Business and Life Calculus

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 112

(1) Derivatives and Their Uses

- Limits and Continuity
- Continuity
- Rates of Change, Slopes and Derivatives
- Some Differentiation Formulas
- The Product and Quotient Rules
- Higher-Order Derivatives
- Chain and Generalized Power Rules

Subsection 1

Limits and Continuity

Limits

- The statement

$$
\lim _{x \rightarrow c} f(x)=L,
$$

read the limit of $f(x)$ as x approaches c is L, means that the value of $y=f(x)$ approaches arbitrarily close to L as x approaches sufficiently close from either side (but is not equal to) c.

Limits Using Graphs

- Consider the function $f(x)$ whose graph is shown below: Find
- $f(1)=2$;
- $\lim _{x \rightarrow 1} f(x)=1$;
- Consider the function $g(x)$ whose graph is given below: Find
- $g(-1)=3$;
- $\lim _{x \rightarrow-1} g(x)=$ Does Not Exist.

One-Sided Limits

- The statement $\lim _{x \rightarrow c^{-}} f(x)=L$, read the limit of $f(x)$ as x approaches $x \rightarrow c^{-}$
c from the left is L, means that the value of $y=f(x)$ approaches arbitrarily close to L as x approaches sufficiently close from the left (but is not equal to) c;
- The statement $\lim _{x \rightarrow c^{+}} f(x)=L$, read the limit of $f(x)$ as x approaches c from the right is L, means that the value of $y=f(x)$ approaches arbitrarily close to L as x approaches sufficiently close from the right (but is not equal to) c;
- Revisiting the function g :

We have $\lim _{x \rightarrow-1^{-}} g(x)=3$; and $\lim _{x \rightarrow-1^{+}} g(x)=1$.

Limits Using Graphs I

- Consider the function f whose graph is given below:

We have

$$
\begin{aligned}
f(0) & =2 \\
\lim _{x \rightarrow 0^{-}} f(x) & =-1 \\
\lim _{x \rightarrow 0^{+}} f(x) & =2 \\
\lim _{x \rightarrow 0} f(x) & =\text { DNE. }
\end{aligned}
$$

Limits Using Graphs II

- Consider the function f whose graph is given below:

We have

$$
\begin{aligned}
f(-1) & =0 ; \\
\lim _{x \rightarrow-1^{-}} f(x) & =-2 ; \\
\lim _{x \rightarrow-1^{+}} f(x) & =-2 ; \\
\lim _{x \rightarrow-1} f(x) & =-2 ; \\
f(1) & =1 ; \\
\lim _{x \rightarrow 1^{-}} f(x) & =-2 ; \\
\lim _{x \rightarrow 1^{+}} f(x) & =1 ; \\
\lim _{x \rightarrow 1} f(x) & =\text { DNE. }
\end{aligned}
$$

Two Important Simple Limits

- Consider the function $f(x)=a$, a constant;
- Consider, also $g(x)=x$;

What is

$$
\begin{aligned}
& \lim _{x \rightarrow c} f(x)=a \\
& \lim _{x \rightarrow c} g(x)=c
\end{aligned}
$$

- So, for all real numbers a, c, we have the rules

$$
\lim _{x \rightarrow c} a=a \text { and } \lim _{x \rightarrow c} x=c .
$$

Rules for Limits

- We would like to be able to find limits without having to graph;
- For this reason we develop some algebraic rules for computing limits;

Rules for Limits

(1) $\lim _{x \rightarrow c} a=a$; and $\lim _{x \rightarrow c} x=c$;
(2) $\lim _{x \rightarrow c}\left[f(x)^{n}\right]=\left(\lim _{x \rightarrow c} f(x)\right)^{n}$;
(3) $\lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow c} f(x)}$, if $\lim _{x \rightarrow c} f(x) \geq 0$, when n is even;
(9) If $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ both exist, then
a. $\lim _{x \rightarrow c}[f(x)+g(x)]=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)$;
b. $\lim _{x \rightarrow c}[f(x)-g(x)]=\lim _{x \rightarrow c} f(x)-\lim _{x \rightarrow c} g(x)$;
c. $\lim _{x \rightarrow c}[f(x) \cdot g(x)]=\left[\lim _{x \rightarrow c} f(x)\right] \cdot\left[\lim _{x \rightarrow c} g(x)\right]$;
d. $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$, if $\lim _{x \rightarrow c} g(x) \neq 0$.

Using the Rules to Find Limits

- Use the rules to compute the following limits:
- $\lim _{x \rightarrow-3}\left(2 x^{2}-3 x+1\right)$

$$
\stackrel{\text { sum }}{=} \lim _{x \rightarrow-3}\left(2 x^{2}\right)-\lim _{x \rightarrow-3}(3 x)+\lim _{x \rightarrow-3} 1
$$

$$
\stackrel{\text { product }}{=}\left(\lim _{x \rightarrow-3} 2\right) \cdot\left(\lim _{x \rightarrow-3}\left(x^{2}\right)\right)-\left(\lim _{x \rightarrow-3} 3\right) \cdot\left(\lim _{x \rightarrow-3} x\right)+\lim _{x \rightarrow-3} 1
$$

$$
\stackrel{\text { Poover }}{=}\left(\lim _{x \rightarrow-3} 2\right) \cdot\left(\left(\lim _{x \rightarrow-3} x\right)^{2}\right)-\left(\lim _{x \rightarrow-3} 3\right) \cdot\left(\lim _{x \rightarrow-3} x\right)+\lim _{x \rightarrow-3} 1
$$

$$
\stackrel{\text { basic }}{=} 2 \cdot(-3)^{2}-3 \cdot(-3)+1=28
$$

- $\lim _{x \rightarrow 11} \sqrt{x-2} \stackrel{\text { root }}{=} \sqrt{\lim _{x \rightarrow 11}(x-2)} \stackrel{\text { differ }}{=} \sqrt{\lim _{x \rightarrow 11} x-\lim _{x \rightarrow 11} 2} \stackrel{\text { basic }}{=} \sqrt{11-2}=3$;
- $\lim _{x \rightarrow 6} \frac{x^{2}}{x+3} \stackrel{\text { quotient }}{=} \frac{\lim _{x \rightarrow 6}\left(x^{2}\right)}{\lim _{x \rightarrow 6}(x+3)} \stackrel{\text { sum/prod }}{=} \frac{\left(\lim _{x \rightarrow 6} x\right)^{2}}{\lim _{x \rightarrow 6} x+\lim _{x \rightarrow 6} 3} \stackrel{\text { basic }}{=} \frac{6^{2}}{6+3}=\frac{36}{9}=4$.

Summary of the Rules: The Substitution Principle

- For functions composed of additions, subtractions, multiplications, divisions, powers and roots, limits may be evaluated by direct substitution, provided that the resulting expression is defined:

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

- For instance, as we saw in previous slide:
- $\lim _{x \rightarrow-3}\left(2 x^{2}-3 x+1\right)=2(-3)^{2}-3(-3)+1=28$;
- $\lim _{x \rightarrow 11} \sqrt{x-2}=\sqrt{11-2}=3$;
- $\lim _{x \rightarrow 6} \frac{x^{2}}{x+3}=\frac{6^{2}}{6+3}=4$;
- The problem arises when, in attempting to apply the rules the resulting expression is not defined; In that case, we may not conclude that the limit does not exist; Since the rules are not applicable, we simply have to employ some other technique to find it!

Examples Where Rules do not Apply

- Let $f(x)=\frac{x^{2}+6 x-7}{x-1}$; Since $\lim _{x \rightarrow 1}(x-1)=0$, in computing $\lim _{x \rightarrow 1} \frac{x^{2}+6 x-7}{x-1}$, we cannot apply the quotient rule, i.e., we cannot write $\lim _{x \rightarrow 1} \frac{x^{2}+6 x-7}{x-1}=\frac{\lim _{x \rightarrow 1}\left(x^{2}+6 x-7\right)}{\lim _{x \rightarrow 1}(x-1)}$;
The expression on the right does not even make sense;
- Let $f(x)=\frac{x-11}{\sqrt{x-2}-3}$; Since $\lim _{x \rightarrow 11}(\sqrt{x-2}-3)=0$, in computing $\lim _{x \rightarrow 11} \frac{x-11}{\sqrt{x-2}-3}$, we cannot apply the quotient rule, i.e., we cannot write $\lim _{x \rightarrow 11} \frac{x-11}{\sqrt{x-2}-3}=\frac{\lim _{x \rightarrow 11}(x-11)}{\lim _{x \rightarrow 11}(\sqrt{x-2}-3)}$;
The expression on the right does not make sense either;
- So what are we supposed to do in these cases?

