
Calculus I

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 151

George Voutsadakis (LSSU) Calculus I November 2014 1 / 73



Outline

1 Differentiation
Definition of the Derivative
The Derivative as a Function
Product and Quotient Rules
Rates of Change
Higher Derivatives
Trigonometric Functions
The Chain Rule
Derivatives of Inverse Functions
Derivatives of Exponential and Logarithmic Functions
Implicit Differentiation
Related Rates

George Voutsadakis (LSSU) Calculus I November 2014 2 / 73



Differentiation Definition of the Derivative

Subsection 1

Definition of the Derivative
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Differentiation Definition of the Derivative

Difference Quotient

Consider the graph of the function f (x) and two points P(a, f (a))
and Q(x , f (x));

The difference quotient is the expression
f (x)− f (a)

x − a
;

It represents the slope of the secant line to y = f (x) through the
points P and Q;
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Differentiation Definition of the Derivative

Alternative Expression for Difference Quotient

The difference quotient of f from P(a, f (a)) to Q(x , f (x)) is

f (x) − f (a)

x − a
;

If we set h = x − a, then x = a + h, and the difference quotient can
be rewritten in the form: f (a + h)− f (a)

h
;
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Differentiation Definition of the Derivative

The Derivative f ′(a) of f (x) at x = a

The derivative of f (x) at x = a is the limit of the difference
quotients (if it exists)

f ′(a) = lim
h→0

f (a + h)− f (a)

h
;

When the limit exists, f is called differentiable at x = a;

Another expression is f ′(a) = limx→a
f (x)−f (a)

x−a
;

The derivative f ′(a) represents the slope of the tangent line to the
graph of y = f (x) at (a, f (a));
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Differentiation Definition of the Derivative

Computing a Derivative

Compute f ′(3) if f (x) = x2 − 8x ;
We have

f ′(3) = lim
h→0

f (3+h)−f (3)
h

= lim
h→0

(3+h)2−8(3+h)−(32−8·3)
h

= lim
h→0

9+6h+h2−24−8h+15
h

= lim
h→0

h2−2h
h

= lim
h→0

h(h−2)
h

= lim
h→0

(h − 2)

= − 2.
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Differentiation Definition of the Derivative

Computing the Slope of a Tangent Line

Find the slope of the tangent line to the graph of f (x) =
√
x at

x = 9.

We have

f ′(9) = limh→0
f (9+h)−f (9)

h

= limh→0

√
9+h−3
h

= limh→0
(
√
9+h−3)(

√
9+h+3)

h(
√
9+h+3)

= limh→0
9+h−9

h(
√
9+h+3)

= limh→0
h

h(
√
9+h+3)

= limh→0
1√

9+h+3
= 1

6
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Differentiation Definition of the Derivative

Computing an Equation of a Tangent Line

Compute the equation of the tangent line to the graph of f (x) = 1
x
at

x = 2.

First, compute the slope

f ′(2) = limh→0
f (2+h)−f (2)

h

= limh→0

1
2+h

− 1
2

h

= limh→0

2−(2+h)
2(2+h)

h

= limh→0

−h
2(2+h)

h

= limh→0
−1

2(2+h) = − 1
4 .

Now, set up the equation for the tangent y − f (2) = f ′(2)(x − 2), i.e.,
y − 1

2 = −1
4(x − 2) or y = −1

4x + 1.
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Differentiation The Derivative as a Function

Subsection 2

The Derivative as a Function
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Differentiation The Derivative as a Function

Differentiability

To compute the derivative of a function at an arbitrary point x , we
use

f ′(x) = lim
h→0

f (x + h)− f (x)

h
.

If the limit exists, then f is differentiable at x .

Let us show that f (x) = x3 − 12x is differentiable at all x ∈ R.

f ′(x) = limh→0
f (x+h)−f (x)

h

= limh→0
(x+h)3−12(x+h)−(x3−12x)

h

= limh→0
x3+3x2h+3xh2+h3−12x−12h−x3+12x

h

= limh→0
3x2h+3xh2+h3−12h

h

= limh→0
h(3x2+3xh+h2−12)

h

= limh→0 (3x
2 + 3xh + h2 − 12) = 3x2 − 12.
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Differentiation The Derivative as a Function

Another Example

Show that f (x) = x−2 is differentiable, for all x 6= 0 and find f ′(x);
We compute the limit

f ′(x) = lim
h→0

f (x+h)−f (x)
h

= lim
h→0

1
(x+h)2

− 1
x2

h

= lim
h→0

x2−(x+h)2

x2(x+h)2

h

= lim
h→0

x2−(x2+2xh+h2)
hx2(x+h)2

= lim
h→0

−h(2x+h)
hx2(x+h)2

= lim
h→0

−(2x+h)
x2(x+h)2

= −2x
x4

= − 2
x3
.
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Differentiation The Derivative as a Function

Power Rule

For all exponents n, we have

(xn)′ =
d

dx
xn = nxn−1.

