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Further Applications of Derivatives Graphing Using First Derivative

Subsection 1

Graphing Using First Derivative
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Further Applications of Derivatives Graphing Using First Derivative

Increasing and Decreasing Functions

Recall that a function f (x) is
increasing on [a,b] if its graph rises as we move left to right in [a,b];
decreasing on [a,b] if its graph falls as we move left to right in [a,b];

Note that
if f is increasing (↗) on [a,b], the slopes of the tangents are positive,
so f ′(x) > 0, for x in [a,b];
if f is decreasing (↘) on [a,b], the slopes of the tangents are negative,
so f ′(x) < 0, for x in [a,b];
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Further Applications of Derivatives Graphing Using First Derivative

Relative Maxima and Minima

A function f (x) has a
relative maximum y = f (d) at x = d if f (d) is at least as high as all
its neighboring points on the curve;
relative minimum y = f (c) at x = c if f (c) is at least as low as all its
neighboring points on the curve;

Note that:
if y = f (x) has a tangent at a
relative extremum, with x = c ,
then its slope is equal to 0;
Thus, in this case, f ′(c) = 0;
But f may also have a relative
extremum at a point x = b,
where the tangent, and, hence,
its slope f ′(b) is not defined!
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Further Applications of Derivatives Graphing Using First Derivative

Critical Numbers

Critical Numbers

A critical number of a function f is an x-value in the domain of f at
which either f ′(x) = 0 or f ′(x) is undefined;

Thus, according to our previous analysis, if f has a relative minimum
or a relative maximum at x , then x must be a critical number of f ;

It is not true that all critical numbers give rise to relative minimum or
relative maximum points!
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Further Applications of Derivatives Graphing Using First Derivative

Graphing Using the First Derivative

Suppose we would like to roughly sketch the graph of y = f (x) using
the first-derivative f ′(x) as an aid. Then we perform the following
steps:

1 We find the critical numbers, i.e., the points where f ′(x) = 0 or f ′(x)
is undefined;

2 Using those points, we construct the sign table for the first derivative
f ′(x);

3 If in an interval [a,b],
f
′(x) > 0, then f ↗ [a,b];

f
′(x) < 0, then f ↘ [a,b];

4 We use this information to draw conclusions about the relative maxima
and the relative minima;

5 Using these extreme points and the increasing/decreasing properties of
f (x), we roughly sketch the graph y = f (x);

We will see some examples in following slides.
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Further Applications of Derivatives Graphing Using First Derivative

Graphing a Function I

Use the first derivative to sketch the graph of the function
f (x) = x3 − 12x2 − 60x + 36;

1 Compute first derivative and find the critical numbers:
f ′(x) = 3x2 − 24x − 60 = 3(x2 − 8x − 20) = 3(x + 2)(x − 10); So
f ′(x) = 0⇒ 3(x + 2)(x − 10) = 0⇒ x = −2 or x = 10;

2 Create the sign table for f ′(x):
x < −2 −2 < x < 10 10 < x

f ′(x) + − +

f (x) ↗ ↘ ↗
3 From the table, we see that f has a

relative maximum at (−2,100) and a
relative minimum at (10,−764);

4 We plot these two points and use
them to roughly sketch the graph.
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Further Applications of Derivatives Graphing Using First Derivative

Graphing a Function II

Use the first derivative to sketch the graph of the function
f (x) = x3 − 12x + 8;

1 Compute first derivative and find the critical numbers:
f ′(x) = 3x2 − 12 = 3(x2 − 4) = 3(x + 2)(x − 2); So
f ′(x) = 0⇒ 3(x + 2)(x − 2) = 0⇒ x = −2 or x = 2;

2 Create the sign table for f ′(x):
x < −2 −2 < x < 2 2 < x

f ′(x) + − +

f (x) ↗ ↘ ↗
3 From the table, we see that f has a

relative maximum at (−2,24) and a
relative minimum at (2,−8);

