Business and Life Calculus

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 112

George Voutsadakis (LSSU)

Calculus For Business and Life Sciences

Fall 2013 1 / 48

- Inequalities and Lines
- Exponents
- Linear and Quadratic Functions
- Polynomial, Rational, Piece-wise and Composite Functions

Subsection 1

Inequalities and Lines

Inequalities

- a < b means "a is less than b";
- $a \leq b$ means "a is less than or equal to b";
- a > b means "a is greater than b";
- $a \ge b$ means "a is greater than or equal to b";
- Example: Which of the following statements are true and which are false?

Inequality	Truth Value	
- 3 < 2	\checkmark	
-5 < -9	×	
$1 \leq 1$	\checkmark	
$2.2 \ge -1.7$	\checkmark	

- A double inequality a < x < b means "x is between a and b", i.e., both a < x and x < b hold;
- Example: -2 < x < 5 means that x lies between -2 and 5 on the real line.

Sets and Intervals

The notation

$$\{x: x > 3\}$$

means "the set of all x, such that x is greater than 3";

• Similarly,

$$\{x : -2 < x < 5\}$$

means "the set of all x, such that x is between -2 and 5";

- These sets may also be expressed in interval notation;
 - The first set above is $(3,\infty)$;

• And the second set is (-2,5);

$$\xrightarrow{-2}$$
 $\xrightarrow{5}$ $\xrightarrow{6}$

Finite and Infinite Intervals

Set Notation	Interval Notation	Graph	
$\{x: a \le x \le b\}$	[a, b]	a b	
${x : a < x < b}$	(<i>a</i> , <i>b</i>)	a0	
$\{x: a \le x < b\}$	[<i>a</i> , <i>b</i>)	b	
$\{x : a < x \le b\}$	(<i>a</i> , <i>b</i>]	b	

Set Notation	Interval Notation	Graph
$\{x:x\geq a\}$	[a $,\infty)$	a.
$\{x: x > a\}$	(a,∞)	a
$\{x:x\leq a\}$	$(-\infty, a]$	a
$\{x : x < a\}$	$(-\infty, a)$	a

Cartesian Plane

• The Cartesian plane is defined by

- the x-axis;
- the y-axis;
- a unit of measurement, determining the x- and the y-coordinates of points on the plane;

• Example: Some points and their coordinates:

Slopes

If a line ℓ passes through two points (x₁, y₁) and (x₂, y₂), then we define its slope m by

$$m = \frac{\text{rise}}{\text{run}} = \frac{y_2 - y_1}{x_2 - x_1};$$

- A horizontal line has slope m = 0;
- A vertical line has slope undefined;
- Example: Find the slope of the line passing through (-2,3) and (18,-12);

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-12 - 3}{18 - (-2)} = \frac{-15}{20} = -\frac{3}{4};$$

Equations of Lines: The Slope-Intercept Form

• If a line ℓ has slope *m* and *y*-intercept (0, b), then its equation is

$$y = mx + b;$$

Example: Find an equation of the line passing through (0, 4)and (2, 0); We first compute the slope $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{0 - 4}{2 - 0} = -2$; Then, we use the slope-intercept form with b = 4;

$$y = -2x + 4.$$

Equations of Lines: The Point-Slope Form

If a line ℓ has slope m and passes through the point (x₁, y₁), then its equation is

$$y - y_1 = m(x - x_1);$$

Example: Find an equation of the line passing through (4, 1) and (7, -2); We first compute the slope $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - 1}{7 - 4} = -1$; Then, we use the point-slope form with $(x_1, y_1) = (4, 1)$; y - 1 = (-1)(x - 4)or y = -x + 5.

