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Integration and Its Applications Antiderivatives and Indefinite Integrals

Subsection 1

Antiderivatives and Indefinite Integrals
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Integration and Its Applications Antiderivatives and Indefinite Integrals

Antiderivatives and Indefinite Integrals

The reverse process of differentiation (i.e., of taking derivatives) is
called antidifferentiation;

Recall
the derivative of x2 is 2x ; So reversing
an antiderivative of 2x is x2;

Notice that there are other functions that would work as
antiderivatives of 2x : e.g., x2 + 1 or x2 − 49 also work;

In fact, if F (x) is an antiderivative of f (x) (i.e., f (x) = F ′(x)), the
most general antiderivative of f (x) is F (x) + C , C any constant;

The most general antiderivative of f (x) is called the indefinite

integral of f (x) and is denoted by

∫

f (x)dx ;

Thus, if F ′(x) = f (x), then
∫

f (x)dx = F (x) + C .
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Integration and Its Applications Antiderivatives and Indefinite Integrals

The Power Rule for Integrals

Recall that

Derivatives Integrals

(x)′ = 1

∫

1dx = x + C

(x2)′ = 2x

∫

xdx = 1
2x

2 + C

(x3)′ = 3x2
∫

x2dx = 1
3x

3 + C

(x4)′ = 4x3
∫

x3dx = 1
4x

4 + C

In general

Power Rule for Power Rule for
Derivatives Integrals

(xn)′ = nxn−1

∫

xndx =
1

n+ 1
xn+1 + C .
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Integration and Its Applications Antiderivatives and Indefinite Integrals

More Examples on the Power Rule for Integrals

Example: Compute the integrals:
∫ √

xdx =

∫

x1/2dx =
1
3
2

x3/2 + C =
2

3
x3/2 + C ;

∫
1

x2
dx =

∫

x−2dx =
1

−1x
−1 + C = − 1

x
+ C ;

∫

x7dx =
1

8
x8 + C ;

∫
1

x11
dx =

∫

x−11dx =
1

−10x
−10 + C = − 1

10x10
+ C ;

∫
1

3
√
x2

dx =

∫
1

x2/3
dx =

∫

x−2/3dx =
1
1
3

x1/3 + C = 3 3
√
x + C .
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Integration and Its Applications Antiderivatives and Indefinite Integrals

The Sum/Difference Rule for Integrals

Integral of a Sum is Sum of Integrals
∫

[f (x)± g(x)]dx =

∫

f (x)dx ±
∫

g(x)dx ;

Example: Compute the integrals:
∫

(x8 − x5)dx =

∫

x8dx −
∫

x5dx =
1

9
x9 − 1

6
x6 + C ;

∫

(
√
x +

1√
x
)dx =

∫ √
xdx +

∫
1√
x
dx =

∫

x1/2dx +

∫

x−1/2dx =

1
3
2

x3/2 +
1
1
2

x1/2 + C =
2

3

√
x3 + 2

√
x + C .
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Integration and Its Applications Antiderivatives and Indefinite Integrals

Constant Factor Rule For Integrals

Constant Factor Rule for Integrals
∫

k · f (x)dx = k

∫

f (x)dx ;

Example: Compute the integrals:
∫

15x4dx = 15

∫

x4dx = 15 · 15x5 + C = 3x5 + C ;
∫

13dx = 13

∫

dx = 13x + C ;
∫

(6x2 − 3
x2

+ 5)dx
sum
=

∫

6x2dx −
∫

3
x2
dx +

∫

5dx
constant
= 6

∫

x2dx −

3

∫

x−2dx+5

∫

dx = 6 · 1
3
x3−3 · 1

−1x
−1+5x+C = 2x3+

3

x
+5x+C ;

∫

( 3
√
x − 4

x3
)dx =

∫

3
√
xdx −

∫
4

x3
dx =

∫

x1/3dx − 4

∫

x−3dx =

1
4
3

x4/3 − 4 · 1

−2x
−2 + C =

3

4
3
√
x4 +

2

x2
+ C .
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Integration and Its Applications Antiderivatives and Indefinite Integrals

