Business and Life Calculus

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 112

(1) Functions

- Inequalities and Lines
- Exponents
- Linear and Quadratic Functions
- Polynomial, Rational, Piece-wise and Composite Functions

Subsection 1

Inequalities and Lines

Inequalities

- $a<b$ means " a is less than b ";
- $a \leq b$ means " a is less than or equal to b ";
- $a>b$ means " a is greater than b ";
- $a \geq b$ means " a is greater than or equal to b ";
- Example: Which of the following statements are true and which are false?

Inequality	Truth Value
$-3<2$	\checkmark
$-5<-9$	\checkmark
$1 \leq 1$	\checkmark
$2.2 \geq-1.7$	\checkmark

- A double inequality $a<x<b$ means " x is between a and b ", i.e., both $a<x$ and $x<b$ hold;
- Example: $-2<x<5$ means that x lies between -2 and 5 on the real line.

Sets and Intervals

- The notation

$$
\{x: x>3\}
$$

means "the set of all x, such that x is greater than 3 ";

- Similarly,

$$
\{x:-2<x<5\}
$$

means "the set of all x, such that x is between -2 and 5 ";

- These sets may also be expressed in interval notation;
- The first set above is $(3, \infty)$;

- And the second set is $(-2,5)$;

Finite and Infinite Intervals

Set Notation Interval Notation
Graph
$\{x: a \leq x \leq b\} \quad[a, b]$
$\{x: a<x<b\}$
(a, b)
$\{x: a \leq x<b\}$
$[a, b)$
$\{x: a<x \leq b\}$
$(a, b]$
Set Notation Interval Notation
Graph

$$
\begin{array}{ll}
\{x: x \geq a\} & {[a, \infty)} \\
\{x: x>a\} & (a, \infty) \\
\{x: x \leq a\} & (-\infty, a] \\
\{x: x<a\} & (-\infty, a)
\end{array}
$$

Cartesian Plane

- The Cartesian plane is defined by
- the x-axis;
- the y-axis;
- a unit of measurement, determining the x - and the y-coordinates of points on the plane;

- Example: Some points and their coordinates:

Slopes

- If a line ℓ passes through two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, then we define its slope m by

$$
m=\frac{\text { rise }}{\text { run }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

- A horizontal line has slope $m=0$;
- A vertical line has slope undefined;
- Example: Find the slope of the line passing through $(-2,3)$ and (18, -12);

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-12-3}{18-(-2)}=\frac{-15}{20}=-\frac{3}{4}
$$

Equations of Lines: The Slope-Intercept Form

- If a line ℓ has slope m and y-intercept $(0, b)$, then its equation is

$$
y=m x+b
$$

Example: Find an equation of the line passing through $(0,4)$ and $(2,0)$;
We first compute the slope $m=$ $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0-4}{2-0}=-2$;
Then, we use the slope-intercept form with $b=4$;

$$
y=-2 x+4
$$

Equations of Lines: The Point-Slope Form

- If a line ℓ has slope m and passes through the point $\left(x_{1}, y_{1}\right)$, then its equation is

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Example: Find an equation of the line passing through $(4,1)$ and ($7,-2$);
We first compute the slope $m=$
$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-1}{7-4}=-1$;
Then, we use the point-slope form with $\left(x_{1}, y_{1}\right)=(4,1)$;

$$
\begin{aligned}
& y-1=(-1)(x-4) \\
& \text { or } y=-x+5
\end{aligned}
$$

General Linear Equation

- The general form of an equation of a line is

$$
a x+b y=c
$$

with a, b, c real constants, such that a, b are not both zero;

- Example: If a line ℓ passes through $(-2,10)$ and $(1,-2)$, find an equation for ℓ in the general form; First, compute the slope:

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-2-10}{1-(-2)}=\frac{-12}{3}=-4
$$

Now use the point-slope form:

$$
\begin{aligned}
& y-(-2)=-4(x-1) \\
& \Rightarrow \quad y+2=-4 x+4 \\
& \Rightarrow \quad 4 x+y=2
\end{aligned}
$$

General Linear Equation: Another Example

- Example: If a line ℓ has equation $2 x+3 y=12$, what is slope m and what is its y-intercept b ?
Solve for y to transform into the slope-intercept form:

$$
\begin{aligned}
& 2 x+3 y=12 \\
& \Rightarrow \quad 3 y=-2 x+12 \\
& \Rightarrow \quad y=-\frac{2}{3} x+4
\end{aligned}
$$

Thus, the line has slope $m=-\frac{2}{3}$ and y-intercept $b=4$.