4 We plot these two points and use
them to roughly sketch the graph.
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Further Applications of Derivatives Graphing Using First Derivative

First Derivative Test for Relative Extrema

First Derivative Test

If f has a critical number at c , then at x = c , it has a

a relative maximum if f ′ > 0 just before c and f ′ < 0 just after c ;

a relative minimum if f ′ < 0 just before c and f ′ > 0 just after c ;

In summary, we have the following four cases as far as a critical
number c is concerned:

x < c x > c

f ′ + −

f ↗ ↘

Relative Maximum

x < c x > c

f ′ − +

f ↘ ↗

Relative Minimum

x < c x > c

f ′ + +

f ↗ ↗

Neither

x < c x > c

f ′ − −

f ↘ ↘

Neither

George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 2013 10 / 48



Further Applications of Derivatives Graphing Using First Derivative

Graphing a Function III

Use the first derivative to sketch the graph of the function
f (x) = −x4 + 4x3 − 20;

1 Compute first derivative and find the critical numbers:
f ′(x) = − 4x3 + 12x2 = − 4x2(x − 3); So
f ′(x) = 0⇒ −4x2(x − 3) = 0⇒ x = 0 or x = 3;

2 Create the sign table for f ′(x):
x < 0 0 < x < 3 3 < x

f ′(x) + + −

f (x) ↗ ↗ ↘
3 From the table, we see that f has a

relative maximum at (3,7) and no
relative minimum;

4 We plot the relative maximum and
use it to roughly sketch the graph.
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Further Applications of Derivatives Graphing Using First Derivative

Graphing Rational Functions

Suppose we would like to roughly sketch the graph of a rational
function y = f (x) using the first-derivative f ′(x) as an aid. Then we
perform the following steps:

1 First, find the domain;
2 Then, find the horizontal and the vertical asymptotes;
3 We, then, find the critical numbers, i.e., the points where f ′(x) = 0 or

f ′(x) is undefined;
4 Using those points, we construct the sign table for the first derivative

f ′(x) and draw conclusions about monotonicity;
5 We use this information and the first derivative test to find the relative

maxima and the relative minima;
6 Using the asymptotes, the extreme points and the increasing /

decreasing properties of f (x), we roughly sketch the graph y = f (x);
We will see some examples in following slides; But note that the
domain and the asymptotes are the main additions here!
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Further Applications of Derivatives Graphing Using First Derivative

Graphing a Rational Function I

Use the first derivative to sketch the graph of f (x) = 3x−2
x−2 ;

1 The domain is Dom(f ) = R − {2};
2 Vertical asymptote x = 2, where f is undefined;
3 Horizontal asymptote y = lim

x→∞

3x−2
x−2
=

3
1
= 3;

4 Compute first derivative and find the critical numbers:

f ′(x) = (3x−2)′(x−2)−(3x−2)(x−2)′
(x−2)2

=
3(x−2)−(3x−2)

(x−2)2
=

−4
(x−2)2

; So only

number to consider is x = 2;
3 Create the sign table for f ′(x):

x < 2 2 < x
f ′(x) − −

f (x) ↘ ↘
4 From the table, we see that f does

not have extrema;

5 Plot the asymptotes x = 2 and y = 3
and use them to graph.
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Further Applications of Derivatives Graphing Using First Derivative

Graphing a Rational Function II

Use the first derivative to sketch the graph of f (x) = 3x2

x2−4 ;
1 The domain is Dom(f ) = R − {−2,2};
2 Vertical asymptotes x = −2 and x = 2, where f is undefined;
3 Horizontal asymptote y = lim

x→∞

3x2

x2−4
=

3
1
= 3;