Finding Limits by Factoring and Simplifying

- Compute the following limits:
- $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}\left(\stackrel{\text { quotient }}{=} \frac{0}{0}\right) \stackrel{\text { factor }}{=} \lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{x-1} \stackrel{\text { simplify }}{=} \lim _{x \rightarrow 1}(x+1) \stackrel{\text { substitute }}{=}$ $1+1=2$;
- $\lim _{x \rightarrow 5} \frac{2 x^{2}-10 x}{x-5}\left(\stackrel{\text { quotient }}{=} \frac{0}{0}\right) \stackrel{\text { factor }}{=} \lim _{x \rightarrow 5} \frac{2 x(x-5)}{x-5} \stackrel{\text { simplify }}{=} \lim _{x \rightarrow 5}(2 x) \stackrel{\text { substitute }}{=} 2 \cdot 5=$ 10;
- $\lim _{x \rightarrow 1} \frac{x^{2}+6 x-7}{x-1}\left(\stackrel{\text { quotient }}{=} \frac{0}{0}\right) \stackrel{\text { factor }}{=} \lim _{x \rightarrow 1} \frac{(x-1)(x+7)}{x-1} \stackrel{\text { simplify }}{=}$
$\lim _{x \rightarrow 1}(x+7) \stackrel{\text { substitute }}{=} 1+7=8$;
- $\lim _{x \rightarrow 1} \frac{\frac{1}{x}-1}{x-1}\left(\stackrel{\text { quotient }}{=} \frac{0}{0}\right) \stackrel{\text { subtract }}{=} \lim _{x \rightarrow 1} \frac{\frac{1}{x}-\frac{x}{x}}{x-1}=\lim _{x \rightarrow 1} \frac{\frac{1-x}{x}}{x-1} \stackrel{\text { divide }}{=}$ $\lim _{x \rightarrow 1} \frac{-(x-1)}{x(x-1)} \stackrel{\text { simplify }}{=} \lim _{x \rightarrow 1} \frac{-1}{x} \stackrel{\text { substitute }}{=} \frac{-1}{1}=-1$.

Finding Limits by Multiplying by the Conjugate I

- Compute the following limit:
- $\lim _{x \rightarrow 9} \frac{2 \sqrt{x+7}-8}{x-9}\left(\stackrel{\text { quotient }}{=} \frac{0}{0}\right) \stackrel{\text { conjugate }}{=}$
$\lim _{x \rightarrow 9} \frac{(2 \sqrt{x+7}-8)(2 \sqrt{x+7}+8)}{(x-9)(2 \sqrt{x+7}+8)} \stackrel{\text { multiply top }}{=}$
$\lim _{x \rightarrow 9} \frac{4(x+7)-64}{(x-9)(2 \sqrt{x+7}+8)} \stackrel{\text { simplify }}{=} \lim _{x \rightarrow 9} \frac{4 x+28-64}{(x-9)(2 \sqrt{x+7}+8)}=$
$\lim _{x \rightarrow 9} \frac{4 x-36}{(x-9)(2 \sqrt{x+7}+8)} \stackrel{\text { factor }}{=} \lim _{x \rightarrow 9} \frac{4(x-9)}{(x-9)(2 \sqrt{x+7}+8)} \stackrel{\text { simplify }}{=}$
$\lim _{x \rightarrow 9} \frac{4}{2 \sqrt{x+7}+8} \stackrel{\text { substitute }}{=} \frac{4}{2 \sqrt{9+7}+8}=\frac{1}{4}$.

Finding Limits by Multiplying by the Conjugate II

- Compute the following limit:
- $\lim _{x \rightarrow 11} \frac{x-11}{\sqrt{x-2}-3}\left(\stackrel{\text { quotient }}{=} \frac{0}{0}\right) \stackrel{\text { conjugate }}{=}$

$$
\begin{aligned}
& \lim _{x \rightarrow 11} \frac{(x-11)(\sqrt{x-2}+3)}{(\sqrt{x-2}-3)(\sqrt{x-2}+3)} \stackrel{\text { multiply bottom }}{=} \\
& \lim _{x \rightarrow 11} \frac{(x-11)(\sqrt{x-2}+3)}{x-2-9}=\lim _{x \rightarrow 11} \frac{(x-11)(\sqrt{x-2}+3)}{x-11} \stackrel{\text { simplify }}{=} \\
& \lim _{x \rightarrow 11}(\sqrt{x-2}+3) \stackrel{\text { substitute }}{=} \sqrt{11-2}+3=6
\end{aligned}
$$

Limits Where $y \rightarrow \pm \infty$

- $\lim _{-} f(x)=\infty$ means that the values of $f(x)$ grow arbitrarily large as $x \rightarrow c^{-}$ x approaches c from the left;
- $\lim _{x \rightarrow c^{+}} f(x)=\infty$ means that the values of $f(x)$ grow arbitrarily large as $x \rightarrow c^{+}$ x approaches c from the right;
- $\lim _{x \rightarrow c} f(x)=\infty$ means that both $\lim _{x \rightarrow c^{-}} f(x)=\infty$ and $\lim _{x \rightarrow c^{+}} f(x)=\infty$ are true;
- Consider the function $f(x)=\frac{1}{x}$ whose graph is given below:

We have

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}} f(x) & =-\infty \\
\lim _{x \rightarrow 0^{+}} f(x) & =\infty ; \\
\lim _{x \rightarrow 0} f(x) & =\text { DNE. }
\end{aligned}
$$

Another Example

- Consider the function $f(x)=\frac{1}{(x-1)^{2}}$ whose graph is given below:

We have

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\infty ; \\
\lim _{x \rightarrow 1^{+}} f(x) & =\infty ; \\
\lim _{x \rightarrow 1} f(x) & =\infty .
\end{aligned}
$$

Limits Where $x \rightarrow \pm \infty$

- $\lim _{x \rightarrow-\infty} f(x)=L$ means that the values of $f(x)$ get arbitrarily close to L as x grows arbitrarily small;
- $\lim _{x \rightarrow \infty} f(x)=L$ means that the values of $f(x)$ get arbitrarily close to L as x grows arbitrarily large;
- Consider, again $f(x)=\frac{1}{x}$ whose graph is given below:

We have

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x) & =0 \\
\lim _{x \rightarrow \infty} f(x) & =0
\end{aligned}
$$

Graphical Examples of Limits Involving Infinity

- Consider the function $f(x)$ whose graph is given below:

We have
$\lim _{x \rightarrow-\infty} f(x)=2 ; \quad \lim _{x \rightarrow \infty} f(x)=-1$;
$\lim _{x \rightarrow 0^{-}} f(x)=-\infty ; \quad \lim _{x \rightarrow 0^{+}} f(x)=\infty$;
$\lim _{x \rightarrow 0} f(x)=$ DNE;
$\lim _{x \rightarrow 1^{-}} f(x)=-\infty ; \quad \lim _{x \rightarrow 1^{+}} f(x)=-\infty ;$
$\lim f(x)=-\infty$. $x \rightarrow 1$

Algebraic Computation of Limits Involving Infinity

- Suppose that you would like to compute $\lim _{x \rightarrow c} f(x)$; Try plugging in c for x to see if the resulting expression is defined; If yes, you may use the substitution property; In addition, be aware of the following cases (a is a fixed real):
- The form $\frac{a}{ \pm \infty}$: Always approaches 0 :
- For example, $\lim _{x \rightarrow \infty} \frac{1}{x}=0, \lim _{x \rightarrow-\infty} \frac{5}{x+2}=0$;
- The form $\frac{a}{0}$ with $a \neq 0$: Always approaches $\pm \infty$:
- For example, $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=+\infty, \lim _{x \rightarrow 5^{-}} \frac{3}{x-5}=-\infty$;
- The forms $\frac{0}{0}$ and $\frac{ \pm \infty}{ \pm \infty}$: These are undetermined; But this does not necessarily mean that limits do not exist; It simply means that we have to work harder to reveal what really happens;
- For example,

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{x}=\lim _{x \rightarrow \infty} x=\infty, \lim _{x \rightarrow \infty} \frac{x}{x^{2}}=\lim _{x \rightarrow \infty} \frac{1}{x}=0, \lim _{x \rightarrow 0^{-}} \frac{x}{x^{2}}=\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty .
$$

