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Calculus of Several Variables Functions of Several Variables

Subsection 1

Functions of Several Variables
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Calculus of Several Variables Functions of Several Variables

Functions of Two Variables

Functions of Two Variables

A function f of two variables is a rule that assigns to each ordered pair
(x , y) in the domain of f a unique number f (x , y);

As with functions of a single variable, if the function is specified by a
formula, the domain is taken to be the largest set of ordered pairs for
which the formula is defined;

Example: Suppose f (x , y) =

√
x

y2
; Find the domain and the value

f (9,−1);

We must have x ≥ 0 and y 6= 0; Therefore, the domain is the set

Dom(f ) = {(x , y) : x ≥ 0, y 6= 0};

Finally, f (9,−1) =

√
9

(−1)2
= 3;

George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 2013 4 / 50



Calculus of Several Variables Functions of Several Variables

Another Example

Example: Suppose f (x , y) = exy − ln x ; Find the domain and the
value f (1, 2);

We must have x > 0; Therefore, the domain is the set

Dom(f ) = {(x , y) : x > 0};

Finally, f (1, 2) = e1·2 − ln 1 = e2;
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Calculus of Several Variables Functions of Several Variables

An Applied Example

It costs $100 to a bike company to make a three-speed bike and $150
to make a ten-speed bike; The company’s fixed costs are $2,500;
Find the company’s cost function and use it to compute the cost of
producing 15 three-speed and 20 ten-speed bikes;

Suppose that x is the number of 3-speed and y the number of
10-speed bikes that the company produces; Then

C (x , y) = 100x
︸︷︷︸

3-speed cost

+ 150y
︸ ︷︷ ︸

10-speed cost

+ 2500
︸︷︷︸

fixed costs

;

Thus, the cost for producing 15 3-speed and 20 10-speed bikes is

C (15, 20) = 100 · 15 + 150 · 20 + 2500 = $7, 000;
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Calculus of Several Variables Functions of Several Variables

Functions of Three or More Variables

In analogy with functions of two variables one may define functions of
three or more variables:

V (l ,w , h) = l · w · h; (Volume of a rectangular solid)
A(P , r , t) = Pert ; (Future Value in Continuous Compounding)

f (x , y , z ,w) =
x + y + z + w

4
; (Average Value)

Example: Let f (x , y , z) =

√
x

y
+ ln

1

z
; Find the domain and the value

f (4,−1, 1);

We must have x ≥ 0, y 6= 0 and z > 0; Therefore, the domain is the
set

Dom(f ) = {(x , y , z) : x ≥ 0, y 6= 0, z > 0};

Finally, f (4,−1, 1) =

√
4

−1
+ ln

1

1
= − 2;
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Calculus of Several Variables Functions of Several Variables

Volume and Area of a Divided Box

An open top box is to have a center
divider, as shown in the diagram;
Find formulas for the volume V of the
box and the total amount of material
M needed to construct the box;

Suppose that x , y and z are the dimensions as shown in the diagram;
Then, the volume is

V (x , y , z) = xyz ;
The amount of material, calculated as the surface area, is given by

M(x , y , z) = xy
︸︷︷︸
bottom

+ 2xz
︸︷︷︸

back and front

+ 3yz
︸︷︷︸

sides and divider

;
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Calculus of Several Variables Functions of Several Variables

Three-Dimensional Coordinate System
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Calculus of Several Variables Functions of Several Variables

Graphs of Functions of Two Variables

Suppose we want to sketch the graph of f (x , y) = 18− x2 − y2;

We may first look at the cross-
sections:

For x = c , z = (18− c2)− y2

is a parabola opening down;

For y = c , z = (18− c2)− x2

is also a parabola opening
down;

For z = c , x2 + y2 = 18− c is
a circle centered at the origin;
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Calculus of Several Variables Functions of Several Variables

Relative Extreme Points

A point (a, b, c) on a surface
z = f (x , y) is a relative maximum

point if f (a, b) ≥ f (x , y), for all
(x , y) in some region surrounding
(a, b);

