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Limits Limits, Rates of Change and Tangent Lines

Subsection 1

Limits, Rates of Change and Tangent Lines
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Limits Limits, Rates of Change and Tangent Lines

Average Velocity

An object moving on a straight line is at position s(t) at time t;

Then in the time interval [t0, t1] it has moved from position s(t0) to
position s(t1) having a displacement (or net change in position)
∆s = s(t1)− s(t0);

Its average velocity in [t0, t1] is given by

vavg[t0, t1] =
∆s

∆t
=

s(t1)− s(t0)

t1 − t0
.

Example: If an object is at position s(t) = 5t2 miles from the origin
at time t in hours, what is vavg[1, 5]?

vavg[1, 5] =
s(5)− s(1)

5− 1
=

5 · 52 − 5 · 12
4

= 30mph.
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Limits Limits, Rates of Change and Tangent Lines

Instantaneous Velocity

An object moving on a straight line is at position s(t) at time t;

To estimate the instantaneous velocity of the object at t0, we
consider a very short time interval [t0, t1] and compute vavg[t0, t1];

If [t0, t1] is very short, then the change in velocity might be negligible
and so a good approximation of the instantaneous velocity at t0;

Thus v(t0) ∼=
︸︷︷︸

∆t small

∆s
∆t

;

Example: Estimate the instantaneous velocity v(1) of the object
whose position function is s(t) = 5t2 miles from the origin at time t

in hours.

v(1) ∼= s(1.01) − s(1)

1.01 − 1
=

5 · (1.01)2 − 5 · 12
0.01

= 10.05mph.
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Limits Limits, Rates of Change and Tangent Lines

Another Example of a Rate of Change

Suppose that the length of the side of a melting cube as function of
time is given by s(t) = 1

t+2 inches at t minutes since the start of the
melting process. What is the average change in the volume of the ice
cube from t = 0 to t = 3 minutes?

The volume V (t) in cubic inches as a function of time t in minutes is
given by V (t) = s(t)3 = ( 1

t+2 )
3.

Therefore
(
∆V

∆t

)

avg

[0, 3] =
V (3)− V (0)

3− 0
=

(15 )
3 − (12)

3

3

=
1

125 − 1
8

3
=

8
1000 − 125

1000

3
= − 117

3000 in
3/min.
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Limits Limits, Rates of Change and Tangent Lines

Instantaneous Rate of Change of Volume

In the previous example, to estimate the instantaneous rate of change
of the volume of the ice cube at t = 1, we may consider the average
rate of change between t = 1 minute and t = 1.01 minute:

(
∆V

∆t

)

|t=1
∼=

(
∆V

∆t

)

avg

[1, 1.01]

=
V (1.01) − V (1)

1.01 − 1

=
( 1
3.01 )

3 − (13 )
3

0.01

∼= − 0.037in3/min.
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Limits Limits, Rates of Change and Tangent Lines

Slope of a Secant Line

Consider the graph of y = f (x) and two points on the graph
(x0, f (x0)) and (x1, f (x1));

The line passing through these two points is called the secant line to
y = f (x) through x0 and x1;

Its slope is equal to

mf [x0, x1] =
f (x1)− f (x0)

x1 − x0
.
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Limits Limits, Rates of Change and Tangent Lines

An Example

Example: Find an equation for the secant line to f (x) = 1
1+x2

through x0 = 1 and x1 = 2;

We have
mf [1, 2] =

f (2) − f (1)

2− 1
=

1
5 − 1

2

2− 1
= − 3

10
.

Therefore y − 1
2 = − 3

10(x − 1) is the point-slope form of the equation
of the secant line.
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Limits Limits, Rates of Change and Tangent Lines

Slope of a Tangent Line

To approximate the slope mf (x0) of the tangent line to the graph of
y = f (x) at x0 we use a process similar to that approximating the
instantaneous rate of change by using the average rate of change for
points x0, x1 very close to each other;

Therefore, we have

mf (x0) ∼=
︸︷︷︸
∆x small

mf [x0, x1] =
f (x1)− f (x0)

x1 − x0
.
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Limits Limits, Rates of Change and Tangent Lines

Approximating the Slope of a Tangent Line

Let us approximate the slope to y = x2 at x = 1 using the process
outlined in the previous slide;

We have

mf (1) ∼= mf [1, 1.01] =
f (1.01) − f (1)

1.01 − 1
=

(1.01)2 − 12

0.01
= 2.01.
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Limits A Graphical Approach to Limits

Subsection 2

A Graphical Approach to Limits

George Voutsadakis (LSSU) Calculus I November 2014 12 / 67



Limits A Graphical Approach to Limits

Definition of Limit

Suppose that f (x) is defined in an open interval containing a number
c , but not necessarily c itself;

The limit of f (x) as x approaches c is equal to L if f (x) has value
arbitrarily close to L when x assumes values sufficiently close (but not
equal) to c .

