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Functions Inequalities and Lines

Subsection 1

Inequalities and Lines
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Functions Inequalities and Lines

Inequalities

® a < b means “ais less than b";

@ a < b means “ais less than or equal to b";

@ a > b means “ais greater than b";

® a > b means “a is greater than or equal to b";

@ Example: Which of the following statements are true and which are

false?

Inequality | Truth Value
-3<2 v
-5<-9 B
1<1 v
22> -1.7 v

@ A double inequality a < x < b means “x is between a and b", i.e.,
both a < x and x < b hold;

@ Example: —2 < x < 5 means that x lies between —2 and 5 on the
real line.
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Functions Inequalities and Lines

Sets and Intervals

@ The notation
{x:x>3}

means “the set of all x, such that x is greater than 3";
@ Similarly,

{x:—=2<x <5}

means “the set of all x, such that x is between —2 and 5";
@ These sets may also be expressed in interval notation;
@ The first set above is (3, 00);
3

o And the second set is (—2,5);

-2
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Functions Inequalities and Lines

Finite and Infinite Intervals

Set Notation  Interval Notation Graph
{x:a<x<b} [a, b] : :
{x:a<x<b} (a, b) 3 3
{x:a<x<b} [a, b) : 3
{x:a<x<b} (a, b] : :
Set Notation Interval Notation Graph
{x:x>a} [a,00) .
{x:x>a} (a,0) >
{x:x < a} (=00, a]
{x:x<a} —00, a) >
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Functions Inequalities and Lines

Cartesian Plane

@ The Cartesian plane is defined by

@ the x-axis;

o the y-axis; |
@ a unit of measurement, :
determining the x- and .

the y-coordinates of
points on the plane; .

@ Example: Some points and their coordinates:

v

BoCS3 s

A=(4,2)
1

X

T T T T T T T
5 4 3 2 -1 1 2 3 4
]
2]
1 D=(5,-3)

C=(2,-4% "
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Functions

Inequalities and Lines

@ If a line ¢ passes through two points (x1,y1) and (x2, y2), then we
define its slope m by

Y,
: (.2
rise  y2—y1 2 1”
m=— = y tise =
run Xo — X =
2 ) B
T
X =X
o 5
xl X2 X
@ A horizontal line has slope m = 0;

@ A vertical line has slope undefined;
@ Example: Find the slope of the line passing through (—2,3) and
(18, ~12);

m_y2—y1_ —-12 -3 _—15__
—X2—X1_18—(—2)_ 20 a

&l w
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Functions Inequalities and Lines

Equations of Lines: The Slope-Intercept Form

@ If a line £ has slope m and y-intercept (0, b), then its equation is

Example: Find an equation of

y=mx+b; the line passing through (0,4)
and (2,0);
We first compute the slope m =
wwen ooy 0—4 _
Line1 X2—X1—2—0_ '

Then, we use the slope-intercept
/‘ form with b = 4;

Equation:

y=mxtb y= —2x+4.
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Functions

Inequalities and Lines

Equations of Lines: The Point-Slope Form

@ If a line ¢ has slope m and passes through the point (xi, y1), then its

equation is
Yy —y1=m(x —x);
slope m
v
b
Ly
Equation: 1
¥-y1 = m(x-xy)

Example: Find an equation of
the line passing through (4,1)
and (7,-2);

We first compute the slope m =
ey _=2=1_

Xo — X1 7—4 '
Then, we use the point-slope

form with (x1,y1) = (4,1);

y—1=(-1)(x—-4)
ory=—x+b5.

