Introduction to Analytic Number Theory

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 500

- Periodic Arithmetical Functions and Gauss Sums
 - Functions Periodic Modulo k
 - Existence of Fourier Series for Periodic Arithmetical Functions
 - Ramanujan's Sum and Generalizations
 - Multiplicative Properties of the Sums $s_k(n)$
 - Gauss Sums Associated with Dirichlet Characters
 - Dirichlet Characters with Nonvanishing Gauss Sums
 - Induced Moduli and Primitive Characters
 - Further Properties of Induced Moduli
 - The Conductor of a Character
 - Primitive Characters and Separable Gauss Sums
 - The Finite Fourier Series of the Dirichlet Characters
 - Pólya's Inequality for the Partial Sums of Primitive Characters

Subsection 1

Functions Periodic Modulo k

Functions Periodic Modulo k

- Let *k* be a positive integer.
- An arithmetical function f is said to be periodic with period k (or periodic modulo k) if

$$f(n+k) = f(n)$$
, for all integers n .

- If k is a period so is mk, for any integer m > 0.
- ullet The smallest positive period of f is called the **fundamental period**.

Example: The Dirichlet characters mod k are periodic mod k.

Consider the greatest common divisor (n, k), as a function of n.

Periodicity enters through the relation

$$(n+k,k)=(n,k).$$

Finite Fourier Series

Another example is the exponential function

$$f(n)=e^{2\pi imn/k},$$

where m and k are fixed integers.

- The number $e^{2\pi i m/k}$ is a k-th root of unity.
- f(n) is its n-th power.
- Any finite linear combination of such functions, say

$$\sum_{m} c(m)e^{2\pi i m n/k}$$

is also periodic mod k, for every choice of coefficients c(m).

The Geometric Sum

- We shall show that every arithmetical function which is periodic mod k can be expressed in the form $\sum_{m} c(m)e^{2\pi i m n/k}$.
- Such sums are called finite Fourier series.

Theorem

For fixed k > 1, let

$$g(n) = \sum_{m=0}^{k-1} e^{2nimn/k}.$$

Then

$$g(n) = \begin{cases} 0, & \text{if } k \nmid n, \\ k, & \text{if } k \mid n. \end{cases}$$

The Geometric Sum (Cont'd)

• By hypothesis, g(n) is the sum of terms in a geometric progression,

$$g(n) = \sum_{m=0}^{k-1} x^m, \quad x = e^{2\pi i n/k}.$$

So we have

$$g(n) = \begin{cases} \frac{x^k - 1}{x - 1}, & \text{if } x \neq 1 \\ k, & \text{if } x = 1 \end{cases}.$$

If $k \mid n$, then x = 1. So g(n) = k.

If $k \nmid n$, then $x \neq 1$. But $x^k = 1$. Hence, g(n) = 0.

Subsection 2

Existence of Fourier Series for Periodic Arithmetical Functions

Lagrange's Interpolation Theorem

Theorem (Lagrange's Interpolation Theorem)

Let $z_0, z_1, \ldots, z_{k-1}$ be k distinct complex numbers, and let $w_0, w_1, \ldots, w_{k-1}$ be k complex numbers which need not be distinct. Then there is a unique polynomial P(z) of degree $\leq k-1$, such that

$$P(z_m) = w_m$$
, for $m = 0, 1, 2, ..., k - 1$.

• The required polynomial P(z), called the **Lagrange interpolation** polynomial, can be constructed explicitly as follows.

Let

$$A(z) = (z - z_0)(z - z_1) \cdots (z - z_{k-1}).$$

Let

$$A_m(z) = \frac{A(z)}{z - z_m}.$$

Lagrange's Interpolation Theorem (Cont'd)

• $A_m(z) = \frac{A(z)}{z - z_m}$ is a polynomial of degree k - 1. Moreover,

$$A_m(z_m) \neq 0$$
, $A_m(z_j) = 0$, for all $j \neq m$.

Hence,

$$\frac{A_m(z)}{A_m(z_m)}$$

is a polynomial of degree k-1 which:

- Vanishes at each z_i , for $j \neq m$;
- Has the value 1 at z_m .

Lagrange's Interpolation Theorem (Cont'd)

Consider the linear combination

$$P(z) = \sum_{m=0}^{k-1} w_m \frac{A_m(z)}{A_m(z_m)}.$$

It is a polynomial of degree $\leq k-1$, with

$$P(z_i) = w_i$$
, for each j .

Suppose there is another such polynomial Q(z).

The difference P(z) - Q(z) vanishes at k distinct points.

But
$$P(z) - Q(z)$$
 has degree $\leq k - 1$.

So
$$P(z) - Q(z) = 0$$
.

Hence,
$$P(z) = Q(z)$$
.

Existence of Fourier Series

Theorem

Given k complex numbers $w_0, w_1, \ldots, w_{k-1}$, there exist k uniquely determined complex numbers $a_0, a_1, \ldots, a_{k-1}$, such that

$$w_m = \sum_{n=0}^{k-1} a_n e^{2\pi i m n/k}, \quad m = 0, 1, 2, \dots, k-1.$$

Moreover, the coefficients a_n are given by the formula

$$a_n = \frac{1}{k} \sum_{m=0}^{k-1} w_m e^{-2\pi i m n/k}, \quad m = 0, 1, 2, \dots, k-1.$$

Existence of Fourier Series (Cont'd)

• Let $z_m = e^{2\pi i m/k}$.