More Involved Examples

- Compute the limits of the following rational functions:
- $\lim _{x \rightarrow \infty} \frac{3 x^{3}-x+1}{x^{3}+2 x} \stackrel{\text { divide by } x^{3}}{=} \lim _{x \rightarrow \infty} \frac{\frac{3 x^{3}-x+1}{x^{3}}}{\frac{x^{3}+2 x}{x^{3}}} \stackrel{\text { break }}{=} \lim _{x \rightarrow \infty} \frac{\frac{3 x^{3}}{x^{3}}-\frac{x}{x^{3}}+\frac{1}{x^{3}}}{\frac{x^{3}}{x^{3}}+\frac{2 x}{x^{3}}} \stackrel{\text { simplify }}{=}$ $\lim _{x \rightarrow \infty} \frac{3-\frac{1}{x^{2}}+\frac{1}{x^{3}}}{1+\frac{2}{x^{2}}} \stackrel{\text { take limits }}{=} \frac{3-0+0}{1+0}=3 ;$
- $\lim _{x \rightarrow \infty} \frac{5 x+3}{x^{2}-1} \stackrel{\text { divide by } x^{2}}{=} \lim _{x \rightarrow \infty} \frac{\frac{5 x+3}{x^{2}}}{\frac{x^{2}-1}{x^{2}}} \stackrel{\text { break }}{=} \lim _{x \rightarrow \infty} \frac{\frac{5 x}{x^{2}}+\frac{3}{x^{2}}}{\frac{x^{2}}{x^{2}}-\frac{1}{x^{2}}} \stackrel{\text { simplify }}{=}$

$$
\lim _{x \rightarrow \infty} \frac{\frac{5}{x}+\frac{3}{x^{2}}}{1-\frac{1}{x^{2}}} \stackrel{\text { take limits }}{=} \frac{0+0}{1-0}=0
$$

- $\lim _{x \rightarrow \infty} \frac{x^{3}+5 x}{2 x^{2}+7} \stackrel{\text { divide by } x^{2}}{=} \lim _{x \rightarrow \infty} \frac{\frac{x^{3}+5 x}{x^{2}}}{\frac{2 x^{2}+7}{x^{2}}} \stackrel{\text { break }}{=} \lim _{x \rightarrow \infty} \frac{\frac{x^{3}}{x^{2}}+\frac{5 x}{x^{2}}}{\frac{2 x^{2}}{x^{2}}+\frac{7}{x^{2}}} \stackrel{\text { simplify }}{=}$

$$
\lim _{x \rightarrow \infty} \frac{x+\frac{5}{x}}{2+\frac{7}{x^{2}}} \stackrel{\text { take limits }}{=} \frac{\infty+0}{2+0}=\infty
$$

Limits of Rational Functions as $x \rightarrow \pm \infty$

- The examples in the previous slide suggest the following general rule for finding

$$
\lim _{x \rightarrow \infty} \frac{P(x)}{Q(x)}
$$

for $P(x)$ and $Q(x)$ polynomial functions:
(1) If the degree of the numerator is greater than the degree of the denominator, then the limit is $\pm \infty$;

- $\lim _{x \rightarrow \infty} \frac{x^{3}+5 x}{2 x^{2}+7}=\infty$;
(2) If the degree of the numerator and the degree of the denominator are equal, then the limit is equal to the ratio of the leading coefficients;
- $\lim _{x \rightarrow \infty} \frac{3 x^{3}-x+1}{x^{3}+2 x}=\frac{3}{1}=3 ;$
(3) If the degree of the numerator is less than the degree of the denominator, then the limit is 0 ;
- $\lim _{x \rightarrow \infty} \frac{5 x+3}{x^{2}-1}=0$.

Subsection 2

Continuity

Continuity at a Point Geometrically

- A function is continuous at $x=c$ if its graph passes through ($c, f(c)$) without a "hole" or a "jump";
- Let us take a look at $y=f(x)$

The function $f(x)$ depicted is discontinuous at the points $-4,2$ and 4 , but it is continuous at -1 ;

- At points of continuity, we can draw graph moving from left to right passing through the point without having to lift pencil from paper;
- This is not true at the points of discontinuity; There the "hole" or the "jump" forces us to reposition the pencil by lifting it from the paper as we move from left to right through the point.

Continuity at a Point Algebraically

- A function is continuous at $x=c$ if
- $f(c)$ is defined;

This means a graph has a point at $x=c$.

- $\lim _{x \rightarrow c} f(x)$ exists;

This means that $\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)$; So, as x approaches c from left, $f(x)$ stays at same level as when x approaches c from the right. Thus, f does not "jump" passing through c.

- $\lim _{x \rightarrow c} f(x)=f(c)$.

The point of the graph at c has to be at the same level as that approached by $f(x)$ when x approaches c; So, no "hole" occurs over c.

Example Revisited

- Let us look again at $y=f(x)$:

$$
\begin{array}{lll}
f(-4)=3 ; & f(2)=-1 ; & f(4)=\text { DNE; } \\
\lim _{x \rightarrow-4^{-}} f(x)=3 ; & \lim _{x \rightarrow 2^{-}} f(x)=-1 ; & \lim _{x \rightarrow 4^{-}} f(x)=2 \\
\lim _{x \rightarrow-4^{+}} f(x)=-2 ; & \lim _{x \rightarrow 2^{+}} f(x)=5 ; & \lim _{x \rightarrow 4^{+}} f(x)=2 \\
\lim _{x \rightarrow-4} f(x)=\text { DNE; } & \lim _{x \rightarrow 2} f(x)=\text { DNE; } ; & \lim _{x \rightarrow 4} f(x)=2
\end{array}
$$

Left and Right Continuity at a Point

- If $\lim _{x \rightarrow c^{-}} f(x)=f(c)$, then we say that f is left continuous at c;
- If $\lim _{x \rightarrow c^{+}} f(x)=f(c)$, then we say that f is right continuous at c;
- Since for continuity at c we require that $\lim _{x \rightarrow c} f(x)=f(c)$ (which means $\left.\lim _{x \rightarrow c^{-}} f(x)=f(c)=\lim _{x \rightarrow c^{+}} f(x)\right)$, it is clear that:
f is continuous at c if and only if it is both left and right continuous at c.

Example Revisited

- Let us look again at $y=f(x)$:

- At $x=-4, \lim _{x \rightarrow-4^{-}} f(x)=3=f(-4)$. So f is left continuous at $x=-4 ;$
- At $x=2, \lim ^{f} f(x)=-1=f(2)$. So f is left continuous at $x=2$; $x \rightarrow 2^{-}$
- At $x=4, f(4)$ does not exist. So f can be neither left nor right continuous at $x=4$.

Algebraic Example

- Consider the piece-wise defined function

$$
f(x)= \begin{cases}x+2, & \text { if } x<-1 \\ x^{2} & \text { if }-1 \leq x<2 \\ -x^{2}+7, & \text { if } x \geq 2\end{cases}
$$

- We first investigate whether f is continuous, left/right continuous or discontinuous at $x=-1$.

$$
\begin{aligned}
& f(-1)=(-1)^{2}=1 \\
& \lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}}(x+2)=-1+2=1 ; \\
& \lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} x^{2}=(-1)^{2}=1 ; \\
& \lim _{x \rightarrow-1} f(x)=1 ;
\end{aligned}
$$

Therefore $\lim _{x \rightarrow-1} f(x)=1=f(-1)$ and f is continuous at $x=-1$;

Algebraic Example (Cont'd)

- Consider, again, the piece-wise defined function

$$
f(x)= \begin{cases}x+2, & \text { if } x<-1 \\ x^{2} & \text { if }-1 \leq x<2 \\ -x^{2}+7, & \text { if } x \geq 2\end{cases}
$$

- We next investigate whether f is continuous, left/right continuous or discontinuous at $x=2$.

$$
\begin{aligned}
& f(2)=-2^{2}+7=3 \\
& \lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}} x^{2}=2^{2}=4 ; \\
& \lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}\left(-x^{2}+7\right)=-2^{2}+7=3 ; \\
& \lim _{x \rightarrow 2} f(x)=\text { DNE; }
\end{aligned}
$$

Therefore, $\lim _{x \rightarrow 2^{+}} f(x)=3=f(2)$ and f is right continuous at $x=2$;
But since the $\lim _{x \rightarrow 2} f(x)$ does not exist f is not continuous at $x=2$;

Combinations of Continuous Functions

- If two functions f and g are continuous at a point c, then the following are also continuous at c :
(1) $f \pm g$;
(2) $a \cdot f$, for any constant a;
(3) $f \cdot g$;
(고 $\frac{f}{g}$, if $g(c) \neq 0$;
(5) $f(g(x))$, if f is continuous at $g(c)$;
- Consequences of these rules are the following facts:
- Every polynomial function is continuous at all real numbers;
- Every rational function is continuous at all points where it is defined.

Functions That Are Continuous

- We saw that:
- Every polynomial function is continuous everywhere;
- Every rational function is continuous at all points where it is defined;
- From the graphs, it is easy to see that, in addition:
- Every exponential function $f(x)=a^{x}, 0<a \neq 1$, is continuous everywhere.
- Example: Determine where each function is continuous or discontinuous:
- $f(x)=x^{5}+5 x^{3}-11 x$ is continuous everywhere since it is a polynomial;
- $f(x)=\frac{1}{x^{2}-36}$ is continuous at all points except ± 6, since it is a rational function with domain $\operatorname{Dom}(f)=\mathbb{R}-\{-6,6\}$;
- $f(x)=e^{x-5}$ is continuous everywhere because it is the composite of $x-5$ and e^{x}, which are continuous - a polynomial and an exponential everywhere.