In this case, we write
lim
x→c

f (x) = L.

An alternative terminology is that f (x) approaches or converges to

L as x approaches c .
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Limits A Graphical Approach to Limits

Two Easy Examples

Draw the graph of f (x) = 3 and find graphically the limit
limx→c f (x).

Draw the graph of g(x) = 1
2x + 4 and find graphically limx→2 f (x).

We have limx→c 3 = 3 and limx→2 (
1
2x + 4) = 5.
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Limits A Graphical Approach to Limits

Two Easy Rules

Draw the graph of f (x) = k (a constant) and find graphically the
limit limx→c k .

Draw the graph of g(x) = x and find graphically limx→c x .

We have limx→c k = k and limx→c x = c .
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Limits A Graphical Approach to Limits

Two More Complicated Examples

Draw the graph of f (x) = x−9√
x−3

and find graphically the limit

limx→9 f (x).

Draw the graph of g(x) =

{
x2, if x ≤ 1
−x2 + 2x + 3, if x > 1

and find

graphically limx→1 f (x).

We have limx→c
x−9√
x−3

= 6 and limx→1 g(x) does not exist since g(x)

does not approach a single number when x approaches 1.
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Limits A Graphical Approach to Limits

Two Additional Examples

Draw the graph of f (x) = ex−1
x

and find graphically the limit
limx→0 f (x).

Draw the graph of g(x) = sin π
x
and find graphically limx→0 g(x).

We have limx→0
ex−1
x

= 1 and limx→0 sin
π
x
does not exist since the

values of g(x) = sin π
x
oscillate between −1 and 1 as x approaches 0.
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Limits A Graphical Approach to Limits

Definition of Side-Limits

Suppose that f (x) is defined in an open interval containing a number
c , but not necessarily c itself;

The right-hand limit of f (x) as x approaches c (from the right) is
equal to L if f (x) has value arbitrarily close to L when x approaches
sufficiently close (but is not equal) to c from the right hand side.

In this case, we write lim
x→c+

f (x) = L.

The left-hand limit of f (x) as x approaches c (from the left) is
equal to L if f (x) has value arbitrarily close to L when x approaches
sufficiently close (but is not equal) to c from the left hand side.

In this case, we write lim
x→c−

f (x) = L.

The limits we saw before are “two sided limits”; It is the case that
lim
x→c

f (x) = L if and only if lim
x→c+

f (x) = L and lim
x→c−

f (x) = L, i.e., a

function has limit L as x approaches c if and only if the left and right
hand side limits as x approaches c exist and are equal.
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Limits A Graphical Approach to Limits

Two Examples

Draw the graph of f (x) =

{
x2, if x ≤ 1
−x2 + 2x + 3, if x > 1

and find

graphically limx→1− f (x) and limx→1+ f (x).

Draw the graph of g(x) =

{
−(x + 2)3 + 2, if x < −1
−x2 + 1, if x > −1

and find

graphically limx→−1− g(x) and limx→−1+ g(x).

limx→1− f (x) = 1, limx→1+ f (x) = 4, so limx→1 f (x) DNE, and
limx→−1− g(x) = 1, limx→−1+ g(x) = 0, so limx→−1 g(x) DNE.

George Voutsadakis (LSSU) Calculus I November 2014 19 / 67



Limits A Graphical Approach to Limits

Examples of Limits Involving Infinity

Draw the graph of f (x) = 1
x−2 and find graphically limx→2− f (x) and

limx→2+ f (x).

Draw the graph of g(x) = ln x and find graphically limx→0+ g(x) and
limx→+∞ g(x).

limx→2− f (x) = −∞, limx→2+ f (x) = +∞, and
limx→0+ g(x) = −∞, limx→+∞ g(x) = +∞.

