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Dirichlet’s Theorem on Primes in Arithmetic Progressions Introduction

Introducing Dirichlet’s Theorem

The arithmetic progression of odd numbers 1, 3, 5, . . . , 2n + 1, . . .
contains infinitely many primes.

It is natural to ask whether other arithmetic progressions have this
property.

An arithmetic progression with first term h and common difference k

consists of all numbers of the form kn + h, n = 0, 1, 2, . . ..

A necessary condition for the existence of infinitely many primes in
the arithmetic progression is that (h, k) = 1.

Suppose h and k have a common factor d > 1.

Then each term of the progression is divisible by d .

So there can be no more than one prime in the progression.

Dirichlet proved that the condition is also sufficient.

If (h, k) = 1 the arithmetic progression kn + h contains infinitely
many primes.
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Dirichlet’s Theorem for Primes of the Form 4n − 1 and 4n + 1

Dirichlet’s Theorem for Primes of the Form 4n − 1

Theorem

There are infinitely many primes of the form 4n − 1.

Assume there are only a finite number of such primes.

Let p be the largest, and set N = 22 · 3 · 5 · · · p − 1.

The product 3 · 5 · · · p contains all the odd primes ≤ p as factors.

Since N is of the form 4n − 1, it cannot be prime because N > p.

No prime ≤ p divides N.

So all the prime factors of N must exceed p.

But all of the prime factors of N cannot be of the form 4n + 1
because the product of two such numbers is again of the same form.

Hence, some prime factor of N must be of the form 4n − 1.

This is a contradiction.
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Dirichlet’s Theorem for Primes of the Form 4n − 1 and 4n + 1

Dirichlet’s Theorem for Primes of the Form 4n + 1

Theorem

There are infinitely many primes of the form 4n + 1.

Let N be any integer > 1.

We show that there is a prime p > N, such that p ≡ 1 (mod 4).

Let
m = (N!)2 + 1.

Then m is odd, m > 1.

Let p be the smallest prime factor of m.

As none of the numbers 2, 3, . . . ,N divides m, p > N.

Also, we have
(N!)2 ≡ −1 (mod p).
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Dirichlet’s Theorem for Primes of the Form 4n − 1 and 4n + 1

Dirichlet’s Theorem for Primes 4n + 1 (Cont’d)

Raise both members to the p−1
2 power,

(N!)p−1 ≡ (−1)
p−1
2 (mod p).

By the Euler-Fermat Theorem, (N!)p−1 ≡ 1 (mod p).

This gives

(−1)
p−1
2 ≡ 1 (mod p).

Now the difference (−1)
p−1
2 − 1 is either 0 or −2.

It cannot be −2, because it is divisible by p. So it must be 0.

That is,
(−1)

p−1
2 = 1.

This means that p−1
2 is even. So p ≡ 1 (mod 4).

So, for each N > 1, there is a prime p > N, such that p ≡ 1 (mod 4).

Therefore, there are infinitely many primes of the form 4n + 1.
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Dirichlet’s Theorem on Primes in Arithmetic Progressions The Plan of the Proof of Dirichlet’s Theorem

The End Theorem

Dirichlet’s Theorem follows from an asymptotic formula.

Theorem

If k > 0 and (h, k) = 1, we have, for all x > 1,

∑

p≤x
p≡h (mod k)

log p

p
=

1

ϕ(k)
log x + O(1),

where the sum is extended over those primes p ≤ x which are congruent
to h mod k .

Since log x → ∞ as x → ∞, this relation implies that there are
infinitely many primes p ≡ h (mod k).

So, there are infinitely many primes in nk + h, n = 0, 1, 2, . . ..
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Dirichlet’s Theorem on Primes in Arithmetic Progressions The Plan of the Proof of Dirichlet’s Theorem

Remarks

Consider again the sum

∑

p≤x
p≡h (mod k)

log p

p
=

1

ϕ(k)
log x + O(1),

extended over those primes p ≤ x which are congruent to h mod k .

The principal term on the right of the equation is independent of h.

Therefore, the theorem not only implies Dirichlet’s Theorem but also
shows that the primes in each of the ϕ(k) reduced residue classes
mod k make the same contribution to the principal term in

∑

p≤x

log p

p
= log x + O(1).
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Dirichlet’s Theorem on Primes in Arithmetic Progressions The Plan of the Proof of Dirichlet’s Theorem

Notation

The positive integer k represents a fixed modulus.

h is a fixed integer relatively prime to k .

