradiction, since all the terms on the left are positive.

Therefore, Lemma 4 implies that N(k) = 0.

 The proof of Lemma 4 will be based on the following asymptotic formula.

Lemma 5

If $\chi \neq \chi_1$ and $L(1,\chi) = 0$, we have

$$L'(1,\chi)\sum_{n\leq x}\frac{\mu(n)\chi(n)}{n}=\log x+O(1).$$

Proof of Lemma 1

Proof of Lemma 1

We begin with the asymptotic formula mentioned earlier,

$$\sum_{p \le x} \frac{\log p}{p} = \log x + O(1).$$

Extract those terms arising from primes $p \equiv h \pmod{k}$. For the extraction use the orthogonality relation for Dirichlet characters

$$\sum_{r=1}^{\varphi(k)} \chi_r(m) \overline{\chi}_r(n) = \left\{ \begin{array}{ll} \varphi(k), & \text{if } m \equiv n \pmod{k} \\ 0, & \text{if } m \not\equiv n \pmod{k} \end{array} \right.$$

This is valid for (n, k) = 1.

Take m = p and n = h, where (h, k) = 1,

$$\sum_{r=1}^{\varphi(k)} \chi_r(p) \overline{\chi}_r(h) = \begin{cases} \varphi(k), & \text{if } p \equiv h \pmod{k} \\ 0, & \text{if } p \not\equiv h \pmod{k} \end{cases}$$

Proof of Lemma 1 (Cont'd)

• Multiply both members by $\frac{\log p}{p}$ and sum over all $p \leq x$,

$$\sum_{p \le x} \sum_{r=1}^{\varphi(k)} \chi_r(p) \overline{\chi}_r(h) \frac{\log p}{p} = \varphi(k) \sum_{\substack{p \le x \\ (\text{mod } k)}} \frac{\log p}{p}.$$

Isolate those terms involving only the principal character χ_1 ,

$$\varphi(k) \sum_{\substack{p \leq x \\ (\text{mod } k)}} \frac{\log p}{p} = \overline{\chi}_1(h) \sum_{\substack{p \leq x}} \frac{\chi_1(p) \log p}{p} + \sum_{r=2}^{\varphi(k)} \overline{\chi}_r(h) \sum_{\substack{p \leq x}} \frac{\chi_r(p) \log p}{p}.$$

Proof of Lemma 1 (Cont'd)

- We have:
 - $\chi_1(h) = 1$:
 - $\chi_1(p) = 0$, unless (p, k) = 1, in which case $\chi_1(p) = 1$.

Hence, the first term on the right is given by

$$\sum_{\substack{p \le x \\ (p,k)=1}} \frac{\log p}{p} = \sum_{\substack{p \le x}} \frac{\log p}{p} - \sum_{\substack{p \le x \\ p \mid k}} \frac{\log p}{p}$$
$$= \sum_{\substack{p \le x \\ p \in x}} \frac{\log p}{p} + O(1),$$

since there are only a finite number of primes which divide k. So

$$\varphi(k) \sum_{\substack{p \le x \\ p \equiv h \pmod{k}}} \frac{\log p}{p} = \sum_{\substack{p \le x \\ p}} \frac{\log p}{p} + \sum_{r=2}^{\varphi(k)} \overline{\chi}_r(h) \sum_{\substack{p \le x \\ p}} \frac{\chi_r(p) \log p}{p} + O(1).$$

Finally, use $\sum_{p < x} \frac{\log p}{p} = \log x + O(1)$ and divide by $\varphi(k)$.

Proof of Lemma 2

Proof of Lemma 2

We express the sum

$$p\sum_{n\leq x}\frac{\chi(n)\Lambda(n)}{n},$$

where $\Lambda(n)$ is Mangoldt's function, in two ways. First we note that the definition of $\Lambda(n)$ gives us

$$\sum_{n \le x} \frac{\chi(n)\Lambda(n)}{n} = \sum_{p \le x} \sum_{\substack{a=1 \ p^a < x}}^{\infty} \frac{\chi(p^a) \log p}{p^a}.$$

We separate the terms with a = 1 and write

$$\sum_{n \le x} \frac{\chi(n) \Lambda(n)}{n} = \sum_{p \le x} \frac{\chi(p) \log p}{p} + \sum_{p \le a} \sum_{\substack{a = 2 \\ p^a < x}}^{\infty} \frac{\chi(p^a) \log p}{p^a}.$$

Proof of Lemma 2 (Cont'd)