The numbers $z_0, z_1, \ldots, z_{k-1}$ are distinct.

So there is a unique Lagrange polynomial

$$P(z) = \sum_{m=0}^{k-1} a_n z^m,$$

such that

$$P(z_m) = w_m$$
, for each $m = 0, 1, 2, ..., k - 1$.

This shows that there are uniquely determined numbers a_n satisfying the first equation.

Existence of Fourier Series (Coefficients)

• Take $w_m = \sum_{n=0}^{k-1} a_n e^{2\pi i m n/k}$. Multiply by $e^{-2\pi i m r/k}$, where m, r are nonnegative integers $\leq k$. Sum on m to get

$$\sum_{m=0}^{k-1} w_m e^{-2\pi i m r/k} = \sum_{n=0}^{k-1} a_n \sum_{m=0}^{k-1} e^{2\pi i (n-r)m/k}.$$

By a previous theorem, the sum on m is 0 unless $k \mid (n-r)$.

But
$$|n-r| \le k-1$$
. So $k \mid (n-r)$ if, and only if, $n=r$.

So the only nonvanishing term on the right occurs when n = r,

$$\sum_{m=0}^{k-1} w_m e^{-2\pi i m r/k} = k a_r.$$

Arithmetical Functions and Fourier Series

Theorem

Let f be an arithmetical function which is periodic mod k. Then there is a uniquely determined arithmetical function g, also periodic mod k, such that

$$f(m) = \sum_{m=0}^{k-1} g(n) e^{2\pi i m n/k}.$$

In fact, g is given by the formula

$$g(n) = \frac{1}{k} \sum_{m=0}^{k-1} f(m) e^{-2\pi i m n/k}.$$

Arithmetical Functions and Fourier Series (Cont'd)

Let

$$w_m = f(m) = \sum_{m=0}^{k-1} g(n)e^{2\pi i m n/k}, \text{ for } m = 0, 1, 2, \dots, k-1.$$

Apply the preceding theorem to determine the numbers

$$a_0, a_1, \ldots, a_{k-1}$$
.

Define the function g by the relations

$$g(m) = a_m$$
, for $m = 0, 1, 2, ..., k - 1$.

Extend the definition of g(m) to all integers m by periodicity mod k. Then f is related to g by the equations in the theorem.

Terminology

 Since both f and g are periodic mod k, we can rewrite the sums in the last theorem

$$f(m) = \sum_{n \mod k} g(n)e^{2\pi i m n/k}$$

and

$$g(n) = \frac{1}{k} \sum_{m \mod k} f(m)e^{-2\pi i m n/k}.$$

- In each case the summation can be extended over any complete residue system modulo *k*.
- The first sum is called the **finite Fourier expansion** of f.
- The numbers g(n) are called the **Fourier coefficients** of f.

Subsection 3

Ramanujan's Sum and Generalizations

Ramanujan's Sum

- Let *n* be a fixed positive integer.
- The sum of the n-th powers of the primitive k-th roots of unity is

$$c_k(n) = \sum_{\substack{m \mod k \\ (m,k)=1}} e^{2\pi i m n/k}.$$

- It is known as Ramanujan's sum.
- Ramanujan showed that $c_k(n)$ is always an integer by proving the relation

$$c_k(n) = \sum_{d|(n,k)} d\mu\left(\frac{k}{d}\right).$$

• This formula suggests that we study general sums of the form

$$s_k(n) = \sum_{d|(n,k)} f(d)g\left(\frac{k}{d}\right).$$

Generalized Ramanujan's Sum and Periodicity

We study general sums of the form

$$s_k(n) = \sum_{d|(n,k)} f(d)g\left(\frac{k}{d}\right).$$

- These resemble the sums for the Dirichlet convolution f * g except that we sum over a subset of the divisors of k, namely those d which also divide n.
- Since n occurs only in the gcd (n, k), we have

$$s_k(n+k)=s_k(n).$$

- So $s_k(n)$ is a periodic function of n, with period k.
- Hence this sum has a finite Fourier expansion.

Fourier Expansion of Ramanujan's Sum

Theorem

Let

$$s_k(n) = \sum_{d|(n,k)} f(d)g\left(\frac{k}{d}\right).$$

Then $s_k(n)$ has the finite Fourier expansion

$$s_k(n) = \sum_{\substack{m \mod k}} a_k(m) e^{2\pi i m n/k},$$

where

$$a_k(m) = \sum_{d|(m,k)} g(d) f\left(\frac{k}{d}\right) \frac{d}{k}.$$

Fourier Expansion of Ramanujan's Sum (Cont'd)

• By the preceding theorem, the coefficients $a_k(m)$ are given by

$$a_k(m) = \frac{1}{k} \sum_{\substack{n \mod k}} s_k(n) e^{-2\pi i n m/k} = \frac{1}{k} \sum_{\substack{n=1 \ d \mid n \\ d \mid k}}^k f(d) g\left(\frac{k}{d}\right) e^{-2\pi i n m/k}.$$

Now we write n = cd.

Note that for each fixed d, c runs from 1 to $\frac{k}{d}$.

