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Periodic Arithmetical Functions and Gauss Sums Functions Periodic Modulo k

Functions Periodic Modulo k

Let k be a positive integer.

An arithmetical function f is said to be periodic with period k (or
periodic modulo k) if

f (n + k) = f (n), for all integers n.

If k is a period so is mk , for any integer m > 0.

The smallest positive period of f is called the fundamental period.

Example: The Dirichlet characters mod k are periodic mod k .

Consider the greatest common divisor (n, k), as a function of n.

Periodicity enters through the relation

(n + k , k) = (n, k).
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Periodic Arithmetical Functions and Gauss Sums Functions Periodic Modulo k

Finite Fourier Series

Another example is the exponential function

f (n) = e2πimn/k ,

where m and k are fixed integers.

The number e2πim/k is a k-th root of unity.

f (n) is its n-th power.

Any finite linear combination of such functions, say

∑

m

c(m)e2πimn/k

is also periodic mod k , for every choice of coefficients c(m).
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Periodic Arithmetical Functions and Gauss Sums Functions Periodic Modulo k

The Geometric Sum

We shall show that every arithmetical function which is periodic mod
k can be expressed in the form

∑
m c(m)e2πimn/k .

Such sums are called finite Fourier series.

Theorem

For fixed k ≥ 1, let

g(n) =

k−1∑

m=0

e2nimn/k .

Then

g(n) =

{
0, if k ∤ n,
k , if k | n.
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Periodic Arithmetical Functions and Gauss Sums Functions Periodic Modulo k

The Geometric Sum (Cont’d)

By hypothesis, g(n) is the sum of terms in a geometric progression,

g(n) =

k−1∑

m=0

xm, x = e2πin/k .

So we have

g(n) =

{
xk−1
x−1 , if x 6= 1

k , if x = 1
.

If k | n, then x = 1. So g(n) = k .

If k ∤ n, then x 6= 1. But xk = 1. Hence, g(n) = 0.
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Subsection 2

Existence of Fourier Series for Periodic Arithmetical Functions
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Periodic Arithmetical Functions and Gauss Sums Fourier Series for Periodic Arithmetical Functions

Lagrange’s Interpolation Theorem

Theorem (Lagrange’s Interpolation Theorem)

Let z0, z1, . . . , zk−1 be k distinct complex numbers, and let w0,w1, . . .,
wk−1 be k complex numbers which need not be distinct. Then there is a
unique polynomial P(z) of degree ≤ k − 1, such that

P(zm) = wm, for m = 0, 1, 2, . . . , k − 1.

The required polynomial P(z), called the Lagrange interpolation

polynomial, can be constructed explicitly as follows.

Let
A(z) = (z − z0)(z − z1) · · · (z − zk−1).

Let

Am(z) =
A(z)

z − zm
.
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Periodic Arithmetical Functions and Gauss Sums Fourier Series for Periodic Arithmetical Functions

Lagrange’s Interpolation Theorem (Cont’d)

Am(z) =
A(z)
z−zm

is a polynomial of degree k − 1.

Moreover,

Am(zm) 6= 0, Am(zj) = 0, for all j 6= m.

Hence,
Am(z)

Am(zm)

is a polynomial of degree k − 1 which:

Vanishes at each zj , for j 6= m;
Has the value 1 at zm.
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Periodic Arithmetical Functions and Gauss Sums Fourier Series for Periodic Arithmetical Functions

Lagrange’s Interpolation Theorem (Cont’d)

Consider the linear combination

P(z) =
k−1∑

m=0

wm
Am(z)

Am(zm)
.

It is a polynomial of degree ≤ k − 1, with

P(zj) = wj , for each j .

Suppose there is another such polynomial Q(z).

The difference P(z)− Q(z) vanishes at k distinct points.

But P(z)− Q(z) has degree ≤ k − 1.

So P(z)− Q(z) = 0.

Hence, P(z) = Q(z).
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Periodic Arithmetical Functions and Gauss Sums Fourier Series for Periodic Arithmetical Functions

Existence of Fourier Series

Theorem

Given k complex numbers w0,w1, . . . ,wk−1, there exist k uniquely
determined complex numbers a0, a1, . . . , ak−1, such that

wm =

k−1∑

n=0

ane
2πimn/k , m = 0, 1, 2, . . . , k − 1.

Moreover, the coefficients an are given by the formula

an =
1

k

k−1∑

m=0

wme
−2πimn/k , m = 0, 1, 2, . . . , k − 1.
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Periodic Arithmetical Functions and Gauss Sums Fourier Series for Periodic Arithmetical Functions

Existence of Fourier Series (Cont’d)

Let zm = e2πim/k .