George Voutsadakis (LSSU) Calculus I November 2014 20 / 67



Limits Basic Limit Laws

Subsection 3

Basic Limit Laws
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Limits Basic Limit Laws

Theorem (Basic Limit Laws)

Suppose that lim
x→c

f (x) and lim
x→c

g(x) exist. Then

Sum Law: lim
x→c

(f (x) + g(x)) = lim
x→c

f (x) + lim
x→c

g(x);

Constant Factor Law: lim
x→c

kf (x) = k lim
x→c

f (x);

Product Law: lim
x→c

f (x)g(x) = ( lim
x→c

f (x))( lim
x→c

g(x));

Quotient Law: If lim
x→c

g(x) 6= 0, then lim
x→c

f (x)
g(x) =

lim
x→c

f (x)

lim
x→c

g(x)
;

Power and Root Law: For p, q integers, with q 6= 0,
lim
x→c

[f (x)]p/q = ( lim
x→c

f (x))p/q , under the assumption that

lim
x→c

f (x) ≥ 0 if q is even and lim
x→c

f (x) 6= 0 if p
q
< 0.

In particular, for n a positive integer,

lim
x→c

[f (x)]n = ( lim
x→c

f (x))n;

lim
x→c

n
√

f (x) = n

√

lim
x→c

f (x);
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Limits Basic Limit Laws

Examples of Calculating Limits I

Compute lim
x→2

x3;

We apply the power rule:

lim
x→2

(x3) = ( lim
x→2

x)3 = 23 = 8.

Compute lim
x→−1

(−2x3 + 7x − 5);

We apply the sum rule, the constant factor and the power rules:

lim
x→−1

(−2x3 + 7x − 5) = lim
x→−1

(−2x3) + lim
x→−1

(7x) − lim
x→−1

5

= − 2 lim
x→−1

(x3) + 7 lim
x→−1

x − lim
x→−1

5

= − 2 · (−1)3 + 7(−1) − 5
= − 10.
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Limits Basic Limit Laws

Examples of Calculating Limits II

Compute lim
x→2

x+30
2x4

;

We apply the quotient rule:

lim
x→2

x + 30

2x4
=

lim
x→2

(x + 30)

lim
x→2

(2x4)
=

2 + 30

2 · 24 = 1.

Compute lim
x→3

(x−1/4(x + 5)1/3);

We apply the product and the power rules:

lim
x→3

(x−1/4(x + 5)1/3) = ( lim
x→3

x−1/4)( lim
x→3

3
√
x + 5)

= (( lim
x→3

x)−1/4( 3

√

lim
x→3

x + 5)

= 3−1/4 3
√
8

= 2
4√3

.
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Limits Basic Limit Laws

Treacherous Applications of the Laws

We must take the hypotheses of the Basic Limit Laws into account
when applying the rules;

For instance, if f (x) = x and g(x) = x−1, then

lim
x→0

f (x)g(x) = lim
x→0

xx−1 = lim
x→0

1 = 1,

but, if we tried to apply the product rule, we would be stuck:

lim
x→0

f (x)g(x) = ( lim
x→0

x)( lim
x→0

x−1),

The last limit on the right does not exist since lim
x→0+

x−1 = +∞ and

lim
x→0−

x−1 = −∞.
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Limits Limits and Continuity

Subsection 4

Limits and Continuity
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Limits Limits and Continuity

Continuity at a Point

A function f (x) defined on an open interval containing x = c is
continuous at x = c if

lim
x→c

f (x) = f (c).

If either the limit does not exist, or exists but is not equal to f (c),
then f has a discontinuity or is discontinuous at x = c .

Not that the limit above exists if and only if lim
x→c−

f (x) = lim
x→c+

f (x);

Therefore, the condition for continuity is equivalent to

lim
x→c−

f (x) = f (c) = lim
x→c+

f (x).

Example: Let f (x) = k a constant. Recall that limx→c k = k . Also
f (c) = k . Therefore, f (x) = k is continuous at all x = c .
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Limits Limits and Continuity

Some Additional Examples

Consider f (x) = xn, where n is a natural number. Then
limx→c x

n = (limx→c x)
n = cn. Also f (c) = cn. Therefore, f (x) = xn

is continuous at all x = c .

Consider f (x) = x5 + 7x − 12. Applying some of the Limit Laws, we
get

limx→c (x
5 + 7x − 12) = (limx→c x)

5 + 7(limx→c x)− limx→c 12
= c5 + 7c − 12
= f (c).

