Calculus I

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 151

(1) Limits

- Limits, Rates of Change and Tangent Lines
- A Graphical Approach to Limits
- Basic Limit Laws
- Limits and Continuity
- Algebraic Evaluation of Limits
- Trigonometric Limits
- Limits at Infinity
- Intermediate Value Theorem

Subsection 1

Limits, Rates of Change and Tangent Lines

Average Velocity

- An object moving on a straight line is at position $s(t)$ at time t;
- Then in the time interval $\left[t_{0}, t_{1}\right]$ it has moved from position $s\left(t_{0}\right)$ to position $s\left(t_{1}\right)$ having a displacement (or net change in position) $\Delta s=s\left(t_{1}\right)-s\left(t_{0}\right) ;$

- Its average velocity in $\left[t_{0}, t_{1}\right]$ is given by

$$
v_{\mathrm{avg}}\left[t_{0}, t_{1}\right]=\frac{\Delta s}{\Delta t}=\frac{s\left(t_{1}\right)-s\left(t_{0}\right)}{t_{1}-t_{0}}
$$

Example: If an object is at position $s(t)=5 t^{2}$ miles from the origin at time t in hours, what is $v_{\text {avg }}[1,5]$?

$$
v_{\mathrm{avg}}[1,5]=\frac{s(5)-s(1)}{5-1}=\frac{5 \cdot 5^{2}-5 \cdot 1^{2}}{4}=30 \mathrm{mph} .
$$

Instantaneous Velocity

- An object moving on a straight line is at position $s(t)$ at time t;
- To estimate the instantaneous velocity of the object at t_{0}, we consider a very short time interval $\left[t_{0}, t_{1}\right]$ and compute $v_{\text {avg }}\left[t_{0}, t_{1}\right]$;
- If $\left[t_{0}, t_{1}\right]$ is very short, then the change in velocity might be negligible and so a good approximation of the instantaneous velocity at t_{0};
- Thus $v\left(t_{0}\right) \underbrace{\cong}_{\Delta t \text { small }} \frac{\Delta s}{\Delta t}$;

Example: Estimate the instantaneous velocity $v(1)$ of the object whose position function is $s(t)=5 t^{2}$ miles from the origin at time t in hours.

$$
v(1) \cong \frac{s(1.01)-s(1)}{1.01-1}=\frac{5 \cdot(1.01)^{2}-5 \cdot 1^{2}}{0.01}=10.05 \mathrm{mph}
$$

Another Example of a Rate of Change

- Suppose that the length of the side of a melting cube as function of time is given by $s(t)=\frac{1}{t+2}$ inches at t minutes since the start of the melting process. What is the average change in the volume of the ice cube from $t=0$ to $t=3$ minutes?

The volume $V(t)$ in cubic inches as a function of time t in minutes is given by $V(t)=s(t)^{3}=\left(\frac{1}{t+2}\right)^{3}$.
Therefore

$$
\begin{aligned}
& \left(\frac{\Delta V}{\Delta t}\right)_{\text {avg }}[0,3]=\frac{V(3)-V(0)}{3-0}=\frac{\left(\frac{1}{5}\right)^{3}-\left(\frac{1}{2}\right)^{3}}{3} \\
& =\frac{\frac{1}{125}-\frac{1}{8}}{3}=\frac{\frac{8}{1000}-\frac{125}{1000}}{3}=-\frac{117}{3000} \mathrm{in}^{3} / \mathrm{min}
\end{aligned}
$$

Instantaneous Rate of Change of Volume

- In the previous example, to estimate the instantaneous rate of change of the volume of the ice cube at $t=1$, we may consider the average rate of change between $t=1$ minute and $t=1.01$ minute:

$$
\begin{aligned}
\left.\left(\frac{\Delta V}{\Delta t}\right)\right|_{t=1} & \cong\left(\frac{\Delta V}{\Delta t}\right)_{\mathrm{avg}}[1,1.01] \\
& =\frac{V(1.01)-V(1)}{1.01-1} \\
& =\frac{\left(\frac{1}{3.01}\right)^{3}-\left(\frac{1}{3}\right)^{3}}{0.01} \\
& \cong-0.037 \mathrm{in}^{3} / \mathrm{min}
\end{aligned}
$$

Slope of a Secant Line

- Consider the graph of $y=f(x)$ and two points on the graph $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$;

- The line passing through these two points is called the secant line to $y=f(x)$ through x_{0} and x_{1};
- Its slope is equal to

$$
m_{f}\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

An Example

- Example: Find an equation for the secant line to $f(x)=\frac{1}{1+x^{2}}$ through $x_{0}=1$ and $x_{1}=2$;

We have

$$
m_{f}[1,2]=\frac{f(2)-f(1)}{2-1}=\frac{\frac{1}{5}-\frac{1}{2}}{2-1}=-\frac{3}{10} .
$$

Therefore $y-\frac{1}{2}=-\frac{3}{10}(x-1)$ is the point-slope form of the equation of the secant line.

Slope of a Tangent Line

- To approximate the slope $m_{f}\left(x_{0}\right)$ of the tangent line to the graph of $y=f(x)$ at x_{0} we use a process similar to that approximating the instantaneous rate of change by using the average rate of change for points x_{0}, x_{1} very close to each other;

Therefore, we have

$$
m_{f}\left(x_{0}\right) \underbrace{\cong}_{\Delta x \text { small }} m_{f}\left[x_{0}, x_{1}\right]=\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}
$$

Approximating the Slope of a Tangent Line

- Let us approximate the slope to $y=x^{2}$ at $x=1$ using the process outlined in the previous slide;

We have

$$
m_{f}(1) \cong m_{f}[1,1.01]=\frac{f(1.01)-f(1)}{1.01-1}=\frac{(1.01)^{2}-1^{2}}{0.01}=2.01
$$

Subsection 2

A Graphical Approach to Limits

Definition of Limit

- Suppose that $f(x)$ is defined in an open interval containing a number c, but not necessarily c itself;
- The limit of $f(x)$ as x approaches c is equal to L if $f(x)$ has value arbitrarily close to L when x assumes values sufficiently close (but not equal) to c.
- In this case, we write

$$
\lim _{x \rightarrow c} f(x)=L
$$

- An alternative terminology is that $f(x)$ approaches or converges to L as x approaches c.