The numbers z0, z1, . . . , zk−1 are distinct.

So there is a unique Lagrange polynomial

P(z) =

k−1∑

m=0

anz
n,

such that

P(zm) = wm, for each m = 0, 1, 2, . . . , k − 1.

This shows that there are uniquely determined numbers an satisfying
the first equation.
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Periodic Arithmetical Functions and Gauss Sums Fourier Series for Periodic Arithmetical Functions

Existence of Fourier Series (Coefficients)

Take wm =
∑k−1

n=0 ane
2πimn/k .

Multiply by e−2πimr/k , where m, r are nonnegative integers ≤ k .

Sum on m to get

k−1∑

m=0

wme
−2πimr/k =

k−1∑

n=0

an

k−1∑

m=0

e2πi(n−r)m/k .

By a previous theorem, the sum on m is 0 unless k | (n − r).

But |n − r | ≤ k − 1. So k | (n − r) if, and only if, n = r .

So the only nonvanishing term on the right occurs when n = r ,

k−1∑

m=0

wme
−2πimr/k = kar .
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Periodic Arithmetical Functions and Gauss Sums Fourier Series for Periodic Arithmetical Functions

Arithmetical Functions and Fourier Series

Theorem

Let f be an arithmetical function which is periodic mod k . Then there is a
uniquely determined arithmetical function g , also periodic mod k , such
that

f (m) =

k−1∑

m=0

g(n)e2πimn/k .

In fact, g is given by the formula

g(n) =
1

k

k−1∑

m=0

f (m)e−2πimn/k .
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Periodic Arithmetical Functions and Gauss Sums Fourier Series for Periodic Arithmetical Functions

Arithmetical Functions and Fourier Series (Cont’d)

Let

wm = f (m) =
k−1∑

m=0

g(n)e2πimn/k , for m = 0, 1, 2, . . . , k − 1.

Apply the preceding theorem to determine the numbers

a0, a1, . . . , ak−1.

Define the function g by the relations

g(m) = am, for m = 0, 1, 2, . . . , k − 1.

Extend the definition of g(m) to all integers m by periodicity mod k .

Then f is related to g by the equations in the theorem.
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Periodic Arithmetical Functions and Gauss Sums Fourier Series for Periodic Arithmetical Functions

Terminology

Since both f and g are periodic mod k , we can rewrite the sums in
the last theorem

f (m) =
∑

n mod k

g(n)e2πimn/k

and

g(n) =
1

k

∑

m mod k

f (m)e−2πimn/k .

In each case the summation can be extended over any complete
residue system modulo k .

The first sum is called the finite Fourier expansion of f .

The numbers g(n) are called the Fourier coefficients of f .
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Subsection 3

Ramanujan’s Sum and Generalizations
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Periodic Arithmetical Functions and Gauss Sums Ramanujan’s Sum and Generalizations

Ramanujan’s Sum

Let n be a fixed positive integer.

The sum of the n-th powers of the primitive k-th roots of unity is

ck(n) =
∑

m mod k
(m,k)=1

e2πimn/k .

It is known as Ramanujan’s sum.

Ramanujan showed that ck(n) is always an integer by proving the
relation

ck(n) =
∑

d|(n,k)

dµ

(
k

d

)
.

This formula suggests that we study general sums of the form

sk(n) =
∑

d|(n,k)

f (d)g

(
k

d

)
.
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Periodic Arithmetical Functions and Gauss Sums Ramanujan’s Sum and Generalizations

Generalized Ramanujan’s Sum and Periodicity

We study general sums of the form

sk(n) =
∑

d|(n,k)

f (d)g

(
k

d

)
.

These resemble the sums for the Dirichlet convolution f ∗ g except
that we sum over a subset of the divisors of k , namely those d which
also divide n.

Since n occurs only in the gcd (n, k), we have

sk(n + k) = sk(n).

So sk(n) is a periodic function of n, with period k .

Hence this sum has a finite Fourier expansion.
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Periodic Arithmetical Functions and Gauss Sums Ramanujan’s Sum and Generalizations

Fourier Expansion of Ramanujan’s Sum

Theorem

Let

sk(n) =
∑

d|(n,k)

f (d)g

(
k

d

)
.

Then sk(n) has the finite Fourier expansion

sk(n) =
∑

m mod k

ak(m)e2πimn/k ,

where

ak(m) =
∑

d|(m,k)

g(d)f

(
k

d

)
d

k
.
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Periodic Arithmetical Functions and Gauss Sums Ramanujan’s Sum and Generalizations

Fourier Expansion of Ramanujan’s Sum (Cont’d)

By the preceding theorem, the coefficients ak(m) are given by

ak(m) =
1

k

∑

n mod k

sk(n)e
−2πinm/k =

1

k

k∑

n=1

∑

d|n
d|k

f (d)g

(
k

d

)
e−2πinm/k .