Subsection 3

Rates of Change, Slopes and Derivatives

Average and Instantaneous Rate of Change

- The average rate of change of a function f between x and $x+h$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f(x+h)-f(x)}{h}
$$

- To find the instantaneous rate of change at x, we take $h \rightarrow 0$, so that the interval $(x, x+h)$ becomes so small that f has very little chance to change.
- The instantaneous rate of change of f at x is

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Average and Instantaneous Rate of Change: Example

- Find the average rate of change of the temperature $T(t)=t^{2}$ (in degrees) between $t=1$ and $t=3$ hours;
We have

$$
\frac{T(3)-T(1)}{3-1}=\frac{3^{2}-1^{2}}{3-1}=\frac{8}{2}=4 ;
$$

Thus, the average rate of change was 4 degrees per hour;

- Example: Find the instantaneous rate of change of the temperature $T(t)=t^{2}$ (in degrees) at $t=1$;
We have

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{T(1+h)-T(1)}{h}=\lim _{h \rightarrow 0} \frac{(1+h)^{2}-1^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1+2 h+h^{2}-1}{h}=\lim _{h \rightarrow 0} \frac{h(2+h)}{h} \\
& =\lim _{h \rightarrow 0}(2+h)=2
\end{aligned}
$$

Thus, the instantaneous rate of change was 2 degrees/hour at $t=1$.

Slope of Secant and Tangent Lines

- Consider the secant line to the graph of $y=f(x)$ through $(x, f(x))$ and $(x+h, f(x+h))$;

- It has slope $\frac{f(x+h)-f(x)}{h}$;
- The tangent line to $y=f(x)$ at x has slope $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.

Slope of a Tangent Line

- Find the slope of the tangent line to $f(x)=\frac{1}{x+1}$ at $x=3$;

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{(3+h)+1}-\frac{1}{3+1}}{h}= \\
& \lim _{h \rightarrow 0} \frac{\frac{1}{4+h}-\frac{1}{4}}{h}=\lim _{h \rightarrow 0} \frac{\frac{4}{4(4+h)}-\frac{4+h}{4(4+h)}}{h}= \\
& \lim _{h \rightarrow 0} \frac{\frac{4-(4+h)}{4(4+h)}}{h}=\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{-h}{4(4+h)}= \\
& \lim _{h \rightarrow 0}\left(-\frac{1}{4(4+h)}\right)=-\frac{1}{16} .
\end{aligned}
$$

Equation of a Tangent Line I

- Find an equation of the tangent line to $f(x)=\sqrt{3-x}$ at $x=2$;

First, find the slope of the tangent line

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(2+h)-f(2)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{3-(2+h)}-\sqrt{3-2}}{h}= \\
& \lim _{h \rightarrow 0} \frac{\sqrt{1-h}-1}{h}=\lim _{h \rightarrow 0} \frac{(\sqrt{1-h}-1)(\sqrt{1-h}+1)}{h(\sqrt{1-h}+1)}= \\
& \lim _{h \rightarrow 0} \frac{(\sqrt{1-h})^{2}-1^{2}}{h(\sqrt{1-h}+1)}=\lim _{h \rightarrow 0} \frac{1-h-1}{h(\sqrt{1-h}+1)}= \\
& \lim _{h \rightarrow 0} \frac{-h}{h(\sqrt{1-h}+1)}=\lim _{h \rightarrow 0} \frac{-1}{\sqrt{1-h}+1}= \\
& \frac{-1}{\sqrt{1-0}+1}=-\frac{1}{2}
\end{aligned}
$$

Thus, the equation of the tangent line is $y-f(2)=-\frac{1}{2}(x-2)$ or $y-1=-\frac{1}{2}(x-2)$.

Equation of a Tangent Line I (Illustration)

- The equation of the tangent line to $f(x)=\sqrt{3-x}$ at $x=2$ is $y-1=-\frac{1}{2}(x-2)$.

Equation of a Tangent Line II

- Find an equation of the tangent line to $f(x)=-x^{2}+4 x$ at $x=1$; First, find the slope of the tangent line

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}= \\
& \lim _{h \rightarrow 0} \frac{-(1+h)^{2}+4(1+h)-\left(-1^{2}+4 \cdot 1\right)}{h}= \\
& \lim _{h \rightarrow 0} \frac{-\left(1^{2}+2 h+h^{2}\right)+4+4 h-3}{h}= \\
& \lim _{h \rightarrow 0} \frac{-1-2 h-h^{2}+4+4 h-3}{h}= \\
& \lim _{h \rightarrow 0} \frac{2 h-h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2-h)}{h}=\lim _{h \rightarrow 0}(2-h)=2
\end{aligned}
$$

Thus, the equation of the tangent line is $y-f(1)=2(x-1)$ or $y-3=2(x-1)$.

Equation of a Tangent Line II (Illustration)

- The equation of the tangent line to $f(x)=-x^{2}+4 x$ at $x=1$ is $y-3=2(x-1)$.

The Derivative

Definition of the Derivative

The derivative of f at x is defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

if the limits exists; The derivative $f^{\prime}(x)$ gives the instantaneous rate of change of f at x and, also, the slope of the tangent line to $y=f(x)$ at x;

- Example: Compute $f^{\prime}(x)$ if $f(x)=x^{2}-3 x$;
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-3(x+h)-\left(x^{2}-3 x\right)}{h}=$
$\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-3 x-3 h-x^{2}+3 x}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-3 h}{h}=$
$\lim _{h \rightarrow 0} \frac{h(2 x+h-3)}{h}=\lim _{h \rightarrow 0}(2 x+h-3)=2 x+0-3=2 x-3$.

Another Example of a Tangent Line

- Find an equation of the tangent line to $f(x)=\frac{1}{1+x^{2}}$ at $x=1$;

First, find the slope of the tangent line $f^{\prime}(1)$:

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{1+(1+h)^{2}}-\frac{1}{1+1^{2}}}{h}= \\
& \lim _{h \rightarrow 0} \frac{\frac{1}{1+1+2 h+h^{2}}-\frac{1}{2}}{h}=\lim _{h \rightarrow 0} \frac{1}{h}\left(\frac{1}{2+2 h+h^{2}}-\frac{1}{2}\right)= \\
& \lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{2-\left(2+2 h+h^{2}\right)}{2\left(2+2 h+h^{2}\right)}=\lim _{h \rightarrow 0} \frac{1}{h} \cdot \frac{-h(2+h)}{2\left(2+2 h+h^{2}\right)}= \\
& \lim _{h \rightarrow 0} \frac{-(2+h)}{2\left(2+2 h+h^{2}\right)}=\frac{-(2+0)}{2\left(2+2 \cdot 0+0^{2}\right)}=-\frac{1}{2}
\end{aligned}
$$

Thus, the equation of the tangent line is $y-f(1)=-\frac{1}{2}(x-1)$ or $y-\frac{1}{2}=-\frac{1}{2}(x-1)$.

Tangent Line (Illustration)

- The equation of the tangent line to $f(x)=\frac{1}{1+x^{2}}$ at $x=1$ is $y-\frac{1}{2}=-\frac{1}{2}(x-1)$.

Alternative Notation for the Derivative

- We should all be aware that the following alternative notation is sometimes used for the derivative $f^{\prime}(x)$ of f at a point x :

$$
f^{\prime}(x)=\frac{d f}{d x}=y^{\prime}=\frac{d y}{d x} ;
$$

- Also, when the value of $f^{\prime}(x)$ at a specific point $x=c$ is considered, we write

$$
f^{\prime}(c)=\left.\frac{d f}{d x}\right|_{x=c}=y^{\prime}(c)=\left.\frac{d y}{d x}\right|_{x=c} ;
$$

Subsection 4

Some Differentiation Formulas

Derivative of a Constant

- Consider a constant function $f(x)=c$;

The tangent to $y=c$ at any point is horizontal; Thus, its slope is zero:

$$
\left(c^{\prime}\right)=0 ;
$$

- Algebraically,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{c-c}{h}=\lim _{h \rightarrow 0} 0=0 .
$$

Power Rule

- For any exponent n,

$$
\left(x^{n}\right)^{\prime}=n \cdot x^{n-1}
$$

- Example: Find the following derivatives:
- $\left(x^{7}\right)^{\prime}=7 x^{7-1}=7 x^{6}$;
- $\left(x^{94}\right)^{\prime}=94 x^{94-1}=94 x^{93}$;
- $\left(\frac{1}{x^{5}}\right)^{\prime}=\left(x^{-5}\right)^{\prime}=(-5) x^{-5-1}=-5 x^{-6}=-\frac{5}{x^{6}}$;
- $(\sqrt{x})^{\prime}=\left(x^{1 / 2}\right)^{\prime}=\frac{1}{2} x^{\frac{1}{2}-1}=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 x^{1 / 2}}=\frac{1}{2 \sqrt{x}}$;
- $(\sqrt[3]{x})^{\prime}=\left(x^{1 / 3}\right)^{\prime}=\frac{1}{3} x^{\frac{1}{3}-1}=\frac{1}{3} x^{-2 / 3}=\frac{1}{3 x^{2 / 3}}=\frac{1}{3 \sqrt[3]{x^{2}}}$;
- $(x)^{\prime}=\left(x^{1}\right)^{\prime}=1 x^{1-1}=1 x^{0}=1$.