4 Compute first derivative and find the critical numbers:

f ′(x) = (3x2)′(x2−4)−3x2(x2−4)′
(x2−4)2

=
6x(x2−4)−3x2 ⋅2x

(x2−4)2
=
−24x
(x2−4)2

; So we consider

the numbers x = 0 and x = ±2;
3 Create the sign table for f ′(x):

x < −2 (−2,0) (0,2) 2 < x
f ′(x) + + − −

f (x) ↗ ↗ ↘ ↘
4 From the table, we see that f does has

a local maximum (0,0);
5 Plot (0,0), x = −2, x = 2 and y = 3 and

use them to graph.
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Further Applications of Derivatives Graphing Using First and Second Derivatives

Subsection 2

Graphing Using First and Second Derivatives
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Further Applications of Derivatives Graphing Using First and Second Derivatives

Concavity

We say that the graph of y = f (x) on [a,b] is
concave down if the slopes of the tangent lines are decreasing;
concave up if the slopes of the tangent lines are increasing;

Recall f ↗ [a,b] if f ′ > 0 in [a,b] and f ↘ [a,b] if f ′ < 0 in [a,b];
Note the following about concavity:

Concave down means slopes
decreasing, which means
f ′ ↘ [a,b], which means f ′′ < 0 in
[a,b];
Concave up means slopes
increasing, which means
f ′ ↗ [a,b], which means f ′′ > 0 in
[a,b].
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Further Applications of Derivatives Graphing Using First and Second Derivatives

Inflection Points

An inflection point is a point on the graph where the convavity
changes, i.e., we go either from concave up to concave down or
vice-versa;

Note that at an inflection point x , f ′′ changes sign, so we must have
that f ′′(x) = 0 or f ′′(x) is undefined.
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Further Applications of Derivatives Graphing Using First and Second Derivatives

Second Derivative for Concavity and Inflection

Find the intervals of concavity and the inflection points of
f (x) = x3 − 9x2 + 24x ;
Compute first derivative: f ′(x) = (x3 − 9x2 + 24x)′ = 3x2 − 18x + 24;
Compute second derivative:
f ′′(x) = (3x2 − 18x + 24)′ = 6x − 18 = 6(x − 3); Solve
f ′′(x) = 0⇒ 6(x − 3) = 0⇒ x = 3;

Form the sign table of the second de-
rivative:

x < 3 3 < x

f ′′ − +

f ⌢ ⌣

Thus, f has an inflection point (3,18).
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Further Applications of Derivatives Graphing Using First and Second Derivatives

Combining First and Second Derivatives

If we combine the signs of the first and the second derivatives in
specific intervals we get the following four cases:

[a,b]
f ′ +

f ′′ +

f Ä

Increasing
Concave Up

[a,b]
f ′ +

f ′′ −

f ¼

Increasing
Concave Down

[a,b]
f ′ −

f ′′ +

f Ç

Decreasing
Concave Up

[a,b]
f ′ −

f ′′ −

f ¿

Decreasing
Concave Down
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Further Applications of Derivatives Graphing Using First and Second Derivatives

Graphing Using Both First and Second Derivatives

Graph the function f (x) = x3 − 3x2 − 9x + 7
Compute the first derivative:
f ′(x) = 3x2 − 6x − 9 = 3(x2 − 2x − 3) = 3(x + 1)(x − 3); Find its
critical numbers: f ′(x) = 0⇒ 3(x + 1)(x − 3) = 0⇒ x = −1 or x = 3;
Find second derivative: f ′′(x) = 6x − 6 = 6(x − 1); Its zero is x = 1;
Create combined sign table for first and second derivatives:

x < −1 [−1,1] [1,3] 3 < x

f ′ + − − +

f ′′ − − + +

f ¼ ¿ Ç Ä

Thus f has relative max (−1,12), relative
min (3,−20) and inflection (1,−4).
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Further Applications of Derivatives Graphing Using First and Second Derivatives

Graphing II

Graph the function f (x) = x3/5(= 5
√
x3)

Compute the first derivative: f ′(x) = (x3/5)′ = 3
5x
−2/5 = 3

5
5√
x2
; f ′ is

undefined at x = 0; So x = 0 is critical point;
Find second derivative: f ′′(x) = (35x−2/5)′ = 3