Now we write n = cd .

Note that for each fixed d , c runs from 1 to k
d
.

So we get

ak(m) =
1

k

∑

d|k

f (d)g

(
k

d

) k/d∑

c=1

e−2πicdm/k .
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Periodic Arithmetical Functions and Gauss Sums Ramanujan’s Sum and Generalizations

Fourier Expansion of Ramanujan’s Sum (Cont’d)

We have

ak(m) =
1

k

∑

d|k

f (d)g

(
k

d

) k/d∑

c=1

e−2πicdm/k .

Now we replace d by k
d
in the sum on the right to get

ak(m) =
1

k

∑

d|k

f

(
k

d

)
g(d)

d∑

c=1

e−2πicm/d .

By a previous theorem, the sum on c is 0 unless d | m in which case
the sum has the value d .

Hence, we get

ak(m) =
1

k

∑

d|k
d|m

f

(
k

d

)
g(d)d .
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Periodic Arithmetical Functions and Gauss Sums Ramanujan’s Sum and Generalizations

Ramanujan’s Formula

Theorem

We have

ck(n) =
∑

d|(n,k)

dµ

(
k

d

)
.

By the preceding theorem, sk(n) =
∑

d|(n,k) f (d)g
(
k
d

)
has the finite

Fourier expansion

sk(n) =
∑

m mod k

ak(m)e2πimn/k ,

where ak(m) =
∑

d|(m,k) g(d)f
(
k
d

)
d
k
.
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Periodic Arithmetical Functions and Gauss Sums Ramanujan’s Sum and Generalizations

Ramanujan’s Formula (Cont’d)

Take f (k) = k and g(k) = µ(k).

We find ∑

d|(n,k)

dµ

(
k

d

)
=

∑

m mod k

ak(m)e2πimn/k ,

where

am(k) =
∑

d|(m,k)

µ(d) =

[
1

(m, k)

]
=

{
1, if (m, k) = 1
0, if (m, k) > 1

Hence ∑

d|(n,k)

dµ

(
k

d

)
=

∑

m mod k
(m,k)=1

e2πimn/k = ck(n).
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Subsection 4

Multiplicative Properties of the Sums sk(n)
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Periodic Arithmetical Functions and Gauss Sums Multiplicative Properties of the Sums sk (n)

Multiplicative Properties of the Sums sk(n)

Theorem

Let

sk(n) =
∑

d|(n,k)

f (d)g

(
k

d

)
,

where f and g are multiplicative. Then we have

smk(ab) = sm(a)sk(b), whenever (a, k) = (b,m) = 1.

In particular, we have

sm(ab) = sm(a), if (b,m) = 1,

and
smk(a) = sm(a)g(k), if (a, k) = 1.
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Periodic Arithmetical Functions and Gauss Sums Multiplicative Properties of the Sums sk (n)

Multiplicative Properties of the Sums sk(n) (Cont’d)

Suppose (a, k) = (b,m) = 1.

These imply
(mk , ab) = (a,m)(k , b),

with (a,m) and (b, k) relatively prime.

Therefore,

smk(ab) =
∑

d|(mk,ab)

f (d)g

(
mk

d

)
=

∑

d|(a,m)(b,k)

f (d)g

(
mk

d

)
.

Writing d = d1d2 in the last sum, we obtain

smk(ab) =
∑

d1|(a,m)

∑
d2|(b,k)

f (d1d2)g(
mk
d1d2

)

=
∑

d1|(a,m) f (d1)g(
m
d1
)
∑

d2|(b,k)
f (d2)g(

k
d2
)

= sm(a)sk(b).
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Periodic Arithmetical Functions and Gauss Sums Multiplicative Properties of the Sums sk (n)

Multiplicative Properties of the Sums sk(n) (Cont’d)

We proved that

smk(ab) = sm(a)sk(b), whenever (a, k) = (b,m) = 1.

Now we have s1(b) = f (1)g(1) = 1.

So taking k = 1 in the sum, we get

sm(ab) = sm(a)s1(b) = sm(a).

Similarly, sk(1) = f (1)g(k) = g(k).

So taking b = 1 in the sum, we find

smk(a) = sm(a)sk(1) = sm(a)g(k).
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Periodic Arithmetical Functions and Gauss Sums Multiplicative Properties of the Sums sk (n)

Example

We proved that Ramanujan’s sum is

ck(n) =
∑

d|(n,k)

dµ

(
k

d

)
.