Therefore f (x) is continuous at x = c .

Consider also f (x) = x2+5
x+3 . Applying some of the Limit Laws, we get

limx→2
x2+5
x+3 = limx→2 (x

2+5)
limx→2 (x+3) = (limx→2 x)

2+limx→2 5
limx→2 x+limx→2 3

= 22+5
2+3 = f (2).

Thus f (x) is continuous at x = 2.
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Limits Limits and Continuity

Types of Discontinuities

Recall f (x) is continuous at x = c if

lim
x→c−

f (x) = f (c) = lim
x→c+

f (x).

If lim
x→c

f (x) exists but is not equal to f (c), then f (x) has a removable

discontinuity at x = c ;

If lim
x→c−

f (x) 6= lim
x→c+

f (x) (in this case, of course, lim
x→c

f (x) does not

exist), then f has a jump discontinuity at x = c ;

If either lim
x→c−

f (x) or lim
x→c+

f (x) is infinite, then f has an infinite

discontinuity at x = c .
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Limits Limits and Continuity

Removable Discontinuity

Consider the piece-wise defined function

f (x) =







ex+1, if x < −1
2, if x = −1
−x2 + 2, if x > −1

We have limx→−1− f (x) = 1 and limx→−1+ f (x) = 1, whence
limx→−1 f (x) = 1. But f (−1) = 2. So limx→−1 f (x) exists, but it
does not equal f (−1). This shows that f (x) has a removable
discontinuity at x = −1.
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Limits Limits and Continuity

Jump Discontinuity

Consider the piece-wise defined function

f (x) =

{
x + 1, if x < 1
−x2 + 2x , if x ≥ 1

We have limx→1− f (x) = 2 and limx→1+ f (x) = 1, whence
limx→−1 f (x) = DNE. So the side limits of f (x) as x approaches 1
exist, but they are not equal. This shows that f (x) has a jump
discontinuity at x = 1.

George Voutsadakis (LSSU) Calculus I November 2014 31 / 67



Limits Limits and Continuity

Infinite Discontinuity

Consider the piece-wise defined function

f (x) =

{ 1
x2−2x+2

, if x < 1
1

x−1 , if x > 1

We have limx→1− f (x) = 1 and limx→1+ f (x) = +∞, Thus, at least
one of the side limits as x approaches 1 is ±∞. This shows that f (x)
has an infinite discontinuity at x = 1.
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Limits Limits and Continuity

One-Sided Continuity

A function f (x) is called
left-continuous at x = c if lim

x→c−
f (x) = f (c);

right-continuous at x = c if lim
x→c+

f (x) = f (c);

Example: Consider the function

f (x) =

{
−x2 − 2x , if x < 0
1

x+1 , if x ≥ 0

We have limx→0− f (x) = 0 and limx→0+ f (x) = 1. Moreover,
f (0) = 1. Therefore f (x) is right-continuous at x = 0, but not left
continuous at x = 0.
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Limits Limits and Continuity

One More Example

Consider the piece-wise defined function

f (x) =







sin x
x

, if x < 0
1, if x = 0
ln x , if x > 0

We have limx→0− f (x) = 1 and limx→0+ f (x) = −∞, Moreover,
f (0) = 1. Therefore, f (x) is left-continuous at x = 0, but not
right-continuous at x = 0.
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Limits Limits and Continuity

Basic Continuity Laws

Theorem (Basic Laws of Continuity)

If f (x) and g(x) are continuous at x = c , then the following functions are
also continuous at x = c :

(i) f (x)± g(x) (iii) f (x)g(x)

(ii) kf (x) (iv) f (x)
g(x) , if g(c) 6= 0.

For instance, knowing that f (x) = x and g(x) = k are continuous
functions at all real numbers, the previous rules allow us to conclude
that

any polynomial function P(x) is continuous at all real numbers;

any rational function P(x)
Q(x) is continuous at all values in its domain.

Example: f (x) = 3x4 − 2x3 + 8x is continuous at all real numbers.
g(x) = x+3

x2−1
is continuous at all numbers x 6= ±1.
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Limits Limits and Continuity

Continuity of Roots, Trig, Exp and Log Functions

Theorem (Continuity of Various Functions)

f (x) = n
√
x is continuous on its domain;

f (x) = sin x and g(x) = cos x are continuous at all real numbers;

f (x) = bx is continuous at all real numbers (0 < b 6= 1);

f (x) = logb x is continuous at all x > 0 (0 < b 6= 1);

Based on this theorem and the theorem on quotients, we may

conclude, for example, that tan x =
sin x

cos x
is continuous at all points

in its domain, i.e., at all x 6= (2k + 1)π2 , k ∈ Z.

