Business and Life Calculus

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 112

(1) Integration and Its Applications

- Antiderivatives and Indefinite Integrals
- Integration Using Exponential and Logarithmic Functions
- Definite Integrals and Areas
- Average Value and Area Between Curves
- Integration By Substitution

Subsection 1

Antiderivatives and Indefinite Integrals

Antiderivatives and Indefinite Integrals

- The reverse process of differentiation (i.e., of taking derivatives) is called antidifferentiation;
- Recall
the derivative of x^{2} is $2 x$; So reversing an antiderivative of $2 x$ is x^{2};
- Notice that there are other functions that would work as antiderivatives of $2 x$: e.g., $x^{2}+1$ or $x^{2}-49$ also work;
- In fact, if $F(x)$ is an antiderivative of $f(x)$ (i.e., $f(x)=F^{\prime}(x)$), the most general antiderivative of $f(x)$ is $F(x)+C, C$ any constant;
- The most general antiderivative of $f(x)$ is called the indefinite integral of $f(x)$ and is denoted by $\int f(x) d x$;
- Thus, if $F^{\prime}(x)=f(x)$, then

$$
\int f(x) d x=F(x)+C
$$

The Power Rule for Integrals

- Recall that

$$
\begin{array}{ll}
\text { Derivatives } & \text { Integrals } \\
(x)^{\prime}=1 & \int 1 d x=x+C \\
\left(x^{2}\right)^{\prime}=2 x & \int x d x=\frac{1}{2} x^{2}+C \\
\left(x^{3}\right)^{\prime}=3 x^{2} & \int x^{2} d x=\frac{1}{3} x^{3}+C \\
\left(x^{4}\right)^{\prime}=4 x^{3} & \int x^{3} d x=\frac{1}{4} x^{4}+C
\end{array}
$$

- In general

Power Rule for Derivatives

$$
\left(x^{n}\right)^{\prime}=n x^{n-1}
$$

Power Rule for Integrals

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C .
$$

More Examples on the Power Rule for Integrals

- Example: Compute the integrals:
- $\int \sqrt{x} d x=\int x^{1 / 2} d x=\frac{1}{\frac{3}{2}} x^{3 / 2}+C=\frac{2}{3} x^{3 / 2}+C$;
- $\int \frac{1}{x^{2}} d x=\int x^{-2} d x=\frac{1}{-1} x^{-1}+C=-\frac{1}{x}+C$;
- $\int x^{7} d x=\frac{1}{8} x^{8}+C$;
- $\int \frac{1}{x^{11}} d x=\int x^{-11} d x=\frac{1}{-10} x^{-10}+C=-\frac{1}{10 x^{10}}+C$;
- $\int \frac{1}{\sqrt[3]{x^{2}}} d x=\int \frac{1}{x^{2 / 3}} d x=\int x^{-2 / 3} d x=\frac{1}{\frac{1}{3}} x^{1 / 3}+C=3 \sqrt[3]{x}+C$.

The Sum/Difference Rule for Integrals

Integral of a Sum is Sum of Integrals

$$
\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x
$$

- Example: Compute the integrals:

$$
\begin{aligned}
& \int\left(x^{8}-x^{5}\right) d x=\int x^{8} d x-\int x^{5} d x=\frac{1}{9} x^{9}-\frac{1}{6} x^{6}+C \\
& \int\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right) d x=\int \sqrt{x} d x+\int \frac{1}{\sqrt{x}} d x=\int x^{1 / 2} d x+\int x^{-1 / 2} d x= \\
& \frac{1}{\frac{3}{2}} x^{3 / 2}+\frac{1}{\frac{1}{2}} x^{1 / 2}+C=\frac{2}{3} \sqrt{x^{3}}+2 \sqrt{x}+C
\end{aligned}
$$

Constant Factor Rule For Integrals

Constant Factor Rule for Integrals

$$
\int k \cdot f(x) d x=k \int f(x) d x
$$

- Example: Compute the integrals:

$$
\begin{aligned}
& \int 15 x^{4} d x=15 \int x^{4} d x=15 \cdot \frac{1}{5} x^{5}+C=3 x^{5}+C \\
& \int 13 d x=13 \int d x=13 x+C \\
& \int\left(6 x^{2}-\frac{3}{x^{2}}+5\right) d x \stackrel{\text { sum }}{=} \int 6 x^{2} d x-\int \frac{3}{x^{2}} d x+\int 5 d x \stackrel{\text { constant }}{=} 6 \int x^{2} d x- \\
& 3 \int x^{-2} d x+5 \int d x=6 \cdot \frac{1}{3} x^{3}-3 \cdot \frac{1}{-1} x^{-1}+5 x+C=2 x^{3}+\frac{3}{x}+5 x+C \\
& \text { } \int\left(\sqrt[3]{x}-\frac{4}{x^{3}}\right) d x=\int \sqrt[3]{x} d x-\int \frac{4}{x^{3}} d x=\int x^{1 / 3} d x-4 \int x^{-3} d x= \\
& \frac{1}{\frac{4}{3}} x^{4 / 3}-4 \cdot \frac{1}{-2} x^{-2}+C=\frac{3}{4} \sqrt[3]{x^{4}}+\frac{2}{x^{2}}+C
\end{aligned}
$$