Simplifying to Compute

Compute the integrals:
∫

x2(x + 6)2dx =

∫

x2(x2 + 12x + 36)dx =
∫

(x4 + 12x3 + 36x2)dx =

∫

x4dx +

∫

12x3dx +

∫

36x2dx =

1
5x

5 + 3x4 + 12x3 + C ;
∫

6x2 − x

x
dx =

∫

(
6x2

x
− x

x
)dx =

∫

(6x − 1)dx = 3x2 − x + C ;
∫

(1− 7x) 3
√
xdx =

∫

(1− 7x)x1/3dx =

∫

(x1/3 − 7x4/3)dx =

1
4
3

x4/3 − 7 · 17
3

x7/3 + C =
3

4
3
√
x4 − 3

3
√
x7 + C ;

∫
4x4 + 4x2 − x

x
dx =

∫

(
4x4

x
+

4x2

x
− x

x
)dx =

∫

(4x3+4x − 1)dx =

x4 + 2x2 − x + C .
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Integration and Its Applications Antiderivatives and Indefinite Integrals

Application: Cost From Marginal Cost

Recall
C (x)

Derivative−→ MC(x) = C ′(x)

C (x) =

∫

MC(x)dx
Integral←− MC(x)

Application: If a company’s marginal cost function is MC(x) = 6
√
x

and its fixed costs are $1,000, what is its cost function C (x)?

C (x) =

∫

MC(x)dx =

∫

6x1/2dx = 6

∫

x1/2dx =

6 · 1
3
2

x3/2 + C = 4
√
x3 + C ;

The company has fixed costs $1000; This means that
C (0) = 4

√
03 + C = 1000; So we get C = 1000; Therefore

C (x) = 4
√
x3 + 1000.
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Integration and Its Applications Antiderivatives and Indefinite Integrals

Application: Quantity From Rate of Change

Recall Q(t)
Derivative−→ dQ

dt

Q(t) =

∫
dQ

dt
dt

Integral←− dQ

dt
Application: Suppose GDP of a country is $78 billion and growing at
the rate of 4.4t−1/3 billion dollars per year after t years; What will
the GDP be after t years?

P(t) =

∫

P ′(t)dt =

∫

4.4t−1/3dt = 4.4

∫

t−1/3dt =

4.4 · 12
3

t2/3 + C = 6.6
3
√
t2 + C ;

The country has current GDP $78 billion; This means that
P(0) = 6.6

3
√
02 + C = 78; So we get C = 78; Therefore

P(t) = 6.6
3
√
t2 + 78.
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Integration and Its Applications Integration Using Exponential and Logarithmic Functions

Subsection 2

Integration Using Exponential and Logarithmic Functions
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Integration and Its Applications Integration Using Exponential and Logarithmic Functions

The Integral
∫
eaxdx

Integrating an Exponential Function
∫

eaxdx =
1

a
eax + C ;

Example: Compute the integrals:
∫

e
1
2 xdx =

1
1
2

e
1
2 x + C = 2e

1
2 x + C ;

∫

6e−3xdx = 6

∫

e−3xdx = 6 · 1

−3e
−3x + C = − 2e−3x + C ;

∫

exdx =
1

1
ex + C = ex + C ;

∫

21e7xdx = 21

∫

e7xdx = 21 · 1
7
e7x + C = 3e7x + C .
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Integration and Its Applications Integration Using Exponential and Logarithmic Functions

Application: Number of Flu Cases From Rate of Spreading

Suppose that an influenza epidemic spreads at the rate of 12e0.2t new
cases per day, where t is number of days since epidemic began;
Suppose, also, that at the beginning 4 cases existed;

Find a formula for the total number of cases after t days;
To get the number from the rate of change we integrate:

N(t) =

∫

12e0.2tdt = 12

∫

e0.2tdt = 12 · 1

0.2
e0.2t + C = 60e0.2t + C ;

Since at t = 0, N(0) = 4, we get

60e0.2·0 + C = 4⇒ 60 + C = 4⇒ C = −56;

Therefore N(t) = 60e0.2t − 56;
How many cases will there be during the first 30 days?