Two Easy Examples

- Draw the graph of $f(x)=3$ and find graphically the limit $\lim _{x \rightarrow c} f(x)$.
- Draw the graph of $g(x)=\frac{1}{2} x+4$ and find graphically $\lim _{x \rightarrow 2} f(x)$.

We have $\lim _{x \rightarrow c} 3=3$ and $\lim _{x \rightarrow 2}\left(\frac{1}{2} x+4\right)=5$.

Two Easy Rules

- Draw the graph of $f(x)=k$ (a constant) and find graphically the limit $\lim _{x \rightarrow c} k$.
- Draw the graph of $g(x)=x$ and find graphically $\lim _{x \rightarrow c} x$.

We have $\lim _{x \rightarrow c} k=k$ and $\lim _{x \rightarrow c} x=c$.

Two More Complicated Examples

- Draw the graph of $f(x)=\frac{x-9}{\sqrt{x}-3}$ and find graphically the limit $\lim _{x \rightarrow 9} f(x)$.
- Draw the graph of $g(x)=\left\{\begin{array}{l}x^{2}, \text { if } x \leq 1 \\ -x^{2}+2 x+3,\end{array}\right.$ if $x>1$ and find graphically $\lim _{x \rightarrow 1} f(x)$.

We have $\lim _{x \rightarrow c} \frac{x-9}{\sqrt{x}-3}=6$ and $\lim _{x \rightarrow 1} g(x)$ does not exist since $g(x)$ does not approach a single number when x approaches 1 .

Two Additional Examples

- Draw the graph of $f(x)=\frac{e^{x}-1}{x}$ and find graphically the limit $\lim _{x \rightarrow 0} f(x)$.
- Draw the graph of $g(x)=\sin \frac{\pi}{x}$ and find graphically $\lim _{x \rightarrow 0} g(x)$.

We have $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$ and $\lim _{x \rightarrow 0} \sin \frac{\pi}{x}$ does not exist since the values of $g(x)=\sin \frac{\pi}{x}$ oscillate between -1 and 1 as x approaches 0 .

Definition of Side-Limits

- Suppose that $f(x)$ is defined in an open interval containing a number c, but not necessarily c itself;
- The right-hand limit of $f(x)$ as x approaches c (from the right) is equal to L if $f(x)$ has value arbitrarily close to L when x approaches sufficiently close (but is not equal) to c from the right hand side. In this case, we write $\lim _{x \rightarrow c^{+}} f(x)=L$.
- The left-hand limit of $f(x)$ as x approaches c (from the left) is equal to L if $f(x)$ has value arbitrarily close to L when x approaches sufficiently close (but is not equal) to c from the left hand side. In this case, we write $\lim _{x \rightarrow c^{-}} f(x)=L$.
- The limits we saw before are "two sided limits"; It is the case that $\lim _{x \rightarrow c} f(x)=L$ if and only if $\lim _{x \rightarrow c^{+}} f(x)=L$ and $\lim _{x \rightarrow c^{-}} f(x)=L$, i.e., a function has limit L as x approaches c if and only if the left and right hand side limits as x approaches c exist and are equal.

Two Examples

- Draw the graph of $f(x)=\left\{\begin{array}{ll}x^{2}, & \text { if } x \leq 1 \\ -x^{2}+2 x+3, & \text { if } x>1\end{array}\right.$ and find graphically $\lim _{x \rightarrow 1^{-}} f(x)$ and $\lim _{x \rightarrow 1^{+}} f(x)$.
- Draw the graph of $g(x)=\left\{\begin{array}{ll}-(x+2)^{3}+2, & \text { if } x<-1 \\ -x^{2}+1, & \text { if } x>-1\end{array}\right.$ and find graphically $\lim _{x \rightarrow-1^{-}} g(x)$ and $\lim _{x \rightarrow-1^{+}} g(x)$.

$\lim _{x \rightarrow 1^{-}} f(x)=1, \lim _{x \rightarrow 1^{+}} f(x)=4$, so $\lim _{x \rightarrow 1} f(x)$ DNE, and
$\lim _{x \rightarrow-1^{-}} g(x)=1, \lim _{x \rightarrow-1^{+}} g(x)=0$, so $\lim _{x \rightarrow-1} g(x)$ DNE.

Examples of Limits Involving Infinity

- Draw the graph of $f(x)=\frac{1}{x-2}$ and find graphically $\lim _{x \rightarrow 2^{-}} f(x)$ and $\lim _{x \rightarrow 2^{+}} f(x)$.
- Draw the graph of $g(x)=\ln x$ and find graphically $\lim _{x \rightarrow 0^{+}} g(x)$ and $\lim _{x \rightarrow+\infty} g(x)$.

$\lim _{x \rightarrow 2^{-}} f(x)=-\infty, \lim _{x \rightarrow 2^{+}} f(x)=+\infty$, and
$\lim _{x \rightarrow 0^{+}} g(x)=-\infty, \lim _{x \rightarrow+\infty} g(x)=+\infty$.