So we get

$$a_k(m) = \frac{1}{k} \sum_{d|k} f(d)g\left(\frac{k}{d}\right) \sum_{c=1}^{k/d} e^{-2\pi i c dm/k}.$$

Fourier Expansion of Ramanujan's Sum (Cont'd)

We have

$$a_k(m) = \frac{1}{k} \sum_{d|k} f(d)g\left(\frac{k}{d}\right) \sum_{c=1}^{k/d} e^{-2\pi i c dm/k}.$$

Now we replace d by $\frac{k}{d}$ in the sum on the right to get

$$a_k(m) = \frac{1}{k} \sum_{d|k} f\left(\frac{k}{d}\right) g(d) \sum_{c=1}^d e^{-2\pi i c m/d}.$$

By a previous theorem, the sum on c is 0 unless $d \mid m$ in which case the sum has the value d.

Hence, we get

$$a_k(m) = \frac{1}{k} \sum_{\substack{d \mid k \ d \mid m}} f\left(\frac{k}{d}\right) g(d)d.$$

Ramanujan's Formula

Theorem

We have

$$c_k(n) = \sum_{d|(n,k)} d\mu\left(\frac{k}{d}\right).$$

• By the preceding theorem, $s_k(n) = \sum_{d|(n,k)} f(d)g\left(\frac{k}{d}\right)$ has the finite Fourier expansion

$$s_k(n) = \sum_{m \mod k} a_k(m) e^{2\pi i m n/k},$$

where
$$a_k(m) = \sum_{d \mid (m,k)} g(d) f\left(\frac{k}{d}\right) \frac{d}{k}$$
.

Ramanujan's Formula (Cont'd)

• Take f(k) = k and $g(k) = \mu(k)$.

We find

$$\sum_{d|(n,k)} d\mu\left(\frac{k}{d}\right) = \sum_{m \mod k} a_k(m)e^{2\pi i mn/k},$$

where

$$a_m(k) = \sum_{d \mid (m,k)} \mu(d) = \left\lfloor \frac{1}{(m,k)} \right\rfloor = \left\{ \begin{array}{l} 1, & \text{if } (m,k) = 1 \\ 0, & \text{if } (m,k) > 1 \end{array} \right.$$

Hence

$$\sum_{d|(n,k)} d\mu\left(\frac{k}{d}\right) = \sum_{\substack{m \bmod k \\ (m,k)=1}} e^{2\pi i m n/k} = c_k(n).$$

Subsection 4

Multiplicative Properties of the Sums $s_k(n)$

Multiplicative Properties of the Sums $s_k(n)$

Theorem

Let

$$s_k(n) = \sum_{d|(n,k)} f(d)g\left(\frac{k}{d}\right),$$

where f and g are multiplicative. Then we have

$$s_{mk}(ab) = s_m(a)s_k(b)$$
, whenever $(a, k) = (b, m) = 1$.

In particular, we have

$$s_m(ab) = s_m(a)$$
, if $(b, m) = 1$,

and

$$s_{mk}(a) = s_m(a)g(k)$$
, if $(a, k) = 1$.

Multiplicative Properties of the Sums $s_k(n)$ (Cont'd)

• Suppose (a, k) = (b, m) = 1. These imply

$$(mk, ab) = (a, m)(k, b),$$

with (a, m) and (b, k) relatively prime.

Therefore,

$$s_{mk}(ab) = \sum_{d|(mk,ab)} f(d)g\left(\frac{mk}{d}\right) = \sum_{d|(a,m)(b,k)} f(d)g\left(\frac{mk}{d}\right).$$

Writing $d = d_1 d_2$ in the last sum, we obtain

$$s_{mk}(ab) = \sum_{d_1|(a,m)} \sum_{d_2|(b,k)} f(d_1d_2)g(\frac{mk}{d_1d_2})$$

$$= \sum_{d_1|(a,m)} f(d_1)g(\frac{m}{d_1}) \sum_{d_2|(b,k)} f(d_2)g(\frac{k}{d_2})$$

$$= s_m(a)s_k(b).$$

Multiplicative Properties of the Sums $s_k(n)$ (Cont'd)

We proved that

$$s_{mk}(ab) = s_m(a)s_k(b)$$
, whenever $(a, k) = (b, m) = 1$.

Now we have $s_1(b) = f(1)g(1) = 1$.

So taking k = 1 in the sum, we get

$$s_m(ab) = s_m(a)s_1(b) = s_m(a).$$

Similarly, $s_k(1) = f(1)g(k) = g(k)$.

So taking b = 1 in the sum, we find

$$s_{mk}(a) = s_m(a)s_k(1) = s_m(a)g(k).$$

Example

We proved that Ramanujan's sum is

$$c_k(n) = \sum_{d|(n,k)} d\mu\left(\frac{k}{d}\right).$$

So applying the theorem, we get the following multiplicative properties

$$c_{mk}(ab) = c_m(a)c_k(b)$$
, whenever $(a, k) = (b, m) = 1$; $c_m(a, b) = c_m(a)$, whenever $(b, m) = 1$; $c_{mk}(a) = c_m(a)\mu(k)$, whenever $(a, k) = 1$.