Simplifying to Compute

- Compute the integrals:

$$
\begin{aligned}
& \int x^{2}(x+6)^{2} d x=\int x^{2}\left(x^{2}+12 x+36\right) d x= \\
& \int\left(x^{4}+12 x^{3}+36 x^{2}\right) d x=\int x^{4} d x+\int 12 x^{3} d x+\int 36 x^{2} d x= \\
& \frac{1}{5} x^{5}+3 x^{4}+12 x^{3}+C ; \\
& \int \frac{6 x^{2}-x}{x} d x=\int\left(\frac{6 x^{2}}{x}-\frac{x}{x}\right) d x=\int(6 x-1) d x=3 x^{2}-x+C ; \\
& \int(1-7 x) \sqrt[3]{x} d x=\int(1-7 x) x^{1 / 3} d x=\int\left(x^{1 / 3}-7 x^{4 / 3}\right) d x= \\
& \frac{1}{\frac{4}{3}} x^{4 / 3}-7 \cdot \frac{1}{\frac{7}{3}} x^{7 / 3}+C=\frac{3}{4} \sqrt[3]{x^{4}}-3 \sqrt[3]{x^{7}}+C ; \\
& \int_{x^{4}}^{\frac{4}{3}} \frac{4 x^{4}+4 x^{2}-x}{x} d x=\int\left(\frac{4 x^{4}}{x}+\frac{4 x^{2}}{x}-\frac{x}{x}\right) d x=\int\left(4 x^{3}+4 x-1\right) d x= \\
& \hline
\end{aligned}
$$

Application: Cost From Marginal Cost

- Recall

$$
C(x)=\int M C(x) d x \stackrel{C(x)}{\stackrel{\text { Derivative }}{\longrightarrow}} \mathrm{MC}(x)=C^{\prime}(x)
$$

- Application: If a company's marginal cost function is $\mathrm{MC}(x)=6 \sqrt{x}$ and its fixed costs are $\$ 1,000$, what is its cost function $C(x)$?

$$
\begin{aligned}
& C(x)=\int M C(x) d x=\int 6 x^{1 / 2} d x=6 \int x^{1 / 2} d x= \\
& 6 \cdot \frac{1}{\frac{3}{2}} x^{3 / 2}+C=4 \sqrt{x^{3}}+C
\end{aligned}
$$

The company has fixed costs $\$ 1000$; This means that $C(0)=4 \sqrt{0^{3}}+C=1000$; So we get $C=1000$; Therefore $C(x)=4 \sqrt{x^{3}}+1000$.

Application: Quantity From Rate of Change

- Recall

$$
\begin{array}{rc}
Q(t) & \left.\begin{array}{rl}
\text { Defivative } \\
\frac{d Q}{d t} d t & \frac{d Q}{d t} \\
\stackrel{\text { Integral }}{d t} & \frac{d Q}{d t}
\end{array}\right)
\end{array}
$$

- Application: Suppose GDP of a country is $\$ 78$ billion and growing at the rate of $4.4 t^{-1 / 3}$ billion dollars per year after t years; What will the GDP be after t years?

$$
\begin{aligned}
& P(t)=\int P^{\prime}(t) d t=\int 4.4 t^{-1 / 3} d t=4.4 \int t^{-1 / 3} d t= \\
& 4.4 \cdot \frac{1}{\frac{2}{3}} t^{2 / 3}+C=6.6 \sqrt[3]{t^{2}}+C
\end{aligned}
$$

The country has current GDP $\$ 78$ billion; This means that $P(0)=6.6 \sqrt[3]{0^{2}}+C=78$; So we get $C=78$; Therefore $P(t)=6.6 \sqrt[3]{t^{2}}+78$.

Subsection 2

Integration Using Exponential and Logarithmic Functions

The Integral $\int e^{a x} d x$

Integrating an Exponential Function

$$
\int e^{a x} d x=\frac{1}{a} e^{a x}+C
$$

- Example: Compute the integrals:

$$
\begin{aligned}
& \int e^{\frac{1}{2} x} d x=\frac{1}{\frac{1}{2}} e^{\frac{1}{2} x}+C=2 e^{\frac{1}{2} x}+C ; \\
& \int 6 e^{-3 x} d x=6 \int e^{-3 x} d x=6 \cdot \frac{1}{-3} e^{-3 x}+C=-2 e^{-3 x}+C ; \\
& \int e^{x} d x=\frac{1}{1} e^{x}+C=e^{x}+C ; \\
& -\int 21 e^{7 x} d x=21 \int e^{7 x} d x=21 \cdot \frac{1}{7} e^{7 x}+C=3 e^{7 x}+C .
\end{aligned}
$$

Application: Number of Flu Cases From Rate of Spreading

- Suppose that an influenza epidemic spreads at the rate of $12 e^{0.2 t}$ new cases per day, where t is number of days since epidemic began; Suppose, also, that at the beginning 4 cases existed;
- Find a formula for the total number of cases after t days;

To get the number from the rate of change we integrate:

$$
N(t)=\int 12 e^{0.2 t} d t=12 \int e^{0.2 t} d t=12 \cdot \frac{1}{0.2} e^{0.2 t}+C=60 e^{0.2 t}+C
$$

