Business and Life Calculus

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 112

George Voutsadakis (LSSU)

Calculus For Business and Life Sciences

Fall 2013 1 / 85

Derivatives and Their Uses

- Limits and Continuity
- Continuity
- Rates of Change, Slopes and Derivatives
- Some Differentiation Formulas
- The Product and Quotient Rules
- Higher-Order Derivatives
- Chain and Generalized Power Rules

Subsection 1

Limits and Continuity

Limits

The statement

$$\lim_{x\to c} f(x) = L,$$

read the limit of f(x) as x approaches c is L, means that the value of y = f(x) approaches arbitrarily close to L as x approaches sufficiently close from either side (but is not equal to) c.

Limits Using Graphs

- Consider the function f(x) whose graph is shown below: Find
 - f(1) = 2;
 - $\lim_{x\to 1} f(x) = 1;$
- Consider the function g(x) whose graph is given below: Find
 - g(-1) = 3;
 - $\lim_{x \to -1} g(x) = \text{Does Not Exist.}$

One-Sided Limits

- The statement lim f(x) = L, read the limit of f(x) as x approaches c from the left is L, means that the value of y = f(x) approaches arbitrarily close to L as x approaches sufficiently close from the left (but is not equal to) c;
- The statement lim f(x) = L, read the limit of f(x) as x approaches c from the right is L, means that the value of y = f(x) approaches arbitrarily close to L as x approaches sufficiently close from the right (but is not equal to) c;
- Revisiting the function g:

We have
$$\lim_{x\to -1^-} g(x) = 3$$
; and $\lim_{x\to -1^+} g(x) = 1$.

Limits Using Graphs I

• Consider the function f whose graph is given below:

We have f(0) = 2; $\lim_{x \to 0^{-}} f(x) = -1;$ $\lim_{x \to 0^{+}} f(x) = 2;$ $\lim_{x \to 0^{+}} f(x) = \text{DNE}.$

Limits Using Graphs II

• Consider the function f whose graph is given below:

Two Important Simple Limits

- Consider the function f(x) = a, a constant;
- Consider, also g(x) = x;

What is

$$\lim_{\substack{x \to c}} f(x) = a$$
$$\lim_{\substack{x \to c}} g(x) = c$$

• So, for all real numbers *a*, *c*, we have the rules

$$\lim_{x \to c} a = a \quad \text{and} \quad \lim_{x \to c} x = c.$$

Rules for Limits

- We would like to be able to find limits without having to graph;
- For this reason we develop some algebraic rules for computing limits;

Rules for Limits

$$\lim_{x\to c} a = a; \text{ and } \lim_{x\to c} x = c;$$

$$\lim_{x\to c} [f(x)^n] = (\lim_{x\to c} f(x))^n;$$

$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}, \text{ if } \lim_{x \to c} f(x) \ge 0, \text{ when } n \text{ is even};$$

• If
$$\lim_{x\to c} f(x)$$
 and $\lim_{x\to c} g(x)$ both exist, then

a.
$$\lim_{x \to c} [f(x) + g(x)] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$

b.
$$\lim_{x \to c} [f(x) - g(x)] = \lim_{x \to c} f(x) - \lim_{x \to c} g(x);$$

c.
$$\lim_{x \to c} [f(x) \cdot g(x)] = [\lim_{x \to c} f(x)] \cdot [\lim_{x \to c} g(x)]$$

d.
$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c \atop x \to c} f(x), \text{ if } \lim_{x \to c} g(x) \neq 0.$$

Using the Rules to Find Limits

• Use the rules to compute the following limits:

•
$$\lim_{x \to -3} (2x^2 - 3x + 1)$$

$$\lim_{x \to -3} (2x^2) - \lim_{x \to -3} (3x) + \lim_{x \to -3} 1$$

$$\lim_{product} (\lim_{x \to -3} 2) \cdot (\lim_{x \to -3} (x^2)) - (\lim_{x \to -3} 3) \cdot (\lim_{x \to -3} x) + \lim_{x \to -3} 1$$

$$\lim_{x \to -3} (\lim_{x \to -3} 2) \cdot ((\lim_{x \to -3} x)^2) - (\lim_{x \to -3} 3) \cdot (\lim_{x \to -3} x) + \lim_{x \to -3} 1$$

$$\lim_{x \to 11} \sqrt{x - 2} \operatorname{reot} (-3) + 1 = 28;$$

•
$$\lim_{x \to 11} \sqrt{x - 2} \operatorname{reot} \sqrt{\lim_{x \to 11} (x - 2)} \stackrel{\text{differ}}{=} \sqrt{\lim_{x \to 11} x - \lim_{x \to 11} 2} \stackrel{\text{basic}}{=} \sqrt{11 - 2} = 3;$$

•
$$\lim_{x \to 6} \frac{x^2}{x + 3} \stackrel{\text{quotient}}{=} \frac{\lim_{x \to 6} (x^2)}{\lim_{x \to 6} (x + 3)} \stackrel{\text{sum/prod}}{=} \frac{(\lim_{x \to 6} x)^2}{\lim_{x \to 6} x + \lim_{x \to 6} 3} \stackrel{\text{basic}}{=} \frac{6^2}{6 + 3} = \frac{36}{9} = 4.$$

Summary of the Rules: The Substitution Principle

• For functions composed of additions, subtractions, multiplications, divisions, powers and roots, limits may be evaluated by direct substitution, provided that the resulting expression is defined:

$$\lim_{x\to c} f(x) = f(c);$$

- For instance, as we saw in previous slide:
 - $\lim_{x \to -3} (2x^2 3x + 1) = 2(-3)^2 3(-3) + 1 = 28;$

•
$$\lim_{x \to 11} \sqrt{x-2} = \sqrt{11-2} = 3;$$

•
$$\lim_{x \to 6} \frac{x^2}{x+3} = \frac{6^2}{6+3} = 4;$$

• The problem arises when, in attempting to apply the rules the resulting expression is not defined; In that case, we may not conclude that the limit does not exist; Since the rules are not applicable, we simply have to employ some other technique to find it!

Examples Where Rules do not Apply

• Let
$$f(x) = \frac{x^2 + 6x - 7}{x - 1}$$
; Since $\lim_{x \to 1} (x - 1) = 0$, in computing
 $\lim_{x \to 1} \frac{x^2 + 6x - 7}{x - 1}$, we cannot apply the quotient rule, i.e., we cannot
write $\lim_{x \to 1} \frac{x^2 + 6x - 7}{x - 1} = \frac{\lim_{x \to 1} (x^2 + 6x - 7)}{\lim_{x \to 1} (x - 1)}$;
The expression on the right does not even make sense;
• Let $f(x) = \frac{x - 11}{\sqrt{x - 2} - 3}$; Since $\lim_{x \to 11} (\sqrt{x - 2} - 3) = 0$, in computing
 $\lim_{x \to 11} \frac{x - 11}{\sqrt{x - 2} - 3}$, we cannot apply the quotient rule, i.e., we cannot
write $\lim_{x \to 11} \frac{x - 11}{\sqrt{x - 2} - 3} = \frac{\lim_{x \to 11} (x - 11)}{\lim_{x \to 11} (\sqrt{x - 2} - 3)}$;
The expression on the right does not make sense either;
• So what are we supposed to do in these cases?