Constant Factor

- Constant Factor or Constant Multiple Rule:

$$
(c \cdot f(x))^{\prime}=c \cdot f^{\prime}(x)
$$

- Example: Find the following derivatives:
- $\left(5 x^{7}\right)^{\prime}=5\left(x^{7}\right)^{\prime}=5 \cdot 7 x^{6}=35 x^{6}$;
- $\left(\frac{7}{x^{3}}\right)^{\prime}=\left(7 x^{-3}\right)^{\prime}=7\left(x^{-3}\right)^{\prime}=7 \cdot(-3) x^{-4}=-\frac{21}{x^{4}}$;
- $\left(\frac{8}{\sqrt{x}}\right)^{\prime}=\left(8 x^{-1 / 2}\right)^{\prime}=8\left(x^{-1 / 2}\right)^{\prime}=8 \cdot\left(-\frac{1}{2}\right) x^{-3 / 2}=-\frac{4}{x^{3 / 2}}=-\frac{4}{\sqrt{x^{3}}}$;
- $(17 x)^{\prime}=17(x)^{\prime}=17 \cdot 1=17$.

Sum/Difference Rule

- Sum/Difference Rule:

$$
(f(x) \pm g(x))^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)
$$

- Example: Find the following derivatives:

$$
\begin{aligned}
& \left(x^{3}-x^{7}\right)^{\prime}=\left(x^{3}\right)^{\prime}-\left(x^{7}\right)^{\prime}=3 x^{2}-7 x^{6} \\
& \left(7 x^{-5}-3 x^{1 / 3}+17\right)^{\prime}=\left(7 x^{-5}\right)^{\prime}-\left(3 x^{1 / 3}\right)^{\prime}+(17)^{\prime}= \\
& 7\left(x^{-5}\right)^{\prime}-3\left(x^{1 / 3}\right)^{\prime}+0=7(-5) x^{-6}-3 \cdot \frac{1}{3} x^{-2 / 3}=-35 x^{-6}-x^{-2 / 3}
\end{aligned}
$$

Example I

- Find an equation for the tangent line to the graph of $f(x)=2 x^{3}-5 x^{2}+3$ at $x=2$;
First compute the slope $f^{\prime}(2)$ of the tangent line:

$$
\begin{aligned}
& f^{\prime}(x)=\left(2 x^{3}-5 x^{2}+3\right)^{\prime}=\left(2 x^{3}\right)^{\prime}-\left(5 x^{2}\right)^{\prime}+(3)^{\prime}= \\
& 2\left(x^{3}\right)^{\prime}-5\left(x^{2}\right)^{\prime}+0=2 \cdot 3 x^{2}-5 \cdot 2 x=6 x^{2}-10 x
\end{aligned}
$$

Thus, $f^{\prime}(2)=6 \cdot 2^{2}-10 \cdot 2=$ 4; Therefore the tangent line has equation

$$
\begin{aligned}
& y-f(2)=f^{\prime}(2)(x-2) \\
& \Rightarrow y-(-1)=4(x-2) \\
& \Rightarrow y=4 x-9
\end{aligned}
$$

Example II

- Find an equation for the tangent line to the graph of $f(x)=5 x^{4}+1$ at $x=-1$;
First compute the slope $f^{\prime}(-1)$ of the tangent line:

$$
\begin{aligned}
& f^{\prime}(x)=\left(5 x^{4}+1\right)^{\prime}=\left(5 x^{4}\right)^{\prime}+(1)^{\prime}= \\
& 5\left(x^{4}\right)^{\prime}+0=5 \cdot 4 x^{3}=20 x^{3}
\end{aligned}
$$

Thus, $f^{\prime}(-1)=20 \cdot(-1)^{3}=$ -20 ; Therefore the tangent line has equation

$$
\begin{aligned}
& y-f(-1)=f^{\prime}(-1)(x-(-1)) \\
& \Rightarrow y-6=-20(x+1) \\
& \Rightarrow y=-20 x-14
\end{aligned}
$$

Business: Marginal Analysis

- Let x denote the number of items produced and sold by a company;
- Suppose that $C(x), R(x)$ and $P(x)=R(x)-C(x)$ are the cost, revenue and profit function, respectively;
- The marginal cost at x is the cost for producing one more unit:

$$
\begin{aligned}
& \text { Marginal Cost }(x)=C(x+1)-C(x)=\frac{C(x+1)-C(x)}{1} \\
& \approx \lim _{h \rightarrow 0} \frac{C(x+h)-C(x)}{h}=C^{\prime}(x)
\end{aligned}
$$

- Because of this, in calculus we define the marginal cost function $M C(x)$ by

$$
M C(x)=C^{\prime}(x)
$$

- Similarly, for marginal revenue and for marginal profit:

$$
\operatorname{MR}(x)=R^{\prime}(x) \quad \text { and } \quad \operatorname{MP}(x)=P^{\prime}(x)
$$

Application: Marginal Cost

- The cost function in dollars for producing x items is given by

$$
C(x)=8 \sqrt[4]{x^{3}}+300
$$

- Find the marginal cost function $\mathrm{MC}(x)$;

$$
\begin{aligned}
& M C(x)=C^{\prime}(x)^{M}=\left(8 \sqrt[4]{x^{3}}+300\right)^{\prime}=\left(8 x^{3 / 4}\right)^{\prime}=8\left(x^{3 / 4}\right)^{\prime}= \\
& 8 \cdot \frac{3}{4} x^{-1 / 4}=\frac{6}{\sqrt[4]{x}}
\end{aligned}
$$

- Find the marginal cost when 81 items are produced; Interpret the answer;

$$
M C(81)=\frac{6}{\sqrt[4]{81}}=\frac{6}{3}=2
$$

This is the approximate additional cost for producing the 82nd item.

Application: Learning Rate

- A psychology researcher found that the number of names a person can memorize in t minutes is approximately

$$
N(t)=6 \sqrt[3]{t^{2}}
$$

Find the instantaneous rate of change of this function after 8 minutes and interpret your answer;

$$
N^{\prime}(t)=\left(6 \sqrt[3]{t^{2}}\right)^{\prime}=\left(6 t^{2 / 3}\right)^{\prime}=6\left(t^{2 / 3}\right)^{\prime}=6 \cdot \frac{2}{3} t^{-1 / 3}=\frac{4}{\sqrt[3]{t}}
$$

Therefore,

$$
N^{\prime}(8)=\frac{4}{\sqrt[3]{8}}=\frac{4}{2}=2
$$

Thus, a person can memorize approximately 2 additional names/minute after 8 minutes.

Subsection 5

The Product and Quotient Rules

Product Rule

- The Product Rule for Derivatives:

$$
(f(x) \cdot g(x))^{\prime}=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)
$$

- Example: Use the product rule to calculate the derivatives:
- $\left(x^{4} \cdot x^{7}\right)^{\prime}=\left(x^{4}\right)^{\prime} x^{7}+x^{4}\left(x^{7}\right)^{\prime}=4 x^{3} x^{7}+x^{4} \cdot 7 x^{6}=4 x^{10}+7 x^{10}=11 x^{10}$;
- $\left[\left(x^{2}-x+2\right)\left(x^{3}+5\right)\right]^{\prime}=\left(x^{2}-x+2\right)^{\prime}\left(x^{3}+5\right)+\left(x^{2}-x+2\right)\left(x^{3}+5\right)^{\prime}=$ $(2 x-1)\left(x^{3}+5\right)+\left(x^{2}-x+2\right)\left(3 x^{2}\right)=$ $2 x^{4}-x^{3}+10 x-5+3 x^{4}-3 x^{3}+6 x^{2}=5 x^{4}-4 x^{3}+6 x^{2}+10 x-5$;
- $\left[x^{3}\left(x^{2}-x\right)\right]^{\prime}=\left(x^{3}\right)^{\prime}\left(x^{2}-x\right)+x^{3}\left(x^{2}-x\right)^{\prime}=$ $3 x^{2}\left(x^{2}-x\right)+x^{3}(2 x-1)=3 x^{4}-3 x^{3}+2 x^{4}-x^{3}=5 x^{4}-4 x^{3}$.