We can also conclude that csc x =
1

sin x
is continuous at all points in

its domain, i.e., at all x 6= kπ, k ∈ Z.
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Limits Limits and Continuity

Continuity of Inverse Functions

Theorem (Continuity of Inverse Functions)

If f (x) is continuous on an interval I with range R , then if f −1(x) exists,
then f −1(x) is continuous with domain R .

For instance f (x) = sin x is continuous on [−π
2 ,

π
2 ] with range [−1, 1]

and has an inverse; So, f −1(x) = sin−1 x is continuous on [−1, 1].

Similarly g(x) = tan x is continuous on (−π
2 ,

π
2 ) with range R and

has an inverse; Therefore g−1(x) = tan−1 x is continuous on R.
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Limits Limits and Continuity

Continuity of Composite Functions

Theorem (Continuity of Composite Functions)

If g(x) is continuous at the point x = c and f (x) is continuous at the
point x = g(c), then the function F (x) = f (g(x)) is continuous at x = c .

For instance, the function g(x) = x2 + 9 is continuous at all real
numbers, since it is a polynomial function; Moreover, the function
f (x) = 3

√
x is continuous at all real numbers as a root function;

Therefore, the function F (x) = f (g(x)) = 3
√
x2 + 9 is also a

continuous function, as the composite of two continuous functions.
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Limits Limits and Continuity

Substitution Method: Using Continuity to Evaluate Limits

Recall that f (x) is continuous at x = c if

lim
x→c

f (x) = f (c).

Suppose that you know that f (x) is continuous at x = c and want to
compute limx→c f (x).

Then, because of the definition of continuity, to find limx→c f (x), you
may compute, instead, f (c).

This is called the substitution property (or method) for evaluating
limits of continuous functions.
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Limits Limits and Continuity

Examples of Using the Substitution Method

Example: Let us evaluate the limit limx→π
3
sin x .

Since f (x) is continuous (by the basic theorem on trig functions) at
all x ∈ R, we may use the substitution property:

lim
x→π

3

sin x = sin
π

3
=

√
3

2
.

Example: Let us evaluate the limit limx→−1
3x√
x+5

.

Since f (x) is continuous (as a ratio of an exponential over a root
function, both of which are continuous in their domain), we may use
the substitution property:

lim
x→−1

3x√
x + 5

=
3−1

√
−1 + 5

=
1

6
.
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Limits Algebraic Evaluation of Limits

Subsection 5

Algebraic Evaluation of Limits
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Limits Algebraic Evaluation of Limits

Indeterminate Forms

The following are Indeterminate Forms:
0

0

Example: lim
x→3

x
2
− 4x + 3

x
2 + x − 12

∞
∞

Example: lim
x→π

2

tan x

sec x

∞ · 0
Example: lim

x→2
(

1

2x − 4
· (x − 2)2)

∞−∞
Example: lim

x→1
(

1

x − 1
−

2

x
2
− 1

)
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Limits Algebraic Evaluation of Limits

The Indeterminate Form
0

0
: Factor and Cancel

To lift the indeterminacy, we transform algebraically, cancel and,
finally, use the substitution property;

Example: Compute lim
x→3

x2 − 4x + 3

x2 + x − 12
;

We have

lim
x→3

x2 − 4x + 3

x2 + x − 12
= lim

x→3

(x − 1)(x − 3)

(x + 4)(x − 3)

= lim
x→3

x − 1

x + 4

=
3− 1

3 + 4

=
2

7
.
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Limits Algebraic Evaluation of Limits

The Indeterminate Form
0

0
: Another Example

To lift the indeterminacy, we transform algebraically, cancel and,
finally, use the substitution property;

Example: Compute lim
x→7

x − 7

x2 − 49
;

We have

lim
x→7

x − 7

x2 − 49
= lim

x→7

x − 7

(x + 7)(x − 7)

= lim
x→7

1

x + 7

=
1

7 + 7

=
1

14
.
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Limits Algebraic Evaluation of Limits

