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Limits  Limits, Rates of Change and Tangent Lines

Average Velocity

@ An object moving on a straight line is at position s(t) at time t;

@ Then in the time interval [ty, t1] it has moved from position s(tp) to
position s(t;) having a displacement (or net change in position)
As = s(t1) — s(to);

Z & /A
e @ s e _ 6

@ Its average velocity in [to, t1] is given by

As  s(t1) — s(to)‘

vavello, Bl = 15 = == —

Example: If an object is at position s(t) = 5t miles from the origin
at time t in hours, what is Vay,[1,5]7

s(5) — s(1 5.52 _5.12
A G = (gl( ): 7 = 30mph.
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Limits  Limits, Rates of Change and Tangent Lines

Instantaneous Velocity

@ An object moving on a straight line is at position s(t) at time t;

@ To estimate the instantaneous velocity of the object at gy, we
consider a very short time interval [tg, t;] and compute vayg[to, t1];

o If [to, t1] is very short, then the change in velocity might be negligible
and so a good approximation of the instantaneous velocity at tp;

~ As.
@ Thus v(ty) = R

At small
Example: Estimate the instantaneous velocity v(1) of the object
whose position function is s(t) = 5t% miles from the origin at time t
in hours.
s(1.01) —s(1)  5-(1.01)> —5-12
101-1 0.01

v(l) = = 10.05mph.

George Voutsadakis (LSSU) Calculus | November 2014 5/ 67



Limits  Limits, Rates of Change and Tangent Lines

Another Example of a Rate of Change

@ Suppose that the length of the side of a melting cube as function of
time is given by s(t) = H_% inches at t minutes since the start of the
melting process. What is the average change in the volume of the ice

cube from t = 0 to t = 3 minutes?

The volume V/(t) in cubic inches as a function of time t in minutes is
given by V(t) = s(t)® = (t+2)3
Therefore

AVY g VO -V _ (PGP
At L 3_0 3

M s oz
_ 125 8 __ 1000 1000 117 - 3/min.

3 3 = ~ 3000'M
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Limits  Limits, Rates of Change and Tangent Lines

Instantaneous Rate of Change of Volume

@ In the previous example, to estimate the instantaneous rate of change
of the volume of the ice cube at t = 1, we may consider the average
rate of change between t = 1 minute and t = 1.01 minute:

AV AV
(a) s = (57), oron

V(1.01) — V(1)

101 -1
(zo0)* - 3)°
0.01

~  —0.037in*/min.
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Limits  Limits, Rates of Change and Tangent Lines

Slope of a Secant Line

@ Consider the graph of y = f(x) and two points on the graph
(x0, f(x0)) and (x1,f(x1));

@ The line passing through these two points is called the secant line to
y = f(x) through xo and xi;

@ lts slope is equal to

f(x1) — f(x0)

melra. ] = 22—
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Limits  Limits, Rates of Change and Tangent Lines

An Example

@ Example: Find an equation for the secant line to f(x) = T1x2

through xp = 1 and x3 = 2;

ret—

e have f)—f1) _3-3_ 3
Therefore y — % = —%(x — 1) is the point-slope form of the equation

of the secant line.
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Limits  Limits, Rates of Change and Tangent Lines

Slope of a Tangent Line

@ To approximate the slope m¢(xp) of the tangent line to the graph of
y = f(x) at xp we use a process similar to that approximating the
instantaneous rate of change by using the average rate of change for
points xp, x; very close to each other;

fix))

fixo)

Therefore, we have
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Limits  Limits, Rates of Change and Tangent Lines

Approximating the Slope of a Tangent Line

@ Let us approximate the slope to y = x? at x = 1 using the process
outlined in the previous slide;

We have

f(1.01) — f(1 1.01)2 — 12
me(1) = me[1,1.01] = ( 102 — 1( ) = ( 0)01 = 2.01.
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Limits A Graphical Approach to Limits

Subsection 2

A Graphical Approach to Limits
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Limits A Graphical Approach to Limits

Definition of Limit

@ Suppose that f(x) is defined in an open interval containing a number
¢, but not necessarily c itself;

@ The limit of f(x) as x approaches c is equal to L if f(x) has value
arbitrarily close to L when x assumes values sufficiently close (but not
equal) to c.