The following are examples of applications of the Power Rule:

(x2)′ = 2x
(x20)′ = 20x19

(
√
x)′ = (x1/2)′ = 1

2x
−1/2 = 1

2
√
x

( 1
5√
x3
)′ = (x−3/5)′ = − 3

5x
−8/5 = − 3

5
5√
x8
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Differentiation The Derivative as a Function

Sum/Difference and Constant Factor Rules

The Sum/Difference Rule:

(f ± g)′ = f ′ ± g ′.

The Constant Factor Rule:

(cf )′ = cf ′.

The following are examples of applications of these rules:

(2x32)′ = 2(x32)′ = 2 · 32x31 = 64x31;
(6x5 − 3x2)′ = (6x5)′ − (3x2)′ = 6 · 5x4 − 3 · 2x = 30x4 − 6x ;
(x3−12x2+36x−16)′ = (x3)′−(12x2)′+(36x)′−(16)′ = 3x2−24x+36.
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Differentiation The Derivative as a Function

A Geometric Application

Determine all points on the graph of f (x) = x3 − 12x + 4, where the
tangent line to the graph is horizontal;

We compute the derivative and find the points where it zeros:
f ′(x) = (x3 − 12x + 4)′ = 3x2 − 12 = 0; So 3(x2 − 4) = 0, i.e.,
3(x − 2)(x + 2) = 0, showing that x = −2 or x = 2; Thus the
tangent lines are horizontal at (−2, 20) and (2,−12);
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Differentiation The Derivative as a Function

Another Geometric Application

Find an equation of the tangent line to the graph of
f (x) = x−3 + 2

√
x − x−4/5 at x = 1;

First, compute the slope

f ′(x) = (x−3 + 2x1/2 − x−4/5)′

= − 3x−4 + 21
2x

−1/2 − (−4
5 )x

−9/5

= − 3x−4 + x−1/2 + 4
5x

−9/5.

Thus, f ′(1) = − 3 + 1 + 4
5 = − 6

5 .

Now, set up the equation for the tangent y − f (1) = f ′(1)(x − 1), i.e.,
y − 2 = −6

5(x − 1) or y = −6
5x + 16

5 .
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Differentiation The Derivative as a Function

Derivatives of Exponentials

Exponential Derivation Rules:

(bx)′ = bx ln b; In particular (ex )′ = ex .

Example: Find an equation for the tangent line to the graph of
f (x) = 2ex − 3x2 at the point x = 2.

f ′(x) = (2ex − 3x2)′

= 2ex − 6x .

Thus, f ′(2) = 2e2 − 12. So, an equation
for the tangent line is

y − (2e2 − 12) = (2e2 − 12)(x − 2).
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Differentiation The Derivative as a Function

Differentiability Implies Continuity

Theorem

If f is differentiable at x = c , then f is continuous at x = c .

The hypothesis that f is differentiable at x = c means that the limit
f ′(c) = limx→c

f (x)−f (c)
x−c

exists, i.e., it is some specific real number.
Therefore, we may compute

lim
x→c

f (x) = lim
x→c

[(f (x)− f (c)) + f (c)]

= lim
x→c

[ f (x)−f (c)
x−c

· (x − c) + f (c)]

= lim
x→c

f (x)−f (c)
x−c

· limx→c (x − c) + limx→c f (c)

= f ′(c) · 0 + f (c)

= f (c).

Since limx→c f (x) = f (c), f is continuous at x = c .

George Voutsadakis (LSSU) Calculus I November 2014 18 / 73



Differentiation The Derivative as a Function

Continuity Does Not Imply Differentiability

If f (x) is continuous at x = c , this does not necessarily imply that
f (x) is differentiable at x = c .

Consider, for instance f (x) = |x | =
{

−x , if x < 0
x , if x ≥ 0

at x = 0;

lim
x→0−

|x | = lim
x→0−

(−x) = 0

and

lim
x→0+

|x | = lim
x→0+

x = 0,

whence limx→0 |x | = 0 = |0|, so
f (x) = |x | is continuous at x = 0;

lim
h→0−

f (0+h)−f (0)
h

= lim
h→0−

|h|
h

=

lim
h→0−

−h
h

= −1

whereas limh→0+
f (0+h)−f (0)

h
=

lim
h→0+

|h|
h

= lim
h→0−

h
h
= +1.