The sum

$$\sum_{p \le a} \sum_{\substack{a=2\\ p^a \le x}}^{\infty} \frac{\chi(p^a) \log p}{p^a}$$

is majorized by

$$\sum_{p} \log p \sum_{a=2}^{\infty} \frac{1}{p^{a}} = \sum_{p} \frac{\log p}{p(p-1)} < \sum_{n=2}^{\infty} \frac{\log n}{n(n-1)} = O(1).$$

So we get

$$\sum_{p \le x} \frac{\chi(p) \log p}{p} = \sum_{n \le x} \frac{\chi(n) \Lambda(n)}{n} + O(1).$$

Proof of Lemma 2 (Cont'd)

Now we recall that

$$\Lambda(n) = \sum_{d|n} \mu(d) \log \frac{n}{d}.$$

Hence,

$$\sum_{n \le x} \frac{\chi(n)\Lambda(n)}{n} = \sum_{n \le x} \frac{\chi(n)}{n} \sum_{d|n} \mu(d) \log \frac{n}{d}.$$

In the last sum we write $\emph{n}=\emph{cd}$ and use the multiplicative property of χ to obtain

$$\sum_{n \le x} \frac{\chi(n)\Lambda(n)}{n} = \sum_{d \le x} \frac{\mu(d)\chi(d)}{d} \sum_{c < x/d} \frac{\chi(c)\log c}{c}.$$

Proof of Lemma 2 (Cont'd)

• Since $\frac{x}{d} > 1$, in the sum

$$\sum_{c \le x/d} \frac{\chi(c) \log c}{c}$$

we may use a previous theorem to obtain

$$\sum_{c \leq \frac{x}{d}} \frac{\chi(c) \log c}{c} = -L'(1, \chi) + O\left(\frac{\log \frac{x}{d}}{\frac{x}{d}}\right).$$

So

$$\sum_{n \le x} \frac{\chi(n) \Lambda(n)}{n} = -L'(1, \chi) \sum_{d \le x} \frac{\mu(d) \chi(d)}{d} + O\left(\sum_{d \le x} \frac{1}{d} \frac{\log \frac{x}{d}}{\frac{x}{d}}\right).$$

Proof of Lemma 2 (Conclusion)

Note

$$\sum_{d \le x} \log d = \log [x]! = x \log x + O(x).$$

So the sum in the O-term above is

$$\frac{1}{x}\sum_{d\leq x}(\log x - \log d) = \frac{1}{x}\left([x]\log x - \sum_{d\leq x}\log d\right) = O(1).$$

Therefore, we get

$$\sum_{n\leq x}\frac{\chi(n)\Lambda(n)}{n}=-L'(1,\chi)\sum_{d\leq x}\frac{\mu(d)\chi(d)}{d}+O(1).$$

But we have shown that $\sum_{p \le x} \frac{\chi(p) \log p}{p} = \sum_{n \le x} \frac{\chi(n) \Lambda(n)}{n} + O(1)$. So we have the conclusion.

Proof of Lemma 3

Proof of Lemma 3

• We use the generalized Möbius Inversion Formula. It states that, if α is completely multiplicative, then

$$G(x) = \sum_{n \le x} \alpha(n) F\left(\frac{x}{n}\right)$$
 iff $F(x) = \sum_{n \le x} \mu(n) \alpha(n) G\left(\frac{x}{n}\right)$.

Take $\alpha(n) = \chi(n)$ and F(x) = x.

Then

$$G(x) = \sum_{n \le x} \chi(n) \frac{x}{n} = x \sum_{n \le x} \frac{\chi(n)}{n}.$$

Moreover, by the Inversion Formula,

$$x = \sum_{n \le x} \mu(n) \chi(n) G\left(\frac{x}{n}\right).$$

Proof of Lemma 3 (Cont'd)

Now recall that

$$\sum_{n \le x} \frac{\chi(n)}{n} = \sum_{n=1}^{\infty} \frac{\chi(n)}{n} + O\left(\frac{1}{x}\right).$$

So we can write

$$G(x) = xL(1, \chi) + O(1).$$

Therefore,

$$x = \sum_{n \le x} \mu(n) \chi(n) \{ \frac{x}{n} L(1, \chi) + O(1) \}$$
$$= xL(1, \chi) \sum_{n \le x} \frac{\mu(n) \chi(n)}{n} + O(x).$$

Finally, divide by x to obtain the conclusion.

Proof of Lemma 5

Proof of Lemma 5

Consider again the Generalized Möbius Inversion Formula

$$G(x) = \sum_{n \le x} \alpha(n) F\left(\frac{x}{n}\right)$$
 iff $F(x) = \sum_{n \le x} \mu(n) \alpha(n) G\left(\frac{x}{n}\right)$.