The Indeterminate Form
∞
∞

To lift the indeterminacy, we transform algebraically, cancel and,
finally, use the substitution property;

Example: Compute lim
x→π

2

tan x

sec x
;

We have

lim
x→π

2

tan x

sec x
= lim

x→π
2

sin x
cos x
1

cos x

= lim
x→π

2

sin x

= sin π
2

= 1.
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Limits Algebraic Evaluation of Limits

The Indeterminate Form
0

0
: Multiply by Conjugate

To lift the indeterminacy, we transform algebraically, cancel and,
finally, use the substitution property;

Example: Compute lim
x→4

√
x − 2

x − 4
;

We have

lim
x→4

√
x − 2

x − 4
= lim

x→4

(
√
x − 2)(

√
x + 2)

(x − 4)(
√
x + 2)

= lim
x→4

x − 4

(x − 4)(
√
x + 2)

= lim
x→4

1√
x + 2

=
1√
4 + 2

=
1

4
.
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Limits Algebraic Evaluation of Limits

The Indeterminate Form
0

0
: Multiply by Conjugate

To lift the indeterminacy, we transform algebraically, cancel and,
finally, use the substitution property;

Example: Compute lim
x→7

x − 7√
x + 9− 4

;

lim
x→7

x − 7√
x + 9− 4

= lim
x→7

(x − 7)(
√
x + 9 + 4)

(
√
x + 9− 4)(

√
x + 9 + 4)

= lim
x→7

(x − 7)(
√
x + 9 + 4)

x + 9− 16

= lim
x→7

(x − 7)(
√
x + 9 + 4)

x − 7
= lim

x→7
(
√
x + 9 + 4)

=
√
7 + 9 + 4 = 8.
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Limits Algebraic Evaluation of Limits

The Indeterminate Form ∞−∞

To lift the indeterminacy, we transform algebraically, cancel and,
finally, use the substitution property;

Example: Compute lim
x→2

(
1

x − 2
− 4

x2 − 4
);

lim
x→2

(
1

x − 2
− 4

x2 − 4
) = lim

x→2
(

x + 2

(x − 2)(x + 2)
− 4

(x − 2)(x + 2)
)

= lim
x→2

x + 2− 4

(x + 2)(x − 2)

= lim
x→2

x − 2

(x + 2)(x − 2)

= lim
x→2

1

x + 2
=

1

2 + 2
=

1

4
.
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Limits Algebraic Evaluation of Limits

Forms c
0 , with c 6= 0 are Infinite but not Indeterminate

lim
x→2

x2 − x + 5

x − 2
is of the form

7

0
;

These forms are not indeterminate, but rather they suggest that the
side-limits as x → 2 are infinite;

If x → 2−, then x < 2, whence
x − 2 < 0. Thus,

limx→2−
x2 − x + 5

x − 2
(= (

7

0−
)) =

−∞;

If x → 2+, then x > 2, whence
x − 2 > 0. Thus,

limx→2+
x2 − x + 5

x − 2
(= (

7

0+
)) =

∞;
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Limits Trigonometric Limits

Subsection 6

Trigonometric Limits
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Limits Trigonometric Limits

The Squeeze Theorem

The Squeeze Theorem

Assume that for x 6= c in some open interval containing c ,

ℓ(x) ≤ f (x) ≤ u(x) and lim
x→c

ℓ(x) = lim
x→c

u(x) = L.

Then limx→c f (x) exists and limx→c f (x) = L.

Example: We show limx→0 (x sin
1
x
) = 0.

Note that −|x | ≤ x sin 1
x
≤ |x |;

Note, also that
limx→0 (−|x |) = limx→0 |x | = 0;

Therefore, by Squeeze,
limx→0 (x sin

1
x
) = 0.
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Limits Trigonometric Limits

An Important Squeeze Identity

Theorem

For all θ 6= 0, with −π
2 < θ < π

2 , we have

cos θ ≤ sin θ

θ
≤ 1.
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Limits Trigonometric Limits

Important Trigonometric Limits

Important Trigonometric Limits

We have

lim
θ→0

sin θ

θ
= 1 and lim

θ→0

1− cos θ

θ
= 0.

