Business and Life Calculus

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 112
(1) Further Applications of Derivatives

- Graphing Using First Derivative
- Graphing Using First and Second Derivatives
- Optimization
- Further Applications of Optimization
- Implicit Differentiation and Related Rates

Subsection 1

Graphing Using First Derivative

Increasing and Decreasing Functions

- Recall that a function $f(x)$ is
- increasing on $[a, b]$ if its graph rises as we move left to right in $[a, b]$;
- decreasing on $[a, b]$ if its graph falls as we move left to right in $[a, b]$;
- Note that
- if f is increasing ($\not \subset$) on [a,b], the slopes of the tangents are positive, so $f^{\prime}(x)>0$, for x in $[a, b]$;
- if f is decreasing (\searrow) on $[a, b]$, the slopes of the tangents are negative, so $f^{\prime}(x)<0$, for x in $[a, b]$;

Relative Maxima and Minima

- A function $f(x)$ has a
- relative maximum $y=f(d)$ at $x=d$ if $f(d)$ is at least as high as all its neighboring points on the curve;
- relative minimum $y=f(c)$ at $x=c$ if $f(c)$ is at least as low as all its neighboring points on the curve;
- Note that:
- if $y=f(x)$ has a tangent at a relative extremum, with $x=c$, then its slope is equal to 0 ; Thus, in this case, $f^{\prime}(c)=0$;
- But f may also have a relative extremum at a point $x=b$, where the tangent, and, hence, its slope $f^{\prime}(b)$ is not defined!

Critical Numbers

Critical Numbers

A critical number of a function f is an x-value in the domain of f at which either $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined;

- Thus, according to our previous analysis, if f has a relative minimum or a relative maximum at x, then x must be a critical number of f;
- It is not true that all critical numbers give rise to relative minimum or relative maximum points!

Graphing Using the First Derivative

- Suppose we would like to roughly sketch the graph of $y=f(x)$ using the first-derivative $f^{\prime}(x)$ as an aid. Then we perform the following steps:
(1) We find the critical numbers, i.e., the points where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined;
(2) Using those points, we construct the sign table for the first derivative $f^{\prime}(x)$;
(3) If in an interval $[a, b]$,
- $f^{\prime}(x)>0$, then $f>[a, b]$;
- $f^{\prime}(x)<0$, then $f>[a, b]$;
(9) We use this information to draw conclusions about the relative maxima and the relative minima;
(5) Using these extreme points and the increasing/decreasing properties of $f(x)$, we roughly sketch the graph $y=f(x)$;
- We will see some examples in following slides.

Graphing a Function I

- Use the first derivative to sketch the graph of the function $f(x)=x^{3}-12 x^{2}-60 x+36$;
(1) Compute first derivative and find the critical numbers:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-24 x-60=3\left(x^{2}-8 x-20\right)=3(x+2)(x-10) ; \text { So } \\
& f^{\prime}(x)=0 \Rightarrow 3(x+2)(x-10)=0 \Rightarrow x=-2 \text { or } x=10 ;
\end{aligned}
$$

(2) Create the sign table for $f^{\prime}(x)$:

	$x<-2$	$-2<x<10$	$10<x$
$f^{\prime}(x)$	+	-	+
$f(x)$	\nearrow	\searrow	\nearrow

(3) From the table, we see that f has a relative maximum at $(-2,100)$ and a relative minimum at $(10,-764)$;
(9) We plot these two points and use them to roughly sketch the graph.

Graphing a Function II

- Use the first derivative to sketch the graph of the function $f(x)=x^{3}-12 x+8$;
(1) Compute first derivative and find the critical numbers:

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-12=3\left(x^{2}-4\right)=3(x+2)(x-2) ; \text { So } \\
& f^{\prime}(x)=0 \Rightarrow 3(x+2)(x-2)=0 \Rightarrow x=-2 \text { or } x=2 ;
\end{aligned}
$$

(2) Create the sign table for $f^{\prime}(x)$:

	$x<-2$	$-2<x<2$	$2<x$
$f^{\prime}(x)$	+	-	+
$f(x)$	\nearrow	\searrow	\nearrow

(3) From the table, we see that f has a relative maximum at $(-2,24)$ and a relative minimum at $(2,-8)$;
(9) We plot these two points and use them to roughly sketch the graph.