A point (a, b, c) on a surface
z = f (x , y) is a relative minimum

point if f (a, b) ≤ f (x , y), for all
(x , y) in some region surrounding
(a, b);
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Calculus of Several Variables Functions of Several Variables

Relative Extrema

Needless to say a function may have both relative maxima and
relative minima at various points of its domain:
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Calculus of Several Variables Functions of Several Variables

Saddle Points

A point like the one shown on the
right is called a saddle point;

It is the highest point along one
curve on the surface and the lowest
along another curve;

Saddle points are neither maxima
nor minima;

Intuitively speaking, we think of

relative maxima as “hilltops”;
relative minima as “valley bottoms”;
saddle points as “mountain passes” between two peaks;
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Calculus of Several Variables Functions of Several Variables

Gallery of Various Cases

f (x , y) = x2 + y2; f (x , y) = y2 − x2;

f (x , y) = 12y + 6x − x2 − y3; f (x , y) = ln (x2 + y2);
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Calculus of Several Variables Partial Derivatives

Subsection 2

Partial Derivatives
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Calculus of Several Variables Partial Derivatives

Partial Derivatives

A function f (x , y) has two partial derivatives, one with respect to x

and the other with respect to y ;
Partial Derivatives

The partial derivative of f with respect to x is defined by

∂

∂x
f (x , y) = lim

h→0

f (x + h, y)− f (x , y)

h
;

The partial derivative of f with respect to y is defined by

∂

∂y
f (x , y) = lim

h→0

f (x , y + h)− f (x , y)

h
;

To compute
∂

∂x
f (x , y) we take the derivative of f with respect to x assuming that

y is constant;
∂

∂y
f (x , y) we take the derivative of f with respect to y assuming that

x is constant;
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Calculus of Several Variables Partial Derivatives

Computing Partial Derivatives

Compute the following partial derivatives:
∂

∂x
x3y4 = y4 ∂

∂x
x3 = 3x2y4;

∂

∂y
x3y4 = x3

∂

∂y
y4 = 4x3y3;

∂

∂x
x4y2 = y2 ∂

∂x
x4 = 4x3y2;

∂

∂y
x4y2 = x4

∂

∂y
y2 = 2x4y ;

∂

∂x
(2x4 − 3x3y3 − y2 + 4x + 1) =

∂

∂x
2x4 − ∂

∂x
3x3y3 − ∂

∂x
y2 +

∂

∂x
4x +

∂

∂x
1 =

8x3 − 9x2y3 − 0 + 4 + 0 = 8x3 − 9x2y3 + 4;
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Calculus of Several Variables Partial Derivatives

Subscript Notation

The following is an alternative notation for partial derivatives using
subscripts:

fx(x , y) =
∂

∂x
f (x , y) and fy (x , y) =

∂

∂y
f (x , y);

Example: Compute the partial derivatives:
fx(x , y), if f (x , y) = 5x4 − 2x2y3 − 4y2;

fx(x , y) =
∂

∂x
5x4 − ∂

∂x
2x2y3 − ∂

∂x
4y2 = 20x3 − 4xy3;

Both partials of f (x , y) = ex ln y ;

fx(x , y) = ex ln y ; fy (x , y) =
ex

y
;

fy (x , y) if f (x , y) = (xy2 + 1)4;

fy (x , y) =
∂

∂y
[(xy2 + 1)4] = 4(xy2 + 1)3 · ∂

∂y
(xy2 + 1) =

4(xy2 + 1)3 · 2xy = 8xy(xy2 + 1)3;
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Calculus of Several Variables Partial Derivatives

More Partial Derivatives

Compute the partial derivatives:
∂g

∂x
if g(x , y) =

xy

x2 + y2
;

∂

∂x

(
xy

x2 + y2

)