N(30) = 60e0.2·30 − 56 = 60e6 − 56 ≈ 24, 150 cases.
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Integration and Its Applications Integration Using Exponential and Logarithmic Functions

Evaluating C

Suppose that an initial condition f (x0) = y0 is provided;

To evaluate the constant C in the given problem:
1 Evaluate the integral at the given number x0 and set the result equal to

the given initial value y0;
2 Solve the resulting equation for C ;
3 Write the answer with C replaced by the value found;

Suppose that the initial condition N(0) = 4 for N(t) = 60e0.2t + C is
provided;

1 N(0) = 4⇒ 60e0.2·0 + C = 4⇒ 60 + C = 4;
2 C = −56;
3 N(t) = 60e0.2·0 − 56.
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Integration and Its Applications Integration Using Exponential and Logarithmic Functions

The Integral
∫

1
x
dx

The integral of 1
x

∫
1

x
dx = ln |x |+ C ;

Example: Compute the integrals:
∫

5

2x
dx =

5

2

∫
1

x
dx =

5

2
ln |x |+ C ;

∫

(x−1 + x−2)dx =

∫

x−1dx +

∫

x−2dx = ln |x |+ 1

−1x
−1 + C =

ln |x | − 1

x
+ C ;

∫
xex − 1

x
dx =

∫

(
xex

x
− 1

x
)dx =

∫

(ex − 1

x
)dx =

∫

exdx −
∫

1

x
dx = ex − ln |x |+ C .
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Integration and Its Applications Integration Using Exponential and Logarithmic Functions

An Additional Example

∫
5x3 − 7x + 11

x2
dx =

∫

(
5x3

x2
− 7x

x2
+

11

x2
)dx

=

∫

(5x − 7

x
+ 11x−2)dx

= 5

∫

xdx − 7

∫
1

x
dx + 11

∫

x−2dx

= 5 · 1
2
x2 − 7 ln |x |+ 11 · 1

−1x
−1 + C

=
5

2
x2 − 7 ln |x | − 11

x
+ C .
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Integration and Its Applications Integration Using Exponential and Logarithmic Functions

Application: Total Sales From Rate of Sales

Suppose that during month t of a computer sale, a computer will sell
at a rate of approximately 25

t
per month, where t = 1 corresponds to

the beginning of the sale, at which time no computers have yet been
sold;

Find a formula for the total number of computers that will be sold up
to the month t;

N(t) =

∫
25

t
dt = 25

∫
1

t
dt = 25 ln t + C ;

Since N(1) = 0, we get

25 ln 1 + C = 0⇒ 25 · 0 + C = 0⇒ C = 0;

Hence N(t) = 25 ln t;
Will the store’s inventory of 64 computers be sold by month t = 12?

N(12) = 25 ln 12 ≈ 62;

All but 2 of the 64 computers will be sold by t = 12.
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Integration and Its Applications Integration Using Exponential and Logarithmic Functions

Application: Consumption of Raw Materials
The rate of consumption of tin is predicted to be 0.26e0.01t million
metric tons per year, where t is counted in years since 2008;

Find a formula for the total tin consumption within t years of 2008;

T (t) =

∫

0.26e0.01tdt = 0.26

∫

e0.01tdt =

0.26 · 1

0.01
e0.01t + C = 26e0.01t + C ;

Since T (0) = 0, we get 26e0.01·0 + C = 0⇒ 26 + C = 0⇒ C = −26;
Hence T (t) = 26e0.01·t − 26;
Estimate when the known world reserves of 6.1 million metric tons will
be exhausted;
We must estimate t, so that T (t) = 6.1;

26e0.01t − 26 = 6.1⇒ 26e0.01t = 32.1⇒ e0.01t =
32.1

26

⇒ 0.01t = ln
32.1

26
⇒ t = 100 ln

32.1

26
≈ 21.1;