First Derivative Test for Relative Extrema

First Derivative Test

If f has a critical number at c, then at $x=c$, it has a

- a relative maximum if $f^{\prime}>0$ just before c and $f^{\prime}<0$ just after c;
- a relative minimum if $f^{\prime}<0$ just before c and $f^{\prime}>0$ just after c;
- In summary, we have the following four cases as far as a critical number c is concerned:

	$x<c$	$x>c$
f^{\prime}	+	-
f	\nearrow	\searrow

Relative Maximum

	$x<c$	$x>c$
f^{\prime}	+	+
f	\nearrow	\nearrow

Neither

	$x<c$	$x>c$
f^{\prime}	-	+
f	\searrow	\nearrow

Relative Minimum

	$x<c$	$x>c$
f^{\prime}	-	-
f	\searrow	\searrow

Neither

Graphing a Function III

- Use the first derivative to sketch the graph of the function $f(x)=-x^{4}+4 x^{3}-20$;
(1) Compute first derivative and find the critical numbers:
$f^{\prime}(x)=-4 x^{3}+12 x^{2}=-4 x^{2}(x-3)$; So
$f^{\prime}(x)=0 \Rightarrow-4 x^{2}(x-3)=0 \Rightarrow x=0$ or $x=3$;
(2) Create the sign table for $f^{\prime}(x)$:

	$x<0$	$0<x<3$	$3<x$
$f^{\prime}(x)$	+	+	-
$f(x)$	\nearrow	\nearrow	\searrow

(3) From the table, we see that f has a relative maximum at $(3,7)$ and no relative minimum;
(9) We plot the relative maximum and use it to roughly sketch the graph.

Graphing Rational Functions

- Suppose we would like to roughly sketch the graph of a rational function $y=f(x)$ using the first-derivative $f^{\prime}(x)$ as an aid. Then we perform the following steps:
(1) First, find the domain;
(2) Then, find the horizontal and the vertical asymptotes;
(3) We, then, find the critical numbers, i.e., the points where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined;
(9) Using those points, we construct the sign table for the first derivative $f^{\prime}(x)$ and draw conclusions about monotonicity;
(5) We use this information and the first derivative test to find the relative maxima and the relative minima;
(0) Using the asymptotes, the extreme points and the increasing / decreasing properties of $f(x)$, we roughly sketch the graph $y=f(x)$;
- We will see some examples in following slides; But note that the domain and the asymptotes are the main additions here!

Graphing a Rational Function I

- Use the first derivative to sketch the graph of $f(x)=\frac{3 x-2}{x-2}$;
(1) The domain is $\operatorname{Dom}(f)=\mathbb{R}-\{2\}$;
(2) Vertical asymptote $x=2$, where f is undefined;
(3) Horizontal asymptote $y=\lim _{x \rightarrow \infty} \frac{3 x-2}{x-2}=\frac{3}{1}=3$;
(3) Compute first derivative and find the critical numbers:
$f^{\prime}(x)=\frac{(3 x-2)^{\prime}(x-2)-(3 x-2)(x-2)^{\prime}}{(x-2)^{2}}=\frac{3(x-2)-(3 x-2)}{(x-2)^{2}}=\frac{-4}{(x-2)^{2}}$; So only
number to consider is $x=2$;
(3) Create the sign table for $f^{\prime}(x)$:

	$x<2$	$2<x$
$f^{\prime}(x)$	-	-
$f(x)$	\searrow	\searrow

(9) From the table, we see that f does not have extrema;
(5) Plot the asymptotes $x=2$ and $y=3$ and use them to graph.

Graphing a Rational Function II

- Use the first derivative to sketch the graph of $f(x)=\frac{3 x^{2}}{x^{2}-4}$;
(1) The domain is $\operatorname{Dom}(f)=\mathbb{R}-\{-2,2\}$;
(2) Vertical asymptotes $x=-2$ and $x=2$, where f is undefined;
(3) Horizontal asymptote $y=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{x^{2}-4}=\frac{3}{1}=3$;
(9) Compute first derivative and find the critical numbers:

$$
f^{\prime}(x)=\frac{\left(3 x^{2}\right)^{\prime}\left(x^{2}-4\right)-3 x^{2}\left(x^{2}-4\right)^{\prime}}{\left(x^{2}-4\right)^{2}}=\frac{6 x\left(x^{2}-4\right)-3 x^{2} \cdot 2 x}{\left(x^{2}-4\right)^{2}}=\frac{-24 x}{\left(x^{2}-4\right)^{2}} ; \text { So we consider }
$$ the numbers $x=0$ and $x= \pm 2$;

(3) Create the sign table for $f^{\prime}(x)$:

	$x<-2$	$(-2,0)$	$(0,2)$	$2<x$
$f^{\prime}(x)$	+	+	-	-
$f(x)$	\nearrow	\nearrow	\searrow	\searrow

(9) From the table, we see that f does has a local maximum $(0,0)$;
(5) Plot $(0,0), x=-2, x=2$ and $y=3$ and use them to graph.