The ϕ(k) Dirichlet characters mod k are denoted by
χ1, χ2, . . . , χϕ(k), with χ1 denoting the principal character.

For χ 6= χ1, we write L(1, χ) and L′(1, χ)

L(1, χ) =

∞
∑

n=1

χ(n)

n
, L′(1, χ) = −

∞
∑

n=1

χ(n) log n

n
.

The convergence of each of these series was shown in the previous set.

Moreover, we proved that L(1, χ) 6= 0, if χ is real-valued.

The symbol p denotes a prime, and
∑

p≤x denotes a sum extended
over all primes p ≤ x .
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Dirichlet’s Theorem on Primes in Arithmetic Progressions The Plan of the Proof of Dirichlet’s Theorem

Lemma 1

Lemma 1

For x > 1, we have

∑

p≤x
p≡h (mod k)

log p

p
=

1

ϕ(k)
log x +

1

ϕ(k)

ϕ(k)
∑

r=2

χr (h)
∑

p≤x

χr (p) log p

p
+ O(1).

It is clear that Lemma 1 will imply the theorem if we show that

∑

p≤x

χ(p) log p

p
= O(1),

for each χ 6= χ1.
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Dirichlet’s Theorem on Primes in Arithmetic Progressions The Plan of the Proof of Dirichlet’s Theorem

Lemma 2

The next lemma expresses
∑

p≤x
χ(p) log p

p
in a form which is not

extended over primes.

Lemma 2

For x > 1 and χ 6= χ1, we have

∑

p≤x

χ(p) log p

p
= −L′(1, χ)

∑

n≤x

µ(n)χ(n)

n
+ O(1).

So Lemma 2 will imply
∑

p≤x
χ(p) log p

p
= O(1), for each χ 6= χ1, if we

show that
∑

n≤x

µ(n)χ(n)

n
= O(1).
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Dirichlet’s Theorem on Primes in Arithmetic Progressions The Plan of the Proof of Dirichlet’s Theorem

Lemma 3

∑

n≤x
µ(n)χ(n)

n
= O(1) will be deduced from the following lemma.

Lemma 3

For x > 1 and χ 6= χ1, we have

L(1, χ)
∑

n≤x

µ(n)χ(n)

n
= O(1).

If L(1, χ) 6= 0, we cancel L(1, χ) to obtain
∑

n≤x
µ(n)χ(n)

n
= O(1).

Ultimately, we must show L(1, χ) 6= 0, for all χ 6= χ1.

This was proved for real χ 6= χ1 in a previous theorem.

So it remains to prove that L(1, χ) 6= 0, for all χ 6= χ1 which take
complex as well as real values.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 15 / 46



Dirichlet’s Theorem on Primes in Arithmetic Progressions The Plan of the Proof of Dirichlet’s Theorem

Remark on Complex Valued Characters

We let N(k) denote the number of nonprincipal characters χ mod k ,
such that

L(1, χ) = 0.

If L(1, χ) = 0, then

L(1, χ) =

∞
∑

n=1

χ(n)

n
= 0.

Moreover, if L(1, χ) = 0, χ 6= χ, since χ is not real.

So the characters χ for which L(1, χ) = 0 occur in conjugate pairs.

It follows that N(k) is even.

Our goal is to prove that N(k) = 0.
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Dirichlet’s Theorem on Primes in Arithmetic Progressions The Plan of the Proof of Dirichlet’s Theorem

Lemma 4

We deduce N(k) = 0 from the following asymptotic formula.

Lemma 4

For x > 1, we have

∑

p≤x
p≡1 (mod k)

log p

p
=

1− N(k)

ϕ(k)
log x + O(1).

If N(k) 6= 0, then N(k) ≥ 2, since N(k) is even.

Hence, the coefficient of log x is negative.

So the right member → −∞ as x → ∞.

This is a contradiction, since all the terms on the left are positive.

Therefore, Lemma 4 implies that N(k) = 0.
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Dirichlet’s Theorem on Primes in Arithmetic Progressions The Plan of the Proof of Dirichlet’s Theorem

Lemma 5

The proof of Lemma 4 will be based on the following asymptotic
formula.

Lemma 5

If χ 6= χ1 and L(1, χ) = 0, we have

L′(1, χ)
∑

n≤x

µ(n)χ(n)

n
= log x + O(1).
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Subsection 4

Proof of Lemma 1
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 1

Proof of Lemma 1

We begin with the asymptotic formula mentioned earlier,
∑

p≤x

log p

p
= log x + O(1).