@ In this case, we write
limf(x) = L.

X—C

@ An alternative terminology is that f(x) approaches or converges to
L as x approaches c.
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Two Easy Examples

Limits A Graphical Approach to Limits

@ Draw the graph of f(x) = 3 and find graphically the limit

limy—c f(x).

@ Draw the graph of g(x)

6

= %x + 4 and find graphically limy_,» f(x).

-1 0

1

-1 ) 1

We have limy_c3 =3 and limy_2 (1x +4) = 5.
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Limits A Graphical Approach to Limits

Two Easy Rules

@ Draw the graph of f(x) = k (a constant) and find graphically the
limit limy_,. k.

6

@ Draw the graph of g(x) = x and find graphically lim,_, . x.

-2 -1 0 1

We have limy_, k = k and limy_,. x = c.
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Limits A Graphical Approach to Limits

Two More Complicated Examples

@ Draw the graph of f(x) = \}(;__93 and find graphically the limit
x2if x <1

2 49x+3, ifx>1 2ndfind

@ Draw the graph of g(x) = {
graphically lim,_,; f(x).

12r
10F

sk

] 5 10 15

We have limy_; ¢ \}‘_X;i =6 and limy_,1 g(x) does not exist since g(x)
does not approach a single number when x approaches 1.
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Limits A Graphical Approach to Limits

Two Additional Examples

@ Draw the graph of f(x) = % and find graphically the limit
limy—0 f(x).

@ Draw the graph of g(x) = sin T and find graphically lim,_.0 g(x).

e*—1

We have lim,_q =1 and lim,_,gsin 7 does not exist since the
values of g(x) = sin 7 oscillate between —1 and 1 as x approaches 0.
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Limits A Graphical Approach to Limits

Definition of Side-Limits

)

)

Suppose that f(x) is defined in an open interval containing a number
¢, but not necessarily c itself;

The right-hand limit of f(x) as x approaches c (from the right) is
equal to L if f(x) has value arbitrarily close to L when x approaches
sufficiently close (but is not equal) to ¢ from the right hand side.

In this case, we write lim f(x) =L
x—ct

The left-hand limit of f(x) as x approaches c (from the left) is
equal to L if f(x) has value arbitrarily close to L when x approaches
sufficiently close (but is not equal) to ¢ from the left hand side.

In this case, we write lim f(x) = L.

X—C™
The limits we saw before are “two sided limits”; It is the case that
lim f(x) = L if and only if I|m f( ) =L and I|m  f(x) =L ie,a
X—C
function has limit L as x approaches c if and onIy if the left and right

hand side limits as x approaches c exist and are equal.
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Limits A Graphical Approach to Limits

Two Examples

X<, if x <1
—x°42x+3, ifx>1
graphically lim,_, ;- f(x) and lim,_,¢+ f(x).

—(x+2)P3+2, ifx<-1
—x% +1, if x> —1
graphically lim,_, ;- g(x) and lim,_,_q+ g(x).

@ Draw the graph of f(x) = and find

@ Draw the graph of g(x) = and find

limy o1 f(x) =1, lim, 1+ f(x) = 4, so limy_1 f(x) DNE, and
lim,_,_1- g(x) =1, lim,,_1+ g(x) =0, so limy_,_1 g(x) DNE.
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Limits

A Graphical Approach to Limits

Examples of Limits Involving Infinity

o Draw the graph of f(x) = ﬁ and find graphically lim,_,,- f(x) and

Iimx_>2+ f(X)

@ Draw the graph of g(x) = Inx and find graphically lim,_,o+ g(x) and

limy— 400 8(X)-
4 ‘ 4
|
|
\
\
\\_\ B
‘\
‘a, 'f‘
| |
. .“\ )
lim,_»- f(x) = — o0, limy_p+ f(x) = + o0, and
limy o+ g(x) = — 00, limy— 400 g(X) = + 0.