Fall 2013
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Functions Inequalities and Lines

General Linear Equation

@ The general form of an equation of a line is
ax + by = c,

with a, b, ¢ real constants, such that a, b are not both zero;

@ Example: If a line ¢ passes through (—2,10) and (1,—2), find an
equation for £ in the general form;
First, compute the slope:

YYo= —2—10 _—12
_X2—X1—1—(—2)— 3

Now use the point-slope form:

m

= — 4

y—(-2)=4(x~1)
= y+2=—-4x+4
= 4x+y=2.
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Functions Inequalities and Lines

General Linear Equation: Another Example

@ Example: If a line ¢ has equation 2x + 3y = 12, what is slope m and
what is its y-intercept b?
Solve for y to transform into the slope-intercept form:

2x + 3y =12
= 3y=-2x+12
= y=—%x+4;

Thus, the line has slope m = — % and y-intercept b = 4.
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Functions Inequalities and Lines

Parallel and Perpendicular Lines

Two lines Ly and Ly are parallel, Two lines L; and L, are perpen-
written L || Lp, if they have no dicular, written Ly 1 Ly, if they

points in common; intersect at a right (90°) angle;
NoJ
+4 N ,// Ll
|G B
l//
2 1 1 2 i ]_‘2
L, 7AW

If L1 has slope my and L hasslope If L1 has slope m; and L, has slope

my, we have Ly || L if and only if m»y, we have L; L L, if and only
my = my; if mlz—m%.
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Functions Inequalities and Lines

Example |

Find the slope of the line ¢ that passes through the origin and that is
parallel to the line ¢’ passing through the points (—2,11) and (4, —7).

Line ¢ has slope

m/ _ Yo—n1
Xp — X
27 7h
~ 4—(-2)
. —18 . 3 By o B 10 15
= - =3
Since ¢ || ¢/, we must have m = m’ = —3;
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Functions Inequalities and Lines

Example Il

Find an equation for the line ¢ that passes through the point (1,4) and
that is perpendicular to the line ¢’ passing through the points (—2,7) and
(3,2).

Line ¢ has slope r

m, — .y 2 — y 1 10}
X2 — ‘} .‘

E( 2) e
= - = 1 , =15 -10 -5 5 10 15
5 ;

Since £ L ¢/, we must have m = — 1, = o
1; Using point-slope form, we get for /:
y—4=1x—-1ory=x+3; st
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Functions Exponents

Subsection 2

Exponents

George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 2013 16 / 48



Functions Exponents

Positive Integer Exponents

@ For any positive integer n,

n

—
n factors
Properties of Exponents: Example: Simplify

° Xm'Xn:Xern; ° X2X3_X5;

x™ X7

2 m—n. XA
9 " X ) L 3 X7
° (xM)"=x"", o (x3)% = x15;
o (xy)"=x"-y" o (3x2)3 = 33(x2)3 = 27x6

5) =5 o
o - = *} —) == ==

y y" 2 24 16

George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 2013 17 / 48



Functions Exponents

Zero and Negative Exponents

@ If x # 0 and n is a positive integer,
n

1
xX°=1 and x "= —;
n

@ Example: Simplify:

o 50=1;

") 771: %,

0 372= 3%=§;

] (—2)_3 = (72)3 = —%
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Functions Exponents

Roots and Fractional Exponents

@ If nis a positive integer,
X = v/x;

@ Example: Evaluate
91/2 = \/§ = 3,
1251/3 = /125 = 5;

©

CJ
o (—16)'/% = /=16 = undefined!
o (=32)15=vy/=32= -2
. (1)1 L2
25 5 25 5’
27\¢ ./ 271 V=21 3
“<_§) Vs v 2
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Functions Exponents

Fractional Exponents

@ If n, m are positive integers,

@ Example: Evaluate
0 823 = (V8 =22=4
e 25%/2 = (1/25) = 53 = 125;

(@)= () - (@)

&~ ©
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Functions Exponents

Negative Fractional Exponents

@ If n, m are positive integers,

mn_ L _ 1 1

xm/n (\ry)_()m "/ m

@ Example: Evaluate
e L _ 1 1.1
82/3 (\3/_)2 22 4’
3

8
(L f _(2V_ 8
4 - \9 N 9/ \3/) 27
o252 L __1 _ 1.