Subsection 3

Basic Limit Laws

Theorem (Basic Limit Laws)

Suppose that $\lim _{x \rightarrow c} f(x)$ and $\lim _{x \rightarrow c} g(x)$ exist. Then

- Sum Law: $\lim _{x \rightarrow c}(f(x)+g(x))=\lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x)$;
- Constant Factor Law: $\lim _{x \rightarrow c} k f(x)=k \lim _{x \rightarrow c} f(x)$;
- Product Law: $\lim _{x \rightarrow c} f(x) g(x)=\left(\lim _{x \rightarrow c} f(x)\right)\left(\lim _{x \rightarrow c} g(x)\right)$;
- Quotient Law: If $\lim _{x \rightarrow c} g(x) \neq 0$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$;
- Power and Root Law: For p, q integers, with $q \neq 0$, $\lim _{x \rightarrow c}[f(x)]^{p / q}=\left(\lim _{x \rightarrow c} f(x)\right)^{p / q}$, under the assumption that $\lim _{x \rightarrow c} f(x) \geq 0$ if q is even and $\lim _{x \rightarrow c} f(x) \neq 0$ if $\frac{p}{q}<0$. In particular, for n a positive integer,
- $\lim _{x \rightarrow c}[f(x)]^{n}=\left(\lim _{x \rightarrow c} f(x)\right)^{n}$;
- $\lim _{x \rightarrow c} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow c} f(x)}$;

Examples of Calculating Limits I

- Compute $\lim _{x \rightarrow 2} x^{3}$;

We apply the power rule:

$$
\lim _{x \rightarrow 2}\left(x^{3}\right)=\left(\lim _{x \rightarrow 2} x\right)^{3}=2^{3}=8
$$

- Compute $\lim _{x \rightarrow-1}\left(-2 x^{3}+7 x-5\right)$;

We apply the sum rule, the constant factor and the power rules:

$$
\begin{aligned}
\lim _{x \rightarrow-1}\left(-2 x^{3}+7 x-5\right) & =\lim _{x \rightarrow-1}\left(-2 x^{3}\right)+\lim _{x \rightarrow-1}(7 x)-\lim _{x \rightarrow-1} 5 \\
& =-2 \lim _{x \rightarrow-1}\left(x^{3}\right)+7 \lim _{x \rightarrow-1} x-\lim _{x \rightarrow-1} 5 \\
& =-2 \cdot(-1)^{3}+7(-1)-5 \\
& =-10
\end{aligned}
$$

Examples of Calculating Limits II

- Compute $\lim _{x \rightarrow 2} \frac{x+30}{2 x^{4}}$;

We apply the quotient rule:

$$
\lim _{x \rightarrow 2} \frac{x+30}{2 x^{4}}=\frac{\lim _{x \rightarrow 2}(x+30)}{\lim _{x \rightarrow 2}\left(2 x^{4}\right)}=\frac{2+30}{2 \cdot 2^{4}}=1
$$

- Compute $\lim _{x \rightarrow 3}\left(x^{-1 / 4}(x+5)^{1 / 3}\right)$;

We apply the product and the power rules:

$$
\begin{aligned}
\lim _{x \rightarrow 3}\left(x^{-1 / 4}(x+5)^{1 / 3}\right) & =\left(\lim _{x \rightarrow 3} x^{-1 / 4}\right)\left(\lim _{x \rightarrow 3} \sqrt[3]{x+5}\right) \\
& =\left(\left(\lim _{x \rightarrow 3} x\right)^{-1 / 4}\left(\sqrt[3]{\lim _{x \rightarrow 3} x+5}\right)\right. \\
& =3^{-1 / 4} \sqrt[3]{8} \\
& =\frac{2}{\sqrt[4]{3}}
\end{aligned}
$$

Treacherous Applications of the Laws

- We must take the hypotheses of the Basic Limit Laws into account when applying the rules;
- For instance, if $f(x)=x$ and $g(x)=x^{-1}$, then

$$
\lim _{x \rightarrow 0} f(x) g(x)=\lim _{x \rightarrow 0} x x^{-1}=\lim _{x \rightarrow 0} 1=1
$$

but, if we tried to apply the product rule, we would be stuck:

$$
\lim _{x \rightarrow 0} f(x) g(x)=\left(\lim _{x \rightarrow 0} x\right)\left(\lim _{x \rightarrow 0} x^{-1}\right)
$$

The last limit on the right does not exist since $\lim _{x \rightarrow 0^{+}} x^{-1}=+\infty$ and $\lim _{x \rightarrow 0^{-}} x^{-1}=-\infty$.

Subsection 4

Limits and Continuity

Continuity at a Point

- A function $f(x)$ defined on an open interval containing $x=c$ is continuous at $x=c$ if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

- If either the limit does not exist, or exists but is not equal to $f(c)$, then f has a discontinuity or is discontinuous at $x=c$.
- Not that the limit above exists if and only if $\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)$;
- Therefore, the condition for continuity is equivalent to

$$
\lim _{x \rightarrow c^{-}} f(x)=f(c)=\lim _{x \rightarrow c^{+}} f(x)
$$

Example: Let $f(x)=k$ a constant. Recall that $\lim _{x \rightarrow c} k=k$. Also $f(c)=k$. Therefore, $f(x)=k$ is continuous at all $x=c$.

Some Additional Examples

- Consider $f(x)=x^{n}$, where n is a natural number. Then $\lim _{x \rightarrow c} x^{n}=\left(\lim _{x \rightarrow c} x\right)^{n}=c^{n}$. Also $f(c)=c^{n}$. Therefore, $f(x)=x^{n}$ is continuous at all $x=c$.
- Consider $f(x)=x^{5}+7 x-12$. Applying some of the Limit Laws, we get

$$
\begin{aligned}
\lim _{x \rightarrow c}\left(x^{5}+7 x-12\right) & =\left(\lim _{x \rightarrow c} x\right)^{5}+7\left(\lim _{x \rightarrow c} x\right)-\lim _{x \rightarrow c} 12 \\
& =c^{5}+7 c-12 \\
& =f(c) .
\end{aligned}
$$

Therefore $f(x)$ is continuous at $x=c$.