George Voutsadakis (LSSU)

Calculus |

November 2014

20 / 67



Limits  Basic Limit Laws

Subsection 3
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Limits  Basic Limit Laws

Theorem (Basic Limit Laws)

Suppose that lim f(x) and lim g(x) exist. Then
X—C X—C
@ Sum Law: )I(lnc(f(x) +g(x)) = )I(lncf(x) + Xllncg(x);
o Constant Factor Law: lim kf(x) = klim f(x);
X—C X—C
o Product Law: )!ch(x)g(x) = (Xllncf(x))(llpcg(x));

- _ ) limf(x)
o Quotient Law: If Xllncg( x) # 0, then lim 269 = limg(x)’

X—>C

@ Power and Root Law: For p, g integers, with g # 0,

Iim [f( )P/ = (Iim f(x))P/9, under the assumption that
I@f(x) >0 |fq is even and Ilmf( ) #0if £ <.

X—C

In particular, for n a positive mteger

o lm[FCA)" = (fim F()";
o Iim /709 = /I 0
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Limits  Basic Limit Laws

Examples of Calculating Limits |

@ Compute lim x3;
xX—2

We apply the power rule:

lim (x3) = (limx)? = 23 = 8.
x—2

x—2

@ Compute lim (—2x3 4+ 7x —5);
x——1

We apply the sum rule, the constant factor and the power rules:

lim ( 2x34+7x—5) = lim (=2x3)+ lim (7x)— Iim 5
x——1 x——1 x——1
= —21lim (x3)+7 lim x — I|m5
x——1 x——1 x——1
= 2 (1P +7CD -5
= —10.
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Limits  Basic Limit Laws

Examples of Calculating Limits I

o Compute I|m2X2+30,

We apply the quotient rule:

i x+30 im0 ous0
x—2 2x% |im2(2x4) 2.4
X—

@ Compute Iim3(x—1/4(X_|_ 5)1/3);
X—
We apply the pI’OdUCt and the power rules:

)I(i_r)ns(x_1/4(x+5)1/3) = (I|mx 1/A')(Ilm\/x—i-)

= ((Ilmx) 1/4(3/>|<T3X+5)

_ 1/4\/—
2
%.
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Limits  Basic Limit Laws

Treacherous Applications of the Laws

@ We must take the hypotheses of the Basic Limit Laws into account
when applying the rules;

@ For instance, if f(x) = x and g(x) = x~1, then

limf(x)g(x) = limxx~! = lim1 =1,
x—0 x—0 x—0

but, if we tried to apply the product rule, we would be stuck:
limf(x)g(x) = (Iimx)(limx_l),
x—0 x—0 x—0

The last limit on the right does not exist since lim x~1 = 400 and

x—0t

lim x~ 1 = —.

x—0~
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Limits  Limits and Continuity

Subsection 4

Limits and Continuity
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Limits  Limits and Continuity

Continuity at a Point

@ A function f(x) defined on an open interval containing x = c is
continuous at x = c if

lim £(x) = f(c).

X—C

@ If either the limit does not exist, or exists but is not equal to f(c¢),
then f has a discontinuity or is discontinuous at x = c.

@ Not that the limit above exists if and only if lim f(x) = lim f(x);
X—c™ x—>ct

@ Therefore, the condition for continuity is equivalent to
lim f(x) = f(c) = lim f(x).
X—>C™ x—ct

Example: Let f(x) = k a constant. Recall that lim,_,. k = k. Also
f(c) = k. Therefore, f(x) = k is continuous at all x = c.
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Limits  Limits and Continuity

Some Additional Examples

@ Consider f(x) = x", where n is a natural number. Then
limy_c x™ = (limy_c x)" = ¢". Also f(c) = c". Therefore, f(x) = x

is continuous at all x = c.
o Consider f(x) = x> + 7x — 12. Applying some of the Limit Laws, we

get
limy e (P +7x —12) = (limy_ex)® + 7(limye x) — limy_yc 12
= +7c-12
= f(c).