Sums $s_k(n)$ and Dirichlet Convolution

Theorem

Let f be completely multiplicative, and let $g(k) = \mu(k)h(k)$, where h is multiplicative. Assume that $f(p) \neq 0$ and $f(p) \neq h(p)$, for all primes p. Let

$$s_k(n) = \sum_{d|(n,k)} f(d)g\left(\frac{k}{d}\right).$$

Then we have

$$s_k(n) = \frac{F(k)g(N)}{F(N)},$$

where F = f * g and $N = \frac{k}{(n,k)}$.

Sums $s_k(n)$ and Dirichlet Convolution (Cont'd)

First we note that

$$F(k) = \sum_{d|k} f(d)\mu(\frac{k}{d})h(\frac{k}{d})$$

$$= \sum_{d|k} f(\frac{k}{d})\mu(d)h(d)$$

$$= f(k)\sum_{d|k} \mu(d)\frac{h(d)}{f(d)}$$

$$= f(k)\prod_{p|k} \left(1 - \frac{h(p)}{f(p)}\right),$$

where the last equation follows from the fact that, if a function f is multiplicative, then $\sum_{d|n} \mu(d) f(d) = \prod_{p|n} (1 - f(p))$. Next, we write a = (n, k), so that k = aN.

Then we have

$$s_k(n) = \sum_{d|a} f(d) \mu(\frac{k}{d}) h(\frac{k}{d})$$

$$= \sum_{d|a} f(d) \mu(\frac{aN}{d}) h(\frac{aN}{d})$$

$$= \sum_{d|a} f(\frac{a}{d}) \mu(Nd) h(Nd).$$

Sums $s_k(n)$ and Dirichlet Convolution

- We wrote a = (n, k), so that k = aN, and we have:
 - $\mu(Nd) = \mu(N)\mu(d)$ if (N, d) = 1;
 - $\mu(Nd) = 0$, if (N, d) > 1.

So the last equation gives us

$$\begin{split} s_{k}(n) &= \mu(N)h(N) \sum_{\substack{d \mid a \\ (N,d)=1}} f(\frac{a}{d})\mu(d)h(d) \\ &= f(a)\mu(N)h(N) \sum_{\substack{d \mid a \\ (N,d)=1}} \mu(d)\frac{h(d)}{f(d)} \\ &= f(a)\mu(N)h(N) \prod_{\substack{p \mid a \\ p \nmid N}} \left(1 - \frac{h(p)}{f(p)}\right) \\ &= f(a)\mu(N)h(N) \frac{\prod_{\substack{p \mid aN}} (1 - \frac{h(p)}{f(p)})}{\prod_{\substack{p \mid N}} (1 - \frac{h(p)}{f(p)})} \\ &= f(a)\mu(N)h(N) \frac{F(k)}{f(k)} \frac{f(N)}{F(N)} \quad (g = \mu h, F = f * g) \\ &= \frac{F(k)\mu(N)h(N)}{F(N)} = \frac{F(k)g(N)}{F(N)}. \end{split}$$

Example

Ramanujan's sum is

$$c_k(n) = \sum_{d|(n,k)} d\mu\left(\frac{k}{d}\right).$$

By the theorem,

$$s_k(n) = \sum_{d|(n,k)} f(d)g\left(\frac{k}{d}\right).$$

- Set:
 - f the identity, which is completely multiplicative;
 - $g = \mu$, which is multiplicative.
- Recall that $\varphi(k) = \sum_{d|k} d\mu(\frac{k}{d})$.
- Therefore, we have

$$c_k(n) = \frac{\varphi(k)\mu(N)}{\varphi(N)} = \frac{\varphi(k)\mu\left(\frac{k}{(n,k)}\right)}{\varphi\left(\frac{k}{(n,k)}\right)}$$

Subsection 5

Gauss Sums Associated with Dirichlet Characters

Gauss Sums Associated with Dirichlet Characters

Definition

For any Dirichlet character $\chi \mod k$ the sum

$$G(n,\chi) = \sum_{m=1}^{k} \chi(m) e^{2\pi i m n/k}$$

is called the Gauss sum associated with χ .

Gauss Sums and Ramanujan's Sum

- Let $\chi = \chi_1$ be the principal character mod k.
- We then have

$$\chi_1(m) = \begin{cases} 1, & \text{if } (m, k) = 1, \\ 0, & \text{otherwise.} \end{cases}$$

In this case the Gauss sum

$$G(n,\chi) = \sum_{m=1}^{k} \chi(m) e^{2\pi i m n/k}$$

reduces to Ramanujan's sum,

$$G(n, \chi_1) = \sum_{\substack{m=1 \ (m,k)=1}}^{k} e^{2\pi i m n/k} = c_k(n).$$

• Thus, the Gauss sums $G(n,\chi)$ can be regarded as generalizations of Ramanujan's sum.

A Factorization Property

Theorem

If χ is any Dirichlet character mod k, then

$$G(n,\chi) = \overline{\chi}(n)G(1,\chi)$$
, whenever $(n,k) = 1$.