General Linear Equation

• The general form of an equation of a line is

$$ax + by = c$$
,

with a, b, c real constants, such that a, b are not both zero;

Example: If a line ℓ passes through (-2, 10) and (1, -2), find an equation for ℓ in the general form;
 First, compute the slope:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - 10}{1 - (-2)} = \frac{-12}{3} = -4;$$

Now use the point-slope form:

$$y - (-2) = -4(x - 1)$$

$$\Rightarrow y + 2 = -4x + 4$$

$$\Rightarrow 4x + y = 2.$$

General Linear Equation: Another Example

Example: If a line ℓ has equation 2x + 3y = 12, what is slope m and what is its y-intercept b?
 Solve for y to transform into the slope-intercept form:

$$2x + 3y = 12$$

$$\Rightarrow \quad 3y = -2x + 12$$

$$\Rightarrow \quad y = -\frac{2}{3}x + 4;$$

Thus, the line has slope $m = -\frac{2}{3}$ and y-intercept b = 4.

Parallel and Perpendicular Lines

Two lines L_1 and L_2 are **parallel**, written $L_1 \parallel L_2$, if they have no points in common;

Two lines L_1 and L_2 are **perpendicular**, written $L_1 \perp L_2$, if they intersect at a right (90°) angle;

If L_1 has slope m_1 and L_2 has slope m_2 , we have $L_1 \parallel L_2$ if and only if $m_1 = m_2$;

If L_1 has slope m_1 and L_2 has slope m_2 , we have $L_1 \perp L_2$ if and only if $m_1 = -\frac{1}{m_2}$.

Example I

Find the slope of the line ℓ that passes through the origin and that is parallel to the line ℓ' passing through the points (-2, 11) and (4, -7).

Line ℓ' has slope

$$m' = \frac{y_2 - y_1}{x_2 - x_1} \\ = \frac{-7 - 11}{4 - (-2)} \\ = \frac{-18}{6} = -3;$$

Since $\ell \parallel \ell'$, we must have m = m' = -3;

Example II

Find an equation for the line ℓ that passes through the point (1,4) and that is perpendicular to the line ℓ' passing through the points (-2,7) and (3,2).

Line ℓ' has slope

$$m' = \frac{y_2 - y_1}{x_2 - x_1} \\ = \frac{2 - 7}{3 - (-2)} \\ = \frac{-5}{5} = -1;$$

Since $\ell \perp \ell'$, we must have $m = -\frac{1}{m'} = 1$; Using point-slope form, we get for ℓ : y - 4 = 1(x - 1) or y = x + 3;

Subsection 2

Exponents

Positive Integer Exponents

• For any positive integer n,

$$x^n = \underbrace{x \cdot x \cdots x}_{n \text{ factors}};$$

Properties of Exponents:

• $x^m \cdot x^n = x^{m+n};$

•
$$\frac{x^m}{x^n} = x^{m-n};$$

- $(x^m)^n = x^{m \cdot n};$
- $(xy)^n = x^n \cdot y^n;$
- $\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n};$

- **Example:** Simplify
 - $x^2x^3 = x^5;$

•
$$\frac{x^7}{x^3} = x^4;$$

•
$$(x^3)^5 = x^{15};$$

•
$$(3x^2)^3 = 3^3(x^2)^3 = 27x^6;$$

•
$$\left(\frac{x}{2}\right)^4 = \frac{x^4}{2^4} = \frac{x^4}{16};$$

Zero and Negative Exponents

• If $x \neq 0$ and *n* is a positive integer,

$$x^0 = 1$$
 and $x^{-n} = \frac{1}{x^n}$;

• Example: Simplify:

•
$$5^{0} = 1;$$

• $7^{-1} = \frac{1}{7};$
• $3^{-2} = \frac{1}{3^{2}} = \frac{1}{9};$
• $(-2)^{-3} = \frac{1}{(-2)^{3}} = -\frac{1}{8}.$

• Example: Simplify:

•
$$\left(\frac{3}{5}\right)^{-2} = \left(\frac{5}{3}\right)^2 = \frac{5^2}{3^2} = \frac{25}{9};$$

• $\left(\frac{1}{2}\right)^{-5} = 2^5 = 32.$

Roots and Fractional Exponents

• If *n* is a positive integer,

$$x^{1/n} = \sqrt[n]{x};$$

• Example: Evaluate

•
$$9^{1/2} = \sqrt{9} = 3;$$

• $125^{1/3} = \sqrt[3]{125} = 5;$
• $(-16)^{1/4} = \sqrt[4]{-16} = \text{undefined!}$
• $(-32)^{1/5} = \sqrt[5]{-32} = -2;$
• $\left(\frac{4}{25}\right)^{\frac{1}{2}} = \sqrt{\frac{4}{25}} = \frac{\sqrt{4}}{\sqrt{25}} = \frac{2}{5};$
• $\left(-\frac{27}{8}\right)^{\frac{1}{3}} = \sqrt[3]{-\frac{27}{8}} = \frac{\sqrt[3]{-27}}{\sqrt[3]{8}} = -\frac{3}{2}.$