- Consider also $f(x)=\frac{x^{2}+5}{x+3}$. Applying some of the Limit Laws, we get

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}+5}{x+3} & =\frac{\lim _{x \rightarrow 2}\left(x^{2}+5\right)}{\lim _{x \rightarrow 2}(x+3)}=\frac{\left(\lim _{x \rightarrow 2} x\right)^{2}+\lim _{x \rightarrow 2} 5}{\lim _{x \rightarrow 2} x+\lim _{x \rightarrow 2} 3} \\
& =\frac{2^{2}+5}{2+3}=f(2)
\end{aligned}
$$

Thus $f(x)$ is continuous at $x=2$.

Types of Discontinuities

- Recall $f(x)$ is continuous at $x=c$ if

$$
\lim _{x \rightarrow c^{-}} f(x)=f(c)=\lim _{x \rightarrow c^{+}} f(x) .
$$

- If $\lim _{x \rightarrow c} f(x)$ exists but is not equal to $f(c)$, then $f(x)$ has a removable discontinuity at $x=c$;
- If $\lim _{x \rightarrow c^{-}} f(x) \neq \lim _{x \rightarrow c^{+}} f(x)$ (in this case, of course, $\lim _{x \rightarrow c} f(x)$ does not exist), then f has a jump discontinuity at $x=c$;
- If either $\lim f(x)$ or $\lim ^{+} f(x)$ is infinite, then f has an infinite discontinuity at $x=c$.

Removable Discontinuity

- Consider the piece-wise defined function

$$
f(x)= \begin{cases}e^{x+1}, & \text { if } x<-1 \\ 2, & \text { if } x=-1 \\ -x^{2}+2, & \text { if } x>-1\end{cases}
$$

We have $\lim _{x \rightarrow-1^{-}} f(x)=1$ and $\lim _{x \rightarrow-1^{+}} f(x)=1$, whence $\lim _{x \rightarrow-1} f(x)=1$. But $f(-1)=2$. So $\lim _{x \rightarrow-1} f(x)$ exists, but it does not equal $f(-1)$. This shows that $f(x)$ has a removable discontinuity at $x=-1$.

Jump Discontinuity

- Consider the piece-wise defined function

$$
f(x)= \begin{cases}x+1, & \text { if } x<1 \\ -x^{2}+2 x, & \text { if } x \geq 1\end{cases}
$$

We have $\lim _{x \rightarrow 1^{-}} f(x)=2$ and $\lim _{x \rightarrow 1^{+}} f(x)=1$, whence $\lim _{x \rightarrow-1} f(x)=$ DNE. So the side limits of $f(x)$ as x approaches 1 exist, but they are not equal. This shows that $f(x)$ has a jump discontinuity at $x=1$.

Infinite Discontinuity

- Consider the piece-wise defined function

$$
f(x)= \begin{cases}\frac{1}{x^{2}-2 x+2}, & \text { if } x<1 \\ \frac{1}{x-1}, & \text { if } x>1\end{cases}
$$

We have $\lim _{x \rightarrow 1^{-}} f(x)=1$ and $\lim _{x \rightarrow 1^{+}} f(x)=+\infty$, Thus, at least one of the side limits as x approaches 1 is $\pm \infty$. This shows that $f(x)$ has an infinite discontinuity at $x=1$.

One-Sided Continuity

- A function $f(x)$ is called
- left-continuous at $x=c$ if $\lim _{x \rightarrow c^{-}} f(x)=f(c)$;
- right-continuous at $x=c$ if $\lim _{x \rightarrow c^{+}} f(x)=f(c)$;

Example: Consider the function

$$
f(x)= \begin{cases}-x^{2}-2 x, & \text { if } x<0 \\ \frac{1}{x+1}, & \text { if } x \geq 0\end{cases}
$$

We have $\lim _{x \rightarrow 0^{-}} f(x)=0$ and $\lim _{x \rightarrow 0^{+}} f(x)=1$. Moreover, $f(0)=1$. Therefore $f(x)$ is right-continuous at $x=0$, but not left continuous at $x=0$.

One More Example

- Consider the piece-wise defined function

$$
f(x)= \begin{cases}\frac{\sin x}{x}, & \text { if } x<0 \\ 1, & \text { if } x=0 \\ \ln x, & \text { if } x>0\end{cases}
$$

We have $\lim _{x \rightarrow 0^{-}} f(x)=1$ and $\lim _{x \rightarrow 0^{+}} f(x)=-\infty$, Moreover, $f(0)=1$. Therefore, $f(x)$ is left-continuous at $x=0$, but not right-continuous at $x=0$.

Basic Continuity Laws

Theorem (Basic Laws of Continuity)

If $f(x)$ and $g(x)$ are continuous at $x=c$, then the following functions are also continuous at $x=c$:
(i) $f(x) \pm g(x)$
(iii) $f(x) g(x)$
(ii) $k f(x)$
(iv) $\frac{f(x)}{g(x)}$, if $g(c) \neq 0$.

- For instance, knowing that $f(x)=x$ and $g(x)=k$ are continuous functions at all real numbers, the previous rules allow us to conclude that
- any polynomial function $P(x)$ is continuous at all real numbers;
- any rational function $\frac{P(x)}{Q(x)}$ is continuous at all values in its domain.

Example: $f(x)=3 x^{4}-2 x^{3}+8 x$ is continuous at all real numbers. $g(x)=\frac{x+3}{x^{2}-1}$ is continuous at all numbers $x \neq \pm 1$.

Continuity of Roots, Trig, Exp and Log Functions

Theorem (Continuity of Various Functions)

- $f(x)=\sqrt[n]{x}$ is continuous on its domain;
- $f(x)=\sin x$ and $g(x)=\cos x$ are continuous at all real numbers;
- $f(x)=b^{x}$ is continuous at all real numbers $(0<b \neq 1)$;
- $f(x)=\log _{b} x$ is continuous at all $x>0(0<b \neq 1)$;
- Based on this theorem and the theorem on quotients, we may conclude, for example, that $\tan x=\frac{\sin x}{\cos x}$ is continuous at all points in its domain, i.e., at all $x \neq(2 k+1) \frac{\pi}{2}, k \in \mathbb{Z}$.
- We can also conclude that $\csc x=\frac{1}{\sin x}$ is continuous at all points in its domain, i.e., at all $x \neq k \pi, k \in \mathbb{Z}$.