Parallel and Perpendicular Lines

Two lines L_{1} and L_{2} are parallel, written $L_{1} \| L_{2}$, if they have no points in common;

If L_{1} has slope m_{1} and L_{2} has slope m_{2}, we have $L_{1} \| L_{2}$ if and only if $m_{1}=m_{2}$;

Two lines L_{1} and L_{2} are perpendicular, written $L_{1} \perp L_{2}$, if they intersect at a right $\left(90^{\circ}\right)$ angle;

If L_{1} has slope m_{1} and L_{2} has slope m_{2}, we have $L_{1} \perp L_{2}$ if and only if $m_{1}=-\frac{1}{m_{2}}$.

Example I

Find the slope of the line ℓ that passes through the origin and that is parallel to the line ℓ^{\prime} passing through the points $(-2,11)$ and $(4,-7)$. Line ℓ^{\prime} has slope

$$
\begin{aligned}
m^{\prime} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-7-11}{4-(-2)} \\
& =\frac{-18}{6}=-3 ;
\end{aligned}
$$

Since $\ell \| \ell^{\prime}$, we must have $m=m^{\prime}=-3$;

Example II

Find an equation for the line ℓ that passes through the point $(1,4)$ and that is perpendicular to the line ℓ^{\prime} passing through the points $(-2,7)$ and $(3,2)$.

Line ℓ^{\prime} has slope

$$
\begin{aligned}
m^{\prime} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{2-7}{3-(-2)} \\
& =\frac{-5}{5}=-1
\end{aligned}
$$

Since $\ell \perp \ell^{\prime}$, we must have $m=-\frac{1}{m^{\prime}}=$ 1; Using point-slope form, we get for ℓ : $y-4=1(x-1)$ or $y=x+3$;

Subsection 2

Exponents

Positive Integer Exponents

- For any positive integer n,

$$
x^{n}=\underbrace{x \cdot x \cdots \cdots x}_{n \text { factors }}
$$

Properties of Exponents:
Example: Simplify

- $x^{m} \cdot x^{n}=x^{m+n}$;
- $x^{2} x^{3}=x^{5}$;
- $\frac{x^{m}}{x^{n}}=x^{m-n}$;
- $\frac{x^{7}}{x^{3}}=x^{4}$;
- $\left(x^{m}\right)^{n}=x^{m \cdot n}$;
- $\left(x^{3}\right)^{5}=x^{15}$;
- $(x y)^{n}=x^{n} \cdot y^{n}$;
- $\left(3 x^{2}\right)^{3}=3^{3}\left(x^{2}\right)^{3}=27 x^{6}$;
- $\left(\frac{x}{y}\right)^{n}=\frac{x^{n}}{y^{n}}$;
- $\left(\frac{x}{2}\right)^{4}=\frac{x^{4}}{2^{4}}=\frac{x^{4}}{16}$;

Zero and Negative Exponents

- If $x \neq 0$ and n is a positive integer,

$$
x^{0}=1 \quad \text { and } \quad x^{-n}=\frac{1}{x^{n}}
$$

- Example: Simplify:
- $5^{0}=1$;
- $7^{-1}=\frac{1}{7}$;
- $3^{-2}=\frac{1}{3^{2}}=\frac{1}{9}$;
- $(-2)^{-3^{2}}=\frac{1}{(-2)^{3}}=-\frac{1}{8}$.
- Example: Simplify:
- $\left(\frac{3}{5}\right)^{-2}=\left(\frac{5}{3}\right)^{2}=\frac{5^{2}}{3^{2}}=\frac{25}{9}$;
- $\left(\frac{1}{2}\right)^{-5}=2^{5}=32$.

Roots and Fractional Exponents

- If n is a positive integer,

$$
x^{1 / n}=\sqrt[n]{x}
$$

- Example: Evaluate
- $9^{1 / 2}=\sqrt{9}=3$;
- $125^{1 / 3}=\sqrt[3]{125}=5$;
- $(-16)^{1 / 4}=\sqrt[4]{-16}=$ undefined!
- $(-32)^{1 / 5}=\sqrt[5]{-32}=-2$;
- $\left(\frac{4}{25}\right)^{\frac{1}{2}}=\sqrt{\frac{4}{25}}=\frac{\sqrt{4}}{\sqrt{25}}=\frac{2}{5}$;
- $\left(-\frac{27}{8}\right)^{\frac{1}{3}}=\sqrt[3]{-\frac{27}{8}}=\frac{\sqrt[3]{-27}}{\sqrt[3]{8}}=-\frac{3}{2}$.