So applying the theorem, we get the following multiplicative properties

cmk(ab) = cm(a)ck(b), whenever (a, k) = (b,m) = 1;

cm(a, b) = cm(a), whenever (b,m) = 1;

cmk(a) = cm(a)µ(k), whenever (a, k) = 1.
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Sums sk(n) and Dirichlet Convolution

Theorem

Let f be completely multiplicative, and let g(k) = µ(k)h(k), where h is
multiplicative. Assume that f (p) 6= 0 and f (p) 6= h(p), for all primes p.
Let

sk(n) =
∑

d|(n,k)

f (d)g

(
k

d

)
.

Then we have

sk(n) =
F (k)g(N)

F (N)
,

where F = f ∗ g and N = k
(n,k) .
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Periodic Arithmetical Functions and Gauss Sums Multiplicative Properties of the Sums sk (n)

Sums sk(n) and Dirichlet Convolution (Cont’d)

First we note that

F (k) =
∑

d|k f (d)µ(
k
d
)h( k

d
)

=
∑

d|k f (
k
d
)µ(d)h(d)

= f (k)
∑

d|k µ(d)
h(d)
f (d)

= f (k)
∏

p|k

(
1− h(p)

f (p)

)
,

where the last equation follows from the fact that, if a function f is
multiplicative, then

∑
d|n µ(d)f (d) =

∏
p|n(1− f (p)).

Next, we write a = (n, k), so that k = aN.

Then we have

sk(n) =
∑

d|a f (d)µ(
k
d
)h( k

d
)

=
∑

d|a f (d)µ(
aN
d
)h(aN

d
)

=
∑

d|a f (
a
d
)µ(Nd)h(Nd).
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Periodic Arithmetical Functions and Gauss Sums Multiplicative Properties of the Sums sk (n)

Sums sk(n) and Dirichlet Convolution

We wrote a = (n, k), so that k = aN, and we have:
µ(Nd) = µ(N)µ(d) if (N , d) = 1;
µ(Nd) = 0, if (N , d) > 1.

So the last equation gives us

sk(n) = µ(N)h(N)
∑

d|a
(N,d)=1

f ( a
d
)µ(d)h(d)

= f (a)µ(N)h(N)
∑

d|a
(N,d)=1

µ(d)h(d)
f (d)

= f (a)µ(N)h(N)
∏

p|a
p∤N

(
1− h(p)

f (p)

)

= f (a)µ(N)h(N)

∏
p|aN (1−

h(p)
f (p)

)
∏

p|N (1−
h(p)
f (p)

)

= f (a)µ(N)h(N)F (k)
f (k)

f (N)
F (N) (g = µh,F = f ∗ g)

= F (k)µ(N)h(N)
F (N) = F (k)g(N)

F (N) .
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Example

Ramanujan’s sum is

ck(n) =
∑

d|(n,k)

dµ

(
k

d

)
.

By the theorem,

sk(n) =
∑

d|(n,k)

f (d)g

(
k

d

)
.

Set:
f the identity, which is completely multiplicative;
g = µ, which is multiplicative.

Recall that ϕ(k) =
∑

d|k dµ(
k
d
).

Therefore, we have

ck(n) =
ϕ(k)µ(N)

ϕ(N)
=
ϕ(k)µ

(
k

(n,k)

)

ϕ
(

k
(n,k)

) .
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Subsection 5

Gauss Sums Associated with Dirichlet Characters
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Periodic Arithmetical Functions and Gauss Sums Gauss Sums Associated with Dirichlet Characters

Gauss Sums Associated with Dirichlet Characters

Definition

For any Dirichlet character χ mod k the sum

G (n, χ) =
k∑

m=1

χ(m)e2πimn/k

is called the Gauss sum associated with χ.
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Periodic Arithmetical Functions and Gauss Sums Gauss Sums Associated with Dirichlet Characters

Gauss Sums and Ramanujan’s Sum

Let χ = χ1 be the principal character mod k .

We then have

χ1(m) =

{
1, if (m, k) = 1,
0, otherwise.

In this case the Gauss sum

G (n, χ) =

k∑

m=1

χ(m)e2πimn/k

reduces to Ramanujan’s sum,

G (n, χ1) =

k∑

m=1
(m,k)=1

e2πimn/k = ck(n).

Thus, the Gauss sums G (n, χ) can be regarded as generalizations of
Ramanujan’s sum.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 37 / 75



Periodic Arithmetical Functions and Gauss Sums Gauss Sums Associated with Dirichlet Characters

A Factorization Property

Theorem

If χ is any Dirichlet character mod k , then

G (n, χ) = χ(n)G (1, χ), whenever (n, k) = 1.