Since at $t=0, N(0)=4$, we get

$$
60 e^{0.2 \cdot 0}+C=4 \Rightarrow 60+C=4 \Rightarrow C=-56
$$

Therefore $N(t)=60 e^{0.2 t}-56$;

- How many cases will there be during the first 30 days?

$$
N(30)=60 e^{0.2 \cdot 30}-56=60 e^{6}-56 \approx 24,150 \text { cases. }
$$

Evaluating C

- Suppose that an initial condition $f\left(x_{0}\right)=y_{0}$ is provided;
- To evaluate the constant C in the given problem:
(1) Evaluate the integral at the given number x_{0} and set the result equal to the given initial value y_{0};
(2) Solve the resulting equation for C;
(3) Write the answer with C replaced by the value found;
- Suppose that the initial condition $N(0)=4$ for $N(t)=60 e^{0.2 t}+C$ is provided;
(1) $N(0)=4 \Rightarrow 60 e^{0.2 \cdot 0}+C=4 \Rightarrow 60+C=4$;
(2) $C=-56$;
(3) $N(t)=60 e^{0.2 \cdot 0}-56$.

The Integral $\int \frac{1}{x} d x$

The integral of $\frac{1}{x}$

$$
\int \frac{1}{x} d x=\ln |x|+C
$$

- Example: Compute the integrals:

$$
\begin{aligned}
& \int \frac{5}{2 x} d x=\frac{5}{2} \int \frac{1}{x} d x=\frac{5}{2} \ln |x|+C \\
& \int\left(x^{-1}+x^{-2}\right) d x=\int x^{-1} d x+\int x^{-2} d x=\ln |x|+\frac{1}{-1} x^{-1}+C= \\
& \ln |x|-\frac{1}{x}+C ; \\
& \int \frac{x e^{x}-1}{x} d x=\int\left(\frac{x e^{x}}{x}-\frac{1}{x}\right) d x=\int\left(e^{x}-\frac{1}{x}\right) d x= \\
& \int e^{x} d x-\int \frac{1}{x} d x=e^{x}-\ln |x|+C .
\end{aligned}
$$

An Additional Example

$$
\begin{aligned}
\int \frac{5 x^{3}-7 x+11}{x^{2}} d x & =\int\left(\frac{5 x^{3}}{x^{2}}-\frac{7 x}{x^{2}}+\frac{11}{x^{2}}\right) d x \\
& =\int\left(5 x-\frac{7}{x}+11 x^{-2}\right) d x \\
& =5 \int x d x-7 \int \frac{1}{x} d x+11 \int x^{-2} d x \\
& =5 \cdot \frac{1}{2} x^{2}-7 \ln |x|+11 \cdot \frac{1}{-1} x^{-1}+C \\
& =\frac{5}{2} x^{2}-7 \ln |x|-\frac{11}{x}+C .
\end{aligned}
$$

Application: Total Sales From Rate of Sales

- Suppose that during month t of a computer sale, a computer will sell at a rate of approximately $\frac{25}{t}$ per month, where $t=1$ corresponds to the beginning of the sale, at which time no computers have yet been sold;
- Find a formula for the total number of computers that will be sold up to the month t;

$$
N(t)=\int \frac{25}{t} d t=25 \int \frac{1}{t} d t=25 \ln t+C
$$

Since $N(1)=0$, we get

$$
25 \ln 1+C=0 \Rightarrow 25 \cdot 0+C=0 \Rightarrow C=0
$$

Hence $N(t)=25 \ln t$;

- Will the store's inventory of 64 computers be sold by month $t=12$?

$$
N(12)=25 \ln 12 \approx 62
$$

All but 2 of the 64 computers will be sold by $t=12$.

Application: Consumption of Raw Materials

- The rate of consumption of tin is predicted to be $0.26 e^{0.01 t}$ million metric tons per year, where t is counted in years since 2008;
- Find a formula for the total tin consumption within t years of 2008;

$$
\begin{aligned}
& T(t)=\int 0.26 e^{0.01 t} d t=0.26 \int e^{0.01 t} d t= \\
& 0.26 \cdot \frac{1}{0.01} e^{0.01 t}+C=26 e^{0.01 t}+C
\end{aligned}
$$

Since $T(0)=0$, we get $26 e^{0.01 \cdot 0}+C=0 \Rightarrow 26+C=0 \Rightarrow C=-26$; Hence $T(t)=26 e^{0.01 \cdot t}-26$;

- Estimate when the known world reserves of 6.1 million metric tons will be exhausted;
We must estimate t, so that $T(t)=6.1$;

$$
\begin{aligned}
& 26 e^{0.01 t}-26=6.1 \Rightarrow 26 e^{0.01 t}=32.1 \Rightarrow e^{0.01 t}=\frac{32.1}{26} \\
& \Rightarrow 0.01 t=\ln \frac{32.1}{26} \Rightarrow t=100 \ln \frac{32.1}{26} \approx 21.1
\end{aligned}
$$

Thus the tin reserves will be exhausted in about 21 years after 2008, or around the year 2029.