• When (n, k) = 1 the numbers nr run through a complete residue system mod k with r. Also, $|\chi(n)|^2 = \chi(n)\overline{\chi}(n) = 1$. So

$$\chi(r) = \overline{\chi}(n)\chi(n)\chi(r) = \overline{\chi}(n)\chi(nr).$$

Therefore, the sum defining $G(n, \chi)$ can be written as follows:

$$G(n,\chi) = \sum_{r \mod k} \chi(r) e^{2\pi i n r/k}$$

$$= \overline{\chi}(n) \sum_{r \mod k} \chi(n r) e^{2\pi i n r/k}$$

$$= \overline{\chi}(n) \sum_{m \mod k} \chi(m) e^{2\pi i m/k}$$

$$= \overline{\chi}(n) G(1,\chi).$$

Separable Gauss Sums

Definition

The Gauss sum $G(n,\chi)$ is said to be **separable** if

$$G(n,\chi) = \overline{\chi}(n)G(1,\chi).$$

- By the preceding theorem, $G(n,\chi)$ is separable whenever n is relatively prime to the modulus k.
- A characterization of separability for those integers *n* not relatively prime to *k* is given in the next slide.

Characterization of Separable Gauss Sums

Theorem

If χ is a character mod k the Gauss sum $G(n,\chi)$ is separable for every n if, and only if

$$G(n,\chi) = 0$$
 whenever $(n,k) > 1$.

• Separability always holds if (n, k) = 1.

If
$$(n, k) > 1$$
 we have $\overline{\chi}(n) = 0$.

So the equation holds if and only if $G(n, \chi) = 0$.

Consequence of Separability

Theorem

If $G(n,\chi)$ is separable for every n, then

$$|G(1,\chi)|^2=k.$$

We have

$$|G(1,\chi)|^{2} = G(1,\chi)\overline{G(1,\chi)}$$

$$= G(1,\chi)\sum_{m=1}^{k} \overline{\chi}(m)e^{-2\pi im/k}$$

$$= \sum_{m=1}^{k} G(m,\chi)e^{-2\pi im/k}$$

$$= \sum_{m=1}^{k} \sum_{r=1}^{k} \chi(r)e^{2\pi imr/k}e^{-2\pi im/k}$$

$$= \sum_{r=1}^{k} \chi(r)\sum_{m=1}^{k} e^{2\pi im(r-1)/k}$$

$$\stackrel{\text{geometric}}{=} k\chi(1)$$

$$= k.$$

Subsection 6

Dirichlet Characters with Nonvanishing Gauss Sums

Dirichlet Characters with Nonzero Gauss Sums

• The next theorem gives a necessary condition for $G(n, \chi)$ to be nonzero for (n, k) > 1.

Theorem

Let χ be a Dirichlet character mod k. Assume that $G(n,\chi) \neq 0$, for some n satisfying (n,k)>1. Then there exists a divisor d of k, d < k, such that $\chi(a)=1$ whenever (a,k)=1 and $a\equiv 1\pmod{d}$.

• For the given n, let q=(n,k) and let d=k/q. Then $d\mid k$ and, since q>1, we have d< k. Choose any a satisfying (a,k)=1 and $a\equiv 1\pmod d$. We will prove that $\chi(a)=1$.

Dirichlet Characters with Nonzero Gauss Sums (Cont'd)

• Since (a, k) = 1, in the sum defining $G(n, \chi)$ we can replace the index of summation m by am. Then we find

$$G(n,\chi) = \sum_{m \mod k} \chi(m) e^{2\pi i n m/k}$$

$$= \sum_{m \mod k} \chi(am) e^{2\pi i n a m/k}$$

$$= \chi(a) \sum_{m \mod k} \chi(m) e^{2\pi i n a m/k}.$$

Now $a \equiv 1 \pmod{d}$ and $d = \frac{k}{q}$. So, for some integer b,

$$a=1+\frac{bk}{q}.$$

Dirichlet Characters with Nonzero Gauss Sums (Cont'd)

• We wrote $a = 1 + \frac{bk}{q}$. Since $q \mid n$, we have

$$\frac{anm}{k} = \frac{nm}{k} + \frac{bknm}{qk} = \frac{nm}{k} + \frac{bnm}{q} \equiv \frac{nm}{k} \pmod{1}.$$

Hence,

$$e^{2\pi i nam/k} = e^{2\pi i nm/k}.$$

So the sum for $G(n,\chi)$ becomes

$$G(n,\chi) = \chi(a) \sum_{\substack{m \mod k}} \chi(m) e^{2\pi i n m/k} = \chi(a) G(n,\chi).$$

Since $G(n, \chi) \neq 0$, this implies $\chi(a) = 1$, as asserted.

• The theorem points towards characters $\chi \mod k$ for which there is a divisor d < k, satisfying $\chi(a) = 1$, if (a, k) = 1 and $a \equiv 1 \pmod d$.

Subsection 7

Induced Moduli and Primitive Characters

Induced Moduli

Definition of Induced Modulus

Let χ be a Dirichlet character mod k and let d be any positive divisor of k. The number d is called an **induced modulus for** χ if we have

$$\chi(a) = 1$$
 whenever $(a, k) = 1$ and $a \equiv 1 \pmod{d}$.

- Note d is an induced modulus if the character χ mod k acts like a character mod d on the representatives of the residue class $\widehat{1}$ mod d which are relatively prime to k.
- Note also that k itself is always an induced modulus for χ .

Condition for 1 to be an Induced Modulus

Theorem

Let χ be a Dirichlet character mod k. Then 1 is an induced modulus for χ if, and only if, $\chi = \chi_1$.