Fractional Exponents

- If n, m are positive integers,

$$
x^{m / n}=(\sqrt[n]{x})^{m}=\sqrt[n]{x^{m}} ;
$$

- Example: Evaluate
- $8^{2 / 3}=(\sqrt[3]{8})^{2}=2^{2}=4$;
- $25^{3 / 2}=(\sqrt{25})^{3}=5^{3}=125$;
- $\left(\frac{-27}{8}\right)^{2 / 3}=\left(\sqrt[3]{\frac{-27}{8}}\right)^{2}=\left(\frac{-3}{2}\right)^{2}=\frac{9}{4}$.

Negative Fractional Exponents

- If n, m are positive integers,

$$
x^{-m / n}=\frac{1}{x^{m / n}}=\frac{1}{(\sqrt[n]{x})^{m}}=\frac{1}{\sqrt[n]{x^{m}}}
$$

- Example: Evaluate
- $8^{-2 / 3}=\frac{1}{8^{2 / 3}}=\frac{1}{(\sqrt[3]{8})^{2}}=\frac{1}{2^{2}}=\frac{1}{4}$;
- $\left(\frac{9}{4}\right)^{-3 / 2}=\left(\frac{4}{9}\right)^{3 / 2}=\left(\sqrt{\frac{4}{9}}\right)^{3}=\left(\frac{2}{3}\right)^{3}=\frac{8}{27}$;
- $25^{-3 / 2}=\frac{1}{25^{3 / 2}}=\frac{1}{(\sqrt{25})^{3}}=\frac{1}{125}$;
- $\left(\frac{1}{4}\right)^{-5 / 2}=4^{5 / 2}=(\sqrt{4})^{5}=2^{5}=32$.

Subsection 3

Linear and Quadratic Functions

Functions

- A function is a rule assigning to every number x in a set, a unique number $f(x)$;
- The set of all allowable values of x is called the domain;
- The set of all values $f(x)$ for x in the domain is called the range;
- Sometimes, we write $\operatorname{Dom}(f)$ for the domain and $\operatorname{Ran}(f)$ for the range of a function f;
- When a function is defined by a formula, its domain is understood to be the largest set of numbers for which the formula is defined;
- The graph of a function f consists of all points (x, y), such that x is in the domain and $y=f(x)$;
- In this context, we call x the independent variable and y the dependent variable (since it depends on x).

An Example

- Consider the function defined by the formula $f(x)=\frac{1}{x-1}$;
- What is $f(8)$?
- What is the domain $\operatorname{Dom}(f)$?
- If the graph is the one shown below, what is the range $\operatorname{Ran}(f)$?
- We set $x=8$ and compute: $f(8)=\frac{1}{8-1}=\frac{1}{7}$;
- The formula has a denominator; In this case, the only potential problem is dividing by zero; Set $x-1=0 \Rightarrow x=1$; Thus, we must exclude $x=1$ from the domain; In set notation, $\operatorname{Dom}(f)=\mathbb{R}-\{1\}$ and in interval notation $\operatorname{Dom}(f)=(-\infty, 1) \cup(1, \infty)$;
- The only value that y does not assume is zero; In set notation, we have $\operatorname{Ran}(f)=$ $\mathbb{R}-\{0\}$ and in interval notation $\operatorname{Ran}(f)=$ $(-\infty, 0) \cup(0, \infty)$.

Another Example

- Consider the function defined by the formula $f(x)=x^{2}-4 x+5$;
- What is $f(-3)$?
- What is the domain $\operatorname{Dom}(f)$?
- If the graph is the one shown below, what is the range $\operatorname{Ran}(f)$?
- We set $x=-3$ and compute: $f(-3)=(-3)^{2}-4 \cdot(-3)+5=26$;
- This formula has neither denominators nor roots; In this case, no problem can potentially arise; Thus, no number needs to be excluded; In set notation, we have $\operatorname{Dom}(f)=\mathbb{R}$ and in interval notation $\operatorname{Dom}(f)=(-\infty, \infty)$;
y assumes only values greater than or equal to 1 ; Thus, in set notation, we have $\operatorname{Ran}(f)=\{y: y \geq 1\}$ and in interval notation $\operatorname{Ran}(f)=[1, \infty)$.