Finding Limits by Factoring and Simplifying

Compute the following limits:

• $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} (\stackrel{\text{quotient}}{=} \stackrel{0}{=}) \stackrel{\text{factor}}{=} \lim_{x \to 1} \frac{(x + 1)(x - 1)}{x - 1} \stackrel{\text{simplify}}{=} \lim_{x \to 1} (x + 1) \stackrel{\text{substitute}}{=}$ 1 + 1 = 2: • $\lim_{x \to 5} \frac{2x^2 - 10x}{x - 5} \left(\stackrel{\text{quotient}}{=} \frac{0}{0} \right) \stackrel{\text{factor}}{=} \lim_{x \to 5} \frac{2x(x - 5)}{x - 5} \stackrel{\text{simplify}}{=} \lim_{x \to 5} (2x) \stackrel{\text{substitute}}{=} 2 \cdot 5 =$ 10: • $\lim_{x \to 1} \frac{x^2 + 6x - 7}{x - 1} \left(\stackrel{\text{quotient}}{=} \frac{0}{0} \right) \stackrel{\text{factor}}{=} \lim_{x \to 1} \frac{(x - 1)(x + 7)}{x - 1} \stackrel{\text{simplify}}{=}$ $\lim_{x\to 1} (x+7) \stackrel{\text{substitute}}{=} 1+7=8;$ • $\lim_{x \to 1} \frac{\frac{1}{x} - 1}{x - 1} (\stackrel{\text{quotient}}{=} \frac{0}{0}) \stackrel{\text{subtract}}{=} \lim_{x \to 1} \frac{\frac{1}{x} - \frac{x}{x}}{x - 1} = \lim_{x \to 1} \frac{\frac{1 - x}{x}}{x - 1} \stackrel{\text{divide}}{=}$ $\lim_{x \to 1} \frac{-(x-1)}{x(x-1)} \stackrel{\text{simplify}}{=} \lim_{x \to 1} \frac{-1}{x} \stackrel{\text{substitute}}{=} \frac{-1}{1} = -1.$

Finding Limits by Multiplying by the Conjugate I

• Compute the following limit:

•
$$\lim_{x \to 9} \frac{2\sqrt{x+7}-8}{x-9} (\stackrel{\text{(uotient }}{=} \frac{0}{0}) \stackrel{\text{conjugate}}{=} \\ \lim_{x \to 9} \frac{(2\sqrt{x+7}-8)(2\sqrt{x+7}+8)}{(x-9)(2\sqrt{x+7}+8)} \stackrel{\text{multiply top}}{=} \\ \lim_{x \to 9} \frac{4(x+7)-64}{(x-9)(2\sqrt{x+7}+8)} \stackrel{\text{simplify}}{=} \lim_{x \to 9} \frac{4x+28-64}{(x-9)(2\sqrt{x+7}+8)} = \\ \lim_{x \to 9} \frac{4x-36}{(x-9)(2\sqrt{x+7}+8)} \stackrel{\text{factor}}{=} \lim_{x \to 9} \frac{4(x-9)}{(x-9)(2\sqrt{x+7}+8)} \stackrel{\text{simplify}}{=} \\ \lim_{x \to 9} \frac{4}{2\sqrt{x+7}+8} \stackrel{\text{substitute}}{=} \frac{4}{2\sqrt{9+7}+8} = \frac{1}{4}.$$

Finding Limits by Multiplying by the Conjugate II

• Compute the following limit:

•
$$\lim_{x \to 11} \frac{x - 11}{\sqrt{x - 2} - 3} \left(\stackrel{\text{quotient}}{=} \frac{0}{0} \right)^{\text{conjugate}} \lim_{x \to 11} \frac{(x - 11)(\sqrt{x - 2} + 3)}{(\sqrt{x - 2} - 3)(\sqrt{x - 2} + 3)} \stackrel{\text{multiply bottom}}{=} \lim_{x \to 11} \frac{(x - 11)(\sqrt{x - 2} + 3)}{x - 2 - 9} = \lim_{x \to 11} \frac{(x - 11)(\sqrt{x - 2} + 3)}{x - 11} \stackrel{\text{simplify}}{=} \lim_{x \to 11} (\sqrt{x - 2} + 3) \stackrel{\text{substitute}}{=} \sqrt{11 - 2} + 3 = 6.$$

Limits Where $y \to \pm \infty$

- $\lim_{x\to c^-} f(x) = \infty$ means that the values of f(x) grow arbitrarily large as x approaches c from the left;
- $\lim_{x\to c^+} f(x) = \infty$ means that the values of f(x) grow arbitrarily large as x approaches c from the right;
- $\lim_{x\to c} f(x) = \infty$ means that both $\lim_{x\to c^-} f(x) = \infty$ and $\lim_{x\to c^+} f(x) = \infty$ are true;
- Consider the function $f(x) = \frac{1}{x}$ whose graph is given below:

$$\lim_{\substack{x \to 0^- \\ x \to 0^+}} f(x) = -\infty;$$
$$\lim_{\substack{x \to 0^+ \\ \lim_{x \to 0}}} f(x) = \infty;$$

Another Example

• Consider the function $f(x) = \frac{1}{(x-1)^2}$ whose graph is given below:

$$\lim_{\substack{x \to 1^{-} \\ \lim_{x \to 1^{+}} f(x) = \infty; \\ \lim_{x \to 1^{+}} f(x) = \infty; \\ \lim_{x \to 1} f(x) = \infty.$$

Limits Where $x \to \pm \infty$

- $\lim_{x \to -\infty} f(x) = L$ means that the values of f(x) get arbitrarily close to L as x grows arbitrarily small;
- $\lim_{x\to\infty} f(x) = L$ means that the values of f(x) get arbitrarily close to L as x grows arbitrarily large;
- Consider, again $f(x) = \frac{1}{x}$ whose graph is given below:

$$\lim_{\substack{x \to -\infty \\ \lim_{x \to \infty} f(x) = 0}} f(x) = 0;$$

Graphical Examples of Limits Involving Infinity

• Consider the function f(x) whose graph is given below:

$$\lim_{x \to -\infty} f(x) = 2; \qquad \lim_{x \to \infty} f(x) = -1;$$
$$\lim_{x \to 0^{-}} f(x) = -\infty; \qquad \lim_{x \to 0^{+}} f(x) = \infty;$$
$$\lim_{x \to 0} f(x) = \mathsf{DNE};$$
$$\lim_{x \to 1^{-}} f(x) = -\infty; \qquad \lim_{x \to 1^{+}} f(x) = -\infty;$$
$$\lim_{x \to 1} f(x) = -\infty.$$