Using Product Rule

- Find an equation for the tangent line to the graph of $f(x)=\sqrt{x}(2 x-4)$ at $x=4$;
First compute the slope $f^{\prime}(4)$ of the tangent line:

$$
\begin{aligned}
& \quad f^{\prime}(x)=[\sqrt{x}(2 x-4)]^{\prime}=\left[x^{1 / 2}(2 x-4)\right]^{\prime}= \\
& \left(x^{1 / 2}\right)^{\prime}(2 x-4)+x^{1 / 2}(2 x-4)^{\prime}=\frac{1}{2} x^{-1 / 2}(\\
& \frac{2 x-4}{2 \sqrt{x}}+2 \sqrt{x}=\frac{x-2}{\sqrt{x}}+2 \sqrt{x} ; \\
& \text { Thus, } f^{\prime}(4)=\frac{4-2}{\sqrt{4}}+2 \sqrt{4}=1+4=5 ;
\end{aligned}
$$

$$
\left(x^{1 / 2}\right)^{\prime}(2 x-4)+x^{1 / 2}(2 x-4)^{\prime}=\frac{1}{2} x^{-1 / 2}(2 x-4)+2 x^{1 / 2}=
$$

Therefore the tangent line has equation

$$
\begin{aligned}
& y-f(4)=f^{\prime}(4)(x-4) \\
& \Rightarrow y-8=5(x-4) \\
& \Rightarrow y=5 x-12
\end{aligned}
$$

Quotient Rule

- The Quotient Rule for Derivatives:

$$
\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{[g(x)]^{2}}
$$

- Example: Use the quotient rule to calculate the derivatives:

$$
\begin{aligned}
& \left(\frac{x^{13}}{x^{5}}\right)^{\prime}=\frac{\left(x^{13}\right)^{\prime} x^{5}-x^{13}\left(x^{5}\right)^{\prime}}{\left(x^{5}\right)^{2}}=\frac{13 x^{12} x^{5}-x^{13} \cdot 5 x^{4}}{x^{10}}= \\
& \frac{13 x^{17}-5 x^{17}}{x^{10}}=\frac{8 x^{17}}{x^{10}}=8 x^{7} ; \\
& \left(\frac{x^{2}}{x+1}\right)^{\prime}=\frac{\left(x^{2}\right)^{\prime}(x+1)-x^{2}(x+1)^{\prime}}{(x+1)^{2}}=\frac{2 x(x+1)-x^{2} 1}{(x+1)^{2}}= \\
& \frac{2 x^{2}+2 x-x^{2}}{(x+1)^{2}}=\frac{x^{2}+2 x}{(x+1)^{2}}
\end{aligned}
$$

Using Quotient Rule

- Find an equation for the tangent line to the graph of

$$
f(x)=\frac{x^{2}-2 x+3}{x+1} \text { at } x=2
$$

First compute the slope $f^{\prime}(2)$ of the tangent line:

$$
\begin{aligned}
& f^{\prime}(x)=\left(\frac{x^{2}-2 x+3}{x+1}\right)^{\prime}=\frac{\left(x^{2}-2 x+3\right)^{\prime}(x+1)-\left(x^{2}-2 x+3\right)(x+1)^{\prime}}{(x+1)^{2}}= \\
& \frac{(2 x-2)(x+1)-\left(x^{2}-2 x+3\right) \cdot 1}{(x+1)^{2}}=\frac{2 x^{2}+2 x-2 x-2-x^{2}+2 x-3}{(x+1)^{2}}= \\
& \frac{x^{2}+2 x-5}{(x+1)^{2}} ;
\end{aligned}
$$

Thus, $f^{\prime}(2)=\frac{2^{2}+2 \cdot 2-5}{(2+1)^{2}}=\frac{3}{9}=\frac{1}{3}$; Therefore the tangent line has equation

$$
\begin{aligned}
& y-f(2)=f^{\prime}(2)(x-2) \\
& \Rightarrow y-1=\frac{1}{3}(x-2) \\
& \Rightarrow y=\frac{1}{3} x+\frac{1}{3} .
\end{aligned}
$$

Application: Cost of Cleaner Water

- Suppose that the cost of purifying a gallon of water to a purity of x percent is $C(x)=\frac{2}{100-x}$, for $80<x<100$, in dollars; What is the rate of change of the purification costs when purity is 90% and 98% ?

$$
\begin{aligned}
C^{\prime}(x) & =\left(\frac{2}{100-x}\right)^{\prime} \\
& =\frac{(2)^{\prime}(100-x)-2(100-x)^{\prime}}{(100-x)^{2}} \\
& =\frac{0 \cdot(100-x)-2(-1)}{(100-x)^{2}} \\
& =\frac{2}{(100-x)^{2}}
\end{aligned}
$$

$$
C^{\prime}(90)=\frac{2}{10^{2}}=0.02 \$ / \text { gallon and } C^{\prime}(98)=\frac{2}{2^{2}}=0.50 \$ / \text { gallon }
$$

Marginal Average Cost/Revenue/Profit

- If $C(x)$ is the cost for producing x items, then the average cost per item is $A C(x)=\frac{C(x)}{x}$;
- The marginal average cost is defined by $\mathrm{MAC}=\mathrm{AC}^{\prime}(x)=\left(\frac{C(x)}{x}\right)^{\prime}$;
- Similarly, is $R(x)$ and $P(x)$ are the revenue and profit from selling x items, the average revenue and average profit per item are $\mathrm{AR}(x)=\frac{R(x)}{x}$ and $\mathrm{AP}(x)=\frac{P(x)}{x}$;
- And the marginal average revenue and marginal average profit are given by

$$
\operatorname{MAR}(x)=\operatorname{AR}^{\prime}(x) \quad \text { and } \quad \operatorname{MAP}(x)=\operatorname{AP}^{\prime}(x)
$$

- The meaning of marginal average cost is the approximate additional average cost per item for producing one more item;
- Similar interpretations apply for marginal average revenue and marginal average profit.

Application: Marginal Average Cost

- On-demand printing a typical 200 page book would cost $\$ 18$ per copy, with fixed costs of $\$ 1500$. Therefore, the cost function is $C(x)=18 x+1500$;
- Find the average cost function;

$$
\mathrm{AC}(x)=\frac{C(x)}{x}=\frac{18 x+1500}{x}=\frac{18 x}{x}+\frac{1500}{x}=18+1500 x^{-1}
$$

- Find the marginal average cost function;

$$
\operatorname{MAC}(x)=\left(18+1500 x^{-1}\right)^{\prime}=1500\left(x^{-1}\right)^{\prime}=1500 \cdot(-1) x^{-2}=-\frac{1500}{x^{2}}
$$

- What is the marginal average cost at $x=100$? Interpret the answer;

$$
\operatorname{MAC}(100)=-\frac{1500}{(100)^{2}}=-0.15
$$

When 100 books are produced, the average cost per book is decreasing by about 15 cents per additional book produced.

Application: Time Saved by Speeding

- Chris drives 25 miles to his office every day. If he drives at a constant speed of v miles per hour, then his driving time is $T(v)=\frac{25}{v}$ hours; Compute $T^{\prime}(55)$ and interpret the answer;

$$
T^{\prime}(v)=\left(\frac{25}{v}\right)^{\prime}=\left(25 v^{-1}\right)^{\prime}=25\left(v^{-1}\right)^{\prime}=25 \cdot(-1) v^{-2}=-\frac{25}{v^{2}}
$$

So $T^{\prime}(55)=-\frac{25}{55^{2}}=-0.00826$;
Thus, Chris would save approximately 0.00826 hours (around half a minute) per extra mile/hour of speed when driving at 55 mph .

Summary of Differentiation Rules

Rules For Taking Derivatives

- $(c)^{\prime}=0$;
- $\left(x^{n}\right)^{\prime}=n \cdot x^{n-1}$;
- $(c \cdot f)^{\prime}=c \cdot f^{\prime}$;
- $(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}$;
- $(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}$;
- $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} \cdot g-f \cdot g^{\prime}}{g^{2}}$.