Fractional Exponents

• If *n*, *m* are positive integers,

$$x^{m/n} = (\sqrt[n]{x})^m = \sqrt[n]{x^m};$$

• Example: Evaluate • $8^{2/3} = (\sqrt[3]{8})^2 = 2^2 = 4;$ • $25^{3/2} = (\sqrt{25})^3 = 5^3 = 125;$ • $\left(\frac{-27}{8}\right)^{2/3} = \left(\sqrt[3]{\frac{-27}{8}}\right)^2 = \left(\frac{-3}{2}\right)^2 = \frac{9}{4}.$

Negative Fractional Exponents

• If *n*, *m* are positive integers,

$$x^{-m/n} = \frac{1}{x^{m/n}} = \frac{1}{(\sqrt[n]{x})^m} = \frac{1}{\sqrt[n]{x^m}};$$

• Example: Evaluate

•
$$8^{-2/3} = \frac{1}{8^{2/3}} = \frac{1}{(\sqrt[3]{8})^2} = \frac{1}{2^2} = \frac{1}{4};$$

• $\left(\frac{9}{4}\right)^{-3/2} = \left(\frac{4}{9}\right)^{3/2} = \left(\sqrt{\frac{4}{9}}\right)^3 = \left(\frac{2}{3}\right)^3 = \frac{8}{27};$
• $25^{-3/2} = \frac{1}{25^{3/2}} = \frac{1}{(\sqrt{25})^3} = \frac{1}{125};$
• $\left(\frac{1}{4}\right)^{-5/2} = 4^{5/2} = (\sqrt{4})^5 = 2^5 = 32.$

Subsection 3

Linear and Quadratic Functions

Functions

- A function is a rule assigning to every number x in a set, a unique number f(x);
- The set of all allowable values of x is called the **domain**;
- The set of all values f(x) for x in the domain is called the **range**;
- Sometimes, we write Dom(f) for the domain and Ran(f) for the range of a function f;
- When a function is defined by a formula, its domain is understood to be the *largest* set of numbers for which the formula is defined;
- The graph of a function f consists of all points (x, y), such that x is in the domain and y = f(x);
- In this context, we call x the independent variable and y the dependent variable (since it depends on x).

An Example

- Consider the function defined by the formula $f(x) = \frac{1}{x-1}$;
 - What is *f*(8)?
 - What is the domain Dom(f)?
 - If the graph is the one shown below, what is the range $\operatorname{Ran}(f)$?
 - We set x = 8 and compute: $f(8) = \frac{1}{8-1} = \frac{1}{7}$;
 - The formula has a denominator; In this case, the only potential problem is dividing by zero; Set x 1 = 0 ⇒ x = 1; Thus, we must exclude x = 1 from the domain; In set notation, Dom(f) = ℝ {1} and in interval notation Dom(f) = (-∞, 1) ∪ (1,∞);

The only value that y does not assume is zero; In set notation, we have $\operatorname{Ran}(f) = \mathbb{R} - \{0\}$ and in interval notation $\operatorname{Ran}(f) = (-\infty, 0) \cup (0, \infty)$.

Another Example

- Consider the function defined by the formula $f(x) = x^2 4x + 5$;
 - What is *f*(-3)?
 - What is the domain Dom(f)?
 - If the graph is the one shown below, what is the range $\operatorname{Ran}(f)$?
 - We set x = -3 and compute: $f(-3) = (-3)^2 4 \cdot (-3) + 5 = 26$;
 - This formula has neither denominators nor roots; In this case, no problem can potentially arise; Thus, no number needs to be excluded; In set notation, we have Dom(f) = ℝ and in interval notation Dom(f) = (-∞, ∞);

y assumes only values greater than or equal to 1; Thus, in set notation, we have $\operatorname{Ran}(f) = \{y : y \ge 1\}$ and in interval notation $\operatorname{Ran}(f) = [1, \infty)$.