So lim
h→0

f (0+h)−f (0)
h

does not ex-

ist, i.e., f (x) = |x | is not differ-
entiable at x = 0.
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Differentiation Product and Quotient Rules

Subsection 3

Product and Quotient Rules
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Differentiation Product and Quotient Rules

Product Rule

Product Rule: If f and g are differentiable, then fg is also
differentiable and

(f (x)g(x))′ = f ′(x)g(x) + f (x)g ′(x);

Example:

(x2(9x + 2))′ = (x2)′(9x + 2) + x2(9x + 2)′

= 2x(9x + 2) + x2 · 9
= 18x2 + 4x + 9x2

= 27x2 + 4x .
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Differentiation Product and Quotient Rules

Some Examples

Compute f ′(x) if f (x) = (2 + x−1)(x3/2 + 1);

((2 + x−1)(x3/2 + 1))′ = (2 + x−1)′(x3/2 + 1)

+ (2 + x−1)(x3/2 + 1)′

= − x−2(x3/2 + 1) + (2 + x−1)32x
1/2

= − x−1/2 − x−2 + 3x1/2 + 3
2x

−1/2

= 1
2x

−1/2 − x−2 + 3x1/2.

Compute f ′(x) if f (x) = x2ex ;

(x2ex)′ = (x2)′ex + x2(ex )′

= 2xex + x2ex

= (x2 + 2x)ex .
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Differentiation Product and Quotient Rules

More Theoretical Examples

Let f (x) = xg(x), for some function g . Moreover, suppose that
g(3) = 5 and that g ′(3) = 2. What is then f ′(3)?
We apply the product rule to compute f ′(x):

f ′(x) = (xg(x))′ = (x)′g(x) + xg ′(x) = g(x) + xg ′(x).

Now substitute x = 3: f ′(3) = g(3) + 3 · g ′(3) = 5 + 3 · 2 = 11.

Discover a formula for (f (x)g(x)h(x))′ ;

(f (x)g(x)h(x))′ = f ′(x)(g(x)h(x)) + f (x)(g(x)h(x))′

= f ′(x)g(x)h(x) + f (x)(g ′(x)h(x) + g(x)h′(x))
= f ′(x)g(x)h(x) + f (x)g ′(x)h(x) + f (x)g(x)h′(x).

Therefore,

(f (x)g(x)h(x))′ = f ′(x)g(x)h(x)+f (x)g ′(x)h(x)+f (x)g(x)h′(x);
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Differentiation Product and Quotient Rules

Quotient Rule

Quotient Rule: If f and g are differentiable, with g(x) 6= 0, then f
g

is also differentiable and

(

f (x)

g(x)

)′
=

f ′(x)g(x) − f (x)g ′(x)
g(x)2

;

Example:

( x
1+x2

)′ = (x)′(1+x2)−x(1+x2)′

(1+x2)2

= 1+x2−x ·2x
(1+x2)2

= 1−x2

(1+x2)2
.

Example:

( ex

ex+x
)′ = (ex )′(ex+x)−ex (ex+x)′

(ex+x)2

= ex (ex+x)−ex (ex+1)
(ex+x)2

= e2x+xex−e2x−ex

(ex+x)2
= (x−1)ex

(ex+x)2
.
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Differentiation Product and Quotient Rules

A Geometric Example

Find an equation for the tangent line to f (x) =
3x2 + x − 2

4x3 + 1
at x = 1.

For the slope, we have

f ′(x)

= (3x2+x−2)′(4x3+1)−(3x2+x−2)(4x3+1)′

(4x3+1)2

= (6x+1)(4x3+1)−(3x2+x−2)12x2

(4x3+1)2

= 24x4+4x3+6x+1−36x4−12x3+24x2

(4x3+1)2

= −12x4−8x3+24x2+6x+1
(4x3+1)2

.

Thus, f ′(1) = 11
25 , and, since f (1) = 2

5 , we
get the equation y − 2

5 = 11
25 (x − 1).
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Differentiation Product and Quotient Rules

Example from Physics

For a battery of voltage V = 12 Volts and internal resistance r = 7
Ohms, the total power that the battery delivers to an apparatus of

resistance R is P(R) =
V 2R

(R + r)2
=

144R

(R + 7)2
. Compute dP

dR
and find

the value of the resistance R for which the tangent to the graph P vs
R is horizontal.

For the slope, we have P ′(R) =

= (144R)′(R+7)2−144R((R+7)2)′

((R+7)2)2

= 144(R+7)2−144R·2(R+7)
(R+7)4

= 144(R+7)2−288R(R+7)
(R+7)4

= (R+7)[144(R+7)−288R]
(R+7)4

= 144(7−R)
(R+7)3

Thus, P ′(R) = 0 when R = 7
Ohms.
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Differentiation Rates of Change

Subsection 4

Rates of Change
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Differentiation Rates of Change

Average and Instantaneous Rate of Change

The Average Rate of Change of y = f (x) per unit of x between x0
and x1 is given by

∆y

∆x
=

f (x1)− f (x0)

x1 − x0
;

The Instantaneous Rate of Change of y = f (x) at x = x0 is given
by

f ′(x0) = lim
∆x→0

∆y

∆x
= lim

x1→x0

f (x1)− f (x0)

x1 − x0
;
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Differentiation Rates of Change

Example

The area of a circle of radius r is given by A(r) = πr2; Compute the
rates of change dA

dr
at r = 2 and r = 5 and explain (in practical

terms) why the second is larger than the first.
We have

dA

dr
= (πr2)′ = 2πr .