• If $\chi = \chi_1$, then $\chi(a) = 1$, for all a relatively prime to k.

But every a satisfies $a \equiv 1 \pmod{1}$.

So the number 1 is an induced modulus.

Conversely, suppose 1 is an induced modulus.

Then $\chi(a) = 1$, whenever (a, k) = 1.

Also, χ vanishes on the numbers not prime to k.

It follows that $\chi = \chi_1$.

Primitive Characters

- For any Dirichlet character mod k, k itself is an induced modulus.
- If there are no others we call the character primitive.

Definition of Primitive Characters

A Dirichlet character $\chi \mod k$ is said to be **primitive** mod k if it has no induced modulus d < k.

In other words, χ is primitive mod k if, and only if, for every divisor d of k, 0 < d < k, there exists an integer $a \equiv 1 \pmod{d}$, (a, k) = 1, such that $\chi(a) \neq 1$.

• If k > 1, the principal character χ_1 is not primitive since it has 1 as an induced modulus.

Primitivity of all Characters Modulo a Prime

• If the modulus is prime, every non principal character is primitive.

Theorem

Every non principal character χ modulo a prime p is a primitive character mod p.

• The only divisors of p are 1 and p.

So these are the only candidates for induced moduli.

By the preceding theorem, if $\chi \neq \chi_1$, the divisor 1 is not an induced modulus.

So χ has no induced modulus < p.

Hence, χ is primitive.

Properties of Primitive Characters

Theorem

Let χ be a primitive Dirichlet character mod k. Then we have:

- (a) $G(n,\chi) = 0$, for every n with (n,k) > 1.
- (b) $G(n,\chi)$ is separable for every n.
- (c) $|G(1,\chi)|^2 = k$.
- (a) Suppose $G(n,\chi) \neq 0$, for some n with (n,k) > 1. By a previous theorem, χ has an induced modulus d < k. So, in this case, χ cannot be primitive.
- (b) By Part (a) and the characterization of separability.
- (c) By Part (b), $G(n,\chi)$ is separable, for every n. By a previous theorem, $|G(1,\chi)|^2 = k$.

Comments

- By Part (b) of the theorem, if χ is primitive, the Gauss sum $G(n,\chi)$ is separable.
- Later we prove the converse.
- That is, we shall show that, if $G(n,\chi)$ is separable, for every n, then χ is primitive.

Subsection 8

Further Properties of Induced Moduli

Numbers Congruent Modulo an Induced Modulus

Theorem

Let χ he a Dirichlet character mod k. Assume $d \mid k$, d > 0. Then d is an induced modulus for χ if and only if

$$\chi(a) = \chi(b)$$
 whenever $(a, k) = (b, k) = 1$ and $a \equiv b \pmod{d}$.

Suppose the stated condition holds.

With b=1, we get that, for all a, such that (a,k)=1 and $a\equiv 1\pmod d$, $\chi(a)=\chi(1)=1$.

Therefore, by definition, χ is an induced modulus.

Conversely, let a, b such that (a, k) = (b, k) = 1 and $a \equiv b \pmod{d}$.

We will show that $\chi(a) = \chi(b)$.

Since (a, k) = 1, $a \mod k$ has a reciprocal a'.

Numbers Congruent Modulo an Induced Modulus (Cont'd)

• We chose a, b, with (a, k) = (b, k) = 1 and $a \equiv b \pmod{d}$.

Also, there exists a', such that $aa' \equiv 1 \pmod{k}$.

Now $aa' \equiv 1 \pmod{d}$ since $d \mid k$.

Hence $\chi(aa') = 1$, since d is an induced modulus.

But $aa' \equiv ba' \equiv 1 \pmod{d}$ because $a \equiv b \pmod{d}$.

Hence, $\chi(aa') = \chi(ba')$.

So $\chi(a)\chi(a')=\chi(b)\chi(a')$.

But $\chi(a') \neq 0$, since $\chi(a)\chi(a') = 1$.

Canceling $\chi(a')$, we find $\chi(a) = \chi(b)$.

- So, χ is periodic mod d on those integers relatively prime to k.
- Thus, χ acts very much like a character mod d.

Example

• The following table describes one of the characters χ mod 9.

The table is periodic modulo 3.

So 3 is an induced modulus for χ .

In fact, χ acts like the following character ψ modulo 3:

Since $\chi(n) = \psi(n)$, for all n, we call χ an **extension** of ψ .

• It is clear that whenever χ is an extension of a character ψ modulo d, then d will be an induced modulus for χ .

Example

• Now we examine one of the characters χ modulo 6:

For all $n \equiv 1 \pmod{3}$ with (n,6) = 1 (i.e., n = 1), $\chi(n) = 1$. So the number 3 is an induced modulus.

However, χ is not an extension of any character 0 modulo 3.

The only characters modulo 3 are the characters ψ_1 and ψ ,

Since $\chi(2) = 0$, it cannot be an extension of either ψ or ψ_1 .

Induced Moduli and Characters

Theorem

Let χ be a Dirichlet character modulo k. Assume $d \mid k$, d > 0. Then the following two statements are equivalent:

- (a) d is an induced modulus for χ .
- (b) There is a character ψ modulo d, such that

$$\chi(n) = \psi(n)\chi_1(n)$$
, for all n ,

where χ_1 is the principal character modulo k.