٥

A Third Example

- Consider the function defined by the formula $f(x) = \sqrt{2x 3}$;
 - What is f(¹⁹/₂)?
 - What is the domain Dom(f)?
 - If the graph is the one shown below, what is the range Ran(f)?
 - We set $x = \frac{19}{2}$ and compute: $f(\frac{19}{2}) = \sqrt{2 \cdot \frac{19}{2} 3} = \sqrt{16} = 4;$
 - This formula has an even-index root; In this case, a potential problem is having to compute the square root of a negative number; Thus, we must ensure that $2x 3 \ge 0 \Rightarrow 2x \ge 3 \Rightarrow x \ge \frac{3}{2}$; In set notation, we have $Dom(f) = \{x : x \ge \frac{3}{2}\}$ and in interval notation $Dom(f) = [\frac{3}{2}, \infty)$;

• y assumes only values greater than or equal to 0; Thus, in set notation, we have $\operatorname{Ran}(f) = \{y : y \ge 0\}$ and in interval notation $\operatorname{Ran}(f) = [0, \infty)$.

Linear Functions

• A linear function is a function that can be expressed in the form

$$f(x)=mx+b,$$

where m and b are constants;

- The graph of y = f(x) is a straight line with slope m and y-intercept the point (0, b);
- Example: Suppose that a manufacturer has fixed costs \$400 and variable costs \$10 per item produced. What is the **cost function** C(x) for producing x items? What are the meanings of its slope and its y-intercept?

We have

$$C(x) = \underbrace{10x}_{\text{variable}} + \underbrace{400}_{\text{fixed}};$$

The slope m = 10 represents the variable cost and the *y*-intercept b = 400 the fixed cost.

Quadratic Functions

A quadratic function is a function that can be expressed in the form

$$f(x) = ax^2 + bx + c,$$

where a, b, c are constants, with $a \neq 0$;

• The graph of $y = ax^2 + bx + c$ is called a **parabola** and looks like

George Voutsadakis (LSSU)

Graphing Quadratic Functions

- The graph of the quadratic function is a **parabola** opening either up or down;
 - The vertex is the lowest or highest point; Its x-coordinate is x = -^b/_{2a};
 - The parabola opens up if a > 0 and down if a < 0;</p>
 - Its y-intercept is the point (0, c);

Finally, its x-intercepts are the points with $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$; This is called the **quadratic formula**; The quantity $D = b^2 - 4ac$ is called the **discriminant**.

Examples of Quadratic Function Graphs I

- Find the vertex, the opening direction, the intercepts and sketch the graph of f(x) = −x² − x + 2;
 - The vertex has x-coordinate $x = -\frac{b}{2a} = -\frac{-1}{2\cdot(-1)} = -\frac{1}{2}$; Its y-coordinate, therefore, is $y = f(-\frac{1}{2}) = -(-\frac{1}{2})^2 - (-\frac{1}{2}) + 2 = -\frac{1}{4} + \frac{1}{2} + 2 = \frac{9}{4}$;
 - The parabola opens down since a = -1 < 0;</p>
 - 3 Its y-intercept is (0,2);

Finally, its x-intercepts are the solutions of $-x^{2} - x + 2 = 0 \Rightarrow x^{2} + x - 2 = 0 \Rightarrow (x + 2)(x - 1) = 0 \Rightarrow x + 2 = 0$ or $x - 1 = 0 \Rightarrow x = -2$ or x = 1.

Examples of Quadratic Function Graphs II

- Find the vertex, the opening direction, the intercepts and sketch the graph of f(x) = x² 2x 8;
 - The vertex has x-coordinate $x = -\frac{b}{2a} = -\frac{-2}{2\cdot 1} = 1$; Its y-coordinate, therefore, is $y = f(1) = 1^2 - 2 \cdot 1 - 8 = 1 - 2 - 8 = -9$;
 - The parabola opens up since a = 1 > 0;
 - 3 Its y-intercept is (0, -8);

Finally, its x-intercepts are the solutions of $x^2 - 2x - 8 = 0 \Rightarrow (x+2)(x-4) = 0 \Rightarrow x+2 = 0$ or $x-4 = 0 \Rightarrow x = -2$ or x = 4.