Therefore dA
dr

|r=2= 4π and dA
dr

|r=5= 10π.

dA
dr

is a measure of how much the
area increases as r increases by a
slight amount dr . Clearly, when
the radius is larger the increase in
the amount of area for the same
increase in the radius is larger!
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Differentiation Rates of Change

Approximating a One-Unit Change Using the Derivative

For small values of h, we have that

f ′(x) = lim
h→0

f (x + h)− f (x)

h
≈ f (x + h)− f (x)

h
.

For some applications, especially those in which x denotes number of
items or units of a commodity, h = 1 may be already useful enough,
whence f (x + 1)− f (x) ≈ f ′(x);
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Differentiation Rates of Change

An Example: Change in Stopping Distance

For speeds s between 30 and 75 mph, the stopping distance of a car
after the brakes are applied is approximately F (s) = 1.1s + 0.05s2

feet. Estimate the change in stopping distance for s = 60 mph, when
the speed is increased by 1 mph. What is the exact change?
For an estimate, we use the derivative:
F ′(s) = (1.1s + 0.05s2)′ = 1.1 + 0.1s, whence

F (61)− F (60) ≈ F ′(60) = 1.1 + 0.1 · 60 = 7.1.

For the exact change, we compute

F (61) − F (60)
= 1.1 · 61 + 0.05 · 612 − (1.1 · 60 + 0.05 · 602)
= 7.15.
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Differentiation Rates of Change

Another Example: Marginal Cost

If C (x) is the cost function in terms of the number x of items
produced, the marginal cost at production level x0 is the additional
cost for producing one additional unit;

According to previous work: C (x0 + 1)− C (x0) ≈ C ′(x0); Thus, the
derivative C ′(x) may be used to approximate the marginal cost;

Example: If the total cost of a flight for an airline company is
C (x) = 0.0005x3 − 0.38x2 + 120x , where x is the number of
passengers, estimate the marginal cost when the flight has 150
passengers.
Note that
C ′(x) = (0.0005x3 − 0.38x2 + 120x)′ = 0.0015x2 − 0.76x + 120,
whence

C (151) − C (150) ≈ C ′(150)
= 0.0015 · 1502 − 0.76 · 150 + 120 = 39.75.

George Voutsadakis (LSSU) Calculus I November 2014 32 / 73



Differentiation Rates of Change

Linear Motion

If s(t) is the position of a moving object at time t, then its average

velocity between t0 and t1 is vavg[t0, t1] =
s(t1)−s(t0)

t1−t0
;

Its instantaneous velocity at t0 is given by
v(t0) = limt1→t0

s(t1)−s(t0)
t1−t0

= s ′(t0);

Similarly, its average acceleration between t0 and t1 is
aavg[t0, t1] =

v(t1)−v(t0)
t1−t0

;

Its instantaneous acceleration at t0 is given by
a(t0) = limt1→t0

v(t1)−v(t0)
t1−t0

= v ′(t0);

Example: The position function of a truck entering the off-ramp of a
highway is s(t) = 25t − 0.3t3 meters for 0 ≤ t ≤ 5 in seconds after
entering the ramp. How fast was the driver driving when he started
on the ramp?
v(t) = s ′(t) = (25t − 0.3t3)′ = 25− 0.9t2; Therefore v(0) = 25
meters per second.
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Differentiation Rates of Change

Motion Under the Influence of Gravity

Suppose an object is tossed vertically upwards from an initial height
s0 with an initial velocity v0;

Since the only force acting on the object is that of gravity, the only
acceleration applied on the object is that of gravity, which is taken to
be constant and equal to −g = −9.8 m/s2 = −32 ft/sec2;

Thus, since the acceleration is the derivative of its velocity function,
we get

v(t) = − gt + v0;

Moreover, since its velocity function is the derivative of its distance
function, we get

s(t) = − 1

2
gt2 + v0t + s0;
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Differentiation Rates of Change

An Example

If an object is shot upward with an initial velocity of 20 m/sec from
an initial height of 2 m, find its maximum height and the time at
which it reaches the maximum height.