A Third Example

- Consider the function defined by the formula $f(x)=\sqrt{2 x-3}$;
- What is $f\left(\frac{19}{2}\right)$?
- What is the domain $\operatorname{Dom}(f)$?
- If the graph is the one shown below, what is the range $\operatorname{Ran}(f)$?
- We set $x=\frac{19}{2}$ and compute: $f\left(\frac{19}{2}\right)=\sqrt{2 \cdot \frac{19}{2}-3}=\sqrt{16}=4$;
- This formula has an even-index root; In this case, a potential problem is having to compute the square root of a negative number; Thus, we must ensure that $2 x-3 \geq 0 \Rightarrow 2 x \geq 3 \Rightarrow x \geq \frac{3}{2}$; In set notation, we have $\operatorname{Dom}(f)=\left\{x: x \geq \frac{3}{2}\right\}$ and in interval notation $\operatorname{Dom}(f)=\left[\frac{3}{2}, \infty\right)$;
y assumes only values greater than or equal to 0; Thus, in set notation, we have $\operatorname{Ran}(f)=\{y: y \geq 0\}$ and in interval notation $\operatorname{Ran}(f)=[0, \infty)$.

Linear Functions

- A linear function is a function that can be expressed in the form

$$
f(x)=m x+b,
$$

where m and b are constants;

- The graph of $y=f(x)$ is a straight line with slope m and y-intercept the point $(0, b)$;
- Example: Suppose that a manufacturer has fixed costs $\$ 400$ and variable costs $\$ 10$ per item produced. What is the cost function $C(x)$ for producing x items? What are the meanings of its slope and its y-intercept?

We have

$$
C(x)=\underbrace{10 x}_{\text {variable }}+\underbrace{400}_{\text {fixed }}
$$

The slope $m=10$ represents the variable cost and the y-intercept $b=400$ the fixed cost.

Quadratic Functions

- A quadratic function is a function that can be expressed in the form

$$
f(x)=a x^{2}+b x+c,
$$

where a, b, c are constants, with $a \neq 0$;

- The graph of $y=a x^{2}+b x+c$ is called a parabola and looks like

Graphing Quadratic Functions

- The graph of the quadratic function is a parabola opening either up or down;
(1) The vertex is the lowest or highest point; Its x-coordinate is $x=-\frac{b}{2 a}$;
(2) The parabola opens up if $a>0$ and down if $a<0$;
(3) Its y-intercept is the point $(0, c)$;

(9) Finally, its x-intercepts are the points with $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$; This is called the quadratic formula; The quantity $D=b^{2}-4 a c$ is called the discriminant.

Examples of Quadratic Function Graphs I

- Find the vertex, the opening direction, the intercepts and sketch the graph of $f(x)=-x^{2}-x+2$;
(1) The vertex has x-coordinate $x=-\frac{b}{2 a}=-\frac{-1}{2 \cdot(-1)}=-\frac{1}{2}$; Its y-coordinate, therefore, is

$$
\begin{aligned}
& y=f\left(-\frac{1}{2}\right)=-\left(-\frac{1}{2}\right)^{2}-\left(-\frac{1}{2}\right)+2= \\
& -\frac{1}{4}+\frac{1}{2}+2=\frac{9}{4}
\end{aligned}
$$

(2) The parabola opens down since $a=-1<0$;
(3) Its y-intercept is $(0,2)$;

(9) Finally, its x-intercepts are the solutions of
$-x^{2}-x+2=0 \Rightarrow x^{2}+x-2=0 \Rightarrow(x+2)(x-1)=0 \Rightarrow x+2=$ 0 or $x-1=0 \Rightarrow x=-2$ or $x=1$.