Subsection 2

Graphing Using First and Second Derivatives

Concavity

- We say that the graph of $y=f(x)$ on $[a, b]$ is
- concave down if the slopes of the tangent lines are decreasing;
- concave up if the slopes of the tangent lines are increasing;
- Recall $f \nearrow[a, b]$ if $f^{\prime}>0$ in $[a, b]$ and $f \searrow[a, b]$ if $f^{\prime}<0$ in $[a, b]$;
- Note the following about concavity:
- Concave down means slopes decreasing, which means $f^{\prime} \searrow[a, b]$, which means $f^{\prime \prime}<0$ in [a, b];
- Concave up means slopes increasing, which means $f^{\prime} \nearrow[a, b]$, which means $f^{\prime \prime}>0$ in $[a, b]$.

Inflection Points

- An inflection point is a point on the graph where the convavity changes, i.e., we go either from concave up to concave down or vice-versa;

- Note that at an inflection point $x, f^{\prime \prime}$ changes sign, so we must have that $f^{\prime \prime}(x)=0$ or $f^{\prime \prime}(x)$ is undefined.

Second Derivative for Concavity and Inflection

- Find the intervals of concavity and the inflection points of $f(x)=x^{3}-9 x^{2}+24 x$;
Compute first derivative: $f^{\prime}(x)=\left(x^{3}-9 x^{2}+24 x\right)^{\prime}=3 x^{2}-18 x+24$; Compute second derivative:

$$
\begin{aligned}
& f^{\prime \prime}(x)=\left(3 x^{2}-18 x+24\right)^{\prime}=6 x-18=6(x-3) ; \text { Solve } \\
& f^{\prime \prime}(x)=0 \Rightarrow 6(x-3)=0 \Rightarrow x=3 ;
\end{aligned}
$$

Form the sign table of the second derivative:

	$x<3$	$3<x$
$f^{\prime \prime}$	-	+
f	\frown	\smile

Thus, f has an inflection point $(3,18)$.

Combining First and Second Derivatives

- If we combine the signs of the first and the second derivatives in specific intervals we get the following four cases:

	$[a, b]$
f^{\prime}	+
$f^{\prime \prime}$	+
f	\jmath

Increasing
Concave Up

Decreasing
Concave Up

	$[a, b]$
f^{\prime}	+
$f^{\prime \prime}$	-
f	\ulcorner

Increasing
Concave Down

	$[a, b]$
f^{\prime}	-
$f^{\prime \prime}$	-
f	\downarrow

Decreasing
Concave Down

Graphing Using Both First and Second Derivatives

- Graph the function $f(x)=x^{3}-3 x^{2}-9 x+7$

Compute the first derivative:
$f^{\prime}(x)=3 x^{2}-6 x-9=3\left(x^{2}-2 x-3\right)=3(x+1)(x-3)$; Find its
critical numbers: $f^{\prime}(x)=0 \Rightarrow 3(x+1)(x-3)=0 \Rightarrow x=-1$ or $x=3$;
Find second derivative: $f^{\prime \prime}(x)=6 x-6=6(x-1)$; Its zero is $x=1$;
Create combined sign table for first and second derivatives:

	$x<-1$	$[-1,1]$	$[1,3]$	$3<x$
f^{\prime}	+	-	-	+
$f^{\prime \prime}$	-	-	+	+
f	\nearrow	\downarrow	\succ	\jmath

Thus f has relative max $(-1,12)$, relative $\min (3,-20)$ and inflection (1, -4).

Graphing II

- Graph the function $f(x)=x^{3 / 5}\left(=\sqrt[5]{x^{3}}\right)$

Compute the first derivative: $f^{\prime}(x)=\left(x^{3 / 5}\right)^{\prime}=\frac{3}{5} x^{-2 / 5}=\frac{3}{5 \sqrt[5]{x^{2}}} ; f^{\prime}$ is undefined at $x=0$; So $x=0$ is critical point;
Find second derivative: $f^{\prime \prime}(x)=\left(\frac{3}{5} x^{-2 / 5}\right)^{\prime}=\frac{3}{5} \cdot\left(-\frac{2}{5}\right) x^{-7 / 5}=-\frac{6}{25 \sqrt[5]{x^{7}}}$;
Also undefined at $x=0$;
Create combined sign table for first and second derivatives:

	$x<0$	$0<x$
f^{\prime}	+	+
$f^{\prime \prime}$	+	-
f	\ddots	\nearrow

Thus f has no relative extrema and inflection (0,0).