Continuity of Inverse Functions

Theorem (Continuity of Inverse Functions)

If $f(x)$ is continuous on an interval / with range R, then if $f^{-1}(x)$ exists, then $f^{-1}(x)$ is continuous with domain R.

- For instance $f(x)=\sin x$ is continuous on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ with range $[-1,1]$ and has an inverse; So, $f^{-1}(x)=\sin ^{-1} x$ is continuous on $[-1,1]$.
- Similarly $g(x)=\tan x$ is continuous on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ with range \mathbb{R} and has an inverse; Therefore $g^{-1}(x)=\tan ^{-1} x$ is continuous on \mathbb{R}.

Continuity of Composite Functions

Theorem (Continuity of Composite Functions)

If $g(x)$ is continuous at the point $x=c$ and $f(x)$ is continuous at the point $x=g(c)$, then the function $F(x)=f(g(x))$ is continuous at $x=c$.

- For instance, the function $g(x)=x^{2}+9$ is continuous at all real numbers, since it is a polynomial function; Moreover, the function $f(x)=\sqrt[3]{x}$ is continuous at all real numbers as a root function; Therefore, the function $F(x)=f(g(x))=\sqrt[3]{x^{2}+9}$ is also a continuous function, as the composite of two continuous functions.

Substitution Method: Using Continuity to Evaluate Limits

- Recall that $f(x)$ is continuous at $x=c$ if

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

- Suppose that you know that $f(x)$ is continuous at $x=c$ and want to compute $\lim _{x \rightarrow c} f(x)$.
Then, because of the definition of continuity, to find $\lim _{x \rightarrow c} f(x)$, you may compute, instead, $f(c)$.
- This is called the substitution property (or method) for evaluating limits of continuous functions.

Examples of Using the Substitution Method

Example: Let us evaluate the limit $\lim _{x \rightarrow \frac{\pi}{3}} \sin x$.
Since $f(x)$ is continuous (by the basic theorem on trig functions) at all $x \in \mathbb{R}$, we may use the substitution property:

$$
\lim _{x \rightarrow \frac{\pi}{3}} \sin x=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}
$$

Example: Let us evaluate the limit $\lim _{x \rightarrow-1} \frac{3^{x}}{\sqrt{x+5}}$.
Since $f(x)$ is continuous (as a ratio of an exponential over a root function, both of which are continuous in their domain), we may use the substitution property:

$$
\lim _{x \rightarrow-1} \frac{3^{x}}{\sqrt{x+5}}=\frac{3^{-1}}{\sqrt{-1+5}}=\frac{1}{6}
$$

Subsection 5

Algebraic Evaluation of Limits

Indeterminate Forms

- The following are Indeterminate Forms:
- $\frac{0}{0}$
- Example: $\lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{x^{2}+x-12}$
- $\frac{\infty}{\infty}$
- Example: $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan x}{\sec x}$
- $\infty \cdot 0$
- Example: $\lim _{x \rightarrow 2}\left(\frac{1}{2 x-4} \cdot(x-2)^{2}\right)$
- $\infty-\infty$
- Example: $\lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{2}{x^{2}-1}\right)$

The Indeterminate Form $\frac{1}{0}$: Factor and Cancel

- To lift the indeterminacy, we transform algebraically, cancel and, finally, use the substitution property;
Example: Compute $\lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{x^{2}+x-12}$;
We have

$$
\begin{aligned}
\lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{x^{2}+x-12} & =\lim _{x \rightarrow 3} \frac{(x-1)(x-3)}{(x+4)(x-3)} \\
& =\lim _{x \rightarrow 3} \frac{x-1}{x+4} \\
& =\frac{3-1}{3+4} \\
& =\frac{2}{7} .
\end{aligned}
$$

The Indeterminate Form $\frac{0}{0}$: Another Example

- To lift the indeterminacy, we transform algebraically, cancel and, finally, use the substitution property;
Example: Compute $\lim _{x \rightarrow 7} \frac{x-7}{x^{2}-49}$;
We have

$$
\begin{aligned}
\lim _{x \rightarrow 7} \frac{x-7}{x^{2}-49} & =\lim _{x \rightarrow 7} \frac{x-7}{(x+7)(x-7)} \\
& =\lim _{x \rightarrow 7} \frac{1}{x+7} \\
& =\frac{1}{7+7} \\
& =\frac{1}{14}
\end{aligned}
$$

The Indeterminate Form

∞

- To lift the indeterminacy, we transform algebraically, cancel and, finally, use the substitution property;
Example: Compute $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan x}{\sec x}$;
We have

$$
\begin{aligned}
\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan x}{\sec x} & =\lim _{x \rightarrow \frac{\pi}{2}} \frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x}} \\
& =\lim _{x \rightarrow \frac{\pi}{2}} \sin x \\
& =\sin \frac{\pi}{2} \\
& =1
\end{aligned}
$$

The Indeterminate Form $\frac{0}{0}$: Multiply by Conjugate

- To lift the indeterminacy, we transform algebraically, cancel and, finally, use the substitution property;
Example: Compute $\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4}$;
We have

$$
\begin{aligned}
\lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4} & =\lim _{x \rightarrow 4} \frac{(\sqrt{x}-2)(\sqrt{x}+2)}{(x-4)(\sqrt{x}+2)} \\
& =\lim _{x \rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x}+2)} \\
& =\lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2} \\
& =\frac{1}{\sqrt{4}+2}=\frac{1}{4}
\end{aligned}
$$