Take $\alpha(n) = \chi(n)$ and $F(x) = x \log x$.

Then

$$G(x) = \sum_{n \le x} \chi(n) \frac{x}{n} \log \frac{x}{n}$$

= $x \log x \sum_{n \le x} \frac{\chi(n)}{n} - x \sum_{n \le x} \frac{\chi(n) \log n}{n}$.

Moreover, by the Inversion Formula,

$$x \log x = \sum_{n \le x} \mu(n) \chi(n) G\left(\frac{x}{n}\right).$$

Proof of Lemma 5 (Cont'd)

- By a previous theorem:
 - $\sum_{n \le x} \frac{\chi(n)}{n} = \sum_{n=1}^{\infty} \frac{\chi(n)}{n} + O\left(\frac{1}{x}\right);$
 - $\sum_{n \le x}^{\infty} \frac{\chi(n) \log n}{n} = \sum_{n=1}^{\infty} \frac{\chi(n) \log n}{n} + O\left(\frac{\log x}{x}\right).$

We get

$$G(x) = x \log x \sum_{n \le x} \frac{\chi(n)}{n} - x \sum_{n \le x} \frac{\chi(n) \log n}{n}$$

= $x \log x \{ L(1, \chi) + O(\frac{1}{x}) \} + x \{ L'(1, \chi) + O(\frac{\log x}{x}) \}$
= $x L'(1, \chi) + O(\log x),$

since we are assuming that $L(1, \chi) = 0$.

Proof of Lemma 5 (Cont'd)

Hence, we get

$$x \log x = \sum_{n \le x} \mu(n) \chi(n) G\left(\frac{x}{n}\right)$$

$$= \sum_{n \le x} \mu(n) \chi(n) \left\{\frac{x}{n} L'(1, \chi) + O(\log \frac{x}{n})\right\}$$

$$= xL'(1, \chi) \sum_{n \le x} \frac{\mu(n) \chi(n)}{n} + O(\sum_{n \le x} (\log x - \log n)).$$

We know the *O*-term is O(x).

Hence we have

$$x \log x = xL'(1,\chi) \sum_{n \le x} \frac{\mu(n)\chi(n)}{n} + O(x).$$

Finally, divide by x.

Proof of Lemma 4

Proof of Lemma 4

Lemma 1 gives

$$\sum_{\substack{p \leq x \\ p \equiv h \pmod{k}}} \frac{\log p}{p} = \frac{1}{\varphi(k)} \log x + \frac{1}{\varphi(k)} \sum_{r=2}^{\varphi(k)} \overline{\chi}_r(h) \sum_{p \leq x} \frac{\chi_r(p) \log p}{p} + O(1).$$

Setting h = 1, we get

$$\sum_{\substack{p \le x \\ p = 1 \pmod{k}}} \frac{\log p}{p} = \frac{1}{\varphi(k)} \log x + \frac{1}{\varphi(k)} \sum_{r=2}^{\varphi(k)} \sum_{p \le x} \frac{\chi_r(p) \log p}{p} + O(1).$$

Proof of Lemma 4 (Cont'd)

• Lemma 2 says, for x>1 and $\chi\neq\chi_1$,

$$\sum_{p\leq x} \frac{\chi(p)\log p}{p} = -L'(1,\chi) \sum_{n\leq x} \frac{\mu(n)\chi(n)}{n} + O(1).$$

Substitute this in on the right in the main formula

$$\sum_{\substack{p \leq x \\ p \equiv 1 \pmod{k}}} \frac{\log p}{p} = \frac{1}{\varphi(k)} \log x + \frac{1}{\varphi(k)} \sum_{r=2}^{\varphi(k)} \sum_{p \leq x} \frac{\chi_r(p) \log p}{p} + O(1).$$

We get

$$\sum_{p\equiv 1} \frac{\log p}{(\text{mod } k)} = \frac{1}{\varphi(k)} \log x + \frac{1}{\varphi(k)} \sum_{r=2}^{\varphi(k)} \left[-L'(1,\chi_r) \sum_{n\leq x} \frac{\mu(n)\chi_r(n)}{n} + O(1) \right] + O(1).$$

Proof of Lemma 4 (Cont'd)

Now we have

$$\sum_{\substack{p \equiv 1 \pmod{k}}} \frac{\log p}{(\text{mod } k)} = \frac{1}{\varphi(k)} \log x + \frac{1}{\varphi(k)} \sum_{r=2}^{\varphi(k)} \left[-L'(1, \chi_r) \sum_{n \leq x} \frac{\mu(n) \chi_r(n)}{n} \right] + O(1).$$

By Lemma 3, for x > 1 and $\chi \neq \chi_1$, we have

$$L(1,\chi)\sum_{n\leq \chi}\frac{\mu(n)\chi(n)}{n}=O(1).$$

So, if $L(1,\chi_r) \neq 0$, the contribution to the sum on the right is O(1).