Subsection 6

Higher-Order Derivatives

Higher-Order Derivatives

- Given a function $f(x)$, the derivative $\left(f^{\prime}\right)^{\prime}$ of its first derivative f^{\prime} is called its second derivative and denoted $f^{\prime \prime}(x)$;
- The derivative $\left(f^{\prime \prime}\right)^{\prime}$ of its second derivative is called its third derivative and denoted $f^{\prime \prime \prime}$;
- From the fourth derivative up, instead of piling ' up in the notation, we use $f^{(4)}(x), f^{(5)}(x), f^{(6)}(x)$, etc.
- Thus, since the $(n+1)$-st derivative of f is the first derivative of the n-th derivative, we have the definition

$$
f^{(n+1)}(x)=\left(f^{(n)}(x)\right)^{\prime} ;
$$

- In the alternative notation for derivatives, the first, second, third, fourth etc, derivatives are written

$$
\frac{d y}{d x}, \quad \frac{d^{2} y}{d x^{2}}, \quad \frac{d^{3} y}{d x^{3}}, \quad \frac{d^{4} y}{d x^{4}}, \ldots, \frac{d^{n} y}{d x^{n}}, \ldots
$$

Calculating Higher-Order Derivatives I

- Find all derivatives of $f(x)=x^{3}-9 x^{2}+5 x-17$;

$$
\begin{aligned}
& f^{\prime}(x)=\left(x^{3}-9 x^{2}+5 x-17\right)^{\prime}=3 x^{2}-18 x+5 ; \\
& f^{\prime \prime}(x)=\left(3 x^{2}-18 x+5\right)^{\prime}=6 x-18 ; \\
& f^{\prime \prime \prime}(x)=(6 x-18)^{\prime}=6 ; \\
& f^{(4)}(x)=(6)^{\prime}=0 \\
& f^{(5)}(x)=(0)^{\prime}=0
\end{aligned}
$$

So we have $f^{(n)}(x)=0$, for all $n \geq 4$.

Calculating Higher-Order Derivatives II

- Find all derivatives of $f(x)=\frac{1}{x}$;

$$
\begin{aligned}
& f^{\prime}(x)=\left(\frac{1}{x}\right)^{\prime}=\left(x^{-1}\right)^{\prime}=-x^{-2}=-\frac{1}{x^{2}} \\
& f^{\prime \prime}(x)=\left(-x^{-2}\right)^{\prime}=-(-2) x^{-3}=\frac{2}{x^{3}} ; \\
& f^{\prime \prime \prime}(x)=\left(2 x^{-3}\right)^{\prime}=-2 \cdot 3 x^{-4}=-\frac{2 \cdot 3}{x^{4}} \\
& f^{(4)}=\left(-2 \cdot 3 x^{-4}\right)^{\prime}=2 \cdot 3 \cdot 4 x^{-5}=\frac{2 \cdot 3 \cdot 4}{x^{5}} \\
& f^{(5)}(x)=\left(2 \cdot 3 \cdot 4 x^{-5}\right)^{\prime}=-2 \cdot 3 \cdot 4 \cdot 5 x^{-6}=-\frac{2 \cdot 3 \cdot 4 \cdot 5}{x^{6}}
\end{aligned}
$$

Thus

$$
f^{(n)}(x)=(-1)^{n} \frac{1 \cdot 2 \cdot 3 \cdots \cdots n}{x^{n+1}}=(-1)^{n} \frac{n!}{x^{n+1}} .
$$

Computing a Second Derivative

- Compute $f^{\prime \prime}(x)$ if $f(x)=\frac{x^{2}+1}{x}$;

$$
\begin{aligned}
& f^{\prime}(x)=\left(\frac{x^{2}+1}{x}\right)^{\prime}=\frac{\left(x^{2}+1\right)^{\prime} x-\left(x^{2}+1\right)(x)^{\prime}}{x^{2}}= \\
& \frac{2 x \cdot x-x^{2}-1}{x^{2}}=\frac{x^{2}-1}{x^{2}} ; \\
& f^{\prime \prime}(x)=\left(\frac{x^{2}-1}{x^{2}}\right)^{\prime}=\frac{\left(x^{2}-1\right)^{\prime} x^{2}-\left(x^{2}-1\right)\left(x^{2}\right)^{\prime}}{\left(x^{2}\right)^{2}}= \\
& \frac{2 x \cdot x^{2}-2 x\left(x^{2}-1\right)}{x^{4}}=\frac{2 x^{3}-2 x^{3}+2 x}{x^{4}}=\frac{2 x}{x^{4}}=\frac{2}{x^{3}} .
\end{aligned}
$$

Evaluating a Second Derivative

- Evaluate $f^{\prime \prime}\left(\frac{1}{8}\right)$ if $f(x)=\frac{1}{\sqrt[3]{x}}$;

$$
\begin{gathered}
f^{\prime}(x)=\left(\frac{1}{\sqrt[3]{x}}\right)^{\prime}=\left(x^{-1 / 3}\right)^{\prime}=-\frac{1}{3} x^{-4 / 3}=-\frac{1}{3 \sqrt[3]{x^{4}}} \\
f^{\prime \prime}(x)=\left(-\frac{1}{3} x^{-4 / 3}\right)^{\prime}=-\frac{1}{3} \cdot\left(-\frac{4}{3} x^{-7 / 3}\right)=\frac{4}{9} x^{-7 / 3}=\frac{4}{9 \sqrt[3]{x^{7}}}
\end{gathered}
$$

Therefore, $f^{\prime \prime}\left(\frac{1}{8}\right)=\frac{4}{9\left(\sqrt[3]{\frac{1}{8}}\right)^{7}}=\frac{4}{9\left(\frac{1}{2}\right)^{7}}=\frac{4}{\frac{9}{128}}=\frac{4 \cdot 128}{9}$.

Application: Velocity and Acceleration

- Suppose that a moving object covers distance $s(t)$ at time t;
- Then its velocity $v(t)$ at time t is the derivative of its distance

$$
v(t)=s^{\prime}(t)
$$

- Moreover, its acceleration $a(t)$ is the derivative of its velocity

$$
a(t)=v^{\prime}(t)=s^{\prime \prime}(t)
$$

Velocity and Acceleration: Example

- Suppose that a delivery truck covers distance $s(t)=24 t^{2}-4 t^{3}$ miles in t hours, for $0 \leq t \leq 6$;
- Find the velocity of the truck at $t=2$ hours;

$$
v(t)=s^{\prime}(t)=\left(24 t^{2}-4 t^{3}\right)^{\prime}=48 t-12 t^{2} ;
$$

So $v(2)=48 \cdot 2-12 \cdot 2^{2}=48 \mathrm{mph}$;

- Find the acceleration of the truck at $t=1$ hour;

$$
a(t)=v^{\prime}(t)=\left(48 t-12 t^{2}\right)^{\prime}=48-24 t ;
$$

Therefore, $a(1)=48-24 \cdot 1=24$ miles $/$ hours 2.

Application: Growth Speeding Up or Slowing Down

- Suppose that the world population t years from the year 2000 was predicted to be

$$
P(t)=6250+160 t^{3 / 4} \text { millions; }
$$

Find $P^{\prime}(16), P^{\prime \prime}(16)$ and interpret the answers;

$$
\begin{aligned}
& P^{\prime}(t)=\left(6250+160 t^{3 / 4}\right)^{\prime}=160 \cdot \frac{3}{4} t^{-1 / 4}=\frac{120}{\sqrt[4]{t}} \\
& P^{\prime \prime}(t)=\left(120 t^{-1 / 4}\right)^{\prime}=120 \cdot\left(-\frac{1}{4} t^{-5 / 4}\right)=-\frac{30}{\sqrt[4]{t^{5}}}
\end{aligned}
$$

Thus, $P^{\prime}(16)=\frac{120}{\sqrt[4]{16}}=\frac{120}{2}=60$ millions/year and
$P^{\prime \prime}(16)=-\frac{30}{(\sqrt[4]{16})^{5}}=-\frac{30}{32}=-0.94$ millions $/$ year 2;
The first number shows that in 2016 the population will be increasing at the rate of 60 million people per year;
The second number shows that the growth will be slowing down at 0.94 million/year ${ }^{2}$.

Subsection 7

Chain and Generalized Power Rules

Composite Functions

- Recall the definition of composition: $(f \circ g)(x)=f(g(x))$;

- Example: Find formulas for the composites $(f \circ g)(x)$ and $(g \circ f)(x)$, if $f(x)=x^{7}$ and $g(x)=x^{2}+2 x-3$;

$$
\begin{gathered}
(f \circ g)(x)=f(g(x))=f\left(x^{2}+2 x-3\right)=\left(x^{2}+2 x-3\right)^{7} \\
(g \circ f)(x)=g(f(x))=g\left(x^{7}\right)=\left(x^{7}\right)^{2}+2\left(x^{7}\right)-3=x^{14}+2 x^{7}-3
\end{gathered}
$$

Decomposing Functions

- Example: Find two functions $f(x)$ and $g(x)$, such that $\left(x^{3}-7\right)^{5}$ is the composition $f(g(x))$;
One way of doing this is to think of the series of transformations that produce output $\left(x^{3}-7\right)^{5}$ from input x;

$$
x \quad \stackrel{3}{\mapsto} \quad x^{3} \quad \stackrel{-7}{\mapsto} \quad x^{3}-7 \quad \stackrel{5}{\mapsto} \quad\left(x^{3}-7\right)^{5}
$$

These transformations suggest two ways of decomposing $\left(x^{3}-7\right)^{5}$:
(1) Apply the first two steps together and, then, the last step: $g(x)=x^{3}-7$ and $f(x)=x^{5}$;
(2) Apply the first step alone and, then, the last two steps together: $g(x)=x^{3}$ and $f(x)=(x-7)^{5}$.