=
∂(xy)
∂x (x2 + y2)− xy

∂(x2+y2)
∂x

(x2 + y2)2
=

y(x2 + y2)− xy · 2x
(x2 + y2)2

=
x2y + y3 − 2x2y

(x2 + y2)2
=

y3 − x2y

(x2 + y2)2
;

fx(x , y) if f (x , y) = ln (x2 + y2);

fx(x , y) =
∂

∂x
(ln (x2 + y2)) =

1

x2 + y2

∂

∂x
(x2 + y2) =

2x

x2 + y2
;

fy (1, 3) if f (x , y) = ex
2+y2

;

fy (x , y) =
∂

∂y
(ex

2+y2

) = ex
2+y2 ∂

∂y
(x2 + y2) = 2yex

2+y2

; Thus,

fy (1, 3) = 2 · 3e12+32 = 6e10;
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Calculus of Several Variables Partial Derivatives

Partial Derivatives in Three or More Variables

Compute the partial derivatives:
∂

∂x
(x3y4z5) = y4z5

∂

∂x
x3 = 3x2y4z5;

∂

∂y
(x3y4z5) = x3z5

∂

∂y
y4 = 4x3y3z5;

∂

∂z
ex

2+y2+z2 = ex
2+y2+z2 ∂

∂z
(x2 + y2 + z2) = 2zex

2+y2+z2 ;
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Calculus of Several Variables Partial Derivatives

Partial Derivatives as Rates of Change and Marginals

Partials as Rates of Change

The partial fx(x , y) represents the instantaneous rate of change of f
with respect to x when y is held constant;

The partial fy(x , y) represents the instantaneous rate of change of f
with respect to y when x is held constant;

Partials as Marginals

Suppose C (x , y) is the cost function for producing x units of product A
and y units of product B; Then

Cx(x , y) is the marginal cost function for product A, when production
of B is held constant;

Cy (x , y) is the marginal cost function for product B, when production
of A is held constant;
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Calculus of Several Variables Partial Derivatives

An Application

A company’s profit from producing x radios and y televisions per day
is P(x , y) = 4x3/2 + 6y3/2 + xy ;

Find the marginal profit functions;

Px(x , y) =
∂

∂x
4x3/2+

∂

∂x
6y3/2+

∂

∂x
xy = 4 · 32x1/2+0+y = 6x1/2+y ;

Py (x , y) =
∂

∂y
4x3/2+

∂

∂y
6y3/2+

∂

∂y
xy = 0+6 · 32y1/2+x = 9y1/2+x ;

Find and interpret Py (25, 36);

Py (25, 36) = 9
√
36 + 25 = 79;

This is the approximate increase in profit per additional television
produced when 25 radios and 36 televisions are produced;
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Calculus of Several Variables Partial Derivatives

Partial Derivatives Geometrically

The equation y = f (x , y) of a function in two variables represents a
surface in three-dimensional space;

Its partial derivatives represent the slopes of the tangent lines to the
surface in different directions;

For instance, fx(a, b)
represents the slope of the
tangent line at the point
(a, b) in the x direction, when
a cross-section of the surface
on the plane y = b (y held
constant) is considered;
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Calculus of Several Variables Partial Derivatives

Higher-Order Partial Derivatives

Second-Order Partial Derivatives

Subscript ∂-Notation Description

fxx
∂2

∂x2
f Differentiate Twice w.r.t. x

fyy
∂2

∂y2
f Differentiate Twice w.r.t. y

fxy
∂2

∂y∂x
f Differentiate First w.r.t. x , Then w.r.t. y

fyx
∂2

∂x∂y
f Differentiate First w.r.t. y , Then w.r.t. x

Note that in both notations, we differentiate first with respect to the
variable appearing closest to f ;

To calculate a second partial, we must perform a two-step calculation;
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Calculus of Several Variables Partial Derivatives