When (n, k) = 1 the numbers nr run through a complete residue
system mod k with r . Also, |χ(n)|2 = χ(n)χ(n) = 1. So

χ(r) = χ(n)χ(n)χ(r) = χ(n)χ(nr).

Therefore, the sum defining G (n, χ) can be written as follows:

G (n, χ) =
∑

r mod k χ(r)e
2πinr/k

= χ(n)
∑

r mod k χ(nr)e
2πinr/k

= χ(n)
∑

m mod k χ(m)e2πim/k

= χ(n)G (1, χ).
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Separable Gauss Sums

Definition

The Gauss sum G (n, χ) is said to be separable if

G (n, χ) = χ(n)G (1, χ).

By the preceding theorem, G (n, χ) is separable whenever n is
relatively prime to the modulus k .

A characterization of separability for those integers n not relatively
prime to k is given in the next slide.
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Characterization of Separable Gauss Sums

Theorem

If χ is a character mod k the Gauss sum G (n, χ) is separable for every n

if, and only if
G (n, χ) = 0 whenever (n, k) > 1.

Separability always holds if (n, k) = 1.

If (n, k) > 1 we have χ(n) = 0.

So the equation holds if and only if G (n, χ) = 0.
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Consequence of Separability

Theorem

If G (n, χ) is separable for every n, then

|G (1, χ)|2 = k .

We have

|G (1, χ)|2 = G (1, χ)G (1, χ)

= G (1, χ)
∑k

m=1 χ(m)e−2πim/k

=
∑k

m=1 G (m, χ)e−2πim/k

=
∑k

m=1

∑k
r=1 χ(r)e

2πimr/ke−2πim/k

=
∑k

r=1 χ(r)
∑k

m=1 e
2πim(r−1)/k

geometric
= kχ(1)

= k .
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Dirichlet Characters with Nonzero Gauss Sums

The next theorem gives a necessary condition for G (n, χ) to be
nonzero for (n, k) > 1.

Theorem

Let χ be a Dirichlet character mod k . Assume that G (n, χ) 6= 0, for some
n satisfying (n, k) > 1. Then there exists a divisor d of k , d < k , such
that

χ(a) = 1 whenever (a, k) = 1 and a ≡ 1 (mod d).

For the given n, let q = (n, k) and let d = k/q.

Then d | k and, since q > 1, we have d < k .

Choose any a satisfying (a, k) = 1 and a ≡ 1 (mod d).

We will prove that χ(a) = 1.
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Dirichlet Characters with Nonzero Gauss Sums (Cont’d)

Since (a, k) = 1, in the sum defining G (n, χ) we can replace the index
of summation m by am. Then we find

G (n, χ) =
∑

m mod k χ(m)e2πinm/k

=
∑

m mod k χ(am)e2πinam/k

= χ(a)
∑

m mod k χ(m)e2πinam/k .

Now a ≡ 1 (mod d) and d = k
q
.

So, for some integer b,

a = 1 +
bk

q
.
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Dirichlet Characters with Nonzero Gauss Sums (Cont’d)

We wrote a = 1 + bk
q
.

Since q | n, we have

anm

k
=

nm

k
+

bknm

qk
=

nm

k
+

bnm

q
≡ nm

k
(mod 1).

Hence,
e2πinam/k = e2πinm/k .

So the sum for G (n, χ) becomes

G (n, χ) = χ(a)
∑

m mod k

χ(m)e2πinm/k = χ(a)G (n, χ).

Since G (n, χ) 6= 0, this implies χ(a) = 1, as asserted.

The theorem points towards characters χ mod k for which there is a
divisor d < k , satisfying χ(a) = 1, if (a, k) = 1 and a ≡ 1 (mod d).
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Induced Moduli

Definition of Induced Modulus

Let χ be a Dirichlet character mod k and let d be any positive divisor of
k . The number d is called an induced modulus for χ if we have

χ(a) = 1 whenever (a, k) = 1 and a ≡ 1 (mod d).

Note d is an induced modulus if the character χ mod k acts like a
character mod d on the representatives of the residue class 1̂ mod d

which are relatively prime to k .

Note also that k itself is always an induced modulus for χ.
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Condition for 1 to be an Induced Modulus

Theorem

Let χ be a Dirichlet character mod k . Then 1 is an induced modulus for χ
if, and only if, χ = χ1.

If χ = χ1, then χ(a) = 1, for all a relatively prime to k .

But every a satisfies a ≡ 1 (mod 1).

So the number 1 is an induced modulus.

Conversely, suppose 1 is an induced modulus.