The Second-Derivative Test

Second-Derivative Test for Relative Extrema

If $x=c$ is a critical number of f at which $f^{\prime \prime}$ is defined, then

- if $f^{\prime \prime}(c)>0$, then f has a relative minimum at $x=c$;
- if $f^{\prime \prime}(c)<0$, then f has a relative maximum at $x=c$.

Applying the Second Derivative Test

- Example: Use second derivative test to find all relative extrema of $f(x)=x^{4}-2 x^{2}+1$;
Compute first derivative: $f^{\prime}(x)=4 x^{3}-4 x=4 x\left(x^{2}-1\right)=4 x(x+1)(x-1)$; Find all critical numbers $f^{\prime}(x)=0 \Rightarrow 4 x(x+1)(x-1)=0 \Rightarrow x=0$ or $x=-1$ or $x=1$; Now compute the second derivative: $f^{\prime \prime}(x)=12 x^{2}-4$;

Evaluate the second derivative at each of the critical points:

x	$f^{\prime \prime}(x)$	Point
-1	$8>0$	Min
0	$-4<0$	Max
1	$8>0$	Min

Subsection 3

Optimization

Absolute Extrema in a Closed Interval

- Optimizing a function means finding its maximum or its minimum value;
- The absolute max/min value of a function is the largest/smallest value of the function on its domain;
- An absolute extremum is either an absolute max or an absolute min.

Optimizing a Continuous Function on a Closed Interval

- A continuous function f on a closed interval $[a, b]$ has both an absolute max and an absolute min value;
- To compute these values
(1) Find all critical numbers of f in $[a, b]$;
(2) Evaluate f at the critical numbers and at a and b;
(3) The largest and smallest values found in previous step are the absolute extrema of f on $[a, b]$.

Example

- Find absolute extrema of $f(x)=x^{3}-9 x^{2}+15 x$ on $[0,3]$;

Compute $f^{\prime}(x)=3 x^{2}-18 x+15=3\left(x^{2}-6 x+5\right)=3(x-1)(x-5)$; Set $f^{\prime}(x)=0 \Rightarrow 3(x-1)(x-5)=0 \Rightarrow x=1$ or $x=5$; The only critical number in $[0,3]$ is $x=1$;

Compute

$$
\begin{aligned}
f(0) & =0 \\
f(1) & =7 \\
f(3) & =-9
\end{aligned}
$$

Thus, absolute max is $f(1)=7$ and absolute $\min f(3)=-9$.

Application: Timber Forest

- The value of a timber forest after t years is $V(t)=96 \sqrt{t}-6 t$ thousand dollars $(t>0)$. When is the value maximized?

Find $V^{\prime}(t)=(96 \sqrt{t}-6 t)^{\prime}=96\left(t^{1 / 2}\right)^{\prime}-6(t)^{\prime}=96 \cdot \frac{1}{2} t^{-1 / 2}-6=$ $\frac{48}{\sqrt{t}}-6=\frac{48}{\sqrt{t}}-\frac{6 \sqrt{t}}{\sqrt{t}}=\frac{48-6 \sqrt{t}}{\sqrt{t}}=\frac{6(8-\sqrt{t})}{\sqrt{t}}$;
Thus, $V(t)=0 \Rightarrow 8-\sqrt{t}=0 \Rightarrow \sqrt{t}=8 \Rightarrow t=64$;
Note that the critical numbers of $V(t)$ are $t=0$ and $t=64$; However, $V(0)=0$ will not give max; The \max is $V(64)=96 \sqrt{64}-6 \cdot 64=384$ thousands of dollars.

Application: Maximum Profit

- Suppose it costs $\$ 8,000$ to produce a car and fixed costs are $\$ 20,000$ per week; Suppose, also, the price function is $p(x)=22,000-70 x$, where p is the price at which exactly x cars are sold;
- What is the revenue, the cost and the profit function?

$$
\begin{aligned}
& R(x)=x p(x)=x(22000-70 x)=-70 x^{2}+22000 x \\
& C(x)=8000 x+20000 ; \\
& P(x)=R(x)-C(x)=-70 x^{2}+22000 x-(8000 x+20000)= \\
& -70 x^{2}+14000 x-20000
\end{aligned}
$$

- How many cars should be produced each week to maximize profit?