Note that the first limit above follows by the Squeeze Theorem using
the Squeeze Identity of the previous slide;
For the second one, we have

limθ→0
1−cos θ

θ = limθ→0
(1−cos θ)(1+cos θ)

θ(1+cos θ)

= limθ→0
1−cos2 θ
θ(1+cos θ)

= limθ→0
sin2 θ

θ(1+cos θ)

= limθ→0 (
sin θ
θ · sin θ

1+cos θ )

= limθ→0
sin θ
θ · limθ→0

sin θ
1+cos θ

= 1 · 0
1+1 = 0.

George Voutsadakis (LSSU) Calculus I November 2014 53 / 67



Limits Trigonometric Limits

Evaluation of Limits by a Change of Variable

Compute the limit lim
θ→0

sin 4θ
θ ;

We have
limθ→0

sin 4θ
θ = limθ→0

4 sin 4θ
4θ

= 4 limθ→0
sin 4θ
4θ

x=4θ
= 4 limx→0

sin x
x

= 4 · 1 = 4.

Compute the limit lim
θ→0

sin 7θ
sin 3θ ;

We have

limθ→0
sin 7θ
sin 3θ = limθ→0

7θ sin 7θ
7θ

3θ sin 3θ
3θ

= limθ→0
7
3

sin 7θ
7θ

sin 3θ
3θ

= 7
3

limθ→0
sin 7θ
7θ

limθ→0
sin 3θ
3θ

x=7θ
=

y=3θ

7
3

limx→0
sin x
x

limy→0
sin y
y

= 7
3
1
1 = 7

3 .
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Limits Limits at Infinity

Subsection 7

Limits at Infinity
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Limits Limits at Infinity

Limits at Infinity

Limit of f (x) as x → ±∞
We write lim

x→∞
f (x) = L if f (x) gets closer and closer to L as x → ∞,

i.e., as x increases without bound;

We write lim
x→−∞

f (x) = L if f (x) gets closer and closer to L as

x → −∞, i.e., as x decreases without bound;

In either case, the line y = L is called a horizontal asymptote of
y = f (x).

Horizontal asymptotes describe the asymptotic behavior of f (x), i.e.,
the behavior of the graph as we move way out to the left or to the
right.
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Limits Limits at Infinity

Example of Limits at Infinity

Consider the function f (x)
whose graph is given on the
right:

We have

lim
x→−∞

f (x) = 1

and

lim
x→∞

f (x) = 2.

Thus, both y = 1 and y = 2 are horizontal asymptotes of y = f (x).
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Limits Limits at Infinity

Powers of x

Theorem

Assume n > 0. Then we have

lim
x→∞

xn = ∞ and lim
x→∞

x−n = lim
x→∞

1

xn
= 0.

For n > 0 an integer,

lim
x→−∞

xn =

{
∞, if n is even
−∞, if n is odd

and lim
x→−∞

x−n = lim
x→−∞

1

xn
= 0.

Example: limx→∞ (3− 4x−3 + 5x−5) =
limx→∞ 3− 4 limx→∞ x−3 + 5 limx→∞ x−5 = 3− 4 · 0 + 5 · 0 = 3.
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Limits Limits at Infinity

Example

Calculate lim
x→±∞

20x2 − 3x

3x5 − 4x2 + 5
.

We follow the method of dividing numerator and denominator by the
highest power x5:

limx→±∞
20x2−3x

3x5−4x2+5
= limx→±∞

20x2−3x
x5

3x5−4x2+5
x5

= limx→±∞

20x2

x5
− 3x

x5

3x5

x5
− 4x2

x5
+ 5

x5

= limx→±∞

20
x3

− 3
x4

3− 4
x3

+ 5
x5

=
limx→±∞

20
x3

− limx→±∞
3
x4

limx→±∞ 3− limx→±∞
4
x3

+ limx→±∞
5
x5

= 0−0
3−0+0 = 0.
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Limits Limits at Infinity

Limits at Infinity of Rational Functions

Theorem

If an, bm 6= 0, then it is the case that

lim
x→±∞

anx
n + an−1x

n−1 + · · ·+ a0

bmxm + bm−1xm−1 + · · ·+ b0
=

an

bm
lim

x→±∞
xn−m.