We have v(t) = − gt + v0 = − 9.8t + 20;
To find the max height, we set v(t) = 0 and solve for t;
We get v(t) = 0 when t = 20

9.8 = 2.04 sec.
Since s(t) = − 1

2gt
2 + v0t + s0, i.e

s(t) = − 1
29.8t

2 + 20t + 2 = − 4.9t2 + 20t + 2,
we get maximum height s(2.04) = 22.408 meters.
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Differentiation Higher Derivatives

Subsection 5

Higher Derivatives
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Differentiation Higher Derivatives

The n-th Derivative

The second derivative of a function f (x) is the first derivative of its
first derivative:

f ′′(x) = (f ′(x))′;

The third derivative is the derivative of its second derivative

f ′′′(x) = (f ′′(x))′;

From the fourth derivative onwards the notation f (4)(x), f (5)(x), . . . is
used instead of f ′′′′(x), f ′′′′′(x), . . . since we want to avoid piling up
primes on the letter used to denote the function;

Thus, the statement that the (n + 1)-st derivative is the first
derivative of the n-th derivative may be written symbolically

f (n+1)(x) = (f (n)(x))′.
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Differentiation Higher Derivatives

Finding First Few Derivatives

Find the three first derivatives of f (x) = 3x7 − 5x2 + 7x−3;
For the first derivative

f ′(x) = (3x7 − 5x2 + 7x−3)′

= 21x6 − 10x − 21x−4.

For the second derivative

f ′′(x) = (21x6 − 10x − 21x−4)′

= 126x5 − 10 + 84x−5.

Finally, for the third derivative

f ′′′(x) = (126x5 − 10 + 84x−5)′

= 630x4 − 420x−6.
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Differentiation Higher Derivatives

Discovering a Pattern for the n-th Derivative

Calculate the five first derivatives of f (x) = x−1 and, then, find a
pattern to determine f (n)(x) for an arbitrary n;
Let f (x) = x−1. We have

f ′(x) = (x−1)′ = − x−2;
f ′′(x) = (−x−2)′ = + 1 · 2x−3;
f ′′′(x) = (1 · 2x−3)′ = − 1 · 2 · 3x−4;

f (4)(x) = (−1 · 2 · 3x−4)′ = + 1 · 2 · 3 · 4x−5;

f (5)(x) = (+1 · 2 · 3 · 4x−5)′ = − 1 · 2 · 3 · 4 · 5x−6.

Thus, the pattern revealed is

f (n)(x) = (−1)n1 · 2 · · · · · nx−(n+1) =
(−1)nn!

xn+1
.
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Differentiation Higher Derivatives

One More Example

Calculate the three first derivatives of f (x) = xex and, then, find a
pattern to determine f (n)(x) for an arbitrary n;
Let f (x) = xex . We have

f ′(x) = (xex )′ = (x)′ex + x(ex )′ = ex + xex = (1 + x)ex ;
f ′′(x) = ((1 + x)ex )′ = (1 + x)′ex + (1 + x)(ex )′

= ex + (1 + x)ex = (2 + x)ex ;
f ′′′(x) = ((2 + x)ex )′ = (2 + x)′ex + (2 + x)(ex )′

= ex + (2 + x)ex = (3 + x)ex ;

Thus, the pattern revealed is

f (n)(x) = (n + x)ex .
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Differentiation Trigonometric Functions

Subsection 6

Trigonometric Functions
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Differentiation Trigonometric Functions

Basic Trigonometric Derivatives:

(sin x)′ = cos x and (cos x)′ = − sin x ;

Let us see why the first holds:

(sin x)′ = lim
h→0

sin (x+h)−sin x
h

= lim
h→0

sin x cos h+sin h cos x−sin x
h

= lim
h→0

sin x(cos h−1)+sin h cos x
h

= lim
h→0

sin x(cos h−1)
h

+ lim
h→0

sin h cos x
h

= sin x lim
h→0

cos h−1
h

+ cos x lim
h→0

sin h
h

= sin x · 0 + cos x · 1
= cos x .
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Differentiation Trigonometric Functions

Example

Find f ′′(x) if f (x) = x cos x ;
We have

f ′(x) = (x cos x)′

= (x)′ cos x + x(cos x)′

= cos x − x sin x .

Therefore,

f ′′(x) = (cos x − x sin x)′

= (cos x)′ − (x sin x)′

= − sin x − ((x)′ sin x + x(sin x)′)
= − sin x − (sin x + x cos x)
= − 2 sin x − x cos x .
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Differentiation Trigonometric Functions

More Trigonometric Formulas

For the other Trigonometric Functions we have

(tan x)′ = sec2 x , (sec x)′ = sec x tan x ,

(cot x)′ = − csc2 x , (csc x)′ = − csc x cot x .

Let us see why the third holds:

(cot x)′ = ( cos xsin x )
′

= (cos x)′ sin x−cos x(sin x)′

sin2 x

= − sin x sin x−cos x cos x
sin2 x

= −(sin2 x+cos2 x)

sin2 x

= − ( 1
sin x )

2

= − csc2 x .
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Differentiation Trigonometric Functions

A Geometry Problem

Find an equation for the tangent line to the graph of
f (x) = tan x sec x at x = π

4 ;

For the slope, we have

f ′(x) = (tan x sec x)′ = (tan x)′ sec x + tan x(sec x)′

= sec2 x sec x + tan x sec x tan x = sec3 x + sec x tan2 x ;

Therefore, f ′(π4 )
= sec3 π

4 + sec π
4 tan

π
4

=
√
2
3
+

√
2 = 3

√
2.