Subsection 3

Definite Integrals and Areas

Area Under a Curve

- Let $y=f(x)$ be a continuous nonnegative function on $[a, b]$;
- To compute the area under $y=f(x)$ from $x=a$ to $x=b$;
- A technique to approximate the area is to consider it as approximately equal to the sum of the area of rectangles as shown here:
- If all bases are of equal length Δx, the area is equal to

$$
\begin{aligned}
A & \approx \Delta x \cdot f\left(x_{0}\right)+\Delta x \cdot f\left(x_{1}\right)+\Delta x \cdot f\left(x_{2}\right)+\Delta x \cdot f\left(x_{3}\right) \\
& =\Delta x\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)\right] .
\end{aligned}
$$

Approximating Area By Rectangles

Approximate the area under $f(x)=x^{2}$ from 1 to 2 by five rectangles with equal bases and heights equal to the height of the curve at the left end of the rectangles;

The length of the base is

$$
\Delta x=\frac{2-1}{5}=0.2
$$

Thus the approximating sum is

$$
\begin{aligned}
A & \approx \Delta x\left[f\left(x_{0}\right)+f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right] \\
& =0.2\left[f(1)+f\left(\frac{6}{5}\right)+f\left(\frac{7}{5}\right)+f\left(\frac{8}{5}\right)+f\left(\frac{9}{5}\right)\right] \\
& =0.2\left[1^{2}+\left(\frac{6}{5}\right)^{2}+\left(\frac{7}{5}\right)^{2}+\left(\frac{8}{5}\right)^{2}+\left(\frac{9}{5}\right)^{2}\right]=2.04
\end{aligned}
$$

Approximating Area Under $y=f(x)$ by Rectangles

Area Under $y=f(x)$ from a to b Approximated by n Left Rectangles
(1) Calculate the rectangle width $\Delta x=\frac{b-a}{n}$;
(2) Find the x-values $x_{1}, x_{2}, \ldots, x_{n-1}$ by adding Δx at each step starting from $x_{0}=a$;
(3) Calculate the sum $A \approx \Delta x\left[f\left(x_{0}\right)+f\left(x_{1}\right)+\cdots+f\left(x_{n-1}\right)\right]$.

Definite Integral of f from a to b

- The expression $\Delta x\left[f\left(x_{0}\right)+f\left(x_{1}\right)+\cdots+f\left(x_{n-1}\right)\right]$ is called the n-th Riemann sum of $f(x)$ on $[a, b]$;
- Take a closer look at what happens when the number n increases
- The length of each interval decreases;
- The "error areas" also decrease;
- Thus, when $n \rightarrow \infty$ the Riemann sum becomes equal to the actual area A of the region under $y=f(x)$ from $x=a$ to $x=b$;
- That quantity is called the definite integral of f from a to b, denoted

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x= \\
& \lim _{n \rightarrow \infty}^{b}\left[\Delta x\left(f\left(x_{0}\right)+\cdots+f\left(x_{n-1}\right)\right)\right] .
\end{aligned}
$$

Fundamental Theorem of Calculus

Definition of the symbol $\left.F(x)\right|_{a} ^{b}$

$$
\left.F(x)\right|_{a} ^{b}=\underbrace{F(b)}_{\text {Evaluate at Upper }}-\underbrace{F(a)}_{\text {Evaluate at Lower }}
$$

- Example:

$$
\left.\sqrt{x}\right|_{4} ^{25}=\sqrt{25}-\sqrt{4}=5-2=3 ;
$$

Fundamental Theorem of Integral Calculus

For a continuous f on $[a, b]$,

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)=\left.F(x)\right|_{a} ^{b},
$$

where F is an antiderivative of f.

Computing Definite Integrals I

- Example: Calculate $\int_{1}^{2} x^{2} d x$;

$$
\int_{1}^{2} x^{2} d x=\left.\frac{1}{3} x^{3}\right|_{1} ^{2}=\frac{1}{3} \cdot 2^{3}-\frac{1}{3} \cdot 1^{3}=\frac{7}{3}
$$

- Example: Find the exact area under $y=x^{3}$ from 1 to 3 ; Recall

$$
\begin{aligned}
A & =\int_{1}^{3} x^{3} d x \\
& =\left.\frac{1}{4} x^{4}\right|_{1} ^{3} \\
& =\frac{1}{4} \cdot 3^{4}-\frac{1}{4} \cdot 1^{4} \\
& =20 .
\end{aligned}
$$

Computing Areas I

- Find the exact area under $y=e^{2 x}$ from 0 to 2 ;

$$
\begin{aligned}
A & =\int_{0}^{2} e^{2 x} d x \\
& =\left.\frac{1}{2} e^{2 x}\right|_{0} ^{2} \\
& =\frac{1}{2} \cdot e^{4}-\frac{1}{2} \cdot e^{0} \\
& =\frac{e^{4}-1}{2} .
\end{aligned}
$$

Computing Areas II

- Find the exact area under $y=\frac{1}{x}$ from 1 to e;

$$
\begin{aligned}
A & =\int_{1}^{e} \frac{1}{x} d x \\
& =\left.\ln x\right|_{1} ^{e} \\
& =\ln e-\ln 1 \\
& =1-0=1
\end{aligned}
$$

Properties of Definite Integrals

Properties of Definite Integrals

(1) $\int_{a}^{b} c \cdot f(x) d x=c \int_{a}^{b} f(x) d x$;
(2) $\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$;