Algebraic Computation of Limits Involving Infinity

- Suppose that you would like to compute lim f(x); Try plugging in c for x to see if the resulting expression is defined; If yes, you may use the substitution property; In addition, be aware of the following cases (a is a fixed real):
 - The form $\frac{a}{\pm\infty}$: Always approaches 0:
 - For example, $\lim_{x\to\infty}\frac{1}{x}=0, \lim_{x\to-\infty}\frac{5}{x+2}=0;$
 - The form $\frac{a}{0}$ with $a \neq 0$: Always approaches $\pm \infty$:
 - For example, $\lim_{x\to 0^+} \frac{1}{x} = +\infty$, $\lim_{x\to 5^-} \frac{3}{x-5} = -\infty$;
 - The forms $\frac{0}{0}$ and $\frac{\pm \infty}{\pm \infty}$: These are undetermined; But this does not necessarily mean that limits do not exist; It simply means that we have to work harder to reveal what really happens;
 - For example, $\lim_{x \to \infty} \frac{x^2}{x} = \lim_{x \to \infty} x = \infty, \lim_{x \to \infty} \frac{x}{x^2} = \lim_{x \to \infty} \frac{1}{x} = 0, \lim_{x \to 0^-} \frac{x}{x^2} = \lim_{x \to 0^-} \frac{1}{x} = -\infty.$

More Involved Examples

• Compute the limits of the following rational functions:

•
$$\lim_{x \to \infty} \frac{3x^3 - x + 1}{x^3 + 2x} \stackrel{\text{divide by } x^3}{=} \lim_{x \to \infty} \frac{\frac{3x^3 - x + 1}{x^3}}{\frac{x^3 + 2x}{x^3}} \stackrel{\text{break}}{=} \lim_{x \to \infty} \frac{\frac{3x^3 - x}{x^3} + \frac{1}{x^3}}{\frac{x^3}{x^3} + \frac{2x}{x^3}} \stackrel{\text{simplify}}{=}$$
$$\lim_{x \to \infty} \frac{3 - \frac{1}{x^2} + \frac{1}{x^3}}{1 + \frac{2}{x^2}} \stackrel{\text{take limits}}{=} \frac{3 - 0 + 0}{1 + 0} = 3;$$
$$\lim_{x \to \infty} \frac{5x + 3}{x^2 - 1} \stackrel{\text{divide by } x^2}{=} \lim_{x \to \infty} \frac{\frac{5x + 3}{x^2}}{\frac{x^2 - 1}{x^2}} \stackrel{\text{break}}{=} \lim_{x \to \infty} \frac{\frac{5x}{x^2} + \frac{3}{x^2}}{\frac{x^2}{x^2} - \frac{1}{x^2}} \stackrel{\text{simplify}}{=}$$
$$\lim_{x \to \infty} \frac{\frac{5}{x} + \frac{3}{x^2}}{1 - \frac{1}{x^2}} \stackrel{\text{take limits}}{=} \frac{0 + 0}{1 - 0} = 0;$$
$$\lim_{x \to \infty} \frac{\frac{x^3 + 5x}{2x^2 + 7}}{\frac{2x^2}{x^2} + \frac{1}{x^2}} \stackrel{\text{divide by } x^2}{=} \lim_{x \to \infty} \frac{\frac{x^3 + 5x}{x^2}}{\frac{2x^2 + 7}{x^2}} \stackrel{\text{break}}{=} \lim_{x \to \infty} \frac{\frac{x^3 + 5x}{x^2} + \frac{5x}{x^2}}{\frac{2x^2}{x^2} + \frac{7}{x^2}} \stackrel{\text{simplify}}{=}$$
$$\lim_{x \to \infty} \frac{\frac{x + \frac{5}{x}}{2x^2 + 7}}{\frac{2x^2}{x^2}} \stackrel{\text{take limits}}{=} \frac{\infty}{0 + 0} = \infty.$$

Limits of Rational Functions as $x \to \pm \infty$

• The examples in the previous slide suggest the following general rule for finding

$$\lim_{x\to\infty}\frac{P(x)}{Q(x)},$$

for P(x) and Q(x) polynomial functions:

If the degree of the numerator is greater than the degree of the denominator, then the limit is $\pm\infty$;

$$\lim_{x\to\infty}\frac{x^3+5x}{2x^2+7}=\infty;$$

If the degree of the numerator and the degree of the denominator are equal, then the limit is equal to the ratio of the leading coefficients;

•
$$\lim_{x \to \infty} \frac{3x^3 - x + 1}{x^3 + 2x} = \frac{3}{1} = 3;$$

If the degree of the numerator is less than the degree of the denominator, then the limit is 0;

•
$$\lim_{x \to \infty} \frac{5x+3}{x^2-1} = 0.$$

Subsection 2

Continuity

Continuity at a Point Geometrically

- A function is continuous at x = c if its graph passes through (c, f(c)) without a "hole" or a "jump";
- Let us take a look at y = f(x)

The function f(x) depicted is discontinuous at the points -4, 2 and 4, but it is continuous at -1;

- At points of continuity, we can draw graph moving from left to right passing through the point without having to lift pencil from paper;
- This is not true at the points of discontinuity; There the "hole" or the "jump" forces us to reposition the pencil by lifting it from the paper as we move from left to right through the point.

Continuity at a Point Algebraically

• A function is **continuous at** x = c if

f(c) is defined;

This means a graph has a point at x = c.

• $\lim_{x\to c} f(x)$ exists;

This means that $\lim_{x\to c^-} f(x) = \lim_{x\to c^+} f(x)$; So, as x approaches c from left, f(x) stays at same level as when x approaches c from the right. Thus, f does not "jump" passing through c.

•
$$\lim_{x\to c} f(x) = f(c).$$

The point of the graph at c has to be at the same level as that approached by f(x) when x approaches c; So, no "hole" occurs over c.

Example Revisited

• Let us look again at y = f(x):

Left and Right Continuity at a Point

- If $\lim_{x\to c^-} f(x) = f(c)$, then we say that f is left continuous at c;
- If $\lim_{x\to c^+} f(x) = f(c)$, then we say that f is **right continuous at** c;
- Since for continuity at c we require that $\lim_{x\to c} f(x) = f(c)$ (which means $\lim_{x\to c^-} f(x) = f(c) = \lim_{x\to c^+} f(x)$), it is clear that:

f is continuous at c if and only if it is both left and right continuous at c.

Example Revisited

• Let us look again at y = f(x):

- At x = -4, $\lim_{x \to -4^-} f(x) = 3 = f(-4)$. So f is left continuous at x = -4:
- At x = 2, $\lim_{x \to 2^{-}} f(x) = -1 = f(2)$. So f is left continuous at x = 2;
- At x = 4, f(4) does not exist. So f can be neither left nor right continuous at x = 4.

Algebraic Example

• Consider the piece-wise defined function

$$f(x) = \begin{cases} x+2, & \text{if } x < -1 \\ x^2 & \text{if } -1 \le x < 2 \\ -x^2+7, & \text{if } x \ge 2 \end{cases}$$

 We first investigate whether *f* is continuous, left/right continuous or discontinuous at *x* = −1.

$$f(-1) = (-1)^{2} = 1;$$

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} (x+2) = -1 + 2 = 1;$$

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} x^{2} = (-1)^{2} = 1;$$

$$\lim_{x \to -1} f(x) = 1;$$

Therefore $\lim_{x\to -1} f(x) = 1 = f(-1)$ and f is continuous at x = -1;

Algebraic Example (Cont'd)

- Consider, again, the piece-wise defined function $f(x) = \begin{cases} x+2, & \text{if } x < -1 \\ x^2 & \text{if } -1 \le x < 2 \\ -x^2+7, & \text{if } x \ge 2 \end{cases}$
- We next investigate whether f is continuous, left/right continuous or discontinuous at x = 2.

$$f(2) = -2^{2} + 7 = 3;$$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} x^{2} = 2^{2} = 4;$$

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (-x^{2} + 7) = -2^{2} + 7 = 3;$$

$$\lim_{x \to 2} f(x) = \text{DNE};$$

Therefore, $\lim_{x\to 2^+} f(x) = 3 = f(2)$ and f is right continuous at x = 2; But since the $\lim_{x\to 2} f(x)$ does not exist f is not continuous at x = 2;

Combinations of Continuous Functions

- If two functions f and g are continuous at a point c, then the following are also continuous at c:
 - f ± g;
 a ⋅ f, for any constant a;
 - S f ⋅ g;
 - $\frac{f}{g}$, if $g(c) \neq 0$;
 - $\check{f}(g(x))$, if f is continuous at g(c);
- Consequences of these rules are the following facts:
 - Every polynomial function is continuous at all real numbers;
 - Every rational function is continuous at all points where it is defined.