Examples of Quadratic Function Graphs II

- Find the vertex, the opening direction, the intercepts and sketch the graph of $f(x)=x^{2}-2 x-8$;
(1) The vertex has x-coordinate $x=-\frac{b}{2 a}=-\frac{-2}{2 \cdot 1}=1$; Its y-coordinate, therefore, is $y=f(1)=1^{2}-2 \cdot 1-8=$ $1-2-8=-9$;
(2) The parabola opens up since $a=1>0$;
(3) Its y-intercept is $(0,-8)$;

(9) Finally, its x-intercepts are the solutions of $x^{2}-2 x-8=0 \Rightarrow$

$$
(x+2)(x-4)=0 \Rightarrow x+2=0 \text { or } x-4=0 \Rightarrow x=-2 \text { or } x=4 .
$$

Summary of Methods for Solving $a x^{2}+b x+c=0$

- Recall: there are several methods for solving $a x^{2}+b x+c=0$:
(1) Even-Root Property: This, we use when $b=0$, i.e., there is no x-term; E.g., $(x-2)^{2}=8 \Rightarrow x-2= \pm \sqrt{8} \Rightarrow x=2 \pm 2 \sqrt{2}$;
(2) Factoring: This we use whenever we are able to factor; E.g., $x^{2}+5 x+6=0 \Rightarrow(x+3)(x+2)=0 \Rightarrow x+3=0$ or $x+2=0 \Rightarrow$ $x=-3$ or $x=-2$;
(3) Quadratic Formula: This solves any quadratic equation (the most powerful weapon); E.g.,

$$
x^{2}+5 x+3=0 \Rightarrow x=\frac{-5 \pm \sqrt{5^{2}-4 \cdot 1 \cdot 3}}{2 \cdot 1} \Rightarrow x=\frac{-5 \pm \sqrt{13}}{2}
$$

(9) Completing Square: Also solves any quadratic, but is slower than the quadratic formula; E.g., $x^{2}-6 x+7=0 \Rightarrow x^{2}-6 x=-7 \Rightarrow$ $x^{2}-6 x+9=-7+9 \Rightarrow(x-3)^{2}=2 \Rightarrow x-3= \pm \sqrt{2} \Rightarrow x=3 \pm \sqrt{2}$.

Number of Solutions

- A byproduct of computing $D=b^{2}-4 a c$ in the application of the quadratic formula is that we can tell right away how many solutions $a x^{2}+b x+c=0$ has:
- If $D>0$, it has two real solutions;
- If $D=0$, it has one real solution;
- If $D<0$, it does not have any real solutions;
- Example: Determine the number of real solutions of the given quadratic; You do not need to find the solutions (if there are any);
- $x^{2}-3 x-5=0$
$D=b^{2}-4 a c=(-3)^{2}-4 \cdot 1 \cdot(-5)=9+20=29>0$; Therefore,
$x^{2}-3 x-5=0$ has two real solutions;
- $x^{2}=3 x-9$ Rewrite $x^{2}-3 x+9=0$;
$D=b^{2}-4 a c=(-3)^{2}-4 \cdot 1 \cdot 9=9-36=-27<0$; Therefore,
$x^{2}=3 x-9=0$ has no real solutions;
- $4 x^{2}-12 x+9=0$
$D=b^{2}-4 a c=(-12)^{2}-4 \cdot 4 \cdot 9=144-144=0$; Therefore, $4 x^{2}-12 x+9=0$ has one real solution.

Application: Revenue, Cost (Break-Even Points)

- If the cost function is $C(x)=120 x+4800$ and the revenue function is $R(x)=-2 x^{2}+400 x$, where x is the number of items produced and sold, what are the company's break-even points (i.e., points where its revenue equals its cost)?

We set $C(x)=R(x)$ and solve for x :

$$
\begin{aligned}
& 120 x+4800=-2 x^{2}+400 x \\
& \Rightarrow \quad 2 x^{2}-280 x+4800=0 \\
& \Rightarrow \quad x^{2}-140 x+2400=0 \\
& \Rightarrow \quad(x-20)(x-120)=0 \\
& \Rightarrow \quad x-20=0 \text { or } x-120=0 \\
& \Rightarrow \quad x=20 \text { or } x=120 ;
\end{aligned}
$$

Thus the company breaks even when it produces and sells either 20 or 120 items;

Application: Revenue, Cost (Max Profit)

- If the cost function is $C(x)=120 x+4800$ and the revenue function is $R(x)=-2 x^{2}+400 x$, where x is the number of items produced and sold, how many units should be produced to maximize profit and what is the max profit?