Thus, an equation for the tangent
line is

y −
√
2 = 3

√
2(x − π

4
).
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Differentiation The Chain Rule

Subsection 7

The Chain Rule
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Differentiation The Chain Rule

Chain Rule: If f and g are differentiable, then (f ◦ g)(x) = f (g(x))
is also differentiable and its derivative is given by

(f (g(x)))′ = f ′(g(x))g ′(x).

Example: Calculate the derivative of h(x) = cos (x3);
Note that h(x) = f (g(x)), where f (x) = cos x and g(x) = x3. Thus,
taking into account the chain rule, we obtain

h′(x) = (f (g(x)))′

= f ′(g(x))g ′(x)
= − sin (x3)(x3)′

= − 3x2 sin (x3).
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Differentiation The Chain Rule

More Examples

Calculate the derivative of h(x) =
√
x4 + 1;

Note that h(x) = f (g(x)), where f (x) =
√
x and g(x) = x4 + 1.

Thus, taking into account the chain rule, we obtain

h′(x) = (f (g(x)))′ = f ′(g(x))g ′(x)

= 1
2(x

4 + 1)−1/2(x4 + 1)′

= 4x3

2
√
x4+1

= 2x3√
x4+1

.

Calculate the derivative of h(x) = tan ( x
x+1);

Note that h(x) = f (g(x)), where f (x) = tan x and g(x) = x
x+1 .

Thus, taking into account the chain rule, we obtain

h′(x) = (f (g(x)))′ = f ′(g(x))g ′(x)

= sec2 ( x
x+1)(

x
x+1)

′

= sec2 ( x
x+1)

(x)′(x+1)−x(x+1)′

(x+1)2

= sec2 ( x
x+1)

x+1−x
(x+1)2

= 1
(x+1)2

sec2 ( x
x+1).

George Voutsadakis (LSSU) Calculus I November 2014 48 / 73



Differentiation The Chain Rule

Example Involving Rates of Change

Suppose a sphere is inflated so that its radius is increasing at the rate
of 3 cm/sec. At what rate is the volume of the sphere increasing
when its radius is 10 cm?
We have

V (r) =
4

3
πr3.

Therefore,

dV

dt
=

d

dt
(
4

3
πr3) =

4

3
π3r2

dr

dt
= 4πr2

dr

dt

Thus, we get

dV

dt
= 4π · 102 · 3 = 1200π cm3/sec.
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Differentiation The Chain Rule

Power and Exponential Rules

Power and Exponential Rules: If g is differentiable, then

[g(x)n]′ = ng(x)n−1g ′(x) and (eg(x))′ = eg(x)g ′(x).

Example: Compute f ′(x) for f (x) = (x2 + 7x + 2)−1/3;

f ′(x) = [(x2 + 7x + 2)−1/3]′

= − 1
3 (x

2 + 7x + 2)−4/3(x2 + 7x + 2)′

= − 1
3 (x

2 + 7x + 2)−4/3(2x + 7).

Example: Compute f ′(x) for f (x) = ecos x ;

f ′(x) = (ecos x)′

= ecos x(cos x)′

= − (sin x)ecos x .
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Differentiation The Chain Rule

Using Chain Rule Twice

Compute the derivatives:

(
3
√

1 +
√
x2 + 1)′ = [(1 + (x2 + 1)1/2)1/3]′

= 1
3(1 + (x2 + 1)1/2)−2/3(1 + (x2 + 1)1/2)′

= 1
3(1 + (x2 + 1)1/2)−2/3 ·

1
2(x

2 + 1)−1/2(x2 + 1)′

= 1
3(1 + (x2 + 1)1/2)−2/3 1

2(x
2 + 1)−1/22x

= 1
3x(x

2 + 1)−1/2(1 + (x2 + 1)1/2)−2/3.

(e(x
2+7x)3)′ = e(x

2+7x)3 · ((x2 + 7x)3)′

= e(x
2+7x)3 · 3(x2 + 7x)2 · (x2 + 7x)′

= 3(2x + 7)(x2 + 7x)2e(x
2+7x)3 .
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Differentiation Derivatives of Inverse Functions

Subsection 8

Derivatives of Inverse Functions
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Differentiation Derivatives of Inverse Functions

Derivative of the Inverse Function

Suppose f is differentiable and one-to-one with inverse
g(x) = f −1(x). If b belongs to the domain of g(x) and f ′(g(b)) 6= 0,
then g ′(b) exists and

g ′(b) =
1

f ′(g(b))
.