/ 2532 (/25)3 125
—5/2
. <1) =BPA = (iP =98 =ER),

4
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Functions Linear and Quadratic Functions

Subsection 3

Linear and Quadratic Functions
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Functions Linear and Quadratic Functions

Functions

@ A function is a rule assigning to every number x in a set, a unique
number f(x);

@ The set of all allowable values of x is called the domain;
@ The set of all values f(x) for x in the domain is called the range;

@ Sometimes, we write Dom(f) for the domain and Ran(f) for the
range of a function f;

@ When a function is defined by a formula, its domain is understood to
be the /argest set of numbers for which the formula is defined;

@ The graph of a function f consists of all points (x,y), such that x is
in the domain and y = f(x);

@ In this context, we call x the independent variable and y the
dependent variable (since it depends on x).
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Functions Linear and Quadratic Functions

An Example

@ Consider the function defined by the formula f(x) =
o What is £(8)?
o What is the domain Dom(f)?
o If the graph is the one shown below, what is the range Ran(f)?

1 .
x—1

o We set x =8 and compute: f(8) = g7 = 3;

@ The formula has a denominator; In this case, the only potential
problem is dividing by zero; Set x — 1 =0 = x = 1; Thus, we must
exclude x = 1 from the domain; In set notation, Dom(f) = R — {1}

and in interval notation Dom(f) = (—o0,1) U (1, 00);

The only value that y does not assume is T
zero; In set notation, we have Ran(f) =
R — {0} and in interval notation Ran(f)
(—00,0) U (0, 0). s
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Functions Linear and Quadratic Functions

Another Example

@ Consider the function defined by the formula f(x) = x? — 4x + 5;
o What is f(—3)?
o What is the domain Dom(f)?
o If the graph is the one shown below, what is the range Ran(f)?

o We set x = —3 and compute: f(—3) = (—3)?> —4-(-3) +5 = 26;

@ This formula has neither denominators nor roots; In this case, no
problem can potentially arise; Thus, no number needs to be excluded;
In set notation, we have Dom(f) = R and in interval notation
Dom(f) = (—o0, 00); \

\

y assumes only values greater than or
equal to 1; Thus, in set notation, we ¥ /
have Ran(f) = {y : y > 1} and in \
interval notation Ran(f) = [1, c0).
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Functions Linear and Quadratic Functions

A Third Example

@ Consider the function defined by the formula f(x) = v/2x — 3;
o What is f(3)?
o What is the domain Dom(f)?
o If the graph is the one shown below, what is the range Ran(f)?

o We set x =2 and compute: () =,/2-2 -3=116=4;

@ This formula has an even-index root; In this case, a potential problem
is having to compute the square root of a negative number; Thus, we
must ensure that 2x —3>0=2x >3 = x > %; In set notation, we

have Dom(f) = {x : x > 3} and in interval notation
Dom(f) = [2, o0);

y assumes only values greater than or
equal to 0; Thus, in set notation, we have
Ran(f) = {y : y > 0} and in interval no- ) =
tation Ran(f) = [0, c0). . P
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Functions Linear and Quadratic Functions

Linear Functions

@ A linear function is a function that can be expressed in the form
f(x) = mx + b,
where m and b are constants;

@ The graph of y = f(x) is a straight line with slope m and y-intercept
the point (0, b);

@ Example: Suppose that a manufacturer has fixed costs $400 and
variable costs $10 per item produced. What is the cost function
C(x) for producing x items? What are the meanings of its slope and
its y-intercept?

We have
C(x)= 10x + 400;
~~ —~~
variable  fixed

The slope m = 10 represents the variable cost and the y-intercept
b = 400 the fixed cost.
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Functions Linear and Quadratic Functions

Quadratic Functions

@ A quadratic function is a function that can be expressed in the form
f(x) = ax® + bx + c,

where a, b, ¢ are constants, with a # 0;
@ The graph of y = ax? + bx + c is called a parabola and looks like

VA

axisof |
symmetry |

y=ax2+bx+c

—b ~Vb? = 4ac :
x=—‘“/\./\-b+m

2a L vertex x =
' 2a

v '
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Functions Linear and Quadratic Functions

Graphing Quadratic Functions

@ The graph of the quadratic function is a parabola opening either up

or down;
VA
. +
© The vertex is the lowest or fxe

highest point; Its x-coordinate is sisof |
symmetry |

= .