The Indeterminate Form $\frac{0}{0}$: Multiply by Conjugate

- To lift the indeterminacy, we transform algebraically, cancel and, finally, use the substitution property;
Example: Compute $\lim _{x \rightarrow 7} \frac{x-7}{\sqrt{x+9}-4}$;

$$
\begin{aligned}
\lim _{x \rightarrow 7} \frac{x-7}{\sqrt{x+9}-4} & =\lim _{x \rightarrow 7} \frac{(x-7)(\sqrt{x+9}+4)}{(\sqrt{x+9}-4)(\sqrt{x+9}+4)} \\
& =\lim _{x \rightarrow 7} \frac{(x-7)(\sqrt{x+9}+4)}{x+9-16} \\
& =\lim _{x \rightarrow 7} \frac{(x-7)(\sqrt{x+9}+4)}{x-7}=\lim _{x \rightarrow 7}(\sqrt{x+9}+4) \\
& =\sqrt{7+9}+4=8
\end{aligned}
$$

The Indeterminate Form $\infty-\infty$

- To lift the indeterminacy, we transform algebraically, cancel and, finally, use the substitution property;
Example: Compute $\lim _{x \rightarrow 2}\left(\frac{1}{x-2}-\frac{4}{x^{2}-4}\right)$;

$$
\begin{aligned}
\lim _{x \rightarrow 2}\left(\frac{1}{x-2}-\frac{4}{x^{2}-4}\right) & =\lim _{x \rightarrow 2}\left(\frac{x+2}{(x-2)(x+2)}-\frac{4}{(x-2)(x+2)}\right) \\
& =\lim _{x \rightarrow 2} \frac{x+2-4}{(x+2)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{x-2}{(x+2)(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{1}{x+2}=\frac{1}{2+2}=\frac{1}{4}
\end{aligned}
$$

Forms $\frac{c}{0}$, with $c \neq 0$ are Infinite but not Indeterminate

- $\lim _{x \rightarrow 2} \frac{x^{2}-x+5}{x-2}$ is of the form $\frac{7}{0}$;
- These forms are not indeterminate, but rather they suggest that the side-limits as $x \rightarrow 2$ are infinite;
- If $x \rightarrow 2^{-}$, then $x<2$, whence $x-2<0$. Thus,
$\lim _{x \rightarrow 2^{-}} \frac{x^{2}-x+5}{x-2}\left(=\left(\frac{7}{0^{-}}\right)\right)=$
$-\infty$;
- If $x \rightarrow 2^{+}$, then $x>2$, whence $x-2>0$. Thus,
$\lim _{x \rightarrow 2^{+}} \frac{x^{2}-x+5}{x-2}\left(=\left(\frac{7}{0^{+}}\right)\right)=$ ∞;

Subsection 6

Trigonometric Limits

The Squeeze Theorem

The Squeeze Theorem

Assume that for $x \neq c$ in some open interval containing c,

$$
\ell(x) \leq f(x) \leq u(x) \quad \text { and } \quad \lim _{x \rightarrow c} \ell(x)=\lim _{x \rightarrow c} u(x)=L .
$$

Then $\lim _{x \rightarrow c} f(x)$ exists and $\lim _{x \rightarrow c} f(x)=L$.
Example: We show $\lim _{x \rightarrow 0}\left(x \sin \frac{1}{x}\right)$
Note that $-|x| \leq x \sin \frac{1}{x} \leq|x|$;
Note, also that
$\lim _{x \rightarrow 0}(-|x|)=\lim _{x \rightarrow 0}|x|=0$;

Therefore, by Squeeze, $\lim _{x \rightarrow 0}\left(x \sin \frac{1}{x}\right)=0$.

An Important Squeeze Identity

Theorem

For all $\theta \neq 0$, with $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$, we have

$$
\cos \theta \leq \frac{\sin \theta}{\theta} \leq 1
$$

Important Trigonometric Limits

Important Trigonometric Limits

We have

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \quad \text { and } \quad \lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}=0
$$

- Note that the first limit above follows by the Squeeze Theorem using the Squeeze Identity of the previous slide;
- For the second one, we have

$$
\begin{array}{rl}
\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta} & =\lim _{\theta \rightarrow 0} \frac{(1-\cos \theta)(1+\cos \theta)}{\theta(1+\cos \theta)} \\
& =\lim _{\theta \rightarrow 0} \frac{\frac{1-\cos ^{2} \theta}{\theta(1+\cos \theta)}}{} \\
& =\lim _{\theta \rightarrow 0} \frac{\frac{\sin ^{2} \theta}{\theta(1+\cos \theta)}}{} \\
& =\lim _{\theta \rightarrow 0}\left(\frac{\sin \theta}{\theta} \cdot \frac{\sin \theta}{1+\cos \theta}\right) \\
& =\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta} \cdot \lim \theta \rightarrow 0 \\
& =1 \cdot \frac{0}{1+\sin \theta} \\
1+1 & 0 .
\end{array}
$$

Evaluation of Limits by a Change of Variable

- Compute the limit $\lim _{\theta \rightarrow 0} \frac{\sin 4 \theta}{\theta}$;

We have

$$
\begin{array}{rll}
\lim _{\theta \rightarrow 0} \frac{\sin 4 \theta}{\theta} & = & \lim _{\theta \rightarrow 0} \frac{4 \sin 4 \theta}{4 \theta} \\
& = & 4 \lim _{\theta \rightarrow 0} \frac{\sin 4 \theta}{4 \theta} \\
x & =4 \theta & 4 \lim _{x \rightarrow 0} \frac{\sin x}{x} \\
& =4 \cdot 1=4 .
\end{array}
$$

- Compute the limit $\lim _{\theta \rightarrow 0} \frac{\sin 7 \theta}{\sin 3 \theta}$;