Extract those terms arising from primes p ≡ h (mod k).

For the extraction use the orthogonality relation for Dirichlet
characters

ϕ(k)
∑

r=1

χr (m)χr (n) =

{

ϕ(k), if m ≡ n (mod k)
0, if m 6≡ n (mod k)

This is valid for (n, k) = 1.

Take m = p and n = h, where (h, k) = 1,

ϕ(k)
∑

r=1

χr (p)χr (h) =

{

ϕ(k), if p ≡ h (mod k)
0, if p 6≡ h (mod k)
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 1

Proof of Lemma 1 (Cont’d)

Multiply both members by log p
p

and sum over all p ≤ x ,

∑

p≤x

ϕ(k)
∑

r=1

χr (p)χr (h)
log p

p
= ϕ(k)

∑

p≤x
p≡h (mod k)

log p

p
.

Isolate those terms involving only the principal character χ1,

ϕ(k)
∑

p≤x
p≡h (mod k)

log p

p
= χ1(h)

∑

p≤x

χ1(p) log p

p
+

ϕ(k)
∑

r=2

χr (h)
∑

p≤x

χr (p) log p

p
.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 21 / 46



Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 1

Proof of Lemma 1 (Cont’d)

We have:
χ1(h) = 1;
χ1(p) = 0, unless (p, k) = 1, in which case χ1(p) = 1.

Hence, the first term on the right is given by

∑

p≤x
(p,k)=1

log p
p

=
∑

p≤x
log p
p

−
∑

p≤x
p|k

log p
p

=
∑

p≤x
log p
p

+ O(1),

since there are only a finite number of primes which divide k .

So

ϕ(k)
∑

p≤x
p≡h (mod k)

log p

p
=

∑

p≤x

log p

p
+

ϕ(k)
∑

r=2

χr (h)
∑

p≤x

χr (p) log p

p
+O(1).

Finally, use
∑

p≤x
log p
p

= log x +O(1) and divide by ϕ(k).
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Proof of Lemma 2
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 2

Proof of Lemma 2

We express the sum

p
∑

n≤x

χ(n)Λ(n)

n
,

where Λ(n) is Mangoldt’s function, in two ways.

First we note that the definition of Λ(n) gives us

∑

n≤x

χ(n)Λ(n)

n
=

∑

p≤x

∞
∑

a=1
pa≤x

χ(pa) log p

pa
.

We separate the terms with a = 1 and write

∑

n≤x

χ(n)Λ(n)

n
=

∑

p≤x

χ(p) log p

p
+
∑

p≤a

∞
∑

a=2
pa≤x

χ(pa) log p

pa
.
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 2

Proof of Lemma 2 (Cont’d)

The sum
∑

p≤a

∞
∑

a=2
pa≤x

χ(pa) log p

pa

is majorized by

∑

p

log p
∞
∑

a=2

1

pa
=

∑

p

log p

p(p − 1)
<

∞
∑

n=2

log n

n(n − 1)
= O(1).

So we get
∑

p≤x

χ(p) log p

p
=

∑

n≤x

χ(n)Λ(n)

n
+ O(1).
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 2

Proof of Lemma 2 (Cont’d)

Now we recall that

Λ(n) =
∑

d|n

µ(d) log
n

d
.

Hence,
∑

n≤x

χ(n)Λ(n)

n
=

∑

n≤x

χ(n)

n

∑

d|n

µ(d) log
n

d
.

In the last sum we write n = cd and use the multiplicative property of
χ to obtain

∑

n≤x

χ(n)Λ(n)

n
=

∑

d≤x

µ(d)χ(d)

d

∑

c≤x/d

χ(c) log c

c
.
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 2

Proof of Lemma 2 (Cont’d)

Since x
d
> 1, in the sum

∑

c≤x/d

χ(c) log c

c

we may use a previous theorem to obtain

∑

c≤ x
d

χ(c) log c

c
= −L′(1, χ) + O

(

log x
d

x
d

)

.

So

∑

n≤x

χ(n)Λ(n)

n
= −L′(1, χ)

∑

d≤x

µ(d)χ(d)

d
+ O





∑

d≤x

1

d

log x
d

x
d



 .
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 2

Proof of Lemma 2 (Conclusion)

Note
∑

d≤x

log d = log [x ]! = x log x + O(x).

So the sum in the O-term above is

1

x

∑

d≤x

(log x − log d) =
1

x



[x ] log x −
∑

d≤x

log d



 = O(1).