2a

@ The parabola opens up if a >0
and down if a < 0;

y=ax?+bx+c

© Its y-intercept is the point (0, ¢); —b=Vb* - 4ac V”‘—W/\,/\_“m

2: :verlex e P
—b+ \/ b2 — 4ac

is called the quadratic formula; The quantity D = b2 4ac is called
the discriminant.

@ Finally, its x-intercepts are the points with x =
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Functions

Examples of Quadratic Function Graphs |

Linear and Quadratic Functions

@ Find the vertex, the opening direction, the intercepts and sketch the

graph of f(x) = —x% — x +2;

@ The vertex has x-coordinate
_ b _ =i _ 1.
X__Z_ —m— — % ItS
y-coordinate, therefore, is

y=f(-h)=—(1p-(H)2=

@ The parabola opens down since
a=-1<0;

© lts y-intercept is (0, 2);

© Finally, its x-intercepts are the solutions of

—x2—x+2=0=x3+x-2=0=(x+2)(x—1)=0=>x+2=

Qorx—1=0=>x=—-2o0orx=1.
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Functions Linear and Quadratic Functions

Examples of Quadratic Function Graphs Il

@ Find the vertex, the opening direction, the intercepts and sketch the
graph of f(x) = x> —2x — §;

@ The vertex has x-coordinate

“\y 0r f
_ _ b _ _ =2 _1. \ f
X——Z——ﬁ—l,H:S ", : f
y-coordinate, therefore, is W |
y=f1)=1>-2.1-8= \ /
1-2-8=—9; ! = ;
-10 -5 \ 5 10
© The parabola opens up since \ [
a=1>0; i
\| /
© lts y-intercept is (0, —8); \ /

@ Finally, its x-intercepts are the solutions of x> —2x —8 =0 =
(x+2)(x—4)=0=>x+2=00orx—4=0=x=—2o0r x=4.
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Functions Linear and Quadratic Functions

Summary of Methods for Solving ax? + bx + c =0

@ Recall: there are several methods for solving ax?> + bx + ¢ = 0:

© Even-Root Property: This, we use when b =0, i.e., there is no
x-term; E.g., (x — 2)? =8=>x—-2=+V8=x=2+2V2;

@ Factoring: This we use whenever we are able to factor; E.g.,
x> +5x+6=0=(x+3)(x+2)=0=>x+3=0o0rx+2=0=
x=-3orx=-2;

© Quadratic Formula: This solves any quadratic equation (the most
powerful weapon); E.g.,

—54++52—-4.1-3 —5++13
X2 4+5x+3=0=x= > x=——;

2.

@ Completing Square: Also solves any quadratic, but is slower than the
quadratic formula; E.g., X2 —bx+7=0=>x*—6x=—-7=
xX2—6x+9=-T7+9= (x—-3)2=2=>x-3=4+V2=x=3+2.
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Functions Linear and Quadratic Functions

Number of Solutions

@ A byproduct of computing D = b?> — 4ac in the application of the
quadratic formula is that we can tell right away how many solutions
ax? + bx + ¢ = 0 has:

o If D > 0, it has two real solutions;
o If D =0, it has one real solution;
o If D <0, it does not have any real solutions;

@ Example: Determine the number of real solutions of the given
quadratic; You do not need to find the solutions (if there are any);

e x2—3x—-5=0
D =b%>—4ac=(-3)2—4-1-(=5)=9+20 =29 > 0; Therefore,
x2 —3x — 5 = 0 has two real solutions:

o x2 =3x — 9 Rewrite x2 — 3x+ 9 = 0;
D=b?—4ac=(-3)>-4-1-9=9—-36= —27 <0; Therefore,
x% = 3x — 9 = 0 has no real solutions;

@ 4x2 —12x+9=0
D = b? —4ac = (—12)> —4-4-9 = 144 — 144 = 0; Therefore,
4x%2 — 12x + 9 = 0 has one real solution.
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Functions Linear and Quadratic Functions

Application: Revenue, Cost (Break-Even Points)

@ If the cost function is C(x) = 120x + 4800 and the revenue function
is R(x) = —2x2 + 400x, where x is the number of items produced
and sold, what are the company’s break-even points (i.e., points
where its revenue equals its cost)?