We have

$$
\begin{aligned}
\lim _{\theta \rightarrow 0} \frac{\sin 7 \theta}{\sin 3 \theta} & =\lim _{\theta \rightarrow 0} \frac{7 \theta \frac{\sin 7 \theta}{7 \theta}}{3 \theta \frac{\sin 3 \theta}{3 \theta}}=\lim _{\theta \rightarrow 0} \frac{7}{3} \frac{\frac{\sin 7 \theta}{7 \theta}}{\frac{\sin 3 \theta}{3 \theta}} \\
& =\frac{7}{3} \frac{\lim _{\theta \rightarrow 0} \frac{\sin 7 \theta}{7 \theta}}{\lim _{\theta \rightarrow 0} \frac{\sin 3 \theta}{3 \theta}} y=7 \theta \\
= & \frac{7}{3} \frac{\lim _{x \rightarrow 0} \frac{\sin x}{x}}{\lim _{y \rightarrow 0} \frac{\sin y}{y}} \\
& =\frac{7}{3} \frac{1}{1}=\frac{7}{3} .
\end{aligned}
$$

Subsection 7

Limits at Infinity

Limits at Infinity

Limit of $f(x)$ as $x \rightarrow \pm \infty$

- We write $\lim _{x \rightarrow \infty} f(x)=L$ if $f(x)$ gets closer and closer to L as $x \rightarrow \infty$, i.e., as x increases without bound;
- We write $\lim _{x \rightarrow-\infty} f(x)=L$ if $f(x)$ gets closer and closer to L as $x \rightarrow-\infty$, i.e., as x decreases without bound;

In either case, the line $y=L$ is called a horizontal asymptote of $y=f(x)$.

- Horizontal asymptotes describe the asymptotic behavior of $f(x)$, i.e., the behavior of the graph as we move way out to the left or to the right.

Example of Limits at Infinity

- Consider the function $f(x)$ whose graph is given on the right:

We have

$$
\lim _{x \rightarrow-\infty} f(x)=1
$$

and

$$
\lim _{x \rightarrow \infty} f(x)=2
$$

Thus, both $y=1$ and $y=2$ are horizontal asymptotes of $y=f(x)$.

Powers of x

Theorem

Assume $n>0$. Then we have

$$
\lim _{x \rightarrow \infty} x^{n}=\infty \quad \text { and } \quad \lim _{x \rightarrow \infty} x^{-n}=\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0
$$

For $n>0$ an integer,
$\lim _{x \rightarrow-\infty} x^{n}=\left\{\begin{array}{ll}\infty, & \text { if } n \text { is even } \\ -\infty, & \text { if } n \text { is odd }\end{array} \quad\right.$ and $\quad \lim _{x \rightarrow-\infty} x^{-n}=\lim _{x \rightarrow-\infty} \frac{1}{x^{n}}=0$.

Example: $\lim _{x \rightarrow \infty}\left(3-4 x^{-3}+5 x^{-5}\right)=$

$$
\lim _{x \rightarrow \infty} 3-4 \lim _{x \rightarrow \infty} x^{-3}+5 \lim _{x \rightarrow \infty} x^{-5}=3-4 \cdot 0+5 \cdot 0=3 .
$$

Example

- Calculate $\lim _{x \rightarrow \pm \infty} \frac{20 x^{2}-3 x}{3 x^{5}-4 x^{2}+5}$.

We follow the method of dividing numerator and denominator by the highest power x^{5} :

$$
\begin{aligned}
\lim _{x \rightarrow \pm \infty} \frac{20 x^{2}-3 x}{3 x^{5}-4 x^{2}+5} & =\lim _{x \rightarrow \pm \infty} \frac{\frac{20 x^{2}-3 x}{x^{5}}}{\frac{3 x^{5}-4 x^{2}+5}{x^{5}}} \\
& =\lim _{x \rightarrow \pm \infty} \frac{\frac{20 x^{2}}{x^{5}}-\frac{3 x}{x^{5}}}{\frac{3 x^{5}}{x^{5}}-\frac{4 x^{2}}{x^{5}}+\frac{5}{x^{5}}} \\
& =\lim _{x \rightarrow \pm \infty} \frac{\frac{20}{x^{3}}-\frac{3}{x^{4}}}{3-\frac{4}{x^{3}}+\frac{5}{x^{5}}} \\
& =\frac{\lim _{x \rightarrow \pm \infty \frac{20}{x^{3}}-\lim _{x \rightarrow \pm \infty} \frac{3}{x^{4}}}^{\lim _{x \rightarrow \pm \infty} 3-\lim _{x \rightarrow \pm \infty} \frac{4}{x^{3}}+\lim _{x \rightarrow \pm \infty} \frac{5}{x^{5}}}}{} \\
& =\frac{0-0}{3-0+0}=0 .
\end{aligned}
$$

Limits at Infinity of Rational Functions

Theorem

If $a_{n}, b_{m} \neq 0$, then it is the case that

$$
\lim _{x \rightarrow \pm \infty} \frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}}=\frac{a_{n}}{b_{m}} \lim _{x \rightarrow \pm \infty} x^{n-m}
$$

Example:

- $\lim _{x \rightarrow \infty} \frac{3 x^{4}-7 x+9}{7 x^{4}-4}=\frac{3}{7} \lim _{x \rightarrow \infty} x^{0}=\frac{3}{7}$;
- $\lim _{x \rightarrow \infty} \frac{3 x^{3}-7 x+9}{7 x^{4}-4}=\frac{3}{7} \lim _{x \rightarrow \infty} x^{-1}=\frac{3}{7} \lim _{x \rightarrow \infty} \frac{1}{x}=0$;
- $\lim _{x \rightarrow-\infty} \frac{3 x^{8}-7 x+9}{7 x^{3}-4}=\frac{3}{7} \lim _{x \rightarrow-\infty} x^{5}=-\infty$;
- $\lim _{x \rightarrow-\infty} \frac{3 x^{7}-7 x+9}{7 x^{3}-4}=\frac{3}{7} \lim _{x \rightarrow-\infty} x^{4}=\infty$;