Therefore, we get

∑

n≤x

χ(n)Λ(n)

n
= −L′(1, χ)

∑

d≤x

µ(d)χ(d)

d
+ O(1).

But we have shown that
∑

p≤x
χ(p) log p

p
=

∑

n≤x
χ(n)Λ(n)

n
+ O(1).

So we have the conclusion.
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Subsection 6

Proof of Lemma 3
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 3

Proof of Lemma 3

We use the generalized Möbius Inversion Formula.

It states that, if α is completely multiplicative, then

G (x) =
∑

n≤x

α(n)F
(x

n

)

iff F (x) =
∑

n≤x

µ(n)α(n)G
(x

n

)

.

Take α(n) = χ(n) and F (x) = x .

Then

G (x) =
∑

n≤x

χ(n)
x

n
= x

∑

n≤x

χ(n)

n
.

Moreover, by the Inversion Formula,

x =
∑

n≤x

µ(n)χ(n)G
(x

n

)

.
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 3

Proof of Lemma 3 (Cont’d)

Now recall that

∑

n≤x

χ(n)

n
=

∞
∑

n=1

χ(n)

n
+ O

(

1

x

)

.

So we can write
G (x) = xL(1, χ) + O(1).

Therefore,

x =
∑

n≤x µ(n)χ(n){
x
n
L(1, χ) + O(1)}

= xL(1, χ)
∑

n≤x
µ(n)χ(n)

n
+ O(x).

Finally, divide by x to obtain the conclusion.
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Subsection 7

Proof of Lemma 5
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 5

Proof of Lemma 5

Consider again the Generalized Möbius Inversion Formula

G (x) =
∑

n≤x

α(n)F
(x

n

)

iff F (x) =
∑

n≤x

µ(n)α(n)G
(x

n

)

.

Take α(n) = χ(n) and F (x) = x log x .

Then

G (x) =
∑

n≤x χ(n)
x
n
log x

n

= x log x
∑

n≤x
χ(n)
n

− x
∑

n≤x
χ(n) log n

n
.

Moreover, by the Inversion Formula,

x log x =
∑

n≤x

µ(n)χ(n)G
(x

n

)

.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 33 / 46



Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 5

Proof of Lemma 5 (Cont’d)

By a previous theorem:
∑

n≤x

χ(n)
n

=
∑∞

n=1
χ(n)
n

+ O
(

1
x

)

;
∑

n≤x

χ(n) log n
n

=
∑∞

n=1
χ(n) log n

n
+ O

(

log x
x

)

.

We get

G (x) = x log x
∑

n≤x
χ(n)
n

− x
∑

n≤x
χ(n) log n

n

= x log x{L(1, χ) + O( 1
x
)}+ x{L′(1, χ) +O( log x

x
)}

= xL′(1, χ) + O(log x),

since we are assuming that L(1, χ) = 0.
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 5

Proof of Lemma 5 (Cont’d)

Hence, we get

x log x =
∑

n≤x µ(n)χ(n)G
(

x
n

)

=
∑

n≤x µ(n)χ(n){
x
n
L′(1, χ) + O(log x

n
)}

= xL′(1, χ)
∑

n≤x
µ(n)χ(n)

n
+ O(

∑

n≤x(log x − log n)).

We know the O-term is O(x).

Hence we have

x log x = xL′(1, χ)
∑

n≤x

µ(n)χ(n)

n
+ O(x).

Finally, divide by x .
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Subsection 8

Proof of Lemma 4
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 4

Proof of Lemma 4

Lemma 1 gives

∑

p≤x
p≡h (mod k)

log p

p
=

1

ϕ(k)
log x +

1

ϕ(k)

ϕ(k)
∑

r=2

χr (h)
∑

p≤x

χr (p) log p

p
+O(1).

Setting h = 1, we get

∑

p≤x
p≡1 (mod k)

log p

p
=

1

ϕ(k)
log x +

1

ϕ(k)

ϕ(k)
∑

r=2

∑

p≤x

χr (p) log p

p
+ O(1).
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 4

Proof of Lemma 4 (Cont’d)

Lemma 2 says, for x > 1 and χ 6= χ1,

∑

p≤x

χ(p) log p

p
= −L′(1, χ)

∑

n≤x

µ(n)χ(n)

n
+ O(1).