- Example: Find the area under $f(x)=24-6 x^{2}$ from -1 to 1 ;

$$
\begin{aligned}
A & =\int_{-1}^{1}\left(24-6 x^{2}\right) d x \\
& =24 \int_{-1}^{1} d x-6 \int_{-1}^{1} x^{2} d x \\
& =\left.24 x\right|_{-1} ^{1}-\left.6 \frac{1}{3} x^{3}\right|_{-1} ^{1} \\
=24(1- & (-1))-6\left(\frac{1}{3} \cdot 1^{3}-\frac{1}{3} \cdot(-1)^{3}\right)=48-4=44 .
\end{aligned}
$$

Computing Total Cost for a Number of Successive Units

Cost of a Succession of Units

$$
\text { Total Cost of Units a to } b=\int_{a}^{b} M C(x) d x
$$

- Example: If the marginal cost function is $\mathrm{MC}(x)=\frac{75}{\sqrt{x}}$, where x is the number of units, what is the total cost of producing units 100 to 400 ?

$$
\begin{aligned}
& C(100,400)=\int_{100}^{400} \mathrm{MC}(x) d x=\int_{100}^{400} \frac{75}{\sqrt{x}} d x= \\
& 75 \int_{100}^{400} x^{-1 / 2} d x=\left.75 \cdot 2 x^{1 / 2}\right|_{100} ^{400}=75(2 \sqrt{400}-2 \sqrt{100})= \\
& 75(40-20)=1500
\end{aligned}
$$

Computing Total Accumulation Given the Rate of Change

Total Accumulation at a Given Rate

$$
\text { Total Accumulation at rate } f \text { from } a \text { to } b=\int_{a}^{b} f(x) d x
$$

- Example: A technician can test computer chips at the rate of $-3 t^{2}+18 t+15$ chips per hour $(0 \leq t \leq 6)$, where t is number of hours after 9:00am. How many chips can be tested between 10:00am and $1: 00 \mathrm{pm}$?

$$
\begin{aligned}
& C(1,4)=\int_{1}^{4}\left(-3 t^{2}+18 t+15\right) d t=-3 \int_{1}^{4} t^{2} d t+18 \int_{1}^{4} t d t \\
& +15 \int_{1}^{4} d t=-\left.3 \cdot \frac{1}{3} t^{3}\right|_{1} ^{4}+\left.18 \cdot \frac{1}{2} t^{2}\right|_{1} ^{4}+\left.15 \cdot t\right|_{1} ^{4}= \\
& -\left(4^{3}-1^{3}\right)+9\left(4^{2}-1^{2}\right)+15(4-1)=-63+135+45=117
\end{aligned}
$$

Subsection 4

Average Value and Area Between Curves

Average Value of a Function

- Consider a function $f(x)$ continuous on $[a, b]$;
- The average value $\mathrm{AV}_{[a, b]}(f)$ of f on $[a, b]$ is the height of a rectangle with base $[a, b]$ that has the same area as the area under the curve from a to b;

- Since the area under the curve is $\int_{a}^{b} f(x) d x$ and the area of the rectangle is $(b-a) \mathrm{AV}_{[a, b]}(f)$, and these are equal:

$$
\begin{aligned}
& \int_{a}^{b} f(x) d x=(b-a) \mathrm{AV}_{[a, b]}(f) \text {, we get } \\
& \qquad \operatorname{AV}_{[a, b]}(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
\end{aligned}
$$

Computing Average

- Find the average value of $f(x)=\sqrt{x}$ from $x=1$ to $x=9$;

$$
\begin{aligned}
\mathrm{AV}_{[1,9]}(f) & =\frac{1}{9-1} \int_{1}^{9} \sqrt{x} d x \\
& =\left.\frac{1}{8} \cdot \frac{2}{3} x^{3 / 2}\right|_{1} ^{9} \\
& =\left.\frac{1}{12} \sqrt{x}^{3}\right|_{1} ^{9} \\
& =\frac{1}{12}(27-1) \\
& =\frac{13}{6} .
\end{aligned}
$$

Computing Average: An Application

- The U.S. population t years after 2010 is predicted to be $P(t)=309 e^{0.0087 t}$ million people; What is the average population between the years 2020 and 2030?
$\mathrm{AV}_{[10,20]}(P)$

$$
\begin{aligned}
& =\frac{1}{20-10} \int_{10}^{20} 309 e^{0.0087 t} d t \\
& =\frac{1}{10} \cdot 309 \int_{10}^{20} e^{0.0087 t} d t \\
& =\left.30.9 \cdot \frac{1}{0.0087} e^{0.0087 t}\right|_{10} ^{20} \\
& =\frac{30.9}{0.0087}\left(e^{0.0087 \cdot 20}-e^{0.0087 \cdot 10}\right)
\end{aligned}
$$

≈ 352 millions.