Thus the tin reserves will be exhausted in about 21 years after 2008, or
around the year 2029.
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Integration and Its Applications Definite Integrals and Areas

Subsection 3

Definite Integrals and Areas
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Integration and Its Applications Definite Integrals and Areas

Area Under a Curve

Let y = f (x) be a continuous nonnegative function on [a, b];

To compute the area under y = f (x) from x = a to x = b;

A technique to approximate the area is to consider it as approximately
equal to the sum of the area of rectangles as shown here:

If all bases are of equal length ∆x , the area is equal to

A ≈ ∆x · f (x0) + ∆x · f (x1) + ∆x · f (x2) + ∆x · f (x3)
= ∆x [f (x0) + f (x1) + f (x2) + f (x3)].
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Integration and Its Applications Definite Integrals and Areas

Approximating Area By Rectangles

Approximate the area under f (x) = x2 from 1 to 2 by five rectangles with
equal bases and heights equal to the height of the curve at the left end of
the rectangles;

The length of the base is

∆x =
2− 1

5
= 0.2;

Thus the approximating sum is

A ≈ ∆x [f (x0) + f (x1) + f (x2) + f (x3) + f (x4)]
= 0.2[f (1) + f (65) + f (75 ) + f (85) + f (95 )]
= 0.2[12 + (65 )

2 + (75)
2 + (85 )

2 + (95)
2] = 2.04.
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Integration and Its Applications Definite Integrals and Areas

Approximating Area Under y = f (x) by Rectangles

Area Under y = f (x) from a to b Approximated by n Left Rectangles

1 Calculate the rectangle width ∆x =
b − a

n
;

2 Find the x-values x1, x2, . . . , xn−1 by adding ∆x at each step starting
from x0 = a;

3 Calculate the sum A ≈ ∆x [f (x0) + f (x1) + · · ·+ f (xn−1)].
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Integration and Its Applications Definite Integrals and Areas

Definite Integral of f from a to b

The expression ∆x [f (x0) + f (x1) + · · · + f (xn−1)] is called the n-th
Riemann sum of f (x) on [a, b];

Take a closer look at what happens when the number n increases

The length of each interval decreases;

The “error areas” also decrease;

Thus, when n →∞ the Riemann sum
becomes equal to the actual area A of
the region under y = f (x) from x = a

to x = b;

That quantity is called the definite

integral of f from a to b, denoted
∫ b

a

f (x)dx =

lim
n→∞

[∆x(f (x0) + · · ·+ f (xn−1))].
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Integration and Its Applications Definite Integrals and Areas

Fundamental Theorem of Calculus

Definition of the symbol F (x)|b
a

F (x)|b
a
= F (b)

︸︷︷︸
Evaluate at Upper

− F (a)
︸︷︷︸

Evaluate at Lower

;

Example: √
x
∣
∣25

4
=
√
25−

√
4 = 5− 2 = 3;

Fundamental Theorem of Integral Calculus

For a continuous f on [a, b],

∫
b

a

f (x)dx = F (b)− F (a) = F (x)|b
a
,

where F is an antiderivative of f .
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Integration and Its Applications Definite Integrals and Areas

Computing Definite Integrals I

Example: Calculate

∫ 2

1
x2dx ;

∫ 2

1

x2dx =
1

3
x3
∣
∣
∣
∣

2

1

=
1

3
· 23 − 1

3
· 13 = 7

3
;

Example: Find the exact area under y = x3 from 1 to 3;
Recall

A =

∫ 3

1
x3dx

=
1

4
x4
∣
∣
∣
∣

3

1

=
1

4
· 34 − 1

4
· 14

= 20.
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Integration and Its Applications Definite Integrals and Areas

Computing Areas I

Find the exact area under y = e2x from 0 to 2;