5 ⋅ (−2
5)x−7/5 = − 6

25
5√
x7
;

Also undefined at x = 0;
Create combined sign table for first and second derivatives:

x < 0 0 < x

f ′ + +

f ′′ + −

f Ä ¼

Thus f has no relative extrema and in-
flection (0,0).
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Further Applications of Derivatives Graphing Using First and Second Derivatives

The Second-Derivative Test

Second-Derivative Test for Relative Extrema

If x = c is a critical number of f at which f ′′ is defined, then

if f ′′(c) > 0, then f has a relative minimum at x = c ;

if f ′′(c) < 0, then f has a relative maximum at x = c .

George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 2013 22 / 48



Further Applications of Derivatives Graphing Using First and Second Derivatives

Applying the Second Derivative Test

Example: Use second derivative test to find all relative extrema of
f (x) = x4 − 2x2 + 1;
Compute first derivative:
f ′(x) = 4x3 − 4x = 4x(x2 − 1) = 4x(x + 1)(x − 1); Find all critical
numbers f ′(x) = 0⇒ 4x(x + 1)(x − 1) = 0⇒ x = 0 or x = −1 or x = 1;
Now compute the second derivative: f ′′(x) = 12x2 − 4;
Evaluate the second derivative at each
of the critical points:

x f ′′(x) Point

−1 8 > 0 Min
0 − 4 < 0 Max
1 8 > 0 Min
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Further Applications of Derivatives Optimization

Subsection 3

Optimization
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Further Applications of Derivatives Optimization

Absolute Extrema in a Closed Interval

Optimizing a function means finding its maximum or its minimum
value;

The absolute max/min value of a function is the largest/smallest
value of the function on its domain;

An absolute extremum is either an absolute max or an absolute
min.
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Further Applications of Derivatives Optimization

Optimizing a Continuous Function on a Closed Interval

A continuous function f on a closed interval [a,b] has both an
absolute max and an absolute min value;

To compute these values
1 Find all critical numbers of f in [a,b];
2 Evaluate f at the critical numbers and at a and b;
3 The largest and smallest values found in previous step are the absolute

extrema of f on [a,b].
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Further Applications of Derivatives Optimization

Example

Find absolute extrema of f (x) = x3 − 9x2 + 15x on [0,3];
Compute f ′(x) = 3x2 − 18x + 15 = 3(x2 − 6x + 5) = 3(x − 1)(x − 5);
Set f ′(x) = 0⇒ 3(x − 1)(x − 5) = 0⇒ x = 1 or x = 5; The only
critical number in [0,3] is x = 1;
Compute

f (0) = 0,
f (1) = 7,
f (3) = − 9;

Thus, absolute max is f (1) = 7 and
absolute min f (3) = −9.
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Further Applications of Derivatives Optimization

Application: Timber Forest

The value of a timber forest after t years is V (t) = 96√t − 6t
thousand dollars (t > 0). When is the value maximized?

Find V ′(t) = (96√t − 6t)′ = 96(t1/2)′ − 6(t)′ = 96 ⋅ 12t−1/2 − 6 =
48√
t
− 6 = 48√

t
−

6
√
t√
t
=

48−6
√
t√

t
=

6(8−
√
t)√

t
;

Thus, V (t) = 0⇒ 8 −
√
t = 0⇒

√
t = 8⇒ t = 64;

Note that the critical numbers of
V (t) are t = 0 and t = 64; However,
V (0) = 0 will not give max; The
max is V (64) = 96√64−6 ⋅64 = 384
thousands of dollars.
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Further Applications of Derivatives Optimization

Application: Maximum Profit

Suppose it costs $ 8,000 to produce a car and fixed costs are $ 20,000
per week; Suppose, also, the price function is p(x) = 22,000 − 70x ,
where p is the price at which exactly x cars are sold;

What is the revenue, the cost and the profit function?