Assume Condition (b) holds.

Choose *n* satisfying (n, k) = 1, $n \equiv 1 \pmod{d}$.

Then
$$\chi_1(n) = \psi(n) = 1$$
. So $\chi(n) = 1$.

Hence, d is an induced modulus.

Induced Moduli and Characters (Converse)

• Assume Condition (a) holds.

We exhibit a character ψ modulo d for which Condition (b) holds. We define $\psi(n)$ as follows.

• If (n, d) > 1, let $\psi(n) = 0$. In this case we also have (n, k) > 1. So we obtain

$$\chi(n) = 0 = 0 \cdot \chi_1(n) = \psi(n)\chi_1(n).$$

So Condition (b) holds.

Induced Moduli and Characters (Converse Cont'd)

- Suppose (n, d) = 1. By Dirichlet's Theorem, there exists m, such that:
 - $m \equiv n \pmod{d}$:
 - (m, k) = 1.

The arithmetic progression xd + n contains infinitely many primes. We choose one that does not divide k and call this m.

Having chosen m, which is unique modulo d, define

$$\psi(n)=\chi(m).$$

The number $\psi(n)$ is well-defined because χ takes equal values at numbers which are congruent modulo d and relatively prime to k. We can verify that ψ is a character mod d.

• If (n, k) = 1, then (n, d) = 1. So $\psi(n) = \chi(m)$, for some $m \equiv n \pmod{d}$. Hence, by a previous theorem,

$$\chi(n) = \chi(m) = \psi(n) \stackrel{\chi_1(n) = 1}{=} \psi(n)\chi_1(n).$$

• If (n, k) > 1, then $\chi(n) = \chi_1(n) = 0$. So Condition (b) holds.

Subsection 9

The Conductor of a Character

The Conductor of a Character

Definition

Let χ be a Dirichlet character mod k. The smallest induced modulus d for χ is called the **conductor** of χ .

Theorem

Every Dirichlet character $\chi \mod k$ can be expressed as a product,

$$\chi(n) = \psi(n)\chi_1(n)$$
, for all n ,

where χ_1 is the principal character mod k and ψ is a primitive character modulo the conductor of ψ .

• Let d be the conductor of χ . By the preceding theorem, χ can be expressed as a product of the given form, where ψ is a character mod d. We prove that ψ is primitive mod d.

The Conductor of a Character (Cont'd)

• Suppose that ψ is not primitive mod d.

There is a divisor q of d, q < d, which is an induced modulus for ψ .

We show that q, which divides k, is also an induced modulus for χ .

This contradicts the fact that d is the smallest induced modulus for χ .

Choose $n \equiv 1 \pmod{q}$, (n, k) = 1.

Now q is an induced modulus for ψ .

So we have

$$\chi(n) = \psi(n)\chi_1(n) = \psi(n) = 1.$$

Hence q is also an induced modulus for χ .

Subsection 10

Primitive Characters and Separable Gauss Sums

Alternate Description of Primitive Characters

Theorem

Let χ be a character mod k. Then χ is primitive mod k if, and only if, the Gauss sum

$$G(n,\chi) = \sum_{m \mod k} \chi(m) e^{2\pi i m n/k}$$

is separable for every n.

• If χ is primitive, then $G(n,\chi)$ is separable by a previous theorem. For the converse, by previous theorems, we must show that, if χ is not primitive mod k, then for some r satisfying (r,k) > 1 we have $G(r,\chi) \neq 0$.

Suppose, then, that χ is not primitive mod k. This implies k > 1. Then χ has a conductor d < k. Let $r = \frac{k}{d}$. Then (r, k) > 1. We prove that $G(r, \chi) \neq 0$ for this r.

Alternate Description of Primitive Characters (Cont'd)

• By the preceding theorem, there exists a primitive character ψ mod d, such that $\chi(n) = \psi(n)\chi_1(n)$, for all n. Hence we can write

$$G(r,\chi) = \sum_{m \mod k} \psi(m) \chi_1(m) e^{2\pi i r m/k}$$

$$= \sum_{m \mod k} \psi(m) e^{2\pi i r m/k}$$

$$= \sum_{m \mod k} \psi(m) e^{2\pi i r m/d}$$

$$= \sum_{m \mod k} \psi(m) e^{2\pi i m/d}$$

$$= \frac{\varphi(k)}{\varphi(d)} \sum_{m \mod d} \psi(m) e^{2\pi i m/d}.$$

Therefore, we have

$$G(r,\chi) = \frac{\varphi(k)}{\varphi(d)}G(1,\psi).$$

But $|G(1,\psi)|^2 = d$ by a previous theorem (ψ primitive mod d). Hence $G(r,\chi) \neq 0$.