We set C(x) = R(x) and solve for x:

120x + 4800 = —2x2 + 400x

= 2x° —280x + 4800 =0

= x?—140x + 2400 =0

= (x—20)(x—120)=0

= x—20=00rx—120=0
= x=20o0r x=120;

Thus the company breaks even when it produces and sells either 20 or
120 items;
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Functions Linear and Quadratic Functions

Application: Revenue, Cost (Max Profit)

@ If the cost function is C(x) = 120x + 4800 and the revenue function
is R(x) = —2x2 + 400x, where x is the number of items produced
and sold, how many units should be produced to maximize profit and
what is the max profit?

Profit is given by
Profit = Revenue — Cost,

in symbols P(x) = R(x) — C(x); Thus,
P(x) = — 2x* 4 400x — (120x 4 4800) = — 2x> + 280x — 4800;
This is a parabola opening down, so the maximum occurs at

b 280
2a 2-(-2)
The max profit is P(70) = — 2702 + 280 - 70 — 4800 = 5000.

X =
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Functions Polynomial, Rational, Piece-wise and Composite Functions

Subsection 4

Polynomial, Rational, Piece-wise and Composite Functions
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Functions Polynomial, Rational, Piece-wise and Composite Functions

Polynomial Functions

@ A polynomial function is one that can be written in the form
f(x) =anx" + an_1X" 1+ -+ axx? + a1x + ap,

where ag, a1, ..., a, are real constants;

@ The expressions apx”, a,_1x"1

,...,a1X, dg are the terms;

@ The numbers ag, a1, . .., a, are the coefficients;

@ The degree is the highest power of the variable;

@ The leading coefficient is the one of the highest power term;

@ Examples are

Polynomial | Degree | Leading Coef.
f(x) =2x8-3x5+13x>-7| 8 2
f(x):—4x2+%x—11 2 —4
F(x) = x +5 1 1

f(x) = 2013 0 2013
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Functions Polynomial, Rational, Piece-wise and Composite Functions

Solving Polynomial Equations

@ Solve the equation 3x* — 6x3 = 24x2;
@ Solving involves

o Making one side zero;

o Factoring the non-zero side;

@ Using the zero-factor property;
@ Solving the simpler equations;

@ We write

3x% — 6x3 = 24x2
3x* —6x3 —24x2 =0
3x%(x? —2x —8) =0
3x°(x +2)(x —4) =0
x=0orx+2=00rx—4=0
x=0o0or x=—-2o0r x=4.

R
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Functions Polynomial, Rational, Piece-wise and Composite Functions

Rational Functions and Domains

P

@ A rational function is a function of the form f(x) = % where

X

P(x) and Q(x) are polynomial functions, such that Q(x) # 0;
@ Examples:
3x+2 1

f pumy pumy

(0=2E2 0=

@ Example: Find the domain of the rational function
18

f(x) = 5—————;
(x) x2 —2x —24'
We must have x? — 2x — 24 # 0; Let us solve

x2—2x—24=0= (x+4)(x—6)=0

= x+4=00rx—6=0= x=—4orx=06;
Thus, we must exclude x = —4 and x = 6 from the domain, i.e., we
have Dom(f) =R — {—4,6} = (—o0, —4) U (—4,6) U (6, ).
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Functions Polynomial, Rational, Piece-wise and Composite Functions

Exponential Functions

@ An exponential function is one of the form
f(x) =%
where 0 < a# 1 and x is a real number;

o Example: Consider f(x) = 2, g(x) = (3)1™* and h(x) = —
Compute the following values:

o f(3)=232=V23=V22/2=2V2;