R(x) = xp(x) = x(22000− 70x) = − 70x2 + 22000x ;
C(x) = 8000x + 20000;
P(x) = R(x)− C(x) = − 70x2 + 22000x − (8000x + 20000) =
− 70x2 + 14000x − 20000;

How many cars should be produced each week to maximize profit?
Compute P ′(x) = − 140x + 14000; Set
P ′(x) = 0⇒ −140x + 14000 = 0⇒ x = 100;
For what price should they be sold?

p(100) = 22000− 70 ⋅ 100 = 15000;
What is the maximum profit?
P(100) = − 70 ⋅ 1002 + 14000 ⋅ 100 − 20000 =
− 700000+ 1400000− 20000 = $680,000.
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Further Applications of Derivatives Optimization

Application: Maximum Area

A farmer has 1000 feet of fence and wants to build a rectangular
enclosure along a straight wall.

If the side along the wall needs no
fencing, find the dimensions that
make the enclosure as large as pos-
sible and the maximum area;

Suppose x is the length and y the width of the rectangular area;
Then, since the length of the fence is 1000 feet, we must have
x + 2y = 1000⇒ x = 1000 − 2y ; Moreover, the area enclosed is
A = xy = (1000 − 2y)y = − 2y2 + 1000y ; Compute
A′(y) = − 4y + 1000; Set A′(y) = 0⇒ −4y + 1000 = 0⇒ y = 250;
Thus, the dimensions that maximize the area are 500 feet × 250 feet
and the maximum area is A(250) = 500 ⋅ 250 = 125000 feet2.
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Further Applications of Derivatives Optimization

Application: Maximum Volume

An open top box is to be made from a square sheet of metal 12
inches on each side by cutting a square from each corner and folding
up the sides;

Find the volume of the
largest box that can be
made;

Suppose x is the length of the side of the corner square; Then, the
volume must be
V (x) = (12− 2x)(12− 2x)x = (144− 48x + 4x2)x = 4x3 − 48x2 + 144x ;
Compute
V ′(x) = 12x2 − 96x + 144 = 12(x2 − 8x + 12) = 12(x − 2)(x − 6);
Set V ′(x) = 0⇒ 12(x − 2)(x − 6) = 0⇒ x = 2 or x = 6; However,
x = 6 cannot be, so x = 2; Thus, the dimensions that maximize the
volume are 8×8×2 inches and max volume is V (2) = 8 ⋅8 ⋅2 = 128 in3.
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Further Applications of Derivatives Further Applications of Optimization

Subsection 4

Further Applications of Optimization
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Further Applications of Derivatives Further Applications of Optimization

Price and Quantity Functions

A store can sell 20 bikes per week at $ 400 each; The manager
estimates that for each $ 10 reduction in price she can sell two more
bikes per week; The bikes cost the store $ 200 each; Let x stand for
the number of $ 10 reductions;

Find an expression for the price p as a function of x ;

p(x) = 400 − 10x ;
Find an expression for the quantity q sold as a function of x ;

q(x) = 20 + 2x ;
Find the revenue, cost and profit as functions of x ;

R(x) = q(x)p(x) = (20 + 2x)(400 − 10x) = − 20x2 + 600x + 8000;
C(x) = 200q(x) = 200(20 + 2x) = 400x + 4000;
P(x) = R(x) − C(x) = − 20x2 + 600x + 8000 − (400x + 4000) =

− 20x2 + 200x + 4000;
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Further Applications of Derivatives Further Applications of Optimization

Maximizing Profit

We found p(x) = 400 − 10x and q(x) = 20 + 2x ; We also computed
P(x) = −20x2 + 200x + 4000;
What is the price and the quantity that maximize profit? What is
maximum profit?
Compute P ′(x) = − 40x + 200;
Set P ′(x) = 0⇒ −40x + 200 = 0⇒ x = 5;
Therefore, the price that maximizes profit is p(5) = 350; Moreover,
the quantity that maximizes profit is q(5) = 30 bikes per week; Finally
the max profit is

P(5) = − 20 ⋅ 52 + 200 ⋅ 5 + 4000 = − 500 + 1000 + 4000 = $4,500.
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Further Applications of Derivatives Further Applications of Optimization

Maximizing Harvest Size

An orange grower finds that, if he plants 80 orange trees per acre,
each tree will yield 60 bushels of oranges; For each additional tree
planted per acre, the yield of each tree will decrease by 2 bushels;
How many trees should he plant per acre to maximize harvest?