Therefore f(x) is continuous at x = ¢
@ Consider also f(x) = ’fj_rér’ Applying some of the Limit Laws, we get

(|imx_,2 x)2+|imx_,2 5

||mx_>2 +5 — limy—2 (X +5) = [
x+3 I|mxH2 (x+3) limy_o x+limy_»3
- o
Thus f(x) is continuous at x = 2.
Calculus | November 2014 28 / 67
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Limits  Limits and Continuity

Types of Discontinuities

@ Recall f(x) is continuous at x = c if

lim f(x) = f(c) = lim f(x).
X—>c™ x—ct

o If Ii_r)’n f(x) exists but is not equal to f(c), then f(x) has a removable

discontinuity at x = c;
o If lim f(x) # lim f(x) (in this case, of course, limf(x) does not

X—c™ x—ct X—C

exist), then f has a jump discontinuity at x = ¢;

@ If either lim f(x) or Iim+f(x) is infinite, then f has an infinite
- X—C

. XC
discontinuity at x = c.
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Limits  Limits and Continuity

Removable Discontinuity

@ Consider the piece-wise defined function

Fart if x < —1
f(x)=14¢ 2, if x=-1
—x*>+2, ifx>-1

We have lim,_,_;- f(x) =1 and lim,_, 1+ f(x) = 1, whence
limy_,_1 f(x) = 1. But f(—1) = 2. So lim,_,_; f(x) exists, but it
does not equal f(—1). This shows that f(x) has a removable
discontinuity at x = —1.
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Limits  Limits and Continuity

Jump Discontinuity

@ Consider the piece-wise defined function

F(x) = x+1, if x <1
Tl —x?+2x, ifx>1

We have lim,_,;- f(x) = 2 and lim,_1+ f(x) = 1, whence
limy—,_1 f(x) = DNE. So the side limits of f(x) as x approaches 1
exist, but they are not equal. This shows that f(x) has a jump
discontinuity at x = 1.
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Limits  Limits and Continuity

Infinite Discontinuity

@ Consider the piece-wise defined function

1 . \
———>, Ifx<l1 ‘

_ x2—2xt20 ! 5 \
g { X—il, if x>1 “\

1

We have lim,_,;- f(x) =1 and lim,_1+ f(x) = + 00, Thus, at least

one of the side limits as x approaches 1 is +00. This shows that f(x)
has an infinite discontinuity at x = 1.
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Limits  Limits and Continuity

One-Sided Continuity

@ A function f(x) is called
o left-continuous at x = c if lim f(x) = f(c);

X—C
o right-continuous at x = c if imj(x) = f(c);
X—C

Example: Consider the function

—x?>—2x, ifx<0
f(x)={ ;

P |f X 2 O —

We have lim,_,g- f(x) = 0 and lim,_,g+ f(x) = 1. Moreover,
f(0) = 1. Therefore f(x) is right-continuous at x = 0, but not left
continuous at x = 0.
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Limits  Limits and Continuity

One More Example

@ Consider the piece-wise defined function

SI%, if x <0
f(X) - 17 if x=0
Inx, ifx>0 —
We have lim,_,o- f(x) =1 and lim,_,o+ f(x) = — oo, Moreover,

f(0) = 1. Therefore, f(x) is left-continuous at x = 0, but not
right-continuous at x = 0.
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Limits  Limits and Continuity

Basic Continuity Laws

Theorem (Basic Laws of Continuity)

If f(x) and g(x) are continuous at x = c, then the following functions are
also continuous at x = c:

(i) f(x)+g(x) (iii) F(x)g(x)
(i) kf(x) (iv) XX it g(c) #0.

@ For instance, knowing that 7(x) = x and g(x) = k are continuous
functions at all real numbers, the previous rules allow us to conclude
that

@ any polynomial function P(x) is continuous at all real numbers;

@ any rational function % is continuous at all values in its domain.