Functions That Are Continuous

- We saw that:
 - Every polynomial function is continuous everywhere;
 - Every rational function is continuous at all points where it is defined;
- From the graphs, it is easy to see that, in addition:
 - Every exponential function f(x) = a^x, 0 < a ≠ 1, is continuous everywhere.
- Example: Determine where each function is continuous or discontinuous:
 - $f(x) = x^5 + 5x^3 11x$ is continuous everywhere since it is a polynomial;
 - f(x) = 1/(x²-36) is continuous at all points except ±6, since it is a rational function with domain Dom(f) = ℝ {-6,6};
 - $f(x) = e^{x-5}$ is continuous everywhere because it is the composite of x-5 and e^x , which are continuous a polynomial and an exponential everywhere.

Subsection 3

Rates of Change, Slopes and Derivatives

Average and Instantaneous Rate of Change

• The average rate of change of a function f between x and x + h is

$$\frac{\Delta y}{\Delta x} = \frac{f(x+h) - f(x)}{h};$$

- To find the instantaneous rate of change at x, we take h→ 0, so that the interval (x, x + h) becomes so small that f has very little chance to change.
- The instantaneous rate of change of f at x is

$$\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}.$$

Average and Instantaneous Rate of Change: Example

Find the average rate of change of the temperature T(t) = t² (in degrees) between t = 1 and t = 3 hours;
 We have

$$\frac{T(3) - T(1)}{3 - 1} = \frac{3^2 - 1^2}{3 - 1} = \frac{8}{2} = 4;$$

Thus, the average rate of change was 4 degrees per hour;

• Example: Find the instantaneous rate of change of the temperature $T(t) = t^2$ (in degrees) at t = 1;

We have

$$\lim_{h \to 0} \frac{T(1+h) - T(1)}{h} = \lim_{h \to 0} \frac{(1+h)^2 - 1^2}{h}$$
$$= \lim_{h \to 0} \frac{1+2h+h^2 - 1}{h} = \lim_{h \to 0} \frac{h(2+h)}{h}$$
$$= \lim_{h \to 0} (2+h) = 2;$$

Thus, the instantaneous rate of change was 2 degrees/hour at t = 1.
Slope of Secant and Tangent Lines

Consider the secant line to the graph of y = f(x) through (x, f(x)) and (x + h, f(x + h));

Slope of a Tangent Line

• Find the slope of the tangent line to $f(x) = \frac{1}{x+1}$ at x = 3;

$$\lim_{h \to 0} \frac{f(3+h) - f(3)}{h} = \lim_{h \to 0} \frac{\frac{1}{(3+h) + 1} - \frac{1}{3+1}}{h} = \lim_{h \to 0} \frac{\frac{1}{4+h} - \frac{1}{4}}{h} = \lim_{h \to 0} \frac{\frac{4}{4(4+h)} - \frac{4+h}{4(4+h)}}{h} = \lim_{h \to 0} \frac{\frac{4-(4+h)}{h}}{h} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{-h}{4(4+h)} = \lim_{h \to 0} (-\frac{1}{4(4+h)}) = -\frac{1}{16}.$$

Equation of a Tangent Line I

• Find an equation of the tangent line to $f(x) = \sqrt{3-x}$ at x = 2; First, find the slope of the tangent line

Thus, the equation of the tangent line is $y - f(2) = -\frac{1}{2}(x - 2)$ or $y - 1 = -\frac{1}{2}(x - 2)$.

Equation of a Tangent Line I (Illustration)

• The equation of the tangent line to $f(x) = \sqrt{3-x}$ at x = 2 is $y - 1 = -\frac{1}{2}(x - 2)$.

Equation of a Tangent Line II

• Find an equation of the tangent line to $f(x) = -x^2 + 4x$ at x = 1; First, find the slope of the tangent line

$$\lim_{h \to 0} \frac{f(1+h) - f(1)}{h} =$$

$$\lim_{h \to 0} \frac{-(1+h)^2 + 4(1+h) - (-1^2 + 4 \cdot 1)}{h} =$$

$$\lim_{h \to 0} \frac{-(1^2 + 2h + h^2) + 4 + 4h - 3}{h} =$$

$$\lim_{h \to 0} \frac{-1 - 2h - h^2 + 4 + 4h - 3}{h} =$$

$$\lim_{h \to 0} \frac{2h - h^2}{h} = \lim_{h \to 0} \frac{h(2-h)}{h} = \lim_{h \to 0} (2-h) = 2;$$

Thus, the equation of the tangent line is y - f(1) = 2(x - 1) or y - 3 = 2(x - 1).

Equation of a Tangent Line II (Illustration)

• The equation of the tangent line to $f(x) = -x^2 + 4x$ at x = 1 is y - 3 = 2(x - 1).

The Derivative

Definition of the Derivative

The **derivative of** f at x is defined by

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

if the limits exists; The derivative f'(x) gives the instantaneous rate of change of f at x and, also, the slope of the tangent line to y = f(x) at x;

• Example: Compute f'(x) if $f(x) = x^2 - 3x$; $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - 3(x+h) - (x^2 - 3x)}{h} = \lim_{h \to 0} \frac{x^2 + 2xh + h^2 - 3x - 3h - x^2 + 3x}{h} = \lim_{h \to 0} \frac{2xh + h^2 - 3h}{h} = \lim_{h \to 0} \frac{h(2x+h-3)}{h} = \lim_{h \to 0} (2x+h-3) = 2x+0-3 = 2x-3.$

Another Example of a Tangent Line

• Find an equation of the tangent line to $f(x) = \frac{1}{1+x^2}$ at x = 1; First, find the slope of the tangent line f'(1):

$$\lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{\frac{1}{1+(1+h)^2} - \frac{1}{1+1^2}}{h} = \lim_{h \to 0} \frac{\frac{1}{1+(1+h)^2} - \frac{1}{1+1^2}}{h} = \lim_{h \to 0} \frac{\frac{1}{1+1+2h+h^2} - \frac{1}{2}}{h} = \lim_{h \to 0} \frac{1}{h} \left(\frac{1}{2+2h+h^2} - \frac{1}{2}\right) = \lim_{h \to 0} \frac{1}{h} \cdot \frac{2 - (2+2h+h^2)}{2(2+2h+h^2)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{-h(2+h)}{2(2+2h+h^2)} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{-h(2+h)}{2(2+2h+h^2)} = \lim_{h \to 0} \frac{-(2+h)}{2(2+2h+h^2)} = \frac{-(2+0)}{2(2+2\cdot 0+0^2)} = -\frac{1}{2};$$

Thus, the equation of the tangent line is $y - f(1) = -\frac{1}{2}(x - 1)$ or $y - \frac{1}{2} = -\frac{1}{2}(x - 1)$.