Profit is given by

$$
\text { Profit }=\text { Revenue }- \text { Cost, }
$$

in symbols $P(x)=R(x)-C(x)$; Thus,

$$
P(x)=-2 x^{2}+400 x-(120 x+4800)=-2 x^{2}+280 x-4800
$$

This is a parabola opening down, so the maximum occurs at

$$
x=-\frac{b}{2 a}=-\frac{280}{2 \cdot(-2)}=70
$$

The max profit is $P(70)=-2 \cdot 70^{2}+280 \cdot 70-4800=5000$.

Subsection 4

Polynomial, Rational, Piece-wise and Composite Functions

Polynomial Functions

- A polynomial function is one that can be written in the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0},
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are real constants;

- The expressions $a_{n} x^{n}, a_{n-1} x^{n-1}, \ldots, a_{1} x, a_{0}$ are the terms;
- The numbers $a_{0}, a_{1}, \ldots, a_{n}$ are the coefficients;
- The degree is the highest power of the variable;
- The leading coefficient is the one of the highest power term;
- Examples are

Polynomial	Degree	Leading Coef.
$f(x)=2 x^{8}-3 x^{6}+13 x^{3}-7$	8	2
$f(x)=-4 x^{2}+\frac{1}{7} x-11$	2	-4
$f(x)=x+5$	1	1
$f(x)=2013$	0	2013

Solving Polynomial Equations

- Solve the equation $3 x^{4}-6 x^{3}=24 x^{2}$;
- Solving involves
- Making one side zero;
- Factoring the non-zero side;
- Using the zero-factor property;
- Solving the simpler equations;
- We write

$$
\begin{aligned}
& 3 x^{4}-6 x^{3}=24 x^{2} \\
& \Rightarrow \quad 3 x^{4}-6 x^{3}-24 x^{2}=0 \\
& \Rightarrow \quad 3 x^{2}\left(x^{2}-2 x-8\right)=0 \\
& \Rightarrow \quad 3 x^{2}(x+2)(x-4)=0 \\
& \Rightarrow \quad x=0 \text { or } x+2=0 \text { or } x-4=0 \\
& \Rightarrow \quad x=0 \text { or } x=-2 \text { or } x=4 .
\end{aligned}
$$

Rational Functions and Domains

- A rational function is a function of the form $f(x)=\frac{P(x)}{Q(x)}$, where $P(x)$ and $Q(x)$ are polynomial functions, such that $Q(x) \neq 0$;
- Examples:

$$
f(x)=\frac{3 x+2}{x-2}, \quad g(x)=\frac{1}{x^{2}+1}
$$

- Example: Find the domain of the rational function
$f(x)=\frac{18}{x^{2}-2 x-24} ;$
We must have $x^{2}-2 x-24 \neq 0$; Let us solve

$$
\begin{aligned}
& x^{2}-2 x-24=0 \Rightarrow \quad(x+4)(x-6)=0 \\
& \Rightarrow \quad x+4=0 \text { or } x-6=0 \Rightarrow \quad x=-4 \text { or } x=6
\end{aligned}
$$

Thus, we must exclude $x=-4$ and $x=6$ from the domain, i.e., we have $\operatorname{Dom}(f)=\mathbb{R}-\{-4,6\}=(-\infty,-4) \cup(-4,6) \cup(6, \infty)$.

Exponential Functions

- An exponential function is one of the form

$$
f(x)=a^{x}
$$

where $0<a \neq 1$ and x is a real number;

- Example: Consider $f(x)=2^{x}, g(x)=\left(\frac{1}{4}\right)^{1-x}$ and $h(x)=-3^{x}$; Compute the following values:
- $f\left(\frac{3}{2}\right)=2^{3 / 2}=\sqrt{2^{3}}=\sqrt{2^{2}} \sqrt{2}=2 \sqrt{2}$;
- $f(-3)=2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$;
- $g(3)=\left(\frac{1}{4}\right)^{1-3}=\left(\frac{1}{4}\right)^{-2}=4^{2}=16$;
- $h(2)=-3^{2}=-9$;
- Two important exponentials for applications are the base 10 exponential $f(x)=10^{x}$ (called common base), and the base e exponential $f(x)=e^{x}$ (called natural base).

Graphs of Exponentials (Exponential Growth)

- When the base a is such that $a>1$, then $f(x)=a^{x}$ has an increasing graph (going up as we move from left to right);
- As an example, we'll use a few points to sketch the graph of $f(x)=2^{x}$;

x	$y=2^{x}$
-2	$1 / 4$
-1	$1 / 2$
0	1
1	2
2	4

- Note that the x-axis is a horizontal asymptote as $x \rightarrow-\infty$.