Example: f(x) = 3x* — 2x3 + 8x is continuous at all real numbers.
g(x) = 2 is continuous at all numbers x # +1.
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Limits  Limits and Continuity

Continuity of Roots, Trig, Exp and Log Functions

Theorem (Continuity of Various Functions)
@ f(x) = y/x is continuous on its domain;
@ f(x) =sinx and g(x) = cos x are continuous at all real numbers;
o f(x) = b~ is continuous at all real numbers (0 < b # 1);
o f(x) = log, x is continuous at all x >0 (0 < b # 1);

@ Based on this theorem and the theorem on quotients, we may
sin x

conclude, for example, that tan x = is continuous at all points
cos

X
in its domain, i.e,, at all x # (2k + 1)3, k € Z.

@ We can also conclude that csc x = —— is continuous at all points in
sin x
its domain, i.e., at all x £ km, k € Z.
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Limits

Limits and Continuity

Continuity of Inverse Functions

Theorem (Continuity of Inverse Functions)

If f(x) is continuous on an interval | with range R, then if f_l(x) exists,
then f~1(x) is continuous with domain R.

@ For instance f(x) = sin x is continuous on [—7, 7] with range [-1,1]
and has an inverse; So, f~1(x) = sin~! x is continuous on [—1,1].

@ Similarly g(x) = tanx is continuous on (-7, 5) with range R and
has an inverse; Therefore g~!(x) = tan~! x is continuous on R.
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Limits  Limits and Continuity

Continuity of Composite Functions

Theorem (Continuity of Composite Functions)
If g(x) is continuous at the point x = ¢ and f(x) is continuous at the
point x = g(c), then the function F(x) = f(g(x)) is continuous at x = c.

@ For instance, the function g(x) = x? + 9 is continuous at all real
numbers, since it is a polynomial function; Moreover, the function
f(x) = /x is continuous at all real numbers as a root function;

Therefore, the function F(x) = f(g(x)) = Vx2+ 9 is also a
continuous function, as the composite of two continuous functions.

50
|

|

(I |
| [

)
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Limits  Limits and Continuity

Substitution Method: Using Continuity to Evaluate Limits

@ Recall that f(x) is continuous at x = ¢ if

lim £(x) = f(c).

X—C

@ Suppose that you know that f(x) is continuous at x = ¢ and want to
compute limy_, . f(x).
Then, because of the definition of continuity, to find lim,_,. f(x), you
may compute, instead, f(c).

@ This is called the substitution property (or method) for evaluating
limits of continuous functions.
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Limits  Limits and Continuity

Examples of Using the Substitution Method

Example: Let us evaluate the limit Iimx_% sin x.
Since f(x) is continuous (by the basic theorem on trig functions) at
all x € R, we may use the substitution property:

T _ V3

limsinx = sin=— = —.
x—Z 3 2

3
. . . . 3)(
Example: Let us evaluate the limit limy_, 1 ot
Since f(x) is continuous (as a ratio of an exponential over a root

function, both of which are continuous in their domain), we may use
the substitution property:

. 3% 371 1
lim = = .
x=-1y/x+5 /-14+5 6
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Limits  Algebraic Evaluation of Limits

Subsection 5

Algebraic Evaluation of Limits
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Limits  Algebraic Evaluation of Limits

Indeterminate Forms

@ The following are Indeterminate Forms:

0
o —
0
o Example: I|mw
pie: x—3x2 4+ x — 12
00
o —
00
.t
@ Example: lim anx
x— 7% Sec X
o 00-0
T )2
@ Example: X|[>n2(2x_4 (x—2))
@ 00 — 00

@ Example: lim(
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Limits  Algebraic Evaluation of Limits

The Indeterminate Form g: Factor and Cancel

@ To lift the indeterminacy, we transform algebraically, cancel and,
finally, use the substitution property;

—4x +3
E I t I —_—;
xample: Compute lim 3x2+x—12'
We have
i x? —4x +3 im (x —1)(x—3)
im——— = —=
x—3x2 4+ x — 12 x—>3(X 4F 4)(X = 3)
i x—1
= lim
x—3Xx + 4
. 3-1
- 3+4
2
=
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Limits  Algebraic Evaluation of Limits