1 1
o f(=3)=2" 3:§=§
°g(3)=(3)°=(G) =4 =16

o h(2) = g -9
@ Two important exponentials for applications are the base 10

exponential f(x) = 10* (called common base), and the base e
exponential f(x) = e* (called natural base).
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Functions Polynomial, Rational, Piece-wise and Composite Functions

Graphs of Exponentials (Exponential Growth)

@ When the base a is such that a > 1, then f(x) = a* has an increasing
graph (going up as we move from left to right);

@ As an example, we'll use a few points to sketch the graph of

f(x) = 2% |
1: //
X|y= 2 /
-2 1/4 o /
-1| 1/2 /
0 1
1 2 il /.//
2 4 /'/,/

@ Note that the x-axis is a horizontal asymptote as x — —o0.
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Functions Polynomial, Rational, Piece-wise and Composite Functions

Graphs of Exponentials (Exponential Decay)

@ When the base a is such that 0 < a < 1, then f(x) = a* has a
decreasing graph (going down as we move from left to right);

@ As an example, we'll use a few points to sketch the graph of
1\X,
f(x)=(3)"

\
x|y = (%)X "‘\
) 9 \
~1 3
o \ .
1] 1/3
2 1/9 N |

@ Note that the x-axis is a horizontal asymptote as x — +o0.

George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 2013 42 / 48



Functions Polynomial, Rational, Piece-wise and Composite Functions

Piece-wise Defined Functions

@ A piece-wise defined function is one defined by different formulas
over different parts of its domain;

@ The graph of a piece-wise defined function is plotted by piecing
together the graphs of the various parts;

@ Example: Plot the graph of the function

Flx) = —x% —4x, ifx< -1 /A\ 4
T x+2, if x> —1 /
First, graph y = —x2 — 4x; Then, . f/ 3

graph y = x+2; Finally, keep only

the part of y = —x2 — 4x for x < /
—1 and the part of y = x + 2 for /
x > —1; This gives the graph of |
y = f(x).
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Another Example

@ Plot the graph of the function

) = X% + 2x, if x <0
Tl —x%2+2x, ifx>0

First, graph y = x?> + 2x; Then, \ A
graph y = —x2 4 2x; Finally, keep ~ ./ \C
only the part of y = x? 4 2x for B \

x < 0 and the part of y = —x?+2x \
for x > 0; This gives the graph of » \.‘
y = f(x). \
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Composition of Functions
@ The composition of g and f is the function g o f, defined by

(f og)(x) = f(g(x));

In set diagram, we have

g \\\( =
el

|Il 2x) / k) {l\
| )
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Examples of Composition

o If f(x) = x” and g(x) = x> — 2x, find

(g(x)) = f(° = 2x) = (x® = 2x)";
x)) = g(x") = (x")* = 2(x") = x*' — 2x7;
) = f(x") = (x)" = x*;

(
o If f(x) = — and g(x) = /x, find

o flg() = R = L2,

° g(f(x)):g<X+8> _ [x¥8

x—1 x—1
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Difference Quotient

f(x+ h) —f(x)

P is called the

@ Given a function f, the expression
difference quotient of f at x;

@ Geometrically, the difference quotient is the slope of the secant line of
y = f(x) through the points (x, f(x)) and (x + h, f(x + h)):

Secant Line

o

Jixth)

&7 ¢ X x+h
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Computing Difference Quotients

@ Find the difference quotient of f(x) = 3x% — 2x + 1 at x and simplify:
f(x+h)—f(x)  (B(x+h)?—2(x+h)+1)—(3x%—2x +1)

h h
3(x®+2xh+ h?) —2x —2h+1—-3x> +2x — 1 _

h
3¢</Z+6xh+3h2—%72h+1—3¢</7+%f1:

h
6xh +3h* —2h _ h(6x + 3h —2)
h N h
@ Find the difference quotient of f(x) = )—1< at x and simplify:

=6x+ 3h—2;

X x+h
f(X =F h) - f(X) _ XL_H, - % _ x(x+h) — x(x+h) _
x—(x+h) h h
xkh) . —h -1
h - - .
7 hx(x + h)  x(x+ h)
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