Computing Second-Order Partial Derivatives

Find all second-order partial derivatives of
f (x , y) = x4 + 2x2y2 + x3y + y4;
We must first compute the two first-order partial derivatives:

fx(x , y) =
∂

∂x
(x4 + 2x2y2 + x3y + y4) = 4x3 + 4xy2 + 3x2y

fy (x , y) =
∂

∂y
(x4 + 2x2y2 + x3y + y4) = 4x2y + x3 + 4y3;

Now we proceed with the four second-order partial derivatives:

fxx(x , y) =
∂

∂x
(4x3 + 4xy2 + 3x2y) = 12x2 + 4y2 + 6xy

fxy(x , y) =
∂

∂y
(4x3 + 4xy2 + 3x2y) = 8xy + 3x2

fyx(x , y) =
∂

∂x
(4x2y + x3 + 4y3) = 8xy + 3x2

fyy(x , y) =
∂

∂y
(4x2y + x3 + 4y3) = 4x2 + 12y2;
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Calculus of Several Variables Partial Derivatives

Some Remarks on Second Partial Derivarives

Note that fxy = fyx ;

Even though this is not true for all functions, it holds for those that
we will be dealing with;

It is also true for most functions arising from applications;

Example: Calculate the second derivatives of f (x , y) = 2x3e−5y ;

fx(x , y) = 6x2e−5y and fy (x , y) = 2x3(−5e−5y ) = − 10x3e−5y ;

fxx(x , y) = 12xe−5y

fxy (x , y) = 6x2(−5e−5y ) = − 30x2e−5y

fyx(x , y) = − 30x2e−5y

fyy (x , y) = − 10x3(−5e−5y ) = 50x3e−5y ;
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Calculus of Several Variables Optimizing Functions of Several Variables

Subsection 3

Optimizing Functions of Several Variables

George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 2013 27 / 50



Calculus of Several Variables Optimizing Functions of Several Variables

Critical Points

Recall the concepts of relative maxima, relative minima and saddle
points for functions of two variables:

Relative max and min values can occur only at critical points, i.e.,
points (a, b) where

fx(a, b) = 0 and fy (a, b) = 0;
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Calculus of Several Variables Optimizing Functions of Several Variables

Finding Critical Points

Find all critical points of f (x , y) = 3x2 + y2 + 3xy + 3x + y + 6;
Compute first-order partials:

fx(x , y) = 6x + 3y + 3 and fy(x , y) = 2y + 3x + 1;

Set first-order partials equal to zero and solve the resulting system
for (x , y):
{

fx(x , y) = 0
fy(x , y) = 0

}

⇒
{

6x + 3y + 3 = 0
2y + 3x + 1 = 0

}

⇒
{

2x + y = −1
3x + 2y = −1

}

⇒
{

y = −2x − 1
3x + 2(−2x − 1) = −1

}

⇒
{

y = −2x − 1
− x − 2 = −1

}

⇒
{

y = 1
x = −1

}

Thus, the only critical point is (x , y) = (−1, 1);
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Calculus of Several Variables Optimizing Functions of Several Variables

Second Derivative Test: The D-Test

D-Test

Suppose (a, b) is a critical point of f and
D = fxx(a, b) · fyy(a, b)− [fxy(a, b)]

2; Then, f at the point (a, b) has a:

i. relative maximum if D > 0 and fxx(a, b) < 0;

ii. relative minimum if D > 0 and fxx(a, b) > 0;

iii. saddle point if D < 0;

Some Remarks Concerning D-Test:
1 First, find all critical points; Then apply D-test to each critical point;
2 D > 0 guarantees a relative extremum; Value of fxx tells what kind it is;
3 D < 0 means saddle point regardless of sign of fxx ;
4 If D = 0, the D-test is inconclusive; Function may have a maximum,

minimum or saddle point at the critical point;
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Calculus of Several Variables Optimizing Functions of Several Variables