Compute $P^{\prime}(x)=-140 x+14000$; Set

$$
P^{\prime}(x)=0 \Rightarrow-140 x+14000=0 \Rightarrow x=100
$$

- For what price should they be sold?

$$
p(100)=22000-70 \cdot 100=15000 ;
$$

- What is the maximum profit?

$$
\begin{aligned}
& P(100)=-70 \cdot 100^{2}+14000 \cdot 100-20000= \\
& -700000+1400000-20000=\$ 680,000 .
\end{aligned}
$$

Application: Maximum Area

- A farmer has 1000 feet of fence and wants to build a rectangular enclosure along a straight wall.

If the side along the wall needs no fencing, find the dimensions that make the enclosure as large as possible and the maximum area;

Suppose x is the length and y the width of the rectangular area; Then, since the length of the fence is 1000 feet, we must have $x+2 y=1000 \Rightarrow x=1000-2 y$; Moreover, the area enclosed is $A=x y=(1000-2 y) y=-2 y^{2}+1000 y$; Compute $A^{\prime}(y)=-4 y+1000 ;$ Set $A^{\prime}(y)=0 \Rightarrow-4 y+1000=0 \Rightarrow y=250$; Thus, the dimensions that maximize the area are 500 feet $\times 250$ feet and the maximum area is $A(250)=500 \cdot 250=125000$ feet 2.

Application: Maximum Volume

- An open top box is to be made from a square sheet of metal 12 inches on each side by cutting a square from each corner and folding up the sides;

Find the volume of the largest box that can be made;

Suppose x is the length of the side of the corner square; Then, the volume must be $V(x)=(12-2 x)(12-2 x) x=\left(144-48 x+4 x^{2}\right) x=4 x^{3}-48 x^{2}+144 x ;$ Compute

$$
V^{\prime}(x)=12 x^{2}-96 x+144=12\left(x^{2}-8 x+12\right)=12(x-2)(x-6)
$$

Set $V^{\prime}(x)=0 \Rightarrow 12(x-2)(x-6)=0 \Rightarrow x=2$ or $x=6$; However, $x=6$ cannot be, so $x=2$; Thus, the dimensions that maximize the volume are $8 \times 8 \times 2$ inches and max volume is $V(2)=8 \cdot 8 \cdot 2=128 \mathrm{in}^{3}$.

Subsection 4

Further Applications of Optimization

Price and Quantity Functions

- A store can sell 20 bikes per week at $\$ 400$ each; The manager estimates that for each $\$ 10$ reduction in price she can sell two more bikes per week; The bikes cost the store $\$ 200$ each; Let x stand for the number of $\$ 10$ reductions;
- Find an expression for the price p as a function of x;

$$
p(x)=400-10 x
$$

- Find an expression for the quantity q sold as a function of x;

$$
q(x)=20+2 x
$$

- Find the revenue, cost and profit as functions of x;

$$
\begin{aligned}
R(x) & =q(x) p(x)=(20+2 x)(400-10 x)=-20 x^{2}+600 x+8000 ; \\
C(x) & =200 q(x)=200(20+2 x)=400 x+4000 ; \\
P(x) & =R(x)-C(x)=-20 x^{2}+600 x+8000-(400 x+4000)= \\
& -20 x^{2}+200 x+4000 ;
\end{aligned}
$$

Maximizing Profit

- We found $p(x)=400-10 x$ and $q(x)=20+2 x$; We also computed $P(x)=-20 x^{2}+200 x+4000 ;$
- What is the price and the quantity that maximize profit? What is maximum profit?
Compute $P^{\prime}(x)=-40 x+200$;
Set $P^{\prime}(x)=0 \Rightarrow-40 x+200=0 \Rightarrow x=5$;
Therefore, the price that maximizes profit is $p(5)=350$; Moreover, the quantity that maximizes profit is $q(5)=30$ bikes per week; Finally the max profit is

$$
P(5)=-20 \cdot 5^{2}+200 \cdot 5+4000=-500+1000+4000=\$ 4,500 .
$$

Maximizing Harvest Size

- An orange grower finds that, if he plants 80 orange trees per acre, each tree will yield 60 bushels of oranges; For each additional tree planted per acre, the yield of each tree will decrease by 2 bushels; How many trees should he plant per acre to maximize harvest?

Let x be the number of additional trees per acre; Then, there are $T(x)=80+x$ trees per acre; Each tree would yield $Y(x)=60-2 x$ bushels of oranges; Thus, the total harvest per acre is
$H(x)=T(x) \cdot Y(x)=(80+x)(60-2 x)=-2 x^{2}-100 x+4800$ bushels;
To maximize, compute $H^{\prime}(x)=-4 x-100$; Set
$H^{\prime}(x)=0 \Rightarrow-4 x-100=0 \Rightarrow x=-25$;
Thus, the number of trees that should be planted per acre is $T(-25)=80-25=55$.