Summary of Methods for Solving $ax^2 + bx + c = 0$

• Recall: there are several methods for solving $ax^2 + bx + c = 0$:

- **Even-Root Property**: This, we use when b = 0, i.e., there is no *x*-term; E.g., $(x-2)^2 = 8 \Rightarrow x-2 = \pm\sqrt{8} \Rightarrow x = 2 \pm 2\sqrt{2}$;
- **2** Factoring: This we use whenever we are able to factor; E.g., $x^2 + 5x + 6 = 0 \Rightarrow (x + 3)(x + 2) = 0 \Rightarrow x + 3 = 0 \text{ or } x + 2 = 0 \Rightarrow$ x = -3 or x = -2;
- Quadratic Formula: This solves any quadratic equation (the most powerful weapon); E.g.,

 $x^{2} + 5x + 3 = 0 \Rightarrow x = \frac{-5 \pm \sqrt{5^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1} \Rightarrow x = \frac{-5 \pm \sqrt{13}}{2};$

• **Completing Square**: Also solves any quadratic, but is slower than the quadratic formula; E.g., $x^2 - 6x + 7 = 0 \Rightarrow x^2 - 6x = -7 \Rightarrow x^2 - 6x + 9 = -7 + 9 \Rightarrow (x - 3)^2 = 2 \Rightarrow x - 3 = \pm\sqrt{2} \Rightarrow x = 3 \pm \sqrt{2}$.

Number of Solutions

- A byproduct of computing $D = b^2 4ac$ in the application of the quadratic formula is that we can tell right away how many solutions $ax^2 + bx + c = 0$ has:
 - If D > 0, it has two real solutions;
 - If D = 0, it has one real solution;
 - If D < 0, it does not have any real solutions;
- Example: Determine the number of real solutions of the given quadratic; You do not need to find the solutions (if there are any);

•
$$x^2 - 3x - 5 = 0$$

 $D = b^2 - 4ac = (-3)^2 - 4 \cdot 1 \cdot (-5) = 9 + 20 = 29 > 0$; Therefore,
 $x^2 - 3x - 5 = 0$ has two real solutions;
• $x^2 = 3x - 9$ Rewrite $x^2 - 3x + 9 = 0$;
 $D = b^2 - 4ac = (-3)^2 - 4 \cdot 1 \cdot 9 = 9 - 36 = -27 < 0$; Therefore,
 $x^2 = 3x - 9 = 0$ has no real solutions;
• $4x^2 - 12x + 9 = 0$
 $D = b^2 - 4ac = (-12)^2 - 4 \cdot 4 \cdot 9 = 144 - 144 = 0$; Therefore,
 $4x^2 - 12x + 9 = 0$ has one real solution.

Application: Revenue, Cost (Break-Even Points)

If the cost function is C(x) = 120x + 4800 and the revenue function is R(x) = -2x² + 400x, where x is the number of items produced and sold, what are the company's break-even points (i.e., points where its revenue equals its cost)?

We set C(x) = R(x) and solve for x:

$$120x + 4800 = -2x^{2} + 400x$$

$$\Rightarrow 2x^{2} - 280x + 4800 = 0$$

$$\Rightarrow x^{2} - 140x + 2400 = 0$$

$$\Rightarrow (x - 20)(x - 120) = 0$$

$$\Rightarrow x - 20 = 0 \text{ or } x - 120 = 0$$

$$\Rightarrow x = 20 \text{ or } x = 120;$$

Thus the company breaks even when it produces and sells either 20 or 120 items;

Application: Revenue, Cost (Max Profit)

• If the cost function is C(x) = 120x + 4800 and the revenue function is $R(x) = -2x^2 + 400x$, where x is the number of items produced and sold, how many units should be produced to maximize profit and what is the max profit?