The Chain Rule

- To compute the derivative of the composite $f(g(x))$, we apply the Chain Rule:

$$
(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

- Example: Use the Chain Rule to find the derivatives:
- $\left[\left(x^{2}-5 x+1\right)^{10}\right]^{\prime}$

Let us decompose $\left(x^{2}-5 x+1\right)^{10}$ as $f(g(x))$; Set $f(x)=x^{10}$ and $g(x)=x^{2}-5 x+1$; Then $f^{\prime}(x)=10 x^{9}$ and $g^{\prime}(x)=2 x-5$; Now apply the Chain Rule:

$$
\left[\left(x^{2}-5 x+1\right)^{10}\right]^{\prime}=[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)=10\left(x^{2}-5 x+1\right)^{9}(2 x-5)
$$

- $\left[\left(5 x-2 x^{3}\right)^{16}\right]^{\prime}$

Let us decompose $\left(5 x-2 x^{3}\right)^{16}$ as $f(g(x))$; Set $f(x)=x^{16}$ and $g(x)=5 x-2 x^{3}$; Then $f^{\prime}(x)=16 x^{15}$ and $g^{\prime}(x)=5-6 x^{2}$; Now apply the Chain Rule:

$$
\left[\left(5 x-2 x^{3}\right)^{16}\right]^{\prime}=[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)=16\left(5 x-2 x^{3}\right)^{15}\left(5-6 x^{2}\right)
$$

General Power Rule

- Example: Use the Chain Rule to find the derivative:
- $\left[\left(x^{3}+7 x\right)^{5}\right]^{\prime}$

Let us decompose $\left(x^{3}+7 x\right)^{5}$ as $f(g(x))$; Set $f(x)=x^{5}$ and $g(x)=x^{3}+7 x$; Then $f^{\prime}(x)=5 x^{4}$ and $g^{\prime}(x)=3 x^{2}+7$; Now apply the Chain Rule:

$$
\left[\left(x^{3}+7 x\right)^{5}\right]^{\prime}=[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)=5\left(x^{3}+7 x\right)^{4}\left(3 x^{2}+7\right) ;
$$

- Note how the derivative is taken:

$$
\left[\left(x^{3}+7 x\right)^{5}\right]^{\prime}=\underbrace{5}_{\text {power down }} \underbrace{\left(x^{3}+7 x\right)^{4}}_{\text {reduce power by } 1 \text { derivative of the inside }} \underbrace{\left(3 x^{2}+7\right)} ;
$$

- This pattern suggests the General Power Rule:

$$
\left[g(x)^{n}\right]^{\prime}=n \cdot g(x)^{n-1} \cdot g^{\prime}(x)
$$

Applying the General Power Rule

- Example: Use the Chain Rule to find the derivative of $\sqrt{x^{4}+3 x^{2}}$;

$$
\begin{aligned}
& \left(\sqrt{x^{4}+3 x^{2}}\right)^{\prime}=\left[\left(x^{4}+3 x^{2}\right)^{1 / 2}\right]^{\prime}=\frac{1}{2}\left(x^{4}+3 x^{2}\right)^{-1 / 2}\left(x^{4}+3 x^{2}\right)^{\prime}= \\
& \frac{4 x^{3}+6 x}{2 \sqrt{x^{4}+3 x^{2}}}=\frac{2 x^{3}+3 x}{\sqrt{x^{4}+3 x^{2}}}
\end{aligned}
$$

- Example: Use the Chain Rule to find the derivative of $\left(\frac{1}{x^{2}+1}\right)^{8}$;

$$
\begin{aligned}
& {\left[\left(\frac{1}{x^{2}+1}\right)^{8}\right]^{\prime}=\left[\left(x^{2}+1\right)^{-8}\right]^{\prime}=-8\left(x^{2}+1\right)^{-9}\left(x^{2}+1\right)^{\prime}=} \\
& -8 \cdot \frac{1}{\left(x^{2}+1\right)^{9}} \cdot 2 x=\frac{-16 x}{\left(x^{2}+1\right)^{9}}
\end{aligned}
$$

Chain Rule: Alternative Notation

- In the alternative notation for derivatives, if $y=f(u)$ and $u=g(x)$, then $y=f(u)=f(g(x))$ and

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

- This says exactly the same thing as

$$
[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

It is simply written in the alternative notation for derivatives.

Application: Environmental Disaster

- An oil tanker hits a reef and t days later the radius of the oil slick is $r(t)=\sqrt{4 t+1}$ miles; How fast is the radius of the slick expanding after 2 days?

$$
\begin{aligned}
& r^{\prime}(t)=(\sqrt{4 t+1})^{\prime} \\
& =\left[(4 t+1)^{1 / 2}\right]^{\prime} \\
& =\frac{1}{2}(4 t+1)^{-1 / 2}(4 t+1)^{\prime} \\
& =\frac{1}{2} \cdot \frac{1}{\sqrt{4 t+1}} \cdot 4 \\
& =\frac{2}{\sqrt{4 t+1}}
\end{aligned}
$$

Thus,

$$
r^{\prime}(2)=\frac{2}{\sqrt{9}}=\frac{2}{3} \text { miles } / \text { day } .
$$

Two More Complicated Examples

$$
\begin{aligned}
& {\left[(5 x-2)^{4}(9 x+2)^{7}\right]^{\text {P Product }}=} \\
& = \\
& \stackrel{\text { Power }}{=} 4(5 x-2)^{3}(5 x-2)^{4}(9 x+2)^{7}+(5 x-2)^{4} \cdot 7(9 x+2)^{7}+(5 x-2)^{4}\left[(9 x+2)^{7}\right]^{\prime} \\
& 4(5 x-2)^{3} \cdot 5 \cdot(9 x+2)^{7}+(5 x-2)^{4} \cdot 7(9 x+2)^{6} \cdot 9= \\
& 20(5 x-2)^{3}(9 x+2)^{7}+63(5 x-2)^{4}(9 x+2)^{6} ; \\
& \quad\left[\left(\frac{x}{x+1}\right)^{4}\right]^{\prime} \stackrel{\text { Power }}{=} 4\left(\frac{x}{x+1}\right)^{3}\left(\frac{x}{x+1}\right)^{\prime} \\
& \quad\left[\begin{array}{l}
\text { Quotient }
\end{array} 4\left(\frac{x}{x+1}\right)^{3} \cdot \frac{(x)^{\prime}(x+1)-x(x+1)^{\prime}}{(x+1)^{2}}=\right. \\
& \quad 4\left(\frac{x}{x+1}\right)^{3} \cdot \frac{x+1-x}{(x+1)^{2}}=4 \frac{x^{3}}{(x+1)^{3}} \cdot \frac{1}{(x+1)^{2}}=\frac{4 x^{3}}{(x+1)^{5}} .
\end{aligned}
$$

One Last Example

$$
\begin{aligned}
& {\left[\left[x^{5}+\left(x^{2}-1\right)^{3}\right]^{7}\right]^{\prime}} \\
& \stackrel{\text { Power }}{=} 7\left[x^{5}+\left(x^{2}-1\right)^{3}\right]^{6}\left[x^{5}+\left(x^{2}-1\right)^{3}\right]^{\prime} \\
& \stackrel{\text { Sum }}{=} 7\left[x^{5}+\left(x^{2}-1\right)^{3}\right]^{6}\left[\left(x^{5}\right)^{\prime}+\left[\left(x^{2}-1\right)^{3}\right]^{\prime}\right] \\
& \text { Pover } 7\left[x^{5}+\left(x^{2}-1\right)^{3}\right]^{6}\left[5 x^{4}+3\left(x^{2}-1\right)^{2}\left(x^{2}-1\right)^{\prime}\right] \\
& \stackrel{\text { Power }}{=} 7\left[x^{5}+\left(x^{2}-1\right)^{3}\right]^{6}\left[5 x^{4}+3\left(x^{2}-1\right)^{2} \cdot 2 x\right] \\
& =7\left[x^{5}+\left(x^{2}-1\right)^{3}\right]^{6}\left[5 x^{4}+6 x\left(x^{2}-1\right)^{2}\right] .
\end{aligned}
$$