Minimizing Packaging Materials

- A moving company wants to design an open-top box with a square base whose volume is exactly 32 feet 3; Find the dimensions of the box requiring the least amount of materials;
Suppose that the box has dimensions of base $x \times x$ feet and height y feet;
Then, since the volume is 32 feet 3, we must have $x^{2} y=32 \Rightarrow y=\frac{32}{x^{2}}$; Moreover, the amount of materials, given by the surface area, is $A=$ bottom

To minimize compute $A^{\prime}(x)=\left(x^{2}+128 x^{-1}\right)^{\prime}=$ $2 x-128 x^{-2}=2 x-\frac{128}{x^{2}}=\frac{2 x^{3}}{x^{2}}-\frac{128}{x^{2}}=\frac{2\left(x^{3}-64\right)}{x^{2}}$; Set $A^{\prime}(x)=0 \Rightarrow x^{3}-64=0 \Rightarrow x^{3}=64 \Rightarrow x=\sqrt[3]{64}=4$; Thus, the dimensions that minimize the amount of materials are $4 \times 4 \times 2$ feet.

Maximizing Tax Revenue

- Suppose that the relationship between the tax rate t on an item and the total sales S of the item in millions of dollars is $S(t)=9-20 \sqrt{t}$; What is the tax rate that maximizes the government revenue?
We have $R(t)=t S(t)=t(9-20 \sqrt{t})=9 t-20 t^{3 / 2}$;
To maximize, compute $R^{\prime}(t)=\left(9 t-20 t^{3 / 2}\right)^{\prime}=9-20 \cdot \frac{3}{2} t^{1 / 2}=9-30 \sqrt{t}$;
Set $R^{\prime}(t)=0 \Rightarrow 9-30 \sqrt{t}=0 \Rightarrow \sqrt{t}=0.3 \Rightarrow t=0.09$;
The second derivative is $R^{\prime \prime}(t)=\left(9-30 t^{1 / 2}\right)^{\prime}=-15 t^{-1 / 2}=-\frac{15}{\sqrt{t}}$;
Since $R^{\prime \prime}(0.09)<0$, at $t=0.09 R(t)$ has indeed a maximum (and not a minimum);
Thus, the rate that maximizes revenue is in fact 9%.

Subsection 5

Implicit Differentiation and Related Rates

Implicit Definition of y in Terms of x

- An expression giving $y=f(x)$, i.e., that is solved for y, is said to define y explicitly in terms of x; E.g., $y=\sqrt{x}$ or $y=x^{2}-5 x+7$ define y explicitly in terms of x;
- On the other hand, an expression of the form $f(x, y)=0$, that is not explicitly solved for y, is said to define y implicitly in terms of x; E.g., $x^{2}+y^{2}=25$ or $x y^{3}+x^{3} y-1=0$ define y implicitly in terms of x;
- Note that, even in cases where it is possible to solve for y, as for example in $x^{2}+y^{2}=25$, we might want to avoid doing this; In this specific case, we would have

$$
y= \pm \sqrt{25-x^{2}}
$$

which would force us to deal with two, instead of with just one, formulas.

Implicit Differentiation

- To compute the derivative $y^{\prime}=\frac{d y}{d x}$ of y when y is given implicitly in terms of x, we
- take derivatives of both sides with respect to x;
- use the general power rule $\left[f(x)^{n}\right]^{\prime}=n \cdot f(x)^{n-1} \cdot f^{\prime}(x)$ very carefully; i.e., when we take the derivative of a power y^{n}, with respect to x, we must use the general power rule $\left(y^{n}\right)^{\prime}=n y^{n-1} y^{\prime}$.
- Suppose we want to compute $y^{\prime}=\frac{d y}{d x}$ if $x^{2}+y^{2}=25$;

$$
\begin{aligned}
& \left(x^{2}+y^{2}\right)^{\prime}=(25)^{\prime} \\
& \stackrel{\text { sum rule }}{\Rightarrow}\left(x^{2}\right)^{\prime}+\left(y^{2}\right)^{\prime}=0 \\
& \stackrel{\text { power rule }}{\Rightarrow} 2 x+2 y y^{\prime}=0 \\
& \Rightarrow 2 y y^{\prime}=-2 x \\
& \Rightarrow y^{\prime}=-\frac{x}{y} .
\end{aligned}
$$

An Additional Example

- Find the slope of the tangent lines to the ellipse $\frac{x^{2}}{36}+\frac{8 y^{2}}{81}=1$ at $(2,3)$ and at $(2,-3)$;