Then χ(a) = 1, whenever (a, k) = 1.

Also, χ vanishes on the numbers not prime to k .

It follows that χ = χ1.
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Primitive Characters

For any Dirichlet character mod k , k itself is an induced modulus.

If there are no others we call the character primitive.

Definition of Primitive Characters

A Dirichlet character χ mod k is said to be primitive mod k if it has no
induced modulus d < k .
In other words, χ is primitive mod k if, and only if, for every divisor d of
k , 0 < d < k , there exists an integer a ≡ 1 (mod d), (a, k) = 1, such that
χ(a) 6= 1.

If k > 1, the principal character χ1 is not primitive since it has 1 as
an induced modulus.
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Primitivity of all Characters Modulo a Prime

If the modulus is prime, every non principal character is primitive.

Theorem

Every non principal character χ modulo a prime p is a primitive character
mod p.

The only divisors of p are 1 and p.

So these are the only candidates for induced moduli.

By the preceding theorem, if χ 6= χ1, the divisor 1 is not an induced
modulus.

So χ has no induced modulus < p.

Hence, χ is primitive.
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Properties of Primitive Characters

Theorem

Let χ be a primitive Dirichlet character mod k . Then we have:

(a) G (n, χ) = 0, for every n with (n, k) > 1.

(b) G (n, χ) is separable for every n.

(c) |G (1, χ)|2 = k .

(a) Suppose G (n, χ) 6= 0, for some n with (n, k) > 1.

By a previous theorem, χ has an induced modulus d < k .

So, in this case, χ cannot be primitive.

(b) By Part (a) and the characterization of separability.

(c) By Part (b), G (n, χ) is separable, for every n.

By a previous theorem, |G (1, χ)|2 = k .
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Comments

By Part (b) of the theorem, if χ is primitive, the Gauss sum G (n, χ)
is separable.

Later we prove the converse.

That is, we shall show that, if G (n, χ) is separable, for every n, then
χ is primitive.
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Numbers Congruent Modulo an Induced Modulus

Theorem

Let χ he a Dirichlet character mod k . Assume d | k , d > 0. Then d is an
induced modulus for χ if and only if

χ(a) = χ(b) whenever (a, k) = (b, k) = 1 and a ≡ b (mod d).

Suppose the stated condition holds.

With b = 1, we get that, for all a, such that (a, k) = 1 and a ≡ 1
(mod d), χ(a) = χ(1) = 1.

Therefore, by definition, χ is an induced modulus.

Conversely, let a, b such that (a, k) = (b, k) = 1 and a ≡ b (mod d).

We will show that χ(a) = χ(b).

Since (a, k) = 1, a mod k has a reciprocal a′.
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Numbers Congruent Modulo an Induced Modulus (Cont’d)

We chose a, b, with (a, k) = (b, k) = 1 and a ≡ b (mod d).

Also, there exists a′, such that aa′ ≡ 1 (mod k).

Now aa′ ≡ 1 (mod d) since d | k .
Hence χ(aa′) = 1, since d is an induced modulus.

But aa′ ≡ ba′ ≡ 1 (mod d) because a ≡ b (mod d).

Hence, χ(aa′) = χ(ba′).

So χ(a)χ(a′) = χ(b)χ(a′).

But χ(a′) 6= 0, since χ(a)χ(a′) = 1.

Canceling χ(a′), we find χ(a) = χ(b).

So, χ is periodic mod d on those integers relatively prime to k .

Thus, χ acts very much like a character mod d .
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Example

The following table describes one of the characters χ mod 9.

n 1 2 3 4 5 6 7 8 9

χ(n) 1 −1 0 1 −1 0 1 −1 0

The table is periodic modulo 3.

So 3 is an induced modulus for χ.

In fact, χ acts like the following character ψ modulo 3:

n 1 2 3

ψ(n) 1 −1 0

Since χ(n) = ψ(n), for all n, we call χ an extension of ψ.

It is clear that whenever χ is an extension of a character ψ modulo d ,
then d will be an induced modulus for χ.
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Example

Now we examine one of the characters χ modulo 6:

n 1 2 3 4 5 6

χ(n) 1 0 0 0 −1 0

For all n ≡ 1 (mod 3) with (n, 6) = 1 (i.e., n = 1), χ(n) = 1.

So the number 3 is an induced modulus.

However, χ is not an extension of any character 0 modulo 3.

The only characters modulo 3 are the characters ψ1 and ψ,

n 1 2 3

ψ1(n) 1 1 0
ψ(n) 1 −1 0

Since χ(2) = 0, it cannot be an extension of either ψ or ψ1.
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Induced Moduli and Characters

Theorem

Let χ be a Dirichlet character modulo k . Assume d | k , d > 0.
Then the following two statements are equivalent:

(a) d is an induced modulus for χ.