Finding Relative Extrema of Polynomial Functions

Find the relative extrema of f (x , y) = 2x2 + y2 + 2xy + 4x + 2y + 5;
First for critical points:

fx(x , y) = 4x + 2y + 4 and fy(x , y) = 2y + 2x + 2;
{

fx(x , y) = 0
fy(x , y) = 0

}

⇒
{

4x + 2y + 4 = 0
2y + 2x + 2 = 0

}

⇒
{

2x + y = −2
x + y = −1

}

⇒
{

x = −1
y = 0

}

Compute

fxx = 4, fxy = 2, fyy = 2;

Thus, D = fxx fyy − f 2xy = 4 ·
2 − 22 = 4 > 0 and fxx = 4 >

0, which show that at (x , y) =
(−1, 0) f has a relative minimum;
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Calculus of Several Variables Optimizing Functions of Several Variables

Finding Relative Extrema of Exponential Functions

Find the relative extrema of f (x , y) = ex
2
−y2

;
First for the critical points:

fx(x , y) = 2xex
2
−y2

and fy (x , y) = − 2yex
2
−y2

;
{

fx(x , y) = 0
fy(x , y) = 0

}

⇒
{

2xex
2
−y2

= 0

−2yex
2
−y2

= 0

}

⇒
{

x = 0
y = 0

}

Compute fxx = 2ex
2
−y2

+ 4x2ex
2
−y2

, fxy = − 4xyex
2
−y2

, fyy =

− 2ex
2
−y2

+ 4y2ex
2
−y2

;

Thus,

D = fxx(0, 0)fyy (0, 0) − fxy(0, 0)
2

= 2 · (−2)− 00

= − 4 < 0,
which shows that at (x , y) = (0, 0)
f has a saddle point;
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Calculus of Several Variables Optimizing Functions of Several Variables

Application: Maximizing Profit

A motor company makes compact and midsized cars. The price
function for compacts is p = 17− 2x (for 0 ≤ x ≤ 8) and for
midsized q = 20− y (for 0 ≤ y ≤ 20), both in thousands of dollars,
where x , y are the number of compact and midsized cars produced
per hour; Assume that the company’s cost function is
C (x , y) = 15x + 16y − 2xy + 5 thousand dollars; How many of each
type of car should be produced and how should each be priced to
maximize the company’s profit? What will be the maximum profit?
First find the profit function

P(x , y) = R(x , y)
︸ ︷︷ ︸
Revenue

−C (x , y)
︸ ︷︷ ︸

Cost

= xp + yq − (15x + 16y − 2xy + 5)
= x(17 − 2x) + y(20− y)− (15x + 16y − 2xy + 5)
= 17x − 2x2 + 20y − y2 − 15x − 16y + 2xy − 5
= − 2x2 − y2 + 2xy + 2x + 4y − 5;
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Calculus of Several Variables Optimizing Functions of Several Variables

Application: Maximizing Profit (Cont’d)

P(x , y) = −2x2 − y2 + 2xy + 2x + 4y − 5;

Compute first derivatives

Px(x , y) = − 4x + 2y + 2 and Py (x , y) = − 2y + 2x + 4;

Find critical points:
{

Px(x , y) = 0
Py (x , y) = 0

}

⇒
{

−4x + 2y + 2 = 0
−2y + 2x + 4 = 0

}

⇒
{

−2x + y = −1
x − y = −2

}

⇒
{

x = 3
y = 5

}

Thus (x , y) = (3, 5) is the critical point;
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Calculus of Several Variables Optimizing Functions of Several Variables

Application: Maximizing Profit (Cont’d)

P(x , y) = −2x2 − y2 + 2xy + 2x + 4y − 5;
Px(x , y) = −4x + 2y + 2;
Py (x , y) = −2y + 2x + 4;

Finally, we verify that at (3, 5) we indeed have a local max; We have

Pxx = − 4, Pxy = 2, Pyy = − 2;