Let x be the number of additional trees per acre; Then, there are
T (x) = 80 + x trees per acre; Each tree would yield Y (x) = 60 − 2x
bushels of oranges; Thus, the total harvest per acre is

H(x) = T (x) ⋅Y (x) = (80+x)(60−2x) = −2x2 −100x +4800 bushels;

To maximize, compute H ′(x) = − 4x − 100; Set
H ′(x) = 0⇒ −4x − 100 = 0⇒ x = −25;
Thus, the number of trees that should be planted per acre is
T (−25) = 80 − 25 = 55.
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Further Applications of Derivatives Further Applications of Optimization

Minimizing Packaging Materials

A moving company wants to design an open-top box with a square
base whose volume is exactly 32 feet3; Find the dimensions of the box
requiring the least amount of materials;
Suppose that the box has dimensions of base x × x feet and height y
feet;
Then, since the volume is 32 feet3,
we must have x2y = 32 ⇒ y = 32

x2
;

Moreover, the amount of materials,
given by the surface area, is A =
bottom³·µ
x2 +

sides³·µ
4xy = x2 + 4x ⋅ 32

x2
= x2 + 128

x
;

To minimize compute A′(x) = (x2 + 128x−1)′ =
2x − 128x−2 = 2x − 128

x2
=

2x3

x2
−

128
x2
=

2(x3−64)
x2

; Set

A′(x) = 0⇒ x3 − 64 = 0⇒ x3 = 64⇒ x =
3
√
64 = 4; Thus, the

dimensions that minimize the amount of materials are 4 × 4 × 2 feet.
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Further Applications of Derivatives Further Applications of Optimization

Maximizing Tax Revenue

Suppose that the relationship between the tax rate t on an item and
the total sales S of the item in millions of dollars is S(t) = 9 − 20√t;
What is the tax rate that maximizes the government revenue?

We have R(t) = tS(t) = t(9 − 20√t) = 9t − 20t3/2;
To maximize, compute
R ′(t) = (9t − 20t3/2)′ = 9 − 20 ⋅ 32t1/2 = 9 − 30

√
t;

Set R ′(t) = 0⇒ 9 − 30
√
t = 0⇒

√
t = 0.3⇒ t = 0.09;

The second derivative is R ′′(t) = (9 − 30t1/2)′ = − 15t−1/2 = − 15√
t
;

Since R ′′(0.09) < 0, at t = 0.09 R(t) has indeed a maximum (and not
a minimum);
Thus, the rate that maximizes revenue is in fact 9%.
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Further Applications of Derivatives Implicit Differentiation and Related Rates

Subsection 5

Implicit Differentiation and Related Rates
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Further Applications of Derivatives Implicit Differentiation and Related Rates

Implicit Definition of y in Terms of x

An expression giving y = f (x), i.e., that is solved for y , is said to
define y explicitly in terms of x ; E.g., y =

√
x or y = x2 − 5x + 7

define y explicitly in terms of x ;

On the other hand, an expression of the form f (x , y) = 0, that is not
explicitly solved for y , is said to define y implicitly in terms of x ;
E.g., x2 + y2 = 25 or xy3 + x3y − 1 = 0 define y implicitly in terms of x ;

Note that, even in cases where it is possible to solve for y , as for
example in x2 + y2 = 25, we might want to avoid doing this;

In this specific case, we would have

y = ±
√
25 − x2,

which would force us to deal with two, instead of with just one,
formulas.
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Further Applications of Derivatives Implicit Differentiation and Related Rates

Implicit Differentiation

To compute the derivative y ′ = dy
dx

of y when y is given implicitly in
terms of x , we

take derivatives of both sides with respect to x ;
use the general power rule [f (x)n]′ = n ⋅ f (x)n−1 ⋅ f ′(x) very carefully;
i.e., when we take the derivative of a power yn, with respect to x , we
must use the general power rule (yn)′ = nyn−1y ′.