Since f (g(x)) = x , by the
chain rule, we get
f ′(g(x))g ′(x) = 1. Therefore

g ′(x) =
1

f ′(g(x))
.
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Differentiation Derivatives of Inverse Functions

Two Examples

If f (x) = x4 + 10, with domain {x : x ≥ 0}, compute g ′(x), where
g = f −1;
First, note that f ′(x) = 4x3. Next, find a formula for g(x) by solving
x = y4 + 10 for y : We have y = 4

√
x − 10 = (x − 10)1/4; Hence

g(x) = (x − 10)1/4; Thus, using the formula for the derivative of the
inverse, we get

g ′(x) =
1

f ′(g(x))
=

1

4((x − 10)1/4)3
=

1

4
(x − 10)−3/4.

If f (x) = x + ex , calculate g ′(1), where g = f −1;
Since f (0) = 0 + e0 = 1, we must have g(1) = f −1(1) = 0. Next,
note that f ′(x) = (x + ex)′ = 1 + ex . Thus f ′(0) = 1 + e0 = 2. Now,
we compute

g ′(1) =
1

f ′(g(1))
=

1

f ′(0)
=

1

2
.
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Differentiation Derivatives of Inverse Functions

Derivatives of Inverse Trigonometric Functions

Derivatives of sin−1 x , cos−1 x and tan−1 x :

(sin−1 x)′ =
1√

1− x2
, (cos−1 x)′ = − 1√

1− x2
,

(tan−1 x)′ =
1

x2 + 1
, (csc−1 x)′ = − 1

|x |
√
x2 − 1

,

Example: Find f ′(12 ) if f (x) = sin−1 (x2);
We have, using the chain rule,

f ′(x) = [sin−1 (x2)]′ =
1

√

1− (x2)2
(x2)′ =

2x√
1− x4

.

Therefore

f ′
(

1

2

)

=
2 · (1/2)

√

1− (1/2)4
=

1
√

15/16
=

4√
15

.

George Voutsadakis (LSSU) Calculus I November 2014 55 / 73



Differentiation Derivatives of Inverse Functions

A Geometric Application

Find an equation for the tangent line to f (x) = csc−1 (ex + 1) at
x = 0;
Compute

f ′(x) = (csc−1 (ex + 1))′

= − 1

|ex + 1|
√

(ex + 1)2 − 1
(ex + 1)′

= − ex

(ex + 1)
√
e2x + 2ex

.

Therefore, the slope of the tangent at (0, π6 ) is

f ′(0) = − 1

2
√
3
.

Hence, the equation is

y − π

6
= − 1

2
√
3
x .
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Differentiation Derivatives of Exponential and Logarithmic Functions

Subsection 9

Derivatives of Exponential and Logarithmic Functions
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Differentiation Derivatives of Exponential and Logarithmic Functions

Derivatives of Exponential Functions

Derivatives of Exponential:

(bx)′ = bx ln b, (bf (x))′ = bf (x)f ′(x) ln b;

Examples:

(43x)′ = 43x ln 4 · (3x)′ = 3 · 43x ln 4.
(5x

2+1)′ = 5x
2+1 ln 5 · (x2 + 1)′ = 2x · 5x2+1 ln 5.
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Differentiation Derivatives of Exponential and Logarithmic Functions

Derivatives of Logarithmic Functions

Derivatives of Logarithmic Functions:

(logb x)
′ =

1

x ln b
, (logb f (x))

′ =
f ′(x)

f (x) ln b
;

Examples:

(x ln x)′ = (x)′ ln x + x(ln x)′ = ln x + x 1
x
= ln x + 1;

((ln x)2)′ = 2 ln x(ln x)′ = 2 ln x
x

;

(ln (x3 + 1))′ = 1
x3+1 (x

3 + 1)′ = 3x2

x3+1 ;

(ln
√
sin x)′ = 1√

sin x
(
√
sin x)′ = 1√

sin x
1

2
√
sin x

(sin x)′ = cos x
2 sin x = 1

2 cot x .
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Differentiation Derivatives of Exponential and Logarithmic Functions

Logarithmic Differentiation

Let us find the derivative f ′(x) of f (x) = (x+1)2(2x2−3)√
x2+1

;

First, we use properties of logarithms to rewrite ln f (x) as a
sum/difference of logs:

ln f (x) = ln (x+1)2(2x2−3)√
x2+1

= ln [(x + 1)2(2x2 − 3)]− ln [(x2 + 1)1/2]
= 2 ln (x + 1) + ln (2x2 − 3)− 1

2 ln (x
2 + 1).

Next, compute the derivative of ln f (x) using sum/difference and
logarithmic rules:

(ln f (x))′ = [2 ln (x + 1) + ln (2x2 − 3) − 1
2 ln (x

2 + 1)]′

= (2 ln (x + 1))′ + (ln (2x2 − 3))′ − (12 ln (x
2 + 1))′

= 2
x+1 +

4x
2x2−3

− x
x2+1

.