Area Between Curves

Area Between Two Curves

The area between two continuous curves $f(x) \geq g(x)$ on over an interval $[a, b]$ is given by

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Computing Area Between Two Curves I

- Example: Find the area between $y=3 x^{2}+4$ and $y=2 x-1$ from $x=-1$ to $x=2$;

$$
\begin{aligned}
& A= \\
& \int_{-1}^{2}\left[\left(3 x^{2}+4\right)-(2 x-1)\right] d x= \\
& \int_{-1}^{2}\left(3 x^{2}-2 x+5\right) d x= \\
& \left.\left(x^{3}-x^{2}+5 x\right)\right|_{-1} ^{2}= \\
& 2^{3}-2^{2}+5 \cdot 2- \\
& \left((-1)^{3}-(-1)^{2}+5(-1)\right)= \\
& 14-(-7)=21
\end{aligned}
$$

Computing Area Between Two Curves II

- Example: Find the area between $y=2 x^{2}+1$ and $y=-x^{2}-1$ from $x=-1$ to $x=1$;

$$
\begin{aligned}
& A= \\
& \int_{-1}^{1}\left[\left(2 x^{2}+1\right)-\left(-x^{2}-1\right)\right] d x= \\
& \int_{-1}^{1}\left(3 x^{2}+2\right) d x= \\
& \left.\left(x^{3}+2 x\right)\right|_{-1} ^{1}= \\
& 1^{3}+2-\left((-1)^{3}+2(-1)\right)= \\
& 3+3=6 .
\end{aligned}
$$

Computing Area Between Two Curves: Application

- TV sets are expected to sell at the rate of $2 e^{0.05 t}$ thousands per month, where t is number of months since they become available; With additional advertising, they could sell at the rate of $3 e^{0.1 t}$ thousands per month; How many additional sales would result from the extra advertisement during the first year?

$$
\begin{aligned}
& \int_{0}^{12}\left(3 e^{0.1 t}-2 e^{0.05 t}\right) d t= \\
& 3 \int_{0}^{12} e^{0.1 t} d t-2 \int_{0}^{12} e^{0.05 t} d t= \\
& \left.3 \frac{1}{0.1} e^{0.1 t}\right|_{0} ^{12}-\left.2 \frac{1}{0.05} e^{0.05 t}\right|_{0} ^{12}= \\
& 30\left(e^{1.2}-1\right)-40\left(e^{0.6}-1\right)= \\
& 30 e^{1.2}-40 e^{0.6}+10 \\
& \approx 36.7 \text { thoudands. }
\end{aligned}
$$

Area Between Curves that Cross

Area Between Two Crossing Curves

Suppose that two continuous curves $y=f(x)$ and $y=g(x)$ cross at $x=c$ and $x=d$ as shown over an interval $[a, b]$; Then the total area between the curves from a to b is given by

$$
\begin{aligned}
A & =A_{1}+A_{2}+A_{3} \\
& =\int_{a}^{c}[f(x)-g(x)] d x+\int_{c}^{d}[g(x)-f(x)] d x+\int_{d}^{b}[f(x)-g(x)] d x
\end{aligned}
$$

Computing Area Between Two Crossing Curves

- Example: Find the area between $y=12-3 x^{2}$ and $y=4 x+5$ from $x=0$ to $x=3$;

Find point of intersection in $[0,3]$:

$$
\begin{aligned}
& \quad 12-3 x^{2}=4 x+5 \\
& \quad \Rightarrow 3 x^{2}+4 x-7=0 \\
& \quad \Rightarrow(3 x+7)(x-1)=0 \\
& \quad \Rightarrow x=-\frac{7}{3} \text { or } x=1 \\
& A=\int_{0}^{1}\left[\left(12-3 x^{2}\right)-(4 x+5)\right] d x+\int_{1}^{3}\left[(4 x+5)-\left(12-3 x^{2}\right)\right] d x \\
& =\int_{0}^{1}\left(-3 x^{2}-4 x+7\right) d x+\int_{1}^{3}\left(3 x^{2}+4 x-7\right) d x \\
& =\left.\left(-x^{3}-2 x^{2}+7 x\right)\right|_{0} ^{1}+\left.\left(x^{3}+2 x^{2}-7 x\right)\right|_{1} ^{3} \\
& =(-1-2+7-0)+(27+18-21-(1+2-7))=32 .
\end{aligned}
$$

Area Bounded by Curves

- Example: Find the area between $y=2 x^{2}-1$ and $y=2-x^{2}$;

Find the points of intersection:

$$
\begin{aligned}
& 2 x^{2}-1=2-x^{2} \\
& \Rightarrow 3 x^{2}-3=0 \\
& \Rightarrow 3\left(x^{2}-1\right)=0 \\
& \Rightarrow 3(x+1)(x-1)=0 \\
& \Rightarrow x=-1 \text { or } x=1 ;
\end{aligned}
$$

$$
A=\int_{-1}^{1}\left[\left(2-x^{2}\right)-\left(2 x^{2}-1\right)\right] d x=\int_{-1}^{1}\left(3-3 x^{2}\right) d x
$$

$$
=\left.\left(3 x-x^{3}\right)\right|_{-1} ^{1}=3-1-\left(3(-1)-(-1)^{3}\right)=4
$$

Technique Summary

- To find the area between two curves:
(1) If the x-values are not given, set the functions equal to each other and solve to find the points of intersection;
(2) Use a test point in each interval between points of intersection to determine which curve is the "upper" curve and which is the "lower" curve in that interval;
(3) Integrate "upper minus lower" on each interval.