A =

∫ 2

0
e2xdx

=
1

2
e2x

∣
∣
∣
∣

2

0

=
1

2
· e4 − 1

2
· e0

=
e4 − 1

2
.
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Integration and Its Applications Definite Integrals and Areas

Computing Areas II

Find the exact area under y = 1
x
from 1 to e;

A =

∫
e

1

1
x
dx

= ln x |e1
= ln e − ln 1
= 1− 0 = 1.
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Integration and Its Applications Definite Integrals and Areas

Properties of Definite Integrals

Properties of Definite Integrals

1

∫
b

a

c · f (x)dx = c

∫
b

a

f (x)dx ;

2

∫
b

a

[f (x)± g(x)]dx =

∫
b

a

f (x)dx ±
∫

b

a

g(x)dx ;

Example: Find the area under f (x) = 24− 6x2 from −1 to 1;

A =

∫ 1

−1
(24− 6x2)dx

= 24

∫ 1

−1
dx − 6

∫ 1

−1
x2dx

= 24 x |1−1 − 6
1

3
x3
∣
∣
∣
∣

1

−1

= 24(1 − (−1))− 6(
1

3
· 13 − 1

3
· (−1)3) = 48− 4 = 44.
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Integration and Its Applications Definite Integrals and Areas

Computing Total Cost for a Number of Successive Units

Cost of a Succession of Units

Total Cost of Units a to b =

∫
b

a

MC(x)dx ;

Example: If the marginal cost function is MC(x) = 75√
x
, where x is the

number of units, what is the total cost of producing units 100 to 400?

C (100, 400) =

∫ 400

100
MC(x)dx =

∫ 400

100

75√
x
dx =

75

∫ 400

100
x−1/2dx = 75 · 2x1/2

∣
∣
400

100
= 75(2

√
400 − 2

√
100) =

75(40 − 20) = 1500.
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Integration and Its Applications Definite Integrals and Areas

Computing Total Accumulation Given the Rate of Change

Total Accumulation at a Given Rate

Total Accumulation at rate f from a to b =

∫
b

a

f (x)dx ;

Example: A technician can test computer chips at the rate of
−3t2 + 18t + 15 chips per hour (0 ≤ t ≤ 6), where t is number of
hours after 9:00am. How many chips can be tested between 10:00am
and 1:00pm?

C (1, 4) =

∫ 4

1
(−3t2 + 18t + 15)dt = − 3

∫ 4

1
t2dt + 18

∫ 4

1
tdt

+15

∫ 4

1
dt = − 3 · 1

3
t3
∣
∣
∣
∣

4

1

+ 18 · 1
2
t2
∣
∣
∣
∣

4

1

+ 15 · t|41 =
− (43 − 13) + 9(42 − 12) + 15(4 − 1) = − 63 + 135 + 45 = 117.
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Integration and Its Applications Average Value and Area Between Curves

Subsection 4

Average Value and Area Between Curves
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Integration and Its Applications Average Value and Area Between Curves

Average Value of a Function

Consider a function f (x) continuous on
[a, b];

The average value AV[a,b](f ) of f on
[a, b] is the height of a rectangle with
base [a, b] that has the same area as
the area under the curve from a to b;

Since the area under the curve is
∫
b

a
f (x)dx and the area of the

rectangle is (b − a)AV[a,b](f ), and these are equal:
∫

b

a

f (x)dx = (b − a)AV[a,b](f ), we get

AV[a,b](f ) =
1

b − a

∫
b

a

f (x)dx .
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Integration and Its Applications Average Value and Area Between Curves

Computing Average

Find the average value of f (x) =
√
x from x = 1 to x = 9;

AV[1,9](f ) =
1

9− 1

∫ 9

1

√
xdx

=
1

8
· 2
3
x3/2

∣
∣
∣
∣

9

1

=
1

12

√
x
3
∣
∣
∣

9

1

=
1

12
(27 − 1)

=
13

6
.
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Integration and Its Applications Average Value and Area Between Curves

Computing Average: An Application

The U.S. population t years after 2010 is predicted to be
P(t) = 309e0.0087t million people; What is the average population
between the years 2020 and 2030?
AV[10,20](P)