Tangent Line (Illustration)

• The equation of the tangent line to $f(x) = \frac{1}{1+x^2}$ at x = 1 is $y - \frac{1}{2} = -\frac{1}{2}(x-1)$.

George Voutsadakis (LSSU)

Calculus For Business and Life Sciences

Alternative Notation for the Derivative

 We should all be aware that the following alternative notation is sometimes used for the derivative f'(x) of f at a point x:

$$f'(x) = \frac{df}{dx} = \mathbf{y}' = \frac{dy}{dx};$$

 Also, when the value of f'(x) at a specific point x = c is considered, we write

$$f'(c) = \left. \frac{df}{dx} \right|_{x=c} = y'(c) = \left. \frac{dy}{dx} \right|_{x=c};$$

Subsection 4

Some Differentiation Formulas

Derivative of a Constant

• Consider a constant function f(x) = c;

The tangent to y = c at any point is horizontal; Thus, its slope is zero:

(c') = 0;

• Algebraically,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c-c}{h} = \lim_{h \to 0} 0 = 0.$$

Power Rule

• For any exponent *n*,

$$(x^n)'=n\cdot x^{n-1};$$

• Example: Find the following derivatives:

•
$$(x^7)' = 7x^{7-1} = 7x^6$$
;
• $(x^{94})' = 94x^{94-1} = 94x^{93}$;
• $(\frac{1}{x^5})' = (x^{-5})' = (-5)x^{-5-1} = -5x^{-6} = -\frac{5}{x^6}$;
• $(\sqrt{x})' = (x^{1/2})' = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-1/2} = \frac{1}{2x^{1/2}} = \frac{1}{2\sqrt{x}}$;
• $(\sqrt[3]{x})' = (x^{1/3})' = \frac{1}{3}x^{\frac{1}{3}-1} = \frac{1}{3}x^{-2/3} = \frac{1}{3x^{2/3}} = \frac{1}{3\sqrt[3]{x^2}}$;
• $(x)' = (x^1)' = 1x^{1-1} = 1x^0 = 1$.

Constant Factor

• Constant Factor or Constant Multiple Rule:

$$(c \cdot f(x))' = c \cdot f'(x);$$

• Example: Find the following derivatives:

•
$$(5x^7)' = 5(x^7)' = 5 \cdot 7x^6 = 35x^6;$$

• $(\frac{7}{x^3})' = (7x^{-3})' = 7(x^{-3})' = 7 \cdot (-3)x^{-4} = -\frac{21}{x^4};$
• $(\frac{8}{\sqrt{x}})' = (8x^{-1/2})' = 8(x^{-1/2})' = 8 \cdot (-\frac{1}{2})x^{-3/2} = -\frac{4}{x^{3/2}} = -\frac{4}{\sqrt{x^3}};$
• $(17x)' = 17(x)' = 17 \cdot 1 = 17.$

Sum/Difference Rule

• Sum/Difference Rule:

$$(f(x) \pm g(x))' = f'(x) \pm g'(x);$$

• Example: Find the following derivatives:

•
$$(x^3 - x^7)' = (x^3)' - (x^7)' = 3x^2 - 7x^6;$$

• $(7x^{-5} - 3x^{1/3} + 17)' = (7x^{-5})' - (3x^{1/3})' + (17)' =$
 $7(x^{-5})' - 3(x^{1/3})' + 0 = 7(-5)x^{-6} - 3 \cdot \frac{1}{3}x^{-2/3} = -35x^{-6} - x^{-2/3}.$

Example I

Find an equation for the tangent line to the graph of f(x) = 2x³ - 5x² + 3 at x = 2;
 First compute the slope f'(2) of the tangent line:

$$f'(x) = (2x^3 - 5x^2 + 3)' = (2x^3)' - (5x^2)' + (3)' = 2(x^3)' - 5(x^2)' + 0 = 2 \cdot 3x^2 - 5 \cdot 2x = 6x^2 - 10x;$$

Thus, $f'(2) = 6 \cdot 2^2 - 10 \cdot 2 = 4$; Therefore the tangent line has equation

$$y - f(2) = f'(2)(x - 2)$$

$$\Rightarrow y - (-1) = 4(x - 2)$$

$$\Rightarrow y = 4x - 9.$$

Example II

 Find an equation for the tangent line to the graph of f(x) = 5x⁴ + 1 at x = -1;
 First compute the slope f'(-1) of the tangent line:

 $f'(x) = (5x^4 + 1)' = (5x^4)' + (1)' = 5(x^4)' + 0 = 5 \cdot 4x^3 = 20x^3;$

Thus, $f'(-1) = 20 \cdot (-1)^3 = -20$; Therefore the tangent line has equation

$$y - f(-1) = f'(-1)(x - (-1))$$

 $\Rightarrow y - 6 = -20(x + 1)$
 $\Rightarrow y = -20x - 14.$

Business: Marginal Analysis

- Let x denote the number of items produced and sold by a company;
- Suppose that C(x), R(x) and P(x) = R(x) C(x) are the cost, revenue and profit function, respectively;
- The marginal cost at x is the cost for producing one more unit:

Marginal Cost(x) =
$$C(x + 1) - C(x) = \frac{C(x + 1) - C(x)}{1}$$

 $\approx \lim_{h \to 0} \frac{C(x + h) - C(x)}{h} = C'(x);$

 Because of this, in calculus we define the marginal cost function MC(x) by

$$\mathsf{MC}(x) = C'(x);$$

• Similarly, for marginal revenue and for marginal profit:

$$MR(x) = R'(x)$$
 and $MP(x) = P'(x)$.

Application: Marginal Cost

• The cost function in dollars for producing x items is given by

$$C(x) = 8\sqrt[4]{x^3} + 300;$$

• Find the marginal cost function MC(x);

$$MC(x) = C'(x) = (8\sqrt[4]{x^3} + 300)' = (8x^{3/4})' = 8(x^{3/4})' = 8 \cdot \frac{3}{4}x^{-1/4} = \frac{6}{\sqrt[4]{x}};$$

• Find the marginal cost when 81 items are produced; Interpret the answer;

$$\mathsf{MC}(81) = \frac{6}{\sqrt[4]{81}} = \frac{6}{3} = 2;$$

This is the approximate additional cost for producing the 82nd item.

Application: Learning Rate

• A psychology researcher found that the number of names a person can memorize in *t* minutes is approximately

$$N(t)=6\sqrt[3]{t^2};$$

Find the instantaneous rate of change of this function after 8 minutes and interpret your answer;

$$N'(t) = (6\sqrt[3]{t^2})' = (6t^{2/3})' = 6(t^{2/3})' = 6 \cdot \frac{2}{3}t^{-1/3} = \frac{4}{\sqrt[3]{t}};$$

Therefore,

$$N'(8) = \frac{4}{\sqrt[3]{8}} = \frac{4}{2} = 2;$$

Thus, a person can memorize approximately 2 additional names/minute after 8 minutes.