We differentiate implicitly:

$$
\begin{aligned}
& \left(\frac{x^{2}}{36}+\frac{8 y^{2}}{81}\right)^{\prime}=(1)^{\prime} \\
& \Rightarrow\left(\frac{x^{2}}{36}\right)^{\prime}+\left(\frac{8 y^{2}}{81}\right)^{\prime}=0 \\
& \Rightarrow \frac{x}{18}+\frac{16 y y^{2}}{81}=0 \Rightarrow \frac{16 y y^{\prime}}{81}=-\frac{x}{18} \\
& \Rightarrow y^{\prime}=-\frac{x}{18} \cdot \frac{81}{16 y} \Rightarrow y^{\prime}=-\frac{9 x}{32 y}
\end{aligned}
$$

Thus, we get $y^{\prime}(2,3)=-\frac{9 \cdot 2}{32 \cdot 3}=-\frac{3}{16}$ and $y^{\prime}(2,-3)=-\frac{9 \cdot 2}{32 \cdot(-3)}=\frac{3}{16}$.

The General Method

Finding $\frac{d y}{d x}$ by Implicit Differentiation

(1) Differentiate both sides with respect to x; When differentiating a y, include $\frac{d y}{d x}$ (Chain Rule);
(2) Collect all terms involving $\frac{d y}{d x}$ on one side and all others on the other;
(3) Factor out the $\frac{d y}{d x}$ and solve for it by dividing.

- Example: If $y^{4}+x^{4}-2 x^{2} y^{2}=9$, find $\frac{d y}{d x}$;

$$
\begin{aligned}
& \left(y^{4}+x^{4}-2 x^{2} y^{2}\right)^{\prime}=(9)^{\prime} \Rightarrow\left(y^{4}\right)^{\prime}+\left(x^{4}\right)^{\prime}-\left(2 x^{2} y^{2}\right)^{\prime}=0 \Rightarrow \\
& 4 y^{3} y^{\prime}+4 x^{3}-2\left(\left(x^{2}\right)^{\prime} y^{2}+x^{2}\left(y^{2}\right)^{\prime}\right)=0 \Rightarrow 4 y^{3} y^{\prime}+4 x^{3}-2\left(2 x y^{2}+x^{2} \cdot 2 y y^{\prime}\right)= \\
& 0 \Rightarrow 4 y^{3} y^{\prime}+4 x^{3}-4 x y^{2}-4 x^{2} y y^{\prime}=0 \Rightarrow 4 y^{3} y^{\prime}-4 x^{2} y y^{\prime}=4 x y^{2}-4 x^{3} \Rightarrow \\
& \left(4 y^{3}-4 x^{2} y\right) y^{\prime}=4 x y^{2}-4 x^{3} \Rightarrow y^{\prime}=\frac{4\left(x y^{2}-x^{3}\right)}{4\left(y^{3}-x^{2} y\right)}=\frac{x y^{2}-x^{3}}{y^{3}-x^{2} y} .
\end{aligned}
$$

Finding and Interpreting the Implicit Derivative

- The demand equation gives the quantity x of some commodity to be consumed as a function of the price p at which it is offered;
- If $x=\sqrt{1900-p^{3}}$, use implicit differentiation to find $\frac{d p}{d x}$; Evaluate this at $p=10$ and interpret the answer;

$$
\begin{aligned}
& \frac{d x}{d x}=\frac{d}{d x} \sqrt{1900-p^{3}} \\
& \Rightarrow 1=\frac{1}{2}\left(1900-p^{3}\right)^{-1 / 2} \frac{d}{d x}\left(1900-p^{3}\right) \\
& \Rightarrow 1=\frac{1}{2 \sqrt{1900-p^{3}}}\left(-3 p^{2} \frac{d p}{d x}\right) \\
& \Rightarrow 1=-\frac{3 p^{2}}{2 \sqrt{1900-p^{3}}} \cdot \frac{d p}{d x} \\
& \Rightarrow \frac{d p}{d x}=-\frac{2 \sqrt{1900-p^{3}}}{3 p^{2}}
\end{aligned}
$$

Therefore, $\left.\frac{d p}{d x}\right|_{p=10}=-\frac{2 \sqrt{1900-1000}}{3 \cdot 100}=-\frac{2 \sqrt{900}}{300}=-\frac{60}{300}=-0.2$; This is the approximate price decrease per 1 unit increase in quantity; Put differently, each $20 \$$ decrease in price will result in approximately one additional unit of the commodity being sold.

Related Rates

A pebble thrown into a pond causes circular ripples to radiate outward; If the radius is growing by 2 feet/second, how fast is the area of the circle growing at the moment when the radius is exactly 10 feet?