=
1

20− 10

∫ 20

10
309e0.0087tdt

=
1

10
· 309

∫ 20

10
e0.0087tdt

= 30.9 · 1

0.0087
e0.0087t

∣
∣
∣
∣

20

10

=
30.9

0.0087
(e0.0087·20 − e0.0087·10)

≈ 352 millions.
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Integration and Its Applications Average Value and Area Between Curves

Area Between Curves

Area Between Two Curves

The area between two continuous curves f (x) ≥ g(x) on over an interval
[a, b] is given by

A =

∫
b

a

[f (x)− g(x)]dx .
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Integration and Its Applications Average Value and Area Between Curves

Computing Area Between Two Curves I

Example: Find the area between y = 3x2 + 4 and y = 2x − 1 from
x = −1 to x = 2;

A =
∫ 2

−1
[(3x2 + 4)− (2x − 1)]dx =

∫ 2

−1
(3x2 − 2x + 5)dx =

(x3 − x2 + 5x)
∣
∣2

−1
=

23 − 22 + 5 · 2−
((−1)3 − (−1)2 + 5(−1)) =

14− (−7) = 21.
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Computing Area Between Two Curves II

Example: Find the area between y = 2x2 + 1 and y = −x2 − 1 from
x = −1 to x = 1;

A =
∫ 1

−1
[(2x2 + 1)− (−x2 − 1)]dx =

∫ 1

−1
(3x2 + 2)dx =

(x3 + 2x)
∣
∣1

−1
=

13 + 2− ((−1)3 + 2(−1)) =
3 + 3 = 6.
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Computing Area Between Two Curves: Application

TV sets are expected to sell at the rate of 2e0.05t thousands per
month, where t is number of months since they become available;
With additional advertising, they could sell at the rate of 3e0.1t

thousands per month; How many additional sales would result from
the extra advertisement during the first year?

∫ 12

0
(3e0.1t − 2e0.05t)dt =

3

∫ 12

0
e0.1tdt − 2

∫ 12

0
e0.05tdt =

3
1

0.1
e0.1t

∣
∣
∣
∣

12

0

− 2
1

0.05
e0.05t

∣
∣
∣
∣

12

0

=

30(e1.2 − 1)− 40(e0.6 − 1) =
30e1.2 − 40e0.6 + 10
≈ 36.7 thoudands.
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Area Between Curves that Cross

Area Between Two Crossing Curves

Suppose that two continuous curves y = f (x) and y = g(x) cross at
x = c and x = d as shown over an interval [a, b]; Then the total area
between the curves from a to b is given by

A = A1 + A2 + A3

=

∫
c

a

[f (x)− g(x)]dx +

∫
d

c

[g(x)− f (x)]dx +

∫
b

d

[f (x)− g(x)]dx .
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Computing Area Between Two Crossing Curves

Example: Find the area between y = 12− 3x2 and y = 4x + 5 from
x = 0 to x = 3;

Find point of intersection in [0, 3]:

12− 3x2 = 4x + 5
⇒ 3x2 + 4x − 7 = 0
⇒ (3x + 7)(x − 1) = 0
⇒ x = −7

3 or x = 1;

A =

∫ 1

0
[(12 − 3x2)− (4x + 5)]dx +

∫ 3

1
[(4x + 5)− (12− 3x2)]dx

=

∫ 1

0
(−3x2 − 4x + 7)dx +

∫ 3

1
(3x2 + 4x − 7)dx

= (−x3 − 2x2 + 7x)
∣
∣1

0
+ (x3 + 2x2 − 7x)

∣
∣3

1
= (−1− 2 + 7− 0) + (27 + 18 − 21 − (1 + 2− 7)) = 32.
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Area Bounded by Curves

Example: Find the area between y = 2x2 − 1 and y = 2− x2;

Find the points of intersection:

2x2 − 1 = 2− x2

⇒ 3x2 − 3 = 0
⇒ 3(x2 − 1) = 0
⇒ 3(x + 1)(x − 1) = 0
⇒ x = −1 or x = 1;

A =

∫ 1

−1
[(2− x2)− (2x2 − 1)]dx =

∫ 1

−1
(3− 3x2)dx

= (3x − x3)
∣
∣1

−1
= 3− 1− (3(−1) − (−1)3) = 4.
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Technique Summary

To find the area between two curves:
1 If the x-values are not given, set the functions equal to each other and

solve to find the points of intersection;
2 Use a test point in each interval between points of intersection to

determine which curve is the “upper” curve and which is the “lower”
curve in that interval;

3 Integrate “upper minus lower” on each interval.
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Subsection 5

Integration By Substitution
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Differentials

Differentials

For f (x) a differentiable function, we define the differential df by

df = f ′(x)dx ;

Note that this definition is consistent with the notation f ′(x) = df

dx

used for the derivative f ′(x) of f (x) with respect to x ;

Example:
Function f (x) Differential df

f (x) = x2 df = 2xdx
f (x) = ln x df = 1

x
dx

f (x) = ex
2

df = 2xex
2
dx

f (x) = x4 − 5x + 2 df = (4x3 − 5)dx
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Substitution Method

Important Substitution Formulas

1

∫

undu =
1

n + 1
un+1 + C , if n 6= − 1;

2

∫

eudu = eu + C ;

3

∫
1

u
du = ln |u|+ C ;

Example: Integrate

∫

(x2 + 1)32xdx ;

Substitute u = x2 + 1; Compute the derivative
du

dx
= (x2 + 1)′ = 2x ;

Multiply both sides by dx : du = 2xdx ; Go back to the integral and
perform a careful substitution:∫

(x2 + 1)32xdx =

∫

u3du =
1

4
u4 + C =

1

4
(x2 + 1)4 + C .
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Example

Integrate

∫

(2x5 − 7)1110x4dx ;

Substitute u = 2x5 − 7; Compute the derivative
du

dx
= (2x5 − 7)′ = 10x4; Multiply both sides by dx :

du = 10x4dx ;

Go back to the integral and perform a careful substitution:

∫

(2x5 − 7)1110x4dx =

∫

u11du

=
1

12
u12 + C

=
1

12
(2x5 − 7)12 + C .
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Multiplying by Constants

Integrate

∫

(x3 + 1)9x2dx ;

Substitute u = x3+1; Compute the derivative
du

dx
= (x3+1)′ = 3x2;

Multiply both sides by dx : du = 3x2dx ; Therefore, we get

1

3
du = x2dx ;

Go back to the integral and perform a careful substitution:

∫

(x3 + 1)9x2dx =

∫

u9
1

3
du =

1

3

∫

u9du

=
1

3
· 1
10

u10 + C =
1

30
(x3 + 1)10 + C .
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An Exponential Integral

Integrate

∫

ex
5−2x4dx ;

Substitute u = x5− 2; Compute the derivative
du

dx
= (x5− 2)′ = 5x4;

Multiply both sides by dx : du = 5x4dx ; Therefore, we get

1

5
du = x4dx ;

Go back to the integral and perform a careful substitution:

∫

ex
5−2x4dx =

∫

eu
1

5
du =

1

5

∫

eudu

=
1

5
· eu + C =

1

5
ex

5−2 + C .

George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 2013 49 / 55



Integration and Its Applications Integration By Substitution

Cost From Marginal Cost

A company’s marginal cost is MC(x) =
x3

x4 + 1
and its fixed costs are

$ 1,000; Find the company’s cost function;

Recall that C (x) =

∫

MC(x)dx =

∫
x3

x4 + 1
dx ;

Substitute u = x4 + 1; Compute the derivative
du

dx
= (x4 + 1)′ = 4x3; Multiply both sides by dx : du = 4x3dx ;