Suppose we want to compute y ′ = dy
dx

if x2 + y2 = 25;

(x2 + y2)′ = (25)′
sum rule
⇒ (x2)′ + (y2)′ = 0

power rule
⇒ 2x + 2yy ′ = 0
⇒ 2yy ′ = −2x

⇒ y ′ = −
x

y
.
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Further Applications of Derivatives Implicit Differentiation and Related Rates

An Additional Example

Find the slope of the tangent lines to the ellipse
x2

36
+

8y2

81
= 1 at

(2,3) and at (2,−3);
We differentiate implicitly:

(x2
36
+

8y2

81
)′ = (1)′

⇒ (x2
36
)′ + (8y2

81
)′ = 0

⇒
x

18
+

16yy ′

81
= 0⇒

16yy ′

81
= −

x

18

⇒ y ′ = −
x

18
⋅

81

16y
⇒ y ′ = −

9x

32y
;

Thus, we get y ′(2,3) = − 9⋅2
32⋅3 = −

3
16 and y ′(2,−3) = − 9⋅2

32⋅(−3) =
3
16 .
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Further Applications of Derivatives Implicit Differentiation and Related Rates

The General Method

Finding dy
dx

by Implicit Differentiation

1 Differentiate both sides with respect to x ; When differentiating a y ,
include dy

dx
(Chain Rule);

2 Collect all terms involving dy
dx

on one side and all others on the other;

3 Factor out the dy
dx

and solve for it by dividing.

Example: If y4 + x4 − 2x2y2 = 9, find dy
dx
;

(y4 + x4 − 2x2y2)′ = (9)′ ⇒ (y4)′ + (x4)′ − (2x2y2)′ = 0⇒
4y3y ′+4x3−2((x2)′y2+x2(y2)′) = 0⇒ 4y3y ′+4x3−2(2xy2+x2⋅2yy ′) =
0⇒ 4y3y ′ + 4x3 − 4xy2 − 4x2yy ′ = 0⇒ 4y3y ′ − 4x2yy ′ = 4xy2 − 4x3 ⇒

(4y3 − 4x2y)y ′ = 4xy2 − 4x3 ⇒ y ′ =
4(xy2 − x3)
4(y3 − x2y) =

xy2 − x3

y3 − x2y
.
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Further Applications of Derivatives Implicit Differentiation and Related Rates

Finding and Interpreting the Implicit Derivative

The demand equation gives the quantity x of some commodity to be
consumed as a function of the price p at which it is offered;

If x =
√
1900 − p3, use implicit differentiation to find dp

dx
; Evaluate this

at p = 10 and interpret the answer;
dx
dx
=

d
dx

√
1900 − p3

⇒ 1 = 1
2(1900 − p3)−1/2 d

dx
(1900 − p3)

⇒ 1 = 1

2
√
1900−p3

( − 3p2 dp
dx
)

⇒ 1 = − 3p2

2
√
1900−p3

⋅
dp
dx

⇒
dp
dx
= −

2
√
1900−p3
3p2

;

Therefore, dp
dx
∣
p=10
= −

2
√
1900−1000
3⋅100 = −

2
√
900

300 = −
60
300 = − 0.2; This is

the approximate price decrease per 1 unit increase in quantity; Put
differently, each 20¢ decrease in price will result in approximately one
additional unit of the commodity being sold.
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Further Applications of Derivatives Implicit Differentiation and Related Rates

Related Rates

A pebble thrown into a pond causes cir-
cular ripples to radiate outward; If the
radius is growing by 2 feet/second, how
fast is the area of the circle growing at
the moment when the radius is exactly
10 feet?