Subsection 5

Integration By Substitution

Differentials

Differentials

For $f(x)$ a differentiable function, we define the differential $d f$ by

$$
d f=f^{\prime}(x) d x
$$

- Note that this definition is consistent with the notation $f^{\prime}(x)=\frac{d f}{d x}$ used for the derivative $f^{\prime}(x)$ of $f(x)$ with respect to x;
- Example:

$$
\begin{array}{l|l}
\text { Function } f(x) & \text { Differential } d f \\
\hline f(x)=x^{2} & d f=2 x d x \\
f(x)=\ln x & d f=\frac{1}{x} d x \\
f(x)=e^{x^{2}} & d f=2 x e^{x^{2}} d x \\
f(x)=x^{4}-5 x+2 & d f=\left(4 x^{3}-5\right) d x
\end{array}
$$

Substitution Method

Important Substitution Formulas

(1) $\int u^{n} d u=\frac{1}{n+1} u^{n+1}+C$, if $n \neq-1$;
(2) $\int e^{u} d u=e^{u}+C$;
(3) $\int \frac{1}{u} d u=\ln |u|+C$;

- Example: Integrate $\int\left(x^{2}+1\right)^{3} 2 x d x$;

Substitute $u=x^{2}+1$; Compute the derivative $\frac{d u}{d x}=\left(x^{2}+1\right)^{\prime}=2 x$; Multiply both sides by $d x$: $d u=2 x d x$; Go back to the integral and perform a careful substitution:

$$
\int\left(x^{2}+1\right)^{3} 2 x d x=\int u^{3} d u=\frac{1}{4} u^{4}+C=\frac{1}{4}\left(x^{2}+1\right)^{4}+C
$$

Example

- Integrate $\int\left(2 x^{5}-7\right)^{11} 10 x^{4} d x$;

Substitute $u=2 x^{5}-7$; Compute the derivative $\frac{d u}{d x}=\left(2 x^{5}-7\right)^{\prime}=10 x^{4}$; Multiply both sides by $d x$:

$$
d u=10 x^{4} d x
$$

Go back to the integral and perform a careful substitution:

$$
\begin{aligned}
\int\left(2 x^{5}-7\right)^{11} 10 x^{4} d x & =\int u^{11} d u \\
& =\frac{1}{12} u^{12}+C \\
& =\frac{1}{12}\left(2 x^{5}-7\right)^{12}+C
\end{aligned}
$$

Multiplying by Constants

- Integrate $\int\left(x^{3}+1\right)^{9} x^{2} d x$;

Substitute $u=x^{3}+1$; Compute the derivative $\frac{d u}{d x}=\left(x^{3}+1\right)^{\prime}=3 x^{2}$; Multiply both sides by $d x: d u=3 x^{2} d x$; Therefore, we get

$$
\frac{1}{3} d u=x^{2} d x
$$

Go back to the integral and perform a careful substitution:

$$
\begin{aligned}
\int\left(x^{3}+1\right)^{9} x^{2} d x & =\int u^{9} \frac{1}{3} d u=\frac{1}{3} \int u^{9} d u \\
& =\frac{1}{3} \cdot \frac{1}{10} u^{10}+C=\frac{1}{30}\left(x^{3}+1\right)^{10}+C
\end{aligned}
$$

An Exponential Integral

- Integrate $\int e^{x^{5}-2} x^{4} d x$;

Substitute $u=x^{5}-2$; Compute the derivative $\frac{d u}{d x}=\left(x^{5}-2\right)^{\prime}=5 x^{4}$; Multiply both sides by $d x: d u=5 x^{4} d x$; Therefore, we get

$$
\frac{1}{5} d u=x^{4} d x
$$

Go back to the integral and perform a careful substitution:

$$
\begin{aligned}
\int e^{x^{5}-2} x^{4} d x & =\int e^{u} \frac{1}{5} d u=\frac{1}{5} \int e^{u} d u \\
& =\frac{1}{5} \cdot e^{u}+C=\frac{1}{5} e^{x^{5}-2}+C
\end{aligned}
$$

Cost From Marginal Cost

- A company's marginal cost is $\mathrm{MC}(x)=\frac{x^{3}}{x^{4}+1}$ and its fixed costs are \$ 1,000; Find the company's cost function;
Recall that $C(x)=\int M C(x) d x=\int \frac{x^{3}}{x^{4}+1} d x$;
Substitute $u=x^{4}+1$; Compute the derivative $\frac{d u}{d x}=\left(x^{4}+1\right)^{\prime}=4 x^{3}$; Multiply both sides by $d x$: $d u=4 x^{3} d x$;
Therefore, we get $\frac{1}{4} d u=x^{3} d x$; Go back to the integral and perform a careful substitution:
$\int \frac{x^{3}}{x^{4}+1} d x=\int \frac{1}{u} \frac{1}{4} d u=\frac{1}{4} \int \frac{1}{u} d u=\frac{1}{4} \cdot \ln u+C=\frac{1}{4} \ln \left(x^{4}+1\right)+C ;$
Now, note $C(0)=1000 \Rightarrow \frac{1}{4} \ln 1+C=1000 \Rightarrow C=1000$;
Therefore $C(x)=\frac{1}{4} \ln \left(x^{4}+1\right)+1000$.