Therefore, D = PxxPyy − P2
xy = (−4) · (−2)− 22 = 4 > 0 and

Pxx = −4 < 0, which show that at (3, 5) P has a max; The prices and the
maximum profit are given by

p = 17− 2x = 17− 2 · 3 = 11 thousand
q = 20− y = 20− 5 = 15 thousand
P = − 2x2 − y2 + 2xy + 2x + 4y − 5 =
− 2 · 32 − 52 + 2 · 3 · 5 + 2 · 3 + 4 · 5− 5 = 8 thousand;
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Calculus of Several Variables Optimizing Functions of Several Variables

Finding Relative Extrema I

Find the relative extrema of f (x , y) = x2 + y3 − 6x − 12y ;
First for critical points:

fx(x , y) = 2x−6 = 2(x−3) and fy (x , y) = 3y2−12 = 3(y+2)(y−2);
{

fx(x , y) = 0
fy(x , y) = 0

}

⇒
{

2(x − 3) = 0
3(y + 2)(y − 2) = 0

}

⇒
{

x = 3
y = −2 or y = 2

}

Now compute fxx = 2, fxy = 0, fyy = 6y ;

Thus, for (x , y) = (3,−2), we get
D = fxx fyy−f 2xy = 2·6·(−2)−02 =
− 24 < 0; So, this is a saddle
point; For (x , y) = (3, 2), D =
fxx fyy−f 2xy = 2·6·2−02 = 24 > 0
and fxx = 2 > 0; so at (x , y) =
(3, 2) f has a relative minimum;
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Calculus of Several Variables Optimizing Functions of Several Variables

Finding Relative Extrema II

Find the relative extrema of f (x , y) = 16xy − x4 − 2y2;
First for critical points:

fx(x , y) = 16y−4x3 = 4(4y−x3) and fy(x , y) = 16x−4y = 4(4x−y);
{

fx(x , y) = 0
fy(x , y) = 0

}

⇒
{

4(4y − x3) = 0
4(4x − y) = 0

}

⇒
{

4(4x) − x3 = 0
y = 4x

}

⇒
{

x(16− x2) = 0
y = 4x

}

⇒
{

x(4 + x)(4− x) = 0
y = 4x

}

⇒
{

x = 0
y = 0

}

or

{
x = −4
y = −16

}

or

{
x = 4
y = 16

}

Now compute fxx = − 12x2, fxy = 16, fyy = − 4;
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Calculus of Several Variables Optimizing Functions of Several Variables

Finding Relative Extrema II (Cont’d)

fxx = −12x2, fxy = 16, fyy = −4;

Thus, for (x , y) = (0, 0), we get
D = fxx fyy − f 2xy = − 12 · 02 · (−4)− 162 = − 256 < 0; So, this is a
saddle point; For (x , y) = (−4,−16),
D = fxx fyy − f 2xy = − 12 · (−4)2 · (−4)− 162 = 512 > 0 and
fxx = −12 · (−4)2 < 0; so at (x , y) = (−4,−16) f has a relative maximum;

Finally, for (x , y) = (4, 16), we
get D = fxx fyy − f 2xy = − 12 ·
42 · (−4) − 162 = 512 > 0; and
fxx = − 12 · 42 < 0; So, this is a
relative maximum;
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Subsection 4

Lagrange Multipliers and Constrained Optimization
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Calculus of Several Variables Lagrange Multipliers and Constrained Optimization

Example: Maximizing Area

We want to build a rectangular enclo-
sure along an existing stone wall; The side
along the wall needs no fence; What are
the dimensions of the largest enclosure
that can be built using only 400 feet of
fence?
Suppose that the width is x feet and the length is y feet; Since the length
of the fence is 2x + y = 400, we get the problem

maximize A = xy

subject to 2x + y − 400 = 0

Form a new function, called a Lagrange function,

F (x , y , λ) = (Quantity To Optimize) + λ · (The Constraint)
= xy + λ(2x + y − 400)
= xy + 2λx + λy − 400λ;
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Calculus of Several Variables Lagrange Multipliers and Constrained Optimization

Example: Maximizing Area (Cont’d)