The Indeterminate Form g: Another Example

@ To lift the indeterminacy, we transform algebraically, cancel and,
finally, use the substitution property;

-7
Example: Compute lim ;
x—7x2 — 49’
We have
i x—1 i x—1
im———— = im—————
x—7x2 — 49 x—7 (X =+ 7)(X = 7)
- 1
- xT?X +7
. 1
T
1
14
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Limits  Algebraic Evaluation of Limits

. 00
The Indeterminate Form —
00

@ To lift the indeterminacy, we transform algebraically, cancel and,
finally, use the substitution property;

. tanx
Example: Compute lim ;
x—T sec X
We have ,
. tanx ==
lim = |im %
x—Z Sec X x—Z
2 2 cos x
= limsinx
x—73
— PoT
= sinj

= 1
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Limits  Algebraic Evaluation of Limits

0
The Indeterminate Form 6: Multiply by Conjugate

@ To lift the indeterminacy, we transform algebraically, cancel and,
finally, use the substitution property;

-2
Example: Compute lim X ;
x—4 x — 4
We have
x=2 L (Vx=2)(V/x+2)
lim = lim
x—4 x — 4 x—4 (X — 4)(\/;-|- 2)
. x—4
= lim
x—>4(X = 4)(\/)_< = 2)
1
= lim —
xln4\/)_(+ 2
_ 1 1
C VA+2 4
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Limits  Algebraic Evaluation of Limits

0
The Indeterminate Form 6: Multiply by Conjugate

@ To lift the indeterminacy, we transform algebraically, cancel and,
finally, use the substitution property;

Example: Compute )I(T;?\/)%?_‘l;

R A ) CL SR

iy e (VX T A)(VxF9+9)
(x ~ T)(Yx+9+4)

= |im

x—7 x+9—16
(x=7)(vVx+9+4)

- l@? x—1 :lﬂq?( x+9+4)
= J7T+9+4=8
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Limits  Algebraic Evaluation of Limits

The Indeterminate Form oo — oo

@ To lift the indeterminacy, we transform algebraically, cancel and,
finally, use the substitution property;

: 4
Example: Compute >I<T>12(x — m)

i 1 4 _ X+ 2 4
I =~ w=2 = Gy o2

x+2—-4

)
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Limits  Algebraic Evaluation of Limits

, with ¢ # 0 are Infinite but not Indeterminate

@ lim 7)(—’_5 is of the form —;
x—2 X —2 0

@ These forms are not indeterminate, but rather they suggest that the
side-limits as x — 2 are infinite;

o If x — 27, then x < 2, whence

x—2< O.2Thus, \‘
. X —x+5 7 LN
IlmX_>2— ﬁ(: (0—_)) = \_~

o If x = 2%, then x > 2, whence 1

x—=2>0, Thus,
. X< — X + 5 7 _10-‘
Im’?xﬁ2+ ﬁ(: (0—+)) = |
o0, / ‘
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Limits  Trigonometric Limits

Subsection 6

Trigonometric Limits
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Limits  Trigonometric Limits

The Squeeze Theorem

The Squeeze Theorem

Assume that for x # ¢ in some open interval containing c,
Ux) < f(x) <u(x) and lim{(x) = limu(x) = L.
X—C X—C

Then limy_ f(x) exists and limy_,. f(x) = L.
Example: We show limy_,q (xsin %)
Note that —|x| < xsin % < |x|; —\ it
Note, also that
limyso (—[x]) = limxo x| =0 s :
Therefore, by Squeeze,

limx—o (xsin 1) = 0.