George Voutsadakis (LSSU)

Subsection 5

The Product and Quotient Rules

Product Rule

• The Product Rule for Derivatives:

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x);$$

• Example: Use the product rule to calculate the derivatives:

•
$$(x^4 \cdot x^7)' = (x^4)'x^7 + x^4(x^7)' = 4x^3x^7 + x^4 \cdot 7x^6 = 4x^{10} + 7x^{10} = 11x^{10};$$

• $[(x^2 - x + 2)(x^3 + 5)]' = (x^2 - x + 2)'(x^3 + 5) + (x^2 - x + 2)(x^3 + 5)' = (2x - 1)(x^3 + 5) + (x^2 - x + 2)(3x^2) = 2x^4 - x^3 + 10x - 5 + 3x^4 - 3x^3 + 6x^2 = 5x^4 - 4x^3 + 6x^2 + 10x - 5;$
• $[x^3(x^2 - x)]' = (x^3)'(x^2 - x) + x^3(x^2 - x)' = 3x^2(x^2 - x) + x^3(2x - 1) = 3x^4 - 3x^3 + 2x^4 - x^3 = 5x^4 - 4x^3.$

Using Product Rule

Find an equation for the tangent line to the graph of f(x) = √x(2x - 4) at x = 4;
 First compute the slope f'(4) of the tangent line:

$$f'(x) = [\sqrt{x}(2x-4)]' = [x^{1/2}(2x-4)]' = [x^{1/2}(2x-4)]' = (x^{1/2})'(2x-4) + x^{1/2}(2x-4)' = \frac{1}{2}x^{-1/2}(2x-4) + 2x^{1/2} = \frac{2x-4}{2\sqrt{x}} + 2\sqrt{x} = \frac{x-2}{\sqrt{x}} + 2\sqrt{x};$$

Thus, $f'(4) = \frac{4-2}{\sqrt{4}} + 2\sqrt{4} = 1 + 4 = 5;$
Therefore the tangent line has equation
 $y - f(4) = f'(4)(x-4)$
 $\Rightarrow y - 8 = 5(x-4)$

Quotient Rule

• The Quotient Rule for Derivatives:

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2};$$

• Example: Use the quotient rule to calculate the derivatives:

•
$$\left(\frac{x^{13}}{x^5}\right)' = \frac{(x^{13})'x^5 - x^{13}(x^5)'}{(x^5)^2} = \frac{13x^{12}x^5 - x^{13} \cdot 5x^4}{x^{10}} = \frac{13x^{17} - 5x^{17}}{x^{10}} = \frac{8x^{17}}{x^{10}} = 8x^7;$$

• $\left(\frac{x^2}{x+1}\right)' = \frac{(x^2)'(x+1) - x^2(x+1)'}{(x+1)^2} = \frac{2x(x+1) - x^{21}}{(x+1)^2} = \frac{2x^2 + 2x - x^2}{(x+1)^2} = \frac{x^2 + 2x}{(x+1)^2}.$

Using Quotient Rule

Find an equation for the tangent line to the graph of 0 $f(x) = \frac{x^2 - 2x + 3}{x + 1}$ at x = 2; First compute the slope f'(2) of the tangent line: $f'(x) = \left(\frac{x^2 - 2x + 3}{x + 1}\right)' = \frac{(x^2 - 2x + 3)'(x + 1) - (x^2 - 2x + 3)(x + 1)'}{(x + 1)^2} =$ Thus, $f'(2) = \frac{2^2 + 2 \cdot 2 - 5}{(2+1)^2} = \frac{3}{9} = \frac{1}{3}$; Therefore the tangent line has equation y - f(2) = f'(2)(x - 2) $\Rightarrow y-1=\frac{1}{2}(x-2)$ $\Rightarrow y = \frac{1}{2}x + \frac{1}{2}$.

Application: Cost of Cleaner Water

• Suppose that the cost of purifying a gallon of water to a purity of x percent is $C(x) = \frac{2}{100-x}$, for 80 < x < 100, in dollars; What is the rate of change of the purification costs when purity is 90% and 98%?

$$C'(x) = \left(\frac{2}{100 - x}\right)'$$

= $\frac{(2)'(100 - x) - 2(100 - x)'}{(100 - x)^2}$
= $\frac{0 \cdot (100 - x) - 2(-1)}{(100 - x)^2}$
= $\frac{2}{(100 - x)^2};$

$$C'(90) = \frac{2}{10^2} = 0.02$$
 \$/gallon and $C'(98) = \frac{2}{2^2} = 0.50$ \$/gallon.

Marginal Average Cost/Revenue/Profit

- If C(x) is the cost for producing x items, then the average cost per item is AC(x) = C(x)/x;
- The marginal average cost is defined by MAC = AC'(x) = $\left(\frac{C(x)}{x}\right)'$;
- Similarly, is R(x) and P(x) are the revenue and profit from selling x items, the average revenue and average profit per item are AR(x) = R(x)/x and AP(x) = P(x)/x;
- And the marginal average revenue and marginal average profit are given by

$$MAR(x) = AR'(x)$$
 and $MAP(x) = AP'(x)$;

- The meaning of marginal average cost is the approximate additional average cost per item for producing one more item;
- Similar interpretations apply for marginal average revenue and marginal average profit.

Application: Marginal Average Cost

- On-demand printing a typical 200 page book would cost \$ 18 per copy, with fixed costs of \$ 1500. Therefore, the cost function is C(x) = 18x + 1500;
 - Find the average cost function;

$$AC(x) = \frac{C(x)}{x} = \frac{18x + 1500}{x} = \frac{18x}{x} + \frac{1500}{x} = 18 + 1500x^{-1};$$

• Find the marginal average cost function;

 $MAC(x) = (18 + 1500x^{-1})' = 1500(x^{-1})' = 1500 \cdot (-1)x^{-2} = -\frac{1500}{x^2};$

• What is the marginal average cost at x = 100? Interpret the answer;

$$MAC(100) = -\frac{1500}{(100)^2} = -0.15;$$

When 100 books are produced, the average cost per book is decreasing by about 15 cents per additional book produced.

Application: Time Saved by Speeding

Chris drives 25 miles to his office every day. If he drives at a constant speed of v miles per hour, then his driving time is T(v) = ²⁵/_v hours; Compute T'(55) and interpret the answer;

$$T'(v) = \left(\frac{25}{v}\right)' = (25v^{-1})' = 25(v^{-1})' = 25 \cdot (-1)v^{-2} = -\frac{25}{v^2};$$

So
$$T'(55) = -\frac{25}{55^2} = -0.00826;$$

Thus, Chris would save approximately 0.00826 hours (around half a minute) per extra mile/hour of speed when driving at 55 mph.