Therefore, we get
1

4
du = x3dx ; Go back to the integral and perform a

careful substitution:
∫

x3

x4 + 1
dx =

∫
1

u

1

4
du =

1

4

∫
1

u
du =

1

4
· ln u + C =

1

4
ln (x4 + 1) + C ;

Now, note C (0) = 1000⇒ 1

4
ln 1 + C = 1000⇒ C = 1000;

Therefore C (x) =
1

4
ln (x4 + 1) + 1000.
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Another Example

Integrate

∫ √
x3 − 3x(x2 − 1)dx ;

Substitute u = x3 − 3x ; Compute the derivative
du

dx
= (x3 − 3x)′ = 3x2 − 3 = 3(x2 − 1); Multiply both sides by dx :

du = 3(x2 − 1)dx ; Therefore, we get

1

3
du = (x2 − 1)dx ;

Go back to the integral and perform a careful substitution:
∫ √

x3 − 3x(x2 − 1)dx =

∫ √
u
1

3
du =

1

3

∫

u1/2du

=
1

3
· 2
3
u3/2 + C

=
2

9

√

(x3 − 3x)3 + C .
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Yet Another Example

Integrate

∫

e
√
xx−1/2dx ;

Substitute u =
√
x ; Compute the derivative

du

dx
= (x1/2)′ = 1

2x
−1/2;

Multiply both sides by dx : du = 1
2x

−1/2dx ; Therefore, we get

2du = x−1/2dx ;

Go back to the integral and perform a careful substitution:

∫

e
√
xx−1/2dx =

∫

eu2du = 2

∫

eudu

= 2eu + C = 2e
√
x + C .
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Definite Integration By Substitution

Integrate

∫ 5

4

1

3− x
dx ;

Substitute u = 3− x ; Compute the derivative
du

dx
= (3− x)′ = − 1;

Multiply both sides by dx : du = −dx or −du = dx ; Also, for x = 4,
we get u = 3− 4 = −1 and for x = 5, we get u = 3− 5 = −2; Go
back to the integral and perform a careful substitution:

∫ 5

4

1

3− x
dx =

∫ −2

−1

1

u
(−du)

= −
∫ −2

−1

1

u
du

= − (ln |u|)|−2
−1

= − (ln 2− ln 1) = − ln 2.
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Application: Total Pollution from the Rate

A lake is being polluted at the rate of r(t) = 400tet
2
tons of

pollutants per year, where t is number of years since measurements
began; Find the total amount of pollutants discharged into the lake
during the first 2 years;

We must compute P(t) =

∫ 2

0
r(t)dt =

∫ 2

0
400tet

2
dt;

Substitute u = t2; Compute the derivative
du

dt
= (t2)′ = 2t; Multiply

both sides by dt: du = 2tdt or 1
2du = tdt; Also, for t = 0, we get

u = 02 = 0 and for t = 2, we get u = 22 = 4; Go back to the integral
and perform a careful substitution:

∫ 2

0
400tet

2
dt =

∫ 4

0
400eu 1

2du = 200

∫ 4

0
eudu = 200 (eu)|40

= 200(e4 − e0) = 200(e4 − 1) tons.
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Application: Average Water Depth

After x months the water level in a reservoir is
L(x) = 40x(x2 + 9)−1/2 feet; Find the average depth during the first
4 months;

We need AV[0,4](L) =
1

4− 0

∫ 4

0
L(x)dx =

1

4

∫ 4

0
40x(x2 + 9)−1/2dx ;

Substitute u = x2 + 9; Compute the derivative
du

dx
= (x2 + 9)′ = 2x ;

Multiply both sides by dx : du = 2xdx or 1
2du = xdx ; Also, for x = 0,

we get u = 02 + 9 = 9 and for x = 4, we get u = 42 + 9 = 25; So

AV[0,4](L) =
1

4

∫ 4

0
40x(x2 + 9)−1/2dx = 10

∫ 25

9
u−1/2 1

2du

= 5

∫ 25

9
u−1/2du = 5 (2

√
u)
∣
∣25

9

= 10(
√
25−

√
9) = 20 feet.
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