George Voutsadakis (LSSU) Calculus | November 2014 51 / 67



Limits  Trigonometric Limits

An Important Squeeze ldentity

For all § # 0, with —% <0< % we have

sin @
< — <
cosf < 7 =

1
-15 -1.0 -0.5 0.5 1.0 15

—05}F
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Limits  Trigonometric Limits

Important Trigonometric Limits

Important Trigonometric Limits

LUAUET . sinf 1— cosf
Im—— =1 and Ilim—— =0.
6—0 0 6—0 0

@ Note that the first limit above follows by the Squeeze Theorem using
the Squeeze Identity of the previous slide;
@ For the second one, we have

. 1—cos@ . 1—cos 0)(1+cos 0
limg_yo 15220 = limg_,o (=5 0lCe0)
— lim 1—cos? 6
6—0 B(T+cos A)
sin© 0

= limg_so 0(1+-cos 0)

_ sin 0 sin @
- IImGHO ( 1+c059) .
= I|m9a0 ~limg_0 1+c059

= 1. O

1+1
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Limits  Trigonometric Limits

Evaluation of Limits by a Change of Variable

@ Compute the limit lim S'"949
6—0
We have : ;
|im9—>0 sm940 — Iim9—>0 4521949
=40
= 4.1= 4.
sin70 .
@ Compute the limit I|m | Gin30"
We have
i in70 . i 795in79 o sin76
limgogngg = limo—o gmar = limo—o 35
360 360
7 limg 50 Sn70 x=76 7 limxso Sinb
3limg_0 9322 ,—3
— 11 _ 7
= 31~ 3
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Subsection 7

Limits at Infinity

George Voutsadakis (LSSU) Calculus | November 2014 55 / 67



Limits  Limits at Infinity

Limits at Infinity

Limit of f(x) as x — £o0
@ We write lim f(x) = L if f(x) gets closer and closer to L as x — oo,
i.e., as x iﬁ?l?gases without bound;
© We write lim f(x) = L if f(x) gets closer and closer to L as
X — —oo,xf:aT,OZs x decreases without bound;
In either case, the line y = L is called a horizontal asymptote of
y = f(x).

@ Horizontal asymptotes describe the asymptotic behavior of f(x), i.e.,
the behavior of the graph as we move way out to the left or to the
right.
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Limits  Limits at Infinity

Example of Limits at Infinity

@ Consider the function f(x) s
whose graph is given on the
right: o
We have Y
lim f(x) =1 T -
X——00 — >
and -I-a = 2 4
lim f(x) = 2.
X—>00

Thus, both y = 1 and y = 2 are horizontal asymptotes of y = f(x).
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Limits  Limits at Infinity

Powers of x

Theorem

Assume n > 0. Then we have

. . _ . 1
[imx"=00 and I|limx "= lim — =0.
X—00 X—00 x—00 X"

For n > 0 an integer,

lim x" =

00 if nis even . _ . 1
’ and |lim x™"= |lim — =0.
X——0Q0

—0Q, if nis odd X—%—00

Example: limy 00 (3 — 4x73 4+ 5x7%) =
limyx 003 — 4limy 00 X2 +5limy 00 x> =3-4-0+5-0=3.
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Limits  Limits at Infinity

Example

o Calculate lim 22 — 3
e A 3 — a2 15
We follow the method of dividing numerator and denominator by the
5

highest power x:
20x2—3x

: 20x2—3x T x5
limy— +00 35525215 lim, 200 35 a5

0 20 : 3
limy— 400 B limy— 400 X7

. . 2 . 5
limy 4003 — limy_ 400 3 L X5

0-0 __
-~ 3-0+0 0.
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Limits  Limits at Infinity

Limits at Infinity of Rational Functions

If a5, by # 0, then it is the case that

. Gt b g Tl e ol g an . —rm
lim T =— lim x"=".
x—=too bypx™ + bp_1xM=L 4+ ...+ by bpyx—+too
Example:
: 3x4—7x+9 _ 3 0 _ 3.
o limy_oo T_I = 2limy 00 x” = 2,
: 3x3-7x+9 _ 3 -1 _ 3y 1_ .
@ limy_ o T—: = Zlimys00 X" = 2 limys00 £ =0
. 8_ .
@ limy__ % = %Ilmxﬁ,oo x> = — o0;
. 7_ .
@ limy__ % = %Ilmxﬁ,oo x* = o0;
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Limits  Limits at Infinity