Subsection 11

The Finite Fourier Series of the Dirichlet Characters

Fourier Series and Dirichlet Characters

• Since each Dirichlet character $\chi \mod k$ is periodic mod k, it has a finite Fourier expansion

$$\chi(m) = \sum_{n=1}^k a_k(n) e^{2\pi i m n/k}.$$

A previous theorem tells us that its coefficients are given by the formula

$$a_k(n) = \frac{1}{k} \sum_{m=1}^k \chi(m) e^{-2\pi i m n/k}.$$

The sum on the right is a Gauss sum $G(-n,\chi)$. So we have

$$a_k(n) = \frac{1}{k}G(-n,x).$$

Fourier Expansion of Primitive Characters

Theorem

The finite Fourier expansion of a primitive Dirichlet character χ mod k has the form

$$\chi(m) = \frac{\tau_k(\chi)}{\sqrt{k}} \sum_{m=1}^k \overline{\chi}(n) e^{-2\pi i m n/k},$$

where

$$\tau_k(\chi) = \frac{G(1,\chi)}{\sqrt{k}} = \frac{1}{\sqrt{k}} \sum_{m=1}^k \chi(m) e^{2\pi i m/k}.$$

The numbers $\tau_k(\chi)$ have absolute value 1.

Fourier Expansion of Primitive Characters (Cont'd)

• Since χ is primitive, we have

$$G(-n,\chi)=\chi(-n)G(1,\chi).$$

So the general form $a_k(n) = \frac{1}{k}G(-n,\chi)$ yields

$$a_k(n) = \frac{1}{k}\overline{\chi}(-n)G(1,\chi).$$

Therefore, $\chi(m) = \sum_{n=1}^{k} a_k(n)e^{2\pi i m n/k}$ can be written as

$$\chi(m) = \frac{G(1,\chi)}{k} \sum_{m=1}^{k} \overline{\chi}(-n) e^{2\pi i m n/k}$$
$$= \frac{G(1,\chi)}{k} \sum_{m=1}^{k} \overline{\chi}(n) e^{-2\pi i m n/k}.$$

A previous theorem shows that the $\tau_k(x)$ have absolute value 1.

Subsection 12

Pólya's Inequality for the Partial Sums of Primitive Characters

Pólya's Inequality

Theorem (Pólya's Inequality)

If χ is any primitive character mod k, then, for all $x \geq 1$, we have

$$\left|\sum_{m\leq x}\chi(m)\right|<\sqrt{k}\log k.$$

• Express $\chi(m)$ by its Fourier expansion, as given in the theorem

$$\chi(m) = \frac{\tau_k(\chi)}{\sqrt{k}} \sum_{n=1}^k \overline{\chi}(n) e^{-2\pi i m n/k}.$$

Sum over all $m \le x$, taking into account $\chi(k) = 0$, to get

$$\sum_{m \le x} \chi(m) = \frac{\tau_k(\chi)}{\sqrt{k}} \sum_{n=1}^{k-1} \overline{\chi}(n) \sum_{m \le x} e^{-2\pi i m n/k}.$$

Pólya's Inequality (Cont'd)

• Take absolute values and multiply by \sqrt{k} to get

$$\sqrt{k}\left|\sum_{m\leq x}\chi(m)\right|\leq \sum_{n=1}^{k-1}\left|\sum_{m\leq x}e^{-2\pi imn/k}\right|=\sum_{n=1}^{k-1}|f(n)|,$$

say, where $f(n) = \sum_{m \le x} e^{-2\pi i m n/k}$.

Now

$$f(k-n) = \sum_{m \le x} e^{-2\pi i m(k-n)/k} = \sum_{m \le x} e^{2\pi i m n/k} = \overline{f(n)}.$$

So |f(k-n)| = |f(n)|. Hence

$$\sqrt{k}\left|\sum_{m\leq x}\chi(m)\right|\leq 2\sum_{n\leq k/2}|f(n)|.$$

Pólya's Inequality (Cont'd)

• Now f(n) is a geometric sum of the form

$$f(n) = \sum_{m=1}^{r} y^{m},$$

where r = [x] and $y = e^{-2\pi i n/k}$.

Moreover, since $1 \le n \le k-1$, $y \ne 1$.

Writing $z = e^{-\pi i n/k}$, we have $y = z^2$.

Moreover, $z^2 \neq 1$, since $n \leq \frac{k}{2}$.

Hence,

$$f(n) = y \frac{y^r - 1}{y - 1} = z^2 \frac{z^{2r} - 1}{z^2 - 1} = z^{r+1} \frac{z^r - z^{-r}}{z - z^{-1}}.$$

So we get

$$|f(n)| = \left| \frac{z^r - z^{-r}}{z - z^{-1}} \right| = \left| \frac{e^{-\pi i r n/k} - e^{\pi i r n/k}}{e^{-\pi i n/k} - e^{\pi i n/k}} \right| = \frac{|\sin \frac{\pi r n}{k}|}{|\sin \frac{\pi n}{k}|} \le \frac{1}{\sin \frac{\pi n}{k}}$$

Pólya's Inequality (Cont'd)

We obtained

$$|f(n)| \leq \frac{1}{\sin \frac{\pi n}{k}}.$$

For or $0 \le t \le \frac{\pi}{2}$, we have the inequality

$$\sin t \geq \frac{2t}{\pi}$$
.

Set $t = \frac{\pi n}{k}$ to get

$$|f(n)| \leq \frac{1}{\sin\frac{\pi n}{k}} \leq \frac{1}{\frac{2}{\pi}\frac{\pi n}{k}} = \frac{k}{2n}.$$

Hence

$$\sqrt{k} \left| \sum_{m \le x} \chi(m) \right| \le 2 \sum_{n \le k/2} |f(n)| \le k \sum_{n \le k/2} \frac{1}{n} < k \log k.$$