Profit is given by

 $\mathsf{Profit} = \mathsf{Revenue} - \mathsf{Cost},$

in symbols P(x) = R(x) - C(x); Thus,

$$P(x) = -2x^{2} + 400x - (120x + 4800) = -2x^{2} + 280x - 4800;$$

This is a parabola opening down, so the maximum occurs at

$$x = -\frac{b}{2a} = -\frac{280}{2 \cdot (-2)} = 70;$$

The max profit is $P(70) = -2 \cdot 70^2 + 280 \cdot 70 - 4800 = 5000$.

Subsection 4

Polynomial, Rational, Piece-wise and Composite Functions

Polynomial Functions

• A polynomial function is one that can be written in the form

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0,$$

where a_0, a_1, \ldots, a_n are real constants;

- The expressions $a_n x^n$, $a_{n-1} x^{n-1}$, ..., $a_1 x$, a_0 are the **terms**;
- The numbers a_0, a_1, \ldots, a_n are the **coefficients**;
- The **degree** is the highest power of the variable;
- The leading coefficient is the one of the highest power term;
- Examples are

Polynomial	Degree	Leading Coef.
$f(x) = 2x^8 - 3x^6 + 13x^3 - 7$	8	2
$f(x) = -4x^2 + \frac{1}{7}x - 11$	2	— 4
f(x) = x + 5	1	1
f(x) = 2013	0	2013

Solving Polynomial Equations

- Solve the equation $3x^4 6x^3 = 24x^2$;
- Solving involves
 - Making one side zero;
 - Factoring the non-zero side;
 - Using the zero-factor property;
 - Solving the simpler equations;
- We write

$$3x^{4} - 6x^{3} = 24x^{2}$$

$$\Rightarrow \quad 3x^{4} - 6x^{3} - 24x^{2} = 0$$

$$\Rightarrow \quad 3x^{2}(x^{2} - 2x - 8) = 0$$

$$\Rightarrow \quad 3x^{2}(x + 2)(x - 4) = 0$$

$$\Rightarrow \quad x = 0 \text{ or } x + 2 = 0 \text{ or } x - 4 = 0$$

$$\Rightarrow \quad x = 0 \text{ or } x = -2 \text{ or } x = 4.$$

Rational Functions and Domains

A rational function is a function of the form f(x) = P(x)/Q(x), where P(x) and Q(x) are polynomial functions, such that Q(x) ≠ 0;
 Examples:

$$f(x) = \frac{3x+2}{x-2}, \qquad g(x) = \frac{1}{x^2+1};$$

• Example: Find the domain of the rational function $f(x) = \frac{18}{x^2 - 2x - 24};$

We must have $x^2 - 2x - 24 \neq 0$; Let us solve

$$x^{2} - 2x - 24 = 0 \Rightarrow (x + 4)(x - 6) = 0$$

 $\Rightarrow x + 4 = 0 \text{ or } x - 6 = 0 \Rightarrow x = -4 \text{ or } x = 6;$

Thus, we must exclude x = -4 and x = 6 from the domain, i.e., we have $Dom(f) = \mathbb{R} - \{-4, 6\} = (-\infty, -4) \cup (-4, 6) \cup (6, \infty)$.

Exponential Functions

• An exponential function is one of the form

$$f(x)=a^{x},$$

where $0 < a \neq 1$ and x is a real number;

• Example: Consider $f(x) = 2^x$, $g(x) = (\frac{1}{4})^{1-x}$ and $h(x) = -3^x$; Compute the following values:

•
$$f(\frac{3}{2}) = 2^{3/2} = \sqrt{2^3} = \sqrt{2^2}\sqrt{2} = 2\sqrt{2};$$

• $f(-3) = 2^{-3} = \frac{1}{2^3} = \frac{1}{8};$
• $g(3) = (\frac{1}{4})^{1-3} = (\frac{1}{4})^{-2} = 4^2 = 16;$
• $h(2) = -3^2 = -9;$

Two important exponentials for applications are the base 10 exponential f(x) = 10^x (called common base), and the base e exponential f(x) = e^x (called natural base).