(b) There is a character ψ modulo d , such that

χ(n) = ψ(n)χ1(n), for all n,

where χ1 is the principal character modulo k .

Assume Condition (b) holds.

Choose n satisfying (n, k) = 1, n ≡ 1 (mod d).

Then χ1(n) = ψ(n) = 1. So χ(n) = 1.

Hence, d is an induced modulus.
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Induced Moduli and Characters (Converse)

Assume Condition (a) holds.

We exhibit a character ψ modulo d for which Condition (b) holds.

We define ψ(n) as follows.

If (n, d) > 1, let ψ(n) = 0.
In this case we also have (n, k) > 1.
So we obtain

χ(n) = 0 = 0 · χ1(n) = ψ(n)χ1(n).

So Condition (b) holds.
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Induced Moduli and Characters (Converse Cont’d)

Suppose (n, d) = 1.
By Dirichlet’s Theorem, there exists m, such that:

m ≡ n (mod d);
(m, k) = 1.

The arithmetic progression xd + n contains infinitely many primes.
We choose one that does not divide k and call this m.
Having chosen m, which is unique modulo d , define

ψ(n) = χ(m).

The number ψ(n) is well-defined because χ takes equal values at
numbers which are congruent modulo d and relatively prime to k .
We can verify that ψ is a character mod d .

If (n, k) = 1, then (n, d) = 1.
So ψ(n) = χ(m), for some m ≡ n (mod d).
Hence, by a previous theorem,

χ(n) = χ(m) = ψ(n)
χ1(n) = 1

= ψ(n)χ1(n).

If (n, k) > 1, then χ(n) = χ1(n) = 0. So Condition (b) holds.

George Voutsadakis (LSSU) Analytic Number Theory May 2024 60 / 75



Periodic Arithmetical Functions and Gauss Sums The Conductor of a Character

Subsection 9

The Conductor of a Character

George Voutsadakis (LSSU) Analytic Number Theory May 2024 61 / 75



Periodic Arithmetical Functions and Gauss Sums The Conductor of a Character

The Conductor of a Character

Definition

Let χ be a Dirichlet character mod k . The smallest induced modulus d for
χ is called the conductor of χ.

Theorem

Every Dirichlet character χ mod k can be expressed as a product,

χ(n) = ψ(n)χ1(n), for all n,

where χ1 is the principal character mod k and ψ is a primitive character
modulo the conductor of ψ.

Let d be the conductor of χ.

By the preceding theorem, χ can be expressed as a product of the
given form, where ψ is a character mod d .

We prove that ψ is primitive mod d .
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The Conductor of a Character (Cont’d)

Suppose that ψ is not primitive mod d .

There is a divisor q of d , q < d , which is an induced modulus for ψ.

We show that q, which divides k , is also an induced modulus for χ.

This contradicts the fact that d is the smallest induced modulus for χ.

Choose n ≡ 1 (mod q), (n, k) = 1.

Now q is an induced modulus for ψ.

So we have
χ(n) = ψ(n)χ1(n) = ψ(n) = 1.

Hence q is also an induced modulus for χ.
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Alternate Description of Primitive Characters

Theorem

Let χ be a character mod k . Then χ is primitive mod k if, and only if, the
Gauss sum

G (n, χ) =
∑

m mod k

χ(m)e2πimn/k

is separable for every n.

If χ is primitive, then G (n, χ) is separable by a previous theorem.

For the converse, by previous theorems, we must show that, if χ is
not primitive mod k , then for some r satisfying (r , k) > 1 we have
G (r , χ) 6= 0.

Suppose, then, that χ is not primitive mod k . This implies k > 1.
Then χ has a conductor d < k . Let r = k

d
. Then (r , k) > 1.

We prove that G (r , χ) 6= 0 for this r .
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Alternate Description of Primitive Characters (Cont’d)

By the preceding theorem, there exists a primitive character ψ mod d ,
such that χ(n) = ψ(n)χ1(n), for all n. Hence we can write

G (r , χ) =
∑

m mod k ψ(m)χ1(m)e2πirm/k

=
∑

m mod k
(m,k)=1

ψ(m)e2πirm/k

=
∑

m mod k
(m,k)=1

ψ(m)e2πim/d

= ϕ(k)
ϕ(d)

∑
m mod d
(m,d)=1

ψ(m)e2πim/d .

Therefore, we have

G (r , χ) =
ϕ(k)

ϕ(d)
G (1, ψ).

But |G (1, ψ)|2 = d by a previous theorem (ψ primitive mod d).