Proof of Lemma 4 (Cont'd)

• By Lemma 5, if $\chi \neq \chi_1$ and $L(1,\chi)=0$, we have

$$L'(1,\chi)\sum_{n\leq x}\frac{\mu(n)\chi(n)}{n}=\log x+O(1).$$

So, if $L(1, \chi_r) = 0$,

$$-L'(1,\chi_r) \sum_{n \le x} \frac{\mu(n)\chi_r(n)}{n} = -\log x + O(1).$$

Therefore the sum on the right is $\frac{1}{\varphi(k)}\{-N(k)\log x + O(1)\}$. Thus, the equation becomes

$$\sum_{\substack{p \leq x \\ p \equiv 1 \pmod{k}}} \frac{\log p}{p} = \frac{1 - N(k)}{\varphi(k)} \log x + O(1).$$

Distribution of Primes in Arithmetic Progressions

Distribution of Primes in Arithmetic Progressions

Theorem (Dirichlet's Theorem)

If k > 0 and (h, k) = 1, there are infinitely many primes in the arithmetic progression nk + h, n = 0, 1, 2, ...

- It follows from the main theorem of the preceding section.
- If k > 0 and (a, k) = 1, let

$$\pi_a(x) = \sum_{\substack{p \le x \\ p \equiv a \pmod{k}}} 1.$$

- The function $\pi_a(x)$ counts the number of primes $\leq x$ in the progression nk + a, n = 0, 1, 2, ...
- Dirichlet's Theorem shows that $\pi_a(x) \to \infty$ as $x \to \infty$.

Prime Number Theorem for Arithmetic Progressions

- There is also a prime number theorem for arithmetic progressions.
- It states that, if (a, k) = 1, then, as $x \to \infty$,

$$\pi_a(x) \sim \frac{\pi(x)}{\varphi(k)} \sim \frac{1}{\varphi(k)} \frac{x}{\log x}.$$

 The prime number theorem for progressions is suggested by the formula

$$\sum_{\substack{p \le x \\ \pmod{k}}} \frac{\log p}{p} = \frac{1}{\varphi(k)} \log x + O(1).$$

- Note that the principal term is independent of h.
- Thus, the primes seem to be equally distributed among the $\varphi(k)$ reduced residue classes mod k.

Prime Number Theorem for Progressions

Theorem

If the relation

$$\pi_{\mathsf{a}}(x) \sim \frac{\pi(x)}{\varphi(k)} \text{ as } x \to \infty$$

holds for every integer a relatively prime to k, then

$$\pi_a(x) \sim \pi_b(x)$$
 as $x \to \infty$,

whenever (a, k) = (b, k) = 1.

Conversely, the latter implies the former.

• Only the "only if" needs proof.

Prime Number Theorem for Progressions (Cont'd)

• Let A(k) denote the number of primes that divide k. If x > k, we have

$$\pi(x) = \sum_{p \le x} 1$$

$$= A(k) + \sum_{\substack{p \le x \\ p \nmid k}} 1$$

$$= A(k) + \sum_{\substack{a=1 \\ (a,k)=1}}^{k} \sum_{\substack{p \equiv a \pmod{k}}} p \le x \pmod{k} 1$$

$$= A(k) + \sum_{\substack{a=1 \\ (a,k)=1}}^{k} \pi_a(x).$$

Therefore,

$$\frac{\pi(x) - A(k)}{\pi_b(x)} = \sum_{\substack{a=1 \ (a,k)=1}}^k \frac{\pi_a(x)}{\pi_b(x)}.$$

Prime Number Theorem for Progressions (Cont'd)

We got

$$\frac{\pi(x) - A(k)}{\pi_b(x)} = \sum_{\substack{a=1 \ (a,k)=1}}^k \frac{\pi_a(x)}{\pi_b(x)}.$$

By hypothesis, each term in the sum tends to 1 as $x \to \infty$. So the sum tends to $\varphi(k)$.

Hence,

$$\frac{\pi(x)}{\pi_b(x)} - \frac{A(k)}{\pi_b(x)} \to \varphi(k)$$
, as $x \to \infty$.

But, since $\pi_b(x) \to \infty$ as $x \to \infty$, $\frac{A(k)}{\pi_b(x)} \to 0$.

So

$$\frac{\pi(x)}{\pi_b(x)} \to \varphi(k).$$