F (x , y , λ) = xy + 2λx + λy − 400λ;

To optimize, compute partial derivatives and find critical points:

Fx = y + 2λ, Fy = x + λ, Fλ = 2x + y − 400;







Fx = 0
Fy = 0
Fλ = 0






⇒







y + 2λ = 0
x + λ = 0

2x + y − 400 = 0






⇒







λ = −1
2y

λ = −x

2x + y − 400 = 0






⇒

{
x = 1

2y

2 · 1
2y + y − 400 = 0

}

⇒
{

x = 1
2y

2y = 400

}

⇒
{

x = 100
y = 200

}
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Calculus of Several Variables Lagrange Multipliers and Constrained Optimization

The Lagrange Multiplier Method

The function to be optimized is called the objective function;

The variable λ is called the Lagrange multiplier;

Lagrange Multiplier Method

To optimize the function f (x , y) subject to a constraint g(x , y) = 0:

1 Write a new function F (x , y , λ) = f (x , y) + λg(x , y);

2 Set the partial derivatives of F equal to zero: Fx = 0,Fy = 0,Fλ = 0 and
solve to find the critical points;

3 The solution of the original problem (if one exists) will occur at one of these
critical points;

A possible strategy for solving the system Fx = 0,Fy = 0,Fλ = 0
could involve:

1 Solve each of Fx = 0,Fy = 0 for λ;
2 Set the two expressions for λ equal to each other;
3 Solve the equation of Step 2 together with Fλ = 0 for x and y ;
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Calculus of Several Variables Lagrange Multipliers and Constrained Optimization

Example: Minimizing Amount of Materials

A company wants to design an aluminum can
that requires the least amount of aluminum
but that can hold exactly 12 fluid ounces
(21.3 in3); Find the radius r and and the
height h of the can.

The objective function is the surface area of the can:

A = 2πr2
︸︷︷︸

top and bottom

+ 2πrh
︸︷︷︸
side

;

The constraint has to do with the volume

V = 21.3 ⇒ πr2h = 21.3 ⇒ πr2h − 21.3 = 0;

Therefore the new function F (r , h, λ) is

F (r , h, λ) = 2πr2 + 2πrh + λ(πr2h − 21.3);
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Calculus of Several Variables Lagrange Multipliers and Constrained Optimization

Example: Minimizing Amount of Materials (Cont’d)

F (r , h, λ) = 2πr2 + 2πrh + λ(πr2h − 21.3);

Take the partial derivatives

Fr = 4πr + 2πh + λ2πrh, Fh = 2πr + λπr2, Fλ = πr2h − 21.3;

Set these equal to zero to find critical points of F :

4πr + 2πh + λ2πrh = 0, 2πr + λπr2 = 0, πr2h − 21.3 = 0;

Solve the first two for λ:

λ = − 4πr + 2πh

2πrh
= − 2r + h

rh
, λ = − 2πr

πr2
= − 2

r
;

Set these equal to get
2r + h

rh
=

2

r
⇒ 2r2 + rh = 2rh ⇒ 2r2 = rh ⇒ 2r = h;

Thus, we have πr2h = 21.3 ⇒ πr2(2r) = 21.3 ⇒ 2πr3 =

21.3 ⇒ r = 3

√

21.3

2π
≈ 1.5 in; and, hence, h ≈ 3 in.;
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Calculus of Several Variables Lagrange Multipliers and Constrained Optimization

An Abstract Problem I

Maximize and minimize f (x , y) = 4xy subject to the constraint
x2 + y2 = 50;

The objective function is f (x , y) = 4xy
and the constraint function is g(x , y) =
x2 + y2 − 50; Thus, the new function is

F (x , y , λ) = 4xy + λ(x2 + y2 − 50);

Compute the three partials:

Fx = 4y + 2λx , Fy = 4x + 2λy , Fλ = x2 + y2 − 50;

Set the partials equal to zero to find the critical points:

4y + 2λx = 0, 4x + 2λy = 0, x2 + y2 − 50 = 0;
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Calculus of Several Variables Lagrange Multipliers and Constrained Optimization

An Abstract Problem I (Cont’d)

We set the partials equal to zero to find the critical points:

4y + 2λx = 0, 4x + 2λy = 0, x2 + y2 − 50 = 0;

Therefore, λ = − 2y

x
and λ = − 2x

y
,

whence
2y

x
=

2x

y
⇒ x2 = y2 ⇒

y = ±x ; The last equation now gives
2x2 = 50 ⇒ x2 = 25 ⇒ x =
±5;

Thus, there are four critical points: (−5,−5), (−5, 5), (5,−5), (5, 5);
Since f (−5,−5) = f (5, 5) = 100 and f (−5, 5) = f (5,−5) = − 100,
we conclude that fmax = 100 occurring at (−5,−5) and (5, 5) and
fmin = −100 occurring at (−5, 5) and (5,−5);
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Calculus of Several Variables Lagrange Multipliers and Constrained Optimization

An Abstract Problem II

Maximize and minimize f (x , y) = 12x + 30y subject to the constraint
x2 + 5y2 = 81;

The objective function is

f (x , y) = 12x + 30y

and the constraint function is g(x , y) =
x2 +5y2 − 81; Thus, the new function is

F (x , y , λ) = 12x+30y+λ(x2+5y2−81);
Compute the three partials:

Fx = 12 + 2λx , Fy = 30 + 10λy , Fλ = x2 + 5y2 − 81;

Set the partials equal to zero to find the critical points:

12 + 2λx = 0, 30 + 10λy = 0, x2 + 5y2 − 81 = 0;
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Calculus of Several Variables Lagrange Multipliers and Constrained Optimization

An Abstract Problem II (Cont’d)

We set the partials equal to zero to find the critical points:

12 + 2λx = 0, 30 + 10λy = 0, x2 + 5y2 − 81 = 0;

Therefore, λ = − 6

x
and λ = − 3

y
,

whence
6

x
=

3

y
⇒ x = 2y ; The

last equation now gives 4y2 + 5y2 =
81 ⇒ 9y2 = 81 ⇒ y2 =
9 ⇒ y = ±3;

Thus, there are two critical points: (−6,−3), (6, 3); Since
f (−6,−3) = − 162 and f (6, 3) = 162, we conclude that fmax = 162
occurring at (6, 3) and fmin = −162 occurring at (−6,−3);
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Calculus of Several Variables Lagrange Multipliers and Constrained Optimization

Example: Largest Postal Service Package

The USPS will accept a package if the length
plus its girth is not more than 84 inches; What
are the dimensions and the volume of the
largest package with a square end that can
be mailed?

The objective function is the volume of the box:

V = xy2;

The constraint has to do with the length plus girth

Length + Girth = 84 ⇒ x + 4y = 84 ⇒ x + 4y − 84 = 0;

Therefore the new function F (x , y , λ) is

F (x , y , λ) = xy2 + λ(x + 4y − 84);
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Calculus of Several Variables Lagrange Multipliers and Constrained Optimization

Example: Minimizing Amount of Materials (Cont’d)

F (x , y , λ) = xy2 + λ(x + 4y − 84);

Take the partial derivatives

Fx = y2 + λ, Fy = 2xy + 4λ, Fλ = x + 4y − 84;

Set these equal to zero to find critical points of F :

y2 + λ = 0, 2xy + 4λ = 0, x + 4y − 84 = 0;

Solve the first two for λ:

λ = − y2, λ = − 1

2
xy ;

Set these equal to get y2 =
1

2
xy ⇒ y =

1

2
x ;

Thus, we have x + 2x − 84 = 0 ⇒ 3x = 84 ⇒ x = 28 in and,
hence, y = 14 in; Thus, the max volume is Vmax = 28 · 14 · 14 = 5488 in3;
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