Two More Examples

- Compute the limit $\lim _{x \rightarrow \infty} \frac{3 x^{7 / 2}+7 x^{-1 / 2}}{x^{2}-x^{1 / 2}}$;

We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{3 x^{7 / 2}+7 x^{-1 / 2}}{x^{2}-x^{1 / 2}} & =\lim _{x \rightarrow \infty} \frac{\left(x^{-2}\right)\left(3 x^{7 / 2}+7 x^{-1 / 2}\right)}{\left(x^{-2}\right)\left(x^{2}-x^{1 / 2}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{3 x^{3 / 2}+7 x^{-5 / 2}}{1-x^{-3 / 2}} \\
& =\frac{\lim _{x \rightarrow \infty} 3 x^{3 / 2}+\lim _{x \rightarrow \infty} 7 x^{-5 / 2}}{\lim _{x \rightarrow \infty} 1-\lim _{x \rightarrow \infty} x^{-3 / 2}} \\
& =\frac{\infty}{1}=\infty
\end{aligned}
$$

- Compute the limit $\lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x^{3}+1}}$;

We have

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x^{3}+1}} & =\lim _{x \rightarrow \infty} \frac{x^{-3 / 2} x^{2}}{x^{-3 / 2} \sqrt{x^{3}+1}}=\lim _{x \rightarrow \infty} \frac{x^{1 / 2}}{\sqrt{x^{-3}\left(x^{3}+1\right)}} \\
& =\lim _{x \rightarrow \infty} \frac{x^{1 / 2}}{\sqrt{1+x^{-3}}}=\frac{\infty}{1}=\infty
\end{aligned}
$$

One More Example

- Calculate the limits at infinity of $f(x)=\frac{12 x+25}{\sqrt{16 x^{2}+100 x+500}}$; We have

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{12 x+25}{\sqrt{16 x^{2}+100 x+500}} & =\lim _{x \rightarrow-\infty} \frac{12 x\left(1+\frac{25}{12 x}\right)}{\sqrt{16 x^{2}\left(1+\frac{10 x}{10 x}+\frac{500}{16 x^{2}}\right)}} \\
& =\lim _{x \rightarrow-\infty} \frac{12 \times\left(1+\frac{25}{12 x}\right)}{-4 x \sqrt{1+\frac{10}{10}}+\frac{500}{16 x^{2}}} \\
& =-3 \lim _{x \rightarrow-\infty} \frac{1+\frac{25}{12 x}}{\sqrt{1+\frac{100}{16 x}+\frac{500}{10 x^{2}}}} \\
& =-3 ; \\
& =\lim _{x \rightarrow \infty} \frac{12 \times\left(1+\frac{25}{12 x}\right)}{4 \times \sqrt{1+\frac{100}{16 x}+\frac{500}{16 x^{2}}}} \\
& =3 \lim _{x \rightarrow \infty} \frac{1+\frac{25}{12 x}}{\sqrt{1+\frac{100}{16 x}+\frac{500}{16 x^{2}}}}=3 .
\end{aligned}
$$

Subsection 8

Intermediate Value Theorem

The Intermediate Value Theorem

Intermediate Value Theorem

If $f(x)$ is continuous on a closed interval $[a, b]$ and $f(a) \neq f(b)$, then for every value M between $f(a)$ and $f(b)$, there exists at least one value $c \in(a, b)$, such that $f(c)=M$.

Example: Show that $\sin x=\frac{1}{8}$ has at least one solution.
Consider $f(x)=\sin x$ in the closed interval $\left[0, \frac{\pi}{2}\right]$.
We have

$$
f(0)=0<\frac{1}{8}<1=f\left(\frac{\pi}{2}\right) .
$$

Thus, by the Intermediate
 Value Theorem, there exists $c \in\left(0, \frac{\pi}{2}\right)$, such that $f(c)=\frac{1}{8}$, i.e., $\sin c=\frac{1}{8}$. This c is a solution of the equation $\sin x=\frac{1}{8}$;.

Existence of Zeros

Existence of Zeros

If $f(x)$ is continuous on $[a, b]$ and if $f(a)$ and $f(b)$ are nonzero and have opposite signs, then $f(x)$ has a zero in (a, b).

Applying the Existence of Zeros Theorem

- Show that the equation $2^{x}+3^{x}=4^{x}$ has at least one zero.

Consider $f(x)=2^{x}+3^{x}-4^{x}$ in the closed interval $[1,2]$.
We have $f(1)=1>0$, whereas $f(2)=-3<0$.
Thus, by the Existence of Zeros Theorem, there exists $c \in(1,2)$, such that $f(c)=0$, i.e., $2^{c}+3^{c}-4^{c}=0$. But, then, c satisfies $2^{c}+3^{c}=4^{c}$, i.e., it is a zero of $2^{x}+3^{x}=4^{x}$.

The Bisection Method

- Find an interval of length $\frac{1}{4}$ in $[1,2]$ containing a root of the equation $x^{7}+3 x-10=0$;
Consider the function $f(x)=x^{7}+3 x-10$ in $[1,2]$.
Since $f(1)=-6<0$ and $f(2)=112>0$, by the Existence of Zeros Theorem, it has a root in $(1,2)$.

Since $f(1)=-6<0$ and $f\left(\frac{3}{2}\right)=11.586>0$, it has a root in the interval $\left(1, \frac{3}{2}\right)$.

Finally, since $f\left(\frac{5}{4}\right)=-1.482<0$ and $f\left(\frac{3}{2}\right)=11.586>0$, the root is in the interval $\left(\frac{5}{4}, \frac{3}{2}\right)$, which has length $\frac{1}{4}$.