Graphs of Exponentials (Exponential Decay)

- When the base a is such that $0<a<1$, then $f(x)=a^{x}$ has a decreasing graph (going down as we move from left to right);
- As an example, we'll use a few points to sketch the graph of $f(x)=\left(\frac{1}{3}\right)^{x}$;

x	$y=\left(\frac{1}{3}\right)^{x}$
-2	9
-1	3
0	1
1	$1 / 3$
2	$1 / 9$

- Note that the x-axis is a horizontal asymptote as $x \rightarrow+\infty$.

Piece-wise Defined Functions

- A piece-wise defined function is one defined by different formulas over different parts of its domain;
- The graph of a piece-wise defined function is plotted by piecing together the graphs of the various parts;
- Example: Plot the graph of the function

$$
f(x)= \begin{cases}-x^{2}-4 x, & \text { if } x \leq-1 \\ x+2, & \text { if } x>-1\end{cases}
$$

First, graph $y=-x^{2}-4 x$; Then, graph $y=x+2$; Finally, keep only the part of $y=-x^{2}-4 x$ for $x \leq$ -1 and the part of $y=x+2$ for $x>-1$; This gives the graph of $y=f(x)$.

Another Example

- Plot the graph of the function

$$
f(x)= \begin{cases}x^{2}+2 x, & \text { if } x<0 \\ -x^{2}+2 x, & \text { if } x \geq 0\end{cases}
$$

First, graph $y=x^{2}+2 x$; Then, graph $y=-x^{2}+2 x$; Finally, keep only the part of $y=x^{2}+2 x$ for $x<0$ and the part of $y=-x^{2}+2 x$ for $x \geq 0$; This gives the graph of $y=f(x)$.

Composition of Functions

- The composition of g and f is the function $g \circ f$, defined by

$$
(f \circ g)(x)=f(g(x))
$$

In set diagram, we have

In machine diagram, we have

Examples of Composition

- If $f(x)=x^{7}$ and $g(x)=x^{3}-2 x$, find
- $f(g(x))=f\left(x^{3}-2 x\right)=\left(x^{3}-2 x\right)^{7}$;
- $g(f(x))=g\left(x^{7}\right)=\left(x^{7}\right)^{3}-2\left(x^{7}\right)=x^{21}-2 x^{7}$;
- $f(f(x))=f\left(x^{7}\right)=\left(x^{7}\right)^{7}=x^{49}$;
- If $f(x)=\frac{x+8}{x-1}$ and $g(x)=\sqrt{x}$, find
- $f(g(x))=f(\sqrt{x})=\frac{\sqrt{x}+8}{\sqrt{x}-1}$;
- $g(f(x))=g\left(\frac{x+8}{x-1}\right)=\sqrt{\frac{x+8}{x-1}}$.

Difference Quotient

- Given a function f, the expression $\frac{f(x+h)-f(x)}{h}$ is called the difference quotient of f at x;
- Geometrically, the difference quotient is the slope of the secant line of $y=f(x)$ through the points $(x, f(x))$ and $(x+h, f(x+h))$:

Computing Difference Quotients

- Find the difference quotient of $f(x)=3 x^{2}-2 x+1$ at x and simplify:

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h}=\frac{\left(3(x+h)^{2}-2(x+h)+1\right)-\left(3 x^{2}-2 x+1\right)}{h}= \\
& \frac{3\left(x^{2}+2 x h+h^{2}\right)-2 x-2 h+1-3 x^{2}+2 x-1}{h}= \\
& \frac{3 x^{2}+6 x h+3 h^{2}-2 x-2 h+1-3 x^{2}+2 x-1}{h}= \\
& \frac{6 x h+3 h^{2}-2 h}{h}=\frac{h(6 x+3 h-2)}{h}=6 x+3 h-2
\end{aligned}
$$

- Find the difference quotient of $f(x)=\frac{1}{x}$ at x and simplify:

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h}=\frac{\frac{1}{x+h}-\frac{1}{x}}{h}=\frac{\frac{x}{x(x+h)}-\frac{x+h}{x(x+h)}}{h}= \\
& \frac{\frac{x-(x+h)}{x(x+h)}}{\frac{h}{1}}=\frac{-h}{h x(x+h)}=\frac{-1}{x(x+h)} .
\end{aligned}
$$