Summary of Differentiation Rules

Rules For Taking Derivatives

- (c)' = 0;
- $(x^n)' = n \cdot x^{n-1};$
- $(c \cdot f)' = c \cdot f';$
- $(f \pm g)' = f' \pm g';$
- $(f \cdot g)' = f' \cdot g + f \cdot g';$ • $\left(\frac{f}{\sigma}\right)' = \frac{f' \cdot g - f \cdot g'}{\sigma^2}.$

Subsection 6

Higher-Order Derivatives

Higher-Order Derivatives

- Given a function f(x), the derivative (f')' of its first derivative f' is called its second derivative and denoted f''(x);
- The derivative (f")' of its second derivative is called its third derivative and denoted f";
- From the fourth derivative up, instead of piling ' up in the notation, we use f⁽⁴⁾(x), f⁽⁵⁾(x), f⁽⁶⁾(x), etc.
- Thus, since the (n + 1)-st derivative of f is the first derivative of the *n*-th derivative, we have the definition

$$f^{(n+1)}(x) = (f^{(n)}(x))';$$

• In the alternative notation for derivatives, the first, second, third, fourth etc, derivatives are written

$$\frac{dy}{dx}$$
, $\frac{d^2y}{dx^2}$, $\frac{d^3y}{dx^3}$, $\frac{d^4y}{dx^4}$, ..., $\frac{d^ny}{dx^n}$, ...

Calculating Higher-Order Derivatives I

• Find all derivatives of $f(x) = x^3 - 9x^2 + 5x - 17$;

$$f'(x) = (x^3 - 9x^2 + 5x - 17)' = 3x^2 - 18x + 5;$$

$$f''(x) = (3x^2 - 18x + 5)' = 6x - 18;$$

$$f'''(x) = (6x - 18)' = 6;$$

$$f^{(4)}(x) = (6)' = 0;$$

$$f^{(5)}(x) = (0)' = 0;$$

:

So we have $f^{(n)}(x) = 0$, for all $n \ge 4$.

.

Calculating Higher-Order Derivatives II

• Find all derivatives of
$$f(x) = \frac{1}{x}$$
;

.

$$f'(x) = \left(\frac{1}{x}\right)' = (x^{-1})' = -x^{-2} = -\frac{1}{x^2};$$

$$f''(x) = (-x^{-2})' = -(-2)x^{-3} = \frac{2}{x^3};$$

$$f'''(x) = (2x^{-3})' = -2 \cdot 3x^{-4} = -\frac{2 \cdot 3}{x^4};$$

$$f^{(4)} = (-2 \cdot 3x^{-4})' = 2 \cdot 3 \cdot 4x^{-5} = \frac{2 \cdot 3 \cdot 4}{x^5};$$

$$f^{(5)}(x) = (2 \cdot 3 \cdot 4x^{-5})' = -2 \cdot 3 \cdot 4 \cdot 5x^{-6} = -\frac{2 \cdot 3 \cdot 4 \cdot 5}{x^6};$$

Thus

$$f^{(n)}(x) = (-1)^n \frac{1 \cdot 2 \cdot 3 \cdot \dots \cdot n}{x^{n+1}} = (-1)^n \frac{n!}{x^{n+1}}.$$

Computing a Second Derivative

• Compute
$$f''(x)$$
 if $f(x) = \frac{x^2 + 1}{x}$;
 $f'(x) = \left(\frac{x^2 + 1}{x}\right)' = \frac{(x^2 + 1)'x - (x^2 + 1)(x)'}{x^2} = \frac{2x \cdot x - x^2 - 1}{x^2} = \frac{x^2 - 1}{x^2}$;
 $f''(x) = \left(\frac{x^2 - 1}{x^2}\right)' = \frac{(x^2 - 1)'x^2 - (x^2 - 1)(x^2)'}{(x^2)^2} = \frac{2x \cdot x^2 - 2x(x^2 - 1)}{x^4} = \frac{2x^3 - 2x^3 + 2x}{x^4} = \frac{2x}{x^4} = \frac{2}{x^3}$.

Evaluating a Second Derivative

• Evaluate
$$f''(\frac{1}{8})$$
 if $f(x) = \frac{1}{\sqrt[3]{x}}$;
 $f'(x) = \left(\frac{1}{\sqrt[3]{x}}\right)' = (x^{-1/3})' = -\frac{1}{3}x^{-4/3} = -\frac{1}{3\sqrt[3]{x^4}}$;
 $f''(x) = (-\frac{1}{3}x^{-4/3})' = -\frac{1}{3} \cdot (-\frac{4}{3}x^{-7/3}) = \frac{4}{9}x^{-7/3} = \frac{4}{9\sqrt[3]{x^7}}$;
Therefore, $f''(\frac{1}{8}) = \frac{4}{9(\sqrt[3]{\frac{1}{8}})^7} = \frac{4}{9(\frac{1}{2})^7} = \frac{4}{\frac{9}{128}} = \frac{4 \cdot 128}{9}$.
Application: Velocity and Acceleration

- Suppose that a moving object covers distance s(t) at time t;
- Then its velocity v(t) at time t is the derivative of its distance

v(t)=s'(t);

• Moreover, its acceleration a(t) is the derivative of its velocity

$$a(t) = v'(t) = s''(t).$$

Velocity and Acceleration: Example

- Suppose that a delivery truck covers distance s(t) = 24t² − 4t³ miles in t hours, for 0 ≤ t ≤ 6;
 - Find the velocity of the truck at *t* = 2 hours;

$$v(t) = s'(t) = (24t^2 - 4t^3)' = 48t - 12t^2;$$

So $v(2) = 48 \cdot 2 - 12 \cdot 2^2 = 48$ mph;

• Find the acceleration of the truck at *t* = 1 hour;

$$a(t) = v'(t) = (48t - 12t^2)' = 48 - 24t;$$

Therefore, $a(1) = 48 - 24 \cdot 1 = 24$ miles/hours².

Application: Growth Speeding Up or Slowing Down

• Suppose that the world population *t* years from the year 2000 was predicted to be

$$P(t) = 6250 + 160t^{3/4}$$
 millions;

Find P'(16), P''(16) and interpret the answers;

$$P'(t) = (6250 + 160t^{3/4})' = 160 \cdot \frac{3}{4}t^{-1/4} = \frac{120}{\sqrt[4]{t}};$$

$${\cal P}''(t)=(120t^{-1/4})'=120\cdot(-rac{1}{4}t^{-5/4})=\ -rac{30}{\sqrt[4]{t^5}};$$

Thus, $P'(16) = \frac{120}{4\sqrt{16}} = \frac{120}{2} = 60$ millions/year and $P''(16) = -\frac{30}{(\sqrt[4]{16})^5} = -\frac{30}{32} = -0.94$ millions/year²; The first number shows that in 2016 the population will be increasing at the rate of 60 million people per year; The second number shows that the growth will be slowing down at 0.94 million/year².