Another Example

- Integrate $\int \sqrt{x^{3}-3 x}\left(x^{2}-1\right) d x$;

Substitute $u=x^{3}-3 x$; Compute the derivative $\frac{d u}{d x}=\left(x^{3}-3 x\right)^{\prime}=3 x^{2}-3=3\left(x^{2}-1\right) ;$ Multiply both sides by $d x$:
$d u=3\left(x^{2}-1\right) d x ;$ Therefore, we get

$$
\frac{1}{3} d u=\left(x^{2}-1\right) d x
$$

Go back to the integral and perform a careful substitution:

$$
\begin{aligned}
\int \sqrt{x^{3}-3 x}\left(x^{2}-1\right) d x & =\int \sqrt{u} \frac{1}{3} d u=\frac{1}{3} \int u^{1 / 2} d u \\
& =\frac{1}{3} \cdot \frac{2}{3} u^{3 / 2}+C \\
& =\frac{2}{9} \sqrt{\left(x^{3}-3 x\right)^{3}}+C
\end{aligned}
$$

Yet Another Example

- Integrate $\int e^{\sqrt{x}} x^{-1 / 2} d x$;

Substitute $u=\sqrt{x}$; Compute the derivative $\frac{d u}{d x}=\left(x^{1 / 2}\right)^{\prime}=\frac{1}{2} x^{-1 / 2}$; Multiply both sides by $d x$: $d u=\frac{1}{2} x^{-1 / 2} d x$; Therefore, we get

$$
2 d u=x^{-1 / 2} d x
$$

Go back to the integral and perform a careful substitution:

$$
\begin{aligned}
\int e^{\sqrt{x}} x^{-1 / 2} d x & =\int e^{u} 2 d u=2 \int e^{u} d u \\
& =2 e^{u}+C=2 e^{\sqrt{x}}+C
\end{aligned}
$$

Definite Integration By Substitution

- Integrate $\int_{4}^{5} \frac{1}{3-x} d x$;

Substitute $u=3-x$; Compute the derivative $\frac{d u}{d x}=(3-x)^{\prime}=-1$; Multiply both sides by $d x$: $d u=-d x$ or $-d u=d x$; Also, for $x=4$, we get $u=3-4=-1$ and for $x=5$, we get $u=3-5=-2$; Go back to the integral and perform a careful substitution:

$$
\begin{aligned}
\int_{4}^{5} \frac{1}{3-x} d x & =\int_{-1}^{-2} \frac{1}{u}(-d u) \\
& =-\int_{-1}^{-2} \frac{1}{u} d u \\
& =-\left.(\ln |u|)\right|_{-1} ^{-2} \\
& =-(\ln 2-\ln 1)=-\ln 2
\end{aligned}
$$

Application: Total Pollution from the Rate

- A lake is being polluted at the rate of $r(t)=400 t e^{t^{2}}$ tons of pollutants per year, where t is number of years since measurements began; Find the total amount of pollutants discharged into the lake during the first 2 years;
We must compute $P(t)=\int_{0}^{2} r(t) d t=\int_{0}^{2} 400 t e^{t^{2}} d t$;
Substitute $u=t^{2}$; Compute the derivative $\frac{d u}{d t}=\left(t^{2}\right)^{\prime}=2 t$; Multiply both sides by $d t$: $d u=2 t d t$ or $\frac{1}{2} d u=t d t$; Also, for $t=0$, we get $u=0^{2}=0$ and for $t=2$, we get $u=2^{2}=4$; Go back to the integral and perform a careful substitution:

$$
\begin{aligned}
\int_{0}^{2} 400 t e^{t^{2}} d t & =\int_{0}^{4} 400 e^{u} \frac{1}{2} d u=200 \int_{0}^{4} e^{u} d u=\left.200\left(e^{u}\right)\right|_{0} ^{4} \\
& =200\left(e^{4}-e^{0}\right)=200\left(e^{4}-1\right) \text { tons }
\end{aligned}
$$

Application: Average Water Depth

- After x months the water level in a reservoir is $L(x)=40 x\left(x^{2}+9\right)^{-1 / 2}$ feet; Find the average depth during the first 4 months;
We need $\mathrm{AV}_{[0,4]}(L)=\frac{1}{4-0} \int_{0}^{4} L(x) d x=\frac{1}{4} \int_{0}^{4} 40 x\left(x^{2}+9\right)^{-1 / 2} d x$;
Substitute $u=x^{2}+9$; Compute the derivative $\frac{d u}{d x}=\left(x^{2}+9\right)^{\prime}=2 x$; Multiply both sides by $d x$: $d u=2 x d x$ or $\frac{1}{2} d u=x d x$; Also, for $x=0$, we get $u=0^{2}+9=9$ and for $x=4$, we get $u=4^{2}+9=25$; So

$$
\begin{aligned}
\mathrm{AV}_{[0,4]}(L) & =\frac{1}{4} \int_{0}^{4} 40 x\left(x^{2}+9\right)^{-1 / 2} d x=10 \int_{9}^{25} u^{-1 / 2} \frac{1}{2} d u \\
& =5 \int_{9}^{25} u^{-1 / 2} d u=\left.5(2 \sqrt{u})\right|_{9} ^{25} \\
& =10(\sqrt{25}-\sqrt{9})=20 \text { feet. }
\end{aligned}
$$