Graphs of Exponentials (Exponential Growth)

- When the base a is such that a > 1, then f(x) = a^x has an increasing graph (going up as we move from left to right);
- As an example, we'll use a few points to sketch the graph of $f(x) = 2^x$;

• Note that the x-axis is a horizontal asymptote as $x \to -\infty$.

Graphs of Exponentials (Exponential Decay)

- When the base a is such that 0 < a < 1, then f(x) = a^x has a decreasing graph (going down as we move from left to right);
- As an example, we'll use a few points to sketch the graph of $f(x) = \left(\frac{1}{3}\right)^{x}$;

• Note that the x-axis is a horizontal asymptote as $x \to +\infty$.

Piece-wise Defined Functions

- A **piece-wise defined function** is one defined by different formulas over different parts of its domain;
- The graph of a piece-wise defined function is plotted by piecing together the graphs of the various parts;
- Example: Plot the graph of the function

$$f(x) = \begin{cases} -x^2 - 4x, & \text{if } x \le -1 \\ x + 2, & \text{if } x > -1 \end{cases}$$

First, graph
$$y = -x^2 - 4x$$
; Then,
graph $y = x + 2$; Finally, keep only
the part of $y = -x^2 - 4x$ for $x \le -1$ and the part of $y = x + 2$ for
 $x > -1$; This gives the graph of
 $y = f(x)$.

Another Example

Plot the graph of the function

$$f(x) = \begin{cases} x^2 + 2x, & \text{if } x < 0\\ -x^2 + 2x, & \text{if } x \ge 0 \end{cases}$$

First, graph $y = x^2 + 2x$; Then, graph $y = -x^2 + 2x$; Finally, keep only the part of $y = x^2 + 2x$ for x < 0 and the part of $y = -x^2 + 2x$ for $x \ge 0$; This gives the graph of y = f(x).

Composition of Functions

• The **composition of** g and f is the function $g \circ f$, defined by

$$(f \circ g)(x) = f(g(x));$$

In set diagram, we have

In machine diagram, we have

Examples of Composition

• If
$$f(x) = x^7$$
 and $g(x) = x^3 - 2x$, find
• $f(g(x)) = f(x^3 - 2x) = (x^3 - 2x)^7$;
• $g(f(x)) = g(x^7) = (x^7)^3 - 2(x^7) = x^{21} - 2x^7$;
• $f(f(x)) = f(x^7) = (x^7)^7 = x^{49}$;
• If $f(x) = \frac{x+8}{x-1}$ and $g(x) = \sqrt{x}$, find
• $f(g(x)) = f(\sqrt{x}) = \frac{\sqrt{x+8}}{\sqrt{x-1}}$;
• $g(f(x)) = g\left(\frac{x+8}{x-1}\right) = \sqrt{\frac{x+8}{x-1}}$.

Difference Quotient

- Given a function f, the expression $\frac{f(x+h) f(x)}{h}$ is called the difference quotient of f at x;
- Geometrically, the difference quotient is the slope of the secant line of y = f(x) through the points (x, f(x)) and (x + h, f(x + h)):

Computing Difference Quotients

• Find the difference quotient of $f(x) = 3x^2 - 2x + 1$ at x and simplify: $\frac{f(x+h) - f(x)}{h} = \frac{(3(x+h)^2 - 2(x+h) + 1) - (3x^2 - 2x + 1)}{h} = \frac{3(x^2 + 2xh + h^2) - 2x - 2h + 1 - 3x^2 + 2x - 1}{h} = \frac{3x^2 + 6xh + 3h^2 - 2x - 2h + 1 - 3x^2 + 2x - 1}{h} = \frac{6xh + 3h^2 - 2h}{h} = \frac{h(6x + 3h - 2)}{h} = 6x + 3h - 2;$

• Find the difference quotient of $f(x) = \frac{1}{x}$ at x and simplify:

$$\frac{f(x+h) - f(x)}{\frac{x-(x+h)}{\frac{x}{x}(x+h)}} = \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \frac{\frac{x}{x(x+h)} - \frac{x+h}{x(x+h)}}{h} = \frac{\frac{x+h}{x(x+h)}}{\frac{h}{1}} = \frac{-h}{hx(x+h)} = \frac{-1}{x(x+h)}.$$