Recall formula for the area $A=\pi r^{2}$; To find the rate at which area is changing with respect to time, i.e., $\frac{d A}{d t}$, we differentiate both sides with respect to time t :

$$
\frac{d A}{d t}=\frac{d}{d t}\left(\pi r^{2}\right) \Rightarrow \frac{d A}{d t}=\pi \cdot 2 r \frac{d r}{d t} \Rightarrow \frac{d A}{d t}=2 \pi r \frac{d r}{d t}
$$

Therefore, for $r=10$ and $\frac{d r}{d t}=2$, we get $\frac{d A}{d t}=2 \pi \cdot 10 \cdot 2=40 \pi$ feet $^{2} /$ second.

General Method

To Solve a Related Rates Problem

(1) Determine which quantities are changing with time;
(2) Find an equation that relates these quantities;
(3) Differentiate both sides of the equation implicitly with respect to t;
(3) Substitute into the resulting equation any given values for the variables and for the derivatives (interpreted as rates of change);
(5) Solve for the remaining derivative and interpret the answer as a rate of change.

In the example above:
(1) The Area A and the radius r were changing with time;
(2) The equation that related those was $A=\pi r^{2}$;
(3) We took derivatives with respect to t and found $\frac{d A}{d t}=2 \pi r \frac{d r}{d t}$;
(9) We substituted $r=10$ and $\frac{d r}{d t}$ to get $\frac{d A}{d t}$;
(5) This was interpreted as the rate of change of the area.

Application: Emptying a Cylindric Tank

A tap at the bottom of a cylindric tank of radius $r=5$ inches is turned on; If the tap causes the water to drain at a rate of 5π inches ${ }^{3} /$ second, how fast is the level of the water falling in the tank?

Recall formula for the volume $V=\pi r^{2} h$; To find the rate at which the level h of the water is changing with respect to time, i.e., $\frac{d h}{d t}$, we differentiate both sides with respect to time t :

$$
\frac{d V}{d t}=\frac{d}{d t}\left(\pi r^{2} h\right) \Rightarrow \frac{d V}{d t}=\pi r^{2} \cdot \frac{d h}{d t} \Rightarrow \frac{d h}{d t}=\frac{1}{\pi r^{2}} \frac{d V}{d t}
$$

Therefore, for $r=5$ and $\frac{d V}{d t}=-5 \pi$, we get $\frac{d h}{d t}=\frac{1}{\pi \cdot 5^{2}} \cdot(-5 \pi)=-\frac{1}{5} \mathrm{in} / \mathrm{sec}$.

Application: Profit Growth

A boat yard's total profit from selling x boat motors is $P(x)=-x^{2}+1000 x-2000$. If the motors are selling at the rate of 20 per week, how fast is the profit changing when 400 motors have been sold?

The changing quantities are x and P and they are related by the given equation;

We differentiate both sides with respect to t :

$$
\frac{d P}{d t}=\frac{d}{d t}\left(-x^{2}+1000 x-2000\right) \Rightarrow \frac{d P}{d t}=-2 x \frac{d x}{d t}+1000 \frac{d x}{d t}
$$

Therefore, for $x=400$ and $\frac{d x}{d t}=20$, we get

$$
\frac{d P}{d t}=-2 \cdot 400 \cdot 20+1000 \cdot 20=\$ 4000 \text { per week. }
$$

Application: Predicting Pollution

Sulfur oxide emissions in a city will be $S=2+20 x+0.1 x^{2}$ tons, where x is the population in thousands; If the population t years from now is expected to be $x=800+20 \sqrt{t}$ thousand people, how rapidly will the pollution be increasing 4 years from now?
The changing quantities are x and S and they are related by the equation $S=2+20 x+0.1 x^{2}$; We differentiate both sides with respect to t :

$$
\frac{d S}{d t}=\frac{d}{d t}\left(2+20 x+0.1 x^{2}\right) \Rightarrow \frac{d S}{d t}=20 \frac{d x}{d t}+0.2 x \frac{d x}{d t}
$$

Note that for $t=4, x=800+20 \sqrt{4}=840$ and also that $\frac{d x}{d t}=\frac{d}{d t}(800+20 \sqrt{t})=20 \cdot \frac{1}{2} t^{-1 / 2}=\frac{10}{\sqrt{t}}$, whence $\left.\frac{d x}{d t}\right|_{t=4}=5$;
Therefore, we get $\frac{d S}{d t}=20 \cdot 5+0.2 \cdot 840 \cdot 5=940$ tons/year.