Two More Examples

7/2 —1/2
RNV T N[ . i
x—oo X2 — X1/2
We have
i 3x7/2 4 7x71/2 — 0 (x=2)(3x7/2 + 7x~1/2)
Mxoo ™0 5z = Moo ™ rn5e _,1p)

. 3x3/2 4 7x~5/2
= iMoo =355

My 00 3%3/2 4 limy oo 7Tx /2

liMy 00 1 — limy_yoo x—3/2
2
@ Compute the limit lim ———;
x—=004/x3 + 1
We have
i 2 i —3/2,2 — i »1/2
im = = l|im im ——
X—>00 /—X3+1 X—>00 X,3/2 /—X3 X—>00 /X73(X3+1)
x1/2

>

= limy_so ﬁ = 22 =g,
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Limits  Limits at Infinity

One More Example

12x + 25
@ Calculate the limits at infinity of f(x) =
V/16x2 + 100x + 500
We have s
lim 12x+25 —  Iim 2x(1+ 5
X799 V/16x2+100x+500 X0 \/16)(2(1 +i2§ I
. 12x(1+
= Ilmx_>_°° 10%)2)( 500
1+16X;16x
. 1+
= —3lime, o 1oé2x 500
I+iget 162
= —3;
lim —_12x425  _  |im 12x(1+ )
X799 \/16x2+100x+500 X0 \/16 2(14_%22 Sy,
12x(1+22)
= IImX_)OO 1ool2x 500
L 16X+16x
) 1425
= 3limxseo ﬁ =3.
1+E+16X2
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Subsection 8

Intermediate Value Theorem
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Limits  Intermediate Value Theorem

The Intermediate Value Theorem

Intermediate Value Theorem

If f(x) is continuous on a closed interval [a, b] and f(a) # f(b), then for
every value M between f(a) and f(b), there exists at least one value

c € (a, b), such that f(c) = M.

Example: Show that
sinx = % has at least one
solution.

Consider f(x) = sinx in Mt
the closed interval [0, 5].

We have

f0)=0<1<1=7(3). b .
Thus, by the Intermediate . i i

Value Theorem,

there exists ¢ € (0, 3), such that f(c) = 3, i.e, sinc=%. Thiscisa
solution of the equation sin x = %;.

f(a)
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Limits  Intermediate Value Theorem

Existence of Zeros

Existence of Zeros

If f(x) is continuous on [a, b] and if f(a) and f(b) are nonzero and have
opposite signs, then f(x) has a zero in (a, b).

y
fx)
+ JaF(OH!
0
a  /x, Ty~ /%3 b *
- | Ray=0
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Limits  Intermediate Value Theorem

Applying the Existence of Zeros Theorem

@ Show that the equation 2* + 3¥ = 4% has at least one zero.
Consider f(x) = 2X 43X — 4% in the
closed interval [1,2].

We have f(1) = 1 > 0, whereas L
f(2)= —3<0.

Thus, by the Existence of Zeros The-
orem, there exists ¢ € (1,2), such
that f(c) =0, i.e,, 2°43°—4° = 0.
But, then, c satisfies 2¢ + 3¢ = 4¢,
i.e., it is a zero of 2¥ 4 3% = 4*.

= 1
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Limits  Intermediate Value Theorem

The Bisection Method

o Find an interval of length % in [1,2] containing a root of the equation
x" +3x—10 = 0;
Consider the function f(x) = x” +3x — 10 in [1,2].
Since f(1) = — 6 < 0 and f(2) = 112 > 0, by the Existence of Zeros
Theorem, it has a root in (1,2).

Since f(1) = — 6 < 0 and f(2) = 11.586 > 0, it has a root in the
interval (1, 3).

o —o——— 0

1 3/2 2
Finally, since f(2) = — 1.482 < 0 and f(2) = 11.586 > 0, the root is
in the interval (2, 2), which has length .

1 s5/4 3/2

~
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