Substitute this in on the right in the main formula

∑

p≤x
p≡1 (mod k)

log p

p
=

1

ϕ(k)
log x +

1

ϕ(k)

ϕ(k)
∑

r=2

∑

p≤x

χr (p) log p

p
+ O(1).

We get

∑

p≤x
p≡1 (mod k)

log p
p

= 1
ϕ(k) log x

+ 1
ϕ(k)

∑ϕ(k)
r=2

[

−L′(1, χr )
∑

n≤x
µ(n)χr (n)

n
+ O(1)

]

+ O(1).
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 4

Proof of Lemma 4 (Cont’d)

Now we have

∑

p≤x
p≡1 (mod k)

log p
p

= 1
ϕ(k) log x

+ 1
ϕ(k)

∑ϕ(k)
r=2

[

−L′(1, χr )
∑

n≤x
µ(n)χr (n)

n

]

+ O(1).

By Lemma 3, for x > 1 and χ 6= χ1, we have

L(1, χ)
∑

n≤x

µ(n)χ(n)

n
= O(1).

So, if L(1, χr ) 6= 0, the contribution to the sum on the right is O(1).
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Dirichlet’s Theorem on Primes in Arithmetic Progressions Proof of Lemma 4

Proof of Lemma 4 (Cont’d)

By Lemma 5, if χ 6= χ1 and L(1, χ) = 0, we have

L′(1, χ)
∑

n≤x

µ(n)χ(n)

n
= log x + O(1).

So, if L(1, χr ) = 0,

−L′(1, χr )
∑

n≤x

µ(n)χr (n)

n
= − log x + O(1).

Therefore the sum on the right is 1
ϕ(k){−N(k) log x + O(1)}.

Thus, the equation becomes

∑

p≤x
p≡1 (mod k)

log p

p
=

1− N(k)

ϕ(k)
log x + O(1).
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Subsection 9

Distribution of Primes in Arithmetic Progressions
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Distribution of Primes in Arithmetic Progressions

Theorem (Dirichlet’s Theorem)

If k > 0 and (h, k) = 1, there are infinitely many primes in the arithmetic
progression nk + h, n = 0, 1, 2, . . ..

It follows from the main theorem of the preceding section.

If k > 0 and (a, k) = 1, let

πa(x) =
∑

p≤x
p≡a (mod k)

1.

The function πa(x) counts the number of primes ≤ x in the
progression nk + a, n = 0, 1, 2, . . ..

Dirichlet’s Theorem shows that πa(x) → ∞ as x → ∞.
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Prime Number Theorem for Arithmetic Progressions

There is also a prime number theorem for arithmetic progressions.

It states that, if (a, k) = 1, then, as x → ∞,

πa(x) ∼
π(x)

ϕ(k)
∼

1

ϕ(k)

x

log x
.

The prime number theorem for progressions is suggested by the
formula

∑

p≤x
p≡h (mod k)

log p

p
=

1

ϕ(k)
log x + O(1).

Note that the principal term is independent of h.

Thus, the primes seem to be equally distributed among the ϕ(k)
reduced residue classes mod k .
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Prime Number Theorem for Progressions

Theorem

If the relation

πa(x) ∼
π(x)

ϕ(k)
as x → ∞

holds for every integer a relatively prime to k , then

πa(x) ∼ πb(x) as x → ∞,

whenever (a, k) = (b, k) = 1.
Conversely, the latter implies the former.

Only the “only if” needs proof.
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Prime Number Theorem for Progressions (Cont’d)

Let A(k) denote the number of primes that divide k .

If x > k , we have

π(x) =
∑

p≤x 1

= A(k) +
∑

p≤x
p∤k

1

= A(k) +
∑k

a=1
(a,k)=1

∑

p≤x
p≡a (mod k)

1

= A(k) +
∑k

a=1
(a,k)=1

πa(x).

Therefore,

π(x) − A(k)

πb(x)
=

k
∑

a=1
(a,k)=1

πa(x)

πb(x)
.
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Prime Number Theorem for Progressions (Cont’d)

We got

π(x) − A(k)

πb(x)
=

k
∑

a=1
(a,k)=1

πa(x)

πb(x)
.

By hypothesis, each term in the sum tends to 1 as x → ∞.

So the sum tends to ϕ(k).

Hence,
π(x)

πb(x)
−

A(k)

πb(x)
→ ϕ(k), as x → ∞.

But, since πb(x) → ∞ as x → ∞, A(k)
πb(x)

→ 0.

So
π(x)

πb(x)
→ ϕ(k).
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