Example:

limx→∞
3x4−7x+9
7x4−4

= 3
7 limx→∞ x0 = 3

7 ;

limx→∞
3x3−7x+9
7x4−4

= 3
7 limx→∞ x−1 = 3

7 limx→∞
1
x
= 0;

limx→−∞
3x8−7x+9
7x3−4

= 3
7 limx→−∞ x5 = −∞;

limx→−∞
3x7−7x+9
7x3−4

= 3
7 limx→−∞ x4 = ∞;
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Limits Limits at Infinity

Two More Examples

Compute the limit lim
x→∞

3x7/2 + 7x−1/2

x2 − x1/2
;

We have

limx→∞
3x7/2 + 7x−1/2

x2 − x1/2
= limx→∞

(x−2)(3x7/2 + 7x−1/2)

(x−2)(x2 − x1/2)

= limx→∞
3x3/2 + 7x−5/2

1− x−3/2

=
limx→∞ 3x3/2 + limx→∞ 7x−5/2

limx→∞ 1− limx→∞ x−3/2

= ∞
1 = ∞.

Compute the limit lim
x→∞

x2√
x3 + 1

;

We have

limx→∞
x2√
x3+1

= limx→∞
x−3/2x2

x−3/2
√
x3+1

= limx→∞
x1/2√

x−3(x3+1)

= limx→∞
x1/2√
1+x−3

= ∞
1 = ∞.
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Limits Limits at Infinity

One More Example

Calculate the limits at infinity of f (x) =
12x + 25√

16x2 + 100x + 500
;

We have

limx→−∞
12x+25√

16x2+100x+500
= limx→−∞

12x(1+ 25
12x

)
√

16x2(1+ 100
16x

+ 500
16x2

)

= limx→−∞
12x(1+ 25

12x
)

−4x
√

1+ 100
16x

+ 500
16x2

= − 3 limx→−∞
1+ 25

12x
√

1+ 100
16x

+ 500
16x2

= − 3;

limx→∞
12x+25√

16x2+100x+500
= limx→∞

12x(1+ 25
12x

)
√

16x2(1+ 100
16x

+ 500
16x2

)

= limx→∞
12x(1+ 25

12x
)

4x
√

1+ 100
16x

+ 500
16x2

= 3 limx→∞
1+ 25

12x
√

1+ 100
16x

+ 500
16x2

= 3.
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Limits Intermediate Value Theorem

Subsection 8

Intermediate Value Theorem
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Limits Intermediate Value Theorem

The Intermediate Value Theorem

Intermediate Value Theorem

If f (x) is continuous on a closed interval [a, b] and f (a) 6= f (b), then for
every value M between f (a) and f (b), there exists at least one value
c ∈ (a, b), such that f (c) = M.

Example: Show that
sin x = 1

8 has at least one
solution.
Consider f (x) = sin x in
the closed interval [0, π2 ].
We have
f (0) = 0 < 1

8 < 1 = f (π2 ).
Thus, by the Intermediate
Value Theorem,

there exists c ∈ (0, π2 ), such that f (c) = 1
8 , i.e., sin c = 1

8 . This c is a
solution of the equation sin x = 1

8 ;.

George Voutsadakis (LSSU) Calculus I November 2014 64 / 67



Limits Intermediate Value Theorem

Existence of Zeros

Existence of Zeros

If f (x) is continuous on [a, b] and if f (a) and f (b) are nonzero and have
opposite signs, then f (x) has a zero in (a, b).
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Limits Intermediate Value Theorem

Applying the Existence of Zeros Theorem

Show that the equation 2x + 3x = 4x has at least one zero.

Consider f (x) = 2x +3x − 4x in the
closed interval [1, 2].
We have f (1) = 1 > 0, whereas
f (2) = − 3 < 0.
Thus, by the Existence of Zeros The-
orem, there exists c ∈ (1, 2), such
that f (c) = 0, i.e., 2c +3c−4c = 0.
But, then, c satisfies 2c + 3c = 4c ,
i.e., it is a zero of 2x + 3x = 4x .
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Limits Intermediate Value Theorem

The Bisection Method

Find an interval of length 1
4 in [1, 2] containing a root of the equation

x7 + 3x − 10 = 0;
Consider the function f (x) = x7 + 3x − 10 in [1, 2].
Since f (1) = − 6 < 0 and f (2) = 112 > 0, by the Existence of Zeros
Theorem, it has a root in (1, 2).

Since f (1) = − 6 < 0 and f (32) = 11.586 > 0, it has a root in the
interval (1, 32).

Finally, since f (54) = − 1.482 < 0 and f (32) = 11.586 > 0, the root is
in the interval (54 ,

3
2), which has length 1

4 .
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