Recall formula for the area A = πr2; To find the rate at which area is
changing with respect to time, i.e., dA

dt
, we differentiate both sides with

respect to time t:

dA

dt
=

d

dt
(πr2)⇒ dA

dt
= π ⋅ 2r

dr

dt
⇒

dA

dt
= 2πr

dr

dt
;

Therefore, for r = 10 and dr
dt
= 2, we get dA

dt
= 2π ⋅ 10 ⋅ 2 = 40π feet2/second.
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Further Applications of Derivatives Implicit Differentiation and Related Rates

General Method

To Solve a Related Rates Problem

1 Determine which quantities are changing with time;

2 Find an equation that relates these quantities;

3 Differentiate both sides of the equation implicitly with respect to t;

4 Substitute into the resulting equation any given values for the
variables and for the derivatives (interpreted as rates of change);

5 Solve for the remaining derivative and interpret the answer as a rate
of change.

In the example above:
1 The Area A and the radius r were changing with time;
2 The equation that related those was A = πr2;
3 We took derivatives with respect to t and found dA

dt
= 2πr dr

dt
;

4 We substituted r = 10 and dr
dt

to get dA
dt
;

5 This was interpreted as the rate of change of the area.
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Further Applications of Derivatives Implicit Differentiation and Related Rates

Application: Emptying a Cylindric Tank

A tap at the bottom of a cylindric tank
of radius r = 5 inches is turned on; If the
tap causes the water to drain at a rate
of 5π inches3/second, how fast is the
level of the water falling in the tank?

Recall formula for the volume V = πr2h; To find the rate at which the
level h of the water is changing with respect to time, i.e., dh

dt
, we

differentiate both sides with respect to time t:

dV

dt
=

d

dt
(πr2h)⇒ dV

dt
= πr2 ⋅

dh

dt
⇒

dh

dt
=

1

πr2
dV

dt
;

Therefore, for r = 5 and dV
dt
= − 5π, we get dh

dt
=

1
π⋅52 ⋅ (−5π) = − 1

5 in/sec.
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Further Applications of Derivatives Implicit Differentiation and Related Rates

Application: Profit Growth

A boat yard’s total profit from selling x boat
motors is P(x) = −x2 + 1000x − 2000. If the
motors are selling at the rate of 20 per week,
how fast is the profit changing when 400 mo-
tors have been sold?

The changing quantities are x and P and they
are related by the given equation;

We differentiate both sides with respect to t:

dP

dt
=

d

dt
(−x2 + 1000x − 2000)⇒ dP

dt
= − 2x

dx

dt
+ 1000

dx

dt
;

Therefore, for x = 400 and dx
dt
= 20, we get

dP

dt
= − 2 ⋅ 400 ⋅ 20 + 1000 ⋅ 20 = $4000 per week.
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Further Applications of Derivatives Implicit Differentiation and Related Rates

Application: Predicting Pollution

Sulfur oxide emissions in a city will be
S = 2+20x +0.1x2 tons, where x is the
population in thousands; If the popula-
tion t years from now is expected to be
x = 800 + 20

√
t thousand people, how

rapidly will the pollution be increasing
4 years from now?
The changing quantities are x and S and they are related by the equation
S = 2 + 20x + 0.1x2; We differentiate both sides with respect to t:

dS

dt
=

d

dt
(2 + 20x + 0.1x2)⇒ dS

dt
= 20

dx

dt
+ 0.2x

dx

dt
;

Note that for t = 4, x = 800 + 20
√
4 = 840 and also that

dx
dt
=

d
dt
(800 + 20√t) = 20 ⋅ 12 t−1/2 = 10√

t
, whence dx

dt
∣
t=4
= 5;

Therefore, we get dS
dt
= 20 ⋅ 5 + 0.2 ⋅ 840 ⋅ 5 = 940 tons/year.
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