Subsection 7

Chain and Generalized Power Rules

Composite Functions

• Recall the definition of **composition**: $(f \circ g)(x) = f(g(x))$;

Example: Find formulas for the composites (f ∘ g)(x) and (g ∘ f)(x), if f(x) = x⁷ and g(x) = x² + 2x - 3;

$$(f \circ g)(x) = f(g(x)) = f(x^2 + 2x - 3) = (x^2 + 2x - 3)^7;$$

$$(g \circ f)(x) = g(f(x)) = g(x^7) = (x^7)^2 + 2(x^7) - 3 = x^{14} + 2x^7 - 3.$$

Decomposing Functions

Example: Find two functions f(x) and g(x), such that (x³ - 7)⁵ is the composition f(g(x));
One way of doing this is to think of the series of transformations that produce output (x³ - 7)⁵ from input x;

$$x \xrightarrow{3} x^3 \xrightarrow{-7} x^3 - 7 \xrightarrow{5} (x^3 - 7)^5;$$

These transformations suggest two ways of decomposing $(x^3 - 7)^5$:

Apply the first two steps together and, then, the last step: $g(x) = x^3 - 7$ and $f(x) = x^5$;

2 Apply the first step alone and, then, the last two steps together: $g(x) = x^3$ and $f(x) = (x - 7)^5$.

The Chain Rule

• To compute the derivative of the composite f(g(x)), we apply the Chain Rule:

$$(f(g(x)))' = f'(g(x)) \cdot g'(x);$$

• Example: Use the Chain Rule to find the derivatives:

• $[(x^2 - 5x + 1)^{10}]'$ Let us decompose $(x^2 - 5x + 1)^{10}$ as f(g(x)); Set $f(x) = x^{10}$ and $g(x) = x^2 - 5x + 1$; Then $f'(x) = 10x^9$ and g'(x) = 2x - 5; Now apply the Chain Rule:

$$[(x^2-5x+1)^{10}]' = [f(g(x))]' = f'(g(x)) \cdot g'(x) = 10(x^2-5x+1)^9(2x-5);$$

• $[(5x - 2x^3)^{16}]'$ Let us decompose $(5x - 2x^3)^{16}$ as f(g(x)); Set $f(x) = x^{16}$ and $g(x) = 5x - 2x^3$; Then $f'(x) = 16x^{15}$ and $g'(x) = 5 - 6x^2$; Now apply the Chain Rule:

$$[(5x-2x^3)^{16}]' = [f(g(x))]' = f'(g(x)) \cdot g'(x) = 16(5x-2x^3)^{15}(5-6x^2).$$

General Power Rule

- Example: Use the Chain Rule to find the derivative:
 - $[(x^3 + 7x)^5]'$ Let us decompose $(x^3 + 7x)^5$ as f(g(x)); Set $f(x) = x^5$ and $g(x) = x^3 + 7x$; Then $f'(x) = 5x^4$ and $g'(x) = 3x^2 + 7$; Now apply the Chain Rule:

$$[(x^{3}+7x)^{5}]' = [f(g(x))]' = f'(g(x)) \cdot g'(x) = 5(x^{3}+7x)^{4}(3x^{2}+7);$$

Note how the derivative is taken:

$$[(x^{3}+7x)^{5}]' = \underbrace{5}_{\text{power down}} \underbrace{(x^{3}+7x)^{4}}_{\text{(3x^{2}+7)}} \underbrace{(3x^{2}+7)}_{\text{(3x^{2}+7)}}$$

power down reduce power by 1 derivative of the inside

• This pattern suggests the General Power Rule:

$$[g(x)^n]' = n \cdot g(x)^{n-1} \cdot g'(x).$$

George Voutsadakis (LSSU)

Applying the General Power Rule

• Example: Use the Chain Rule to find the derivative of $\sqrt{x^4 + 3x^2}$;

$$(\sqrt{x^4 + 3x^2})' = [(x^4 + 3x^2)^{1/2}]' = \frac{1}{2}(x^4 + 3x^2)^{-1/2}(x^4 + 3x^2)' = \frac{4x^3 + 6x}{2\sqrt{x^4 + 3x^2}} = \frac{2x^3 + 3x}{\sqrt{x^4 + 3x^2}};$$

• Example: Use the Chain Rule to find the derivative of $\left(\frac{1}{x^2+1}\right)^8$;

$$\left[\left(\frac{1}{x^2+1}\right)^8\right]' = [(x^2+1)^{-8}]' = -8(x^2+1)^{-9}(x^2+1)' = -8\cdot\frac{1}{(x^2+1)^9}\cdot 2x = \frac{-16x}{(x^2+1)^9}.$$

Chain Rule: Alternative Notation

• In the alternative notation for derivatives, if y = f(u) and u = g(x), then y = f(u) = f(g(x)) and

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx};$$

• This says exactly the same thing as

$$[f(g(x))]' = f'(g(x)) \cdot g'(x);$$

It is simply written in the alternative notation for derivatives.

Application: Environmental Disaster

• An oil tanker hits a reef and t days later the radius of the oil slick is $r(t) = \sqrt{4t+1}$ miles; How fast is the radius of the slick expanding after 2 days?

$$r'(t) = (\sqrt{4t+1})'$$

= $[(4t+1)^{1/2}]'$
= $\frac{1}{2}(4t+1)^{-1/2}(4t+1)'$
= $\frac{1}{2} \cdot \frac{1}{\sqrt{4t+1}} \cdot 4$
= $\frac{2}{\sqrt{4t+1}}$;
Thus,

$$r'(2) = \frac{2}{\sqrt{9}} = \frac{2}{3}$$
 miles/day.

Two More Complicated Examples

$$[(5x-2)^4(9x+2)^7]' \stackrel{\text{Product}}{=} [(5x-2)^4]'(9x+2)^7 + (5x-2)^4[(9x+2)^7]' \\ \stackrel{\text{Power}}{=} 4(5x-2)^3(5x-2)'(9x+2)^7 + (5x-2)^4 \cdot 7(9x+2)^6(9x+2)' = \\ 4(5x-2)^3 \cdot 5 \cdot (9x+2)^7 + (5x-2)^4 \cdot 7(9x+2)^6 \cdot 9 = \\ 20(5x-2)^3(9x+2)^7 + 63(5x-2)^4(9x+2)^6;$$

$$\begin{bmatrix} \left(\frac{x}{x+1}\right)^4 \end{bmatrix}' \stackrel{\text{Power}}{=} 4 \left(\frac{x}{x+1}\right)^3 \left(\frac{x}{x+1}\right)' \\ \stackrel{\text{Quotient}}{=} 4 \left(\frac{x}{x+1}\right)^3 \cdot \frac{(x)'(x+1) - x(x+1)'}{(x+1)^2} = \\ 4 \left(\frac{x}{x+1}\right)^3 \cdot \frac{x+1-x}{(x+1)^2} = 4 \frac{x^3}{(x+1)^3} \cdot \frac{1}{(x+1)^2} = \frac{4x^3}{(x+1)^5}.$$

One Last Example

$$\begin{split} & [[x^5 + (x^2 - 1)^3]^7]' \\ \stackrel{\text{Power}}{=} 7[x^5 + (x^2 - 1)^3]^6[x^5 + (x^2 - 1)^3]' \\ \stackrel{\text{Sum}}{=} 7[x^5 + (x^2 - 1)^3]^6[(x^5)' + [(x^2 - 1)^3]'] \\ \stackrel{\text{Power}}{=} 7[x^5 + (x^2 - 1)^3]^6[5x^4 + 3(x^2 - 1)^2(x^2 - 1)'] \\ \stackrel{\text{Power}}{=} 7[x^5 + (x^2 - 1)^3]^6[5x^4 + 3(x^2 - 1)^2 \cdot 2x] \\ &= 7[x^5 + (x^2 - 1)^3]^6[5x^4 + 6x(x^2 - 1)^2]. \end{split}$$