Hence G (r , χ) 6= 0.
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Fourier Series and Dirichlet Characters

Since each Dirichlet character χ mod k is periodic mod k , it has a
finite Fourier expansion

χ(m) =

k∑

n=1

ak(n)e
2πimn/k .

A previous theorem tells us that its coefficients are given by the
formula

ak(n) =
1

k

k∑

m=1

χ(m)e−2πimn/k .

The sum on the right is a Gauss sum G (−n, χ). So we have

ak(n) =
1

k
G (−n, x).
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Fourier Expansion of Primitive Characters

Theorem

The finite Fourier expansion of a primitive Dirichlet character χ mod k has
the form

χ(m) =
τk(χ)√

k

k∑

m=1

χ(n)e−2πimn/k ,

where

τk(χ) =
G (1, χ)√

k
=

1√
k

k∑

m=1

χ(m)e2πim/k .

The numbers τk(χ) have absolute value 1.
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Fourier Expansion of Primitive Characters (Cont’d)

Since χ is primitive, we have

G (−n, χ) = χ(−n)G (1, χ).

So the general form ak(n) =
1
k
G (−n, χ) yields

ak(n) =
1

k
χ(−n)G (1, χ).

Therefore, χ(m) =
∑k

n=1 ak(n)e
2πimn/k can be written as

χ(m) = G(1,χ)
k

∑k
m=1 χ(−n)e2πimn/k

= G(1,χ)
k

∑k
m=1 χ(n)e

−2πimn/k .

A previous theorem shows that the τk(x) have absolute value 1.
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Pólya’s Inequality

Theorem (Pólya’s Inequality)

If χ is any primitive character mod k , then, for all x ≥ 1, we have
∣∣∣∣∣∣

∑

m≤x

χ(m)

∣∣∣∣∣∣
<

√
k log k .

Express χ(m) by its Fourier expansion, as given in the theorem

χ(m) =
τk(χ)√

k

k∑

n=1

χ(n)e−2πimn/k .

Sum over all m ≤ x , taking into account χ(k) = 0, to get

∑

m≤x

χ(m) =
τk(χ)√

k

k−1∑

n=1

χ(n)
∑

m≤x

e−2πimn/k .
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Periodic Arithmetical Functions and Gauss Sums Pólya’s Inequality for the Partial Sums of Primitive Characters

Pólya’s Inequality (Cont’d)

Take absolute values and multiply by
√
k to get

√
k

∣∣∣∣∣∣

∑

m≤x

χ(m)

∣∣∣∣∣∣
≤

k−1∑

n=1

∣∣∣∣∣∣

∑

m≤x

e−2πimn/k

∣∣∣∣∣∣
=

k−1∑

n=1

|f (n)|,

say, where f (n) =
∑

m≤x e
−2πimn/k .

Now

f (k − n) =
∑

m≤x

e−2πim(k−n)/k =
∑

m≤x

e2πimn/k = f (n).

So |f (k − n)| = |f (n)|. Hence

√
k

∣∣∣∣∣∣

∑

m≤x

χ(m)

∣∣∣∣∣∣
≤ 2

∑

n≤k/2

|f (n)|.
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Pólya’s Inequality (Cont’d)

Now f (n) is a geometric sum of the form

f (n) =
r∑

m=1

ym,

where r = [x ] and y = e−2πin/k .

Moreover, since 1 ≤ n ≤ k − 1, y 6= 1.

Writing z = e−πin/k , we have y = z2.

Moreover, z2 6= 1, since n ≤ k
2 .

Hence,

f (n) = y
y r − 1

y − 1
= z2

z2r − 1

z2 − 1
= z r+1 z

r − z−r

z − z−1
.

So we get

|f (n)| =
∣∣∣∣
z r − z−r

z − z−1

∣∣∣∣ =
∣∣∣∣∣
e−πirn/k − eπirn/k

e−πin/k − eπin/k

∣∣∣∣∣ =
| sin πrn

k
|

| sin πn
k
| ≤ 1

sin πn
k

.
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Pólya’s Inequality (Cont’d)

We obtained

|f (n)| ≤ 1

sin πn
k

.

For or 0 ≤ t ≤ π
2 , we have the inequality

sin t ≥ 2t

π
.

Set t = πn
k

to get

|f (n)| ≤ 1

sin πn
k

≤ 1
2
π
πn
k

=
k

2n
.

Hence

√
k

∣∣∣∣∣∣

∑

m≤x

χ(m)

∣∣∣∣∣∣
≤ 2

∑

n≤k/2

|f (n)| ≤ k
∑

n≤k/2

1

n
< k log k .
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