Thus, we get f ′(x)
f (x) = 2

x+1 +
4x

2x2−3
− x

x2+1
, i.e., that

f ′(x) = f (x)[ 2
x+1 + 4x

2x2−3
− x

x2+1
].
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Differentiation Derivatives of Exponential and Logarithmic Functions

Logarithmic Differentiation for Exponential Functions

Let us find the derivative f ′(x) of f (x) = xx ;
We have

ln f (x) = ln (xx) = x ln x .

Therefore f ′(x)
f (x) = ln x +1, i.e., f ′(x) = f (x)(ln x +1) = xx(ln x +1);

Let us find the derivative f ′(x) of f (x) = xsin x ;
We have

ln f (x) = ln (xsin x) = sin x ln x .

Therefore f ′(x)
f (x) = cos x ln x + sin x

x
, i.e.,

f ′(x) = f (x)(cos x ln x + sin x
x

) = xsin x(cos x ln x + sin x
x

);
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Differentiation Derivatives of Exponential and Logarithmic Functions

Hyperbolic Functions

Basic Hyperbolic Functions:

sinh x =
ex − e−x

2
, cosh x =

ex + e−x

2
;

Additional Definitions:

tanh x =
sinh x

cosh x
, sechx =

1

cosh x
;

Compute (sinh x)′ = ( e
x−e−x

2 )′ = ex+e−x

2 = cosh x ;

Similarly, (cosh x)′ = sinh x ;

(coth x)′ = ( cosh xsinh x )
′ = (cosh x)′ sinh x−cosh x(sinh x)′

sinh2 x
= sinh2 x−cosh2 x

sinh2 x
=

−1
sinh2 x

= − csch2x ;
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Differentiation Derivatives of Exponential and Logarithmic Functions

Some Examples

(cosh (3x2 + 1))′ = sinh (3x2 + 1)(3x2 + 1)′

= 6x sinh (3x2 + 1).

(sinh x tanh x)′ = (sinh x)′ tanh x + sinh x(tanh x)′

= cosh x tanh x + sinh xsech2x
= sinh x + tanh xsechx .
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Differentiation Implicit Differentiation

Subsection 10

Implicit Differentiation
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Differentiation Implicit Differentiation

Example I

Compute dy
dx

if y is defined implicitly as a function of x by
x2 + y2 = 1;
Take derivatives of both sides with respect to x :

d

dx
(x2 + y2) =

d1

dx
;

Use sum rule:
d

dx
(x2) +

d

dx
(y2) = 0;

Then 2x + 2y dy
dx

= 0; Now solve for dy
dx
:

dy

dx
= − x

y
;
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Differentiation Implicit Differentiation

Example II

Find an equation for the tangent line to the graph of
y4 + xy = x3 − x + 2 at (x , y) = (1, 1);
Take derivatives of both sides with respect to x :
(y4 + xy)′ = (x3 − x + 2)′; Use carefully the required rules:
(y4)′ + (xy)′ = (x3)′ − (x)′ + (2)′, whence

4y3y ′ + y + xy ′ = 3x2 − 1;

Thus, (4y3 + x)y ′ = 3x2 − y − 1; and, therefore

y ′ =
3x2 − y − 1

4y3 + x
;

It follows that y ′(1, 1) = 1
5 ; Thus, an equation for the tangent is

y − 1 = 1
5(x − 1);
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Differentiation Implicit Differentiation

Example III

Find an equation for the tangent line to the graph of
ex−y = 2x2 − y2 at (x , y) = (1, 1);
Take derivatives of both sides with respect to x :
(ex−y )′ = (2x2 − y2)′; Use again the rules: ex−y (x − y)′ = 4x − 2yy ′,
whence

ex−y (1− y ′) = 4x − 2yy ′;

Thus, (ex−y − 2y)y ′ = ex−y − 4x ; and, therefore

y ′ =
ex−y − 4x

ex−y − 2y
;

It follows that y ′(1, 1) = 3; Thus, an equation for the tangent is
y − 1 = 3(x − 1);
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Differentiation Implicit Differentiation

Example IV

Find an equation for the tangent line to the graph of
y cos (y + t + t2) = t3 at (t, y) = (0, 5π2 );
Take derivatives of both sides with respect to t:
(y cos (y + t + t2))′ = (t3)′; Use again the rules:
(y)′ cos (y + t + t2) + y(cos (y + t + t2))′ = 3t2, whence
y ′ cos (y + t + t2)− y sin (y + t + t2)(y + t + t2)′ = 3t2;
Hence, we have

y ′ cos (y + t + t2)− y sin (y + t + t2)(y ′ + 1 + 2t) = 3t2;

Thus, for t = 0 and y = 5π
2 , y ′ cos 5π

2 − 5π
2 sin 5π

2 (y ′ + 1) = 0; and,
therefore

−5π

2
(y ′ + 1) = 0;

It follows that y ′(0, 5π2 ) = −1; Thus, an equation for the tangent is
y − 5π

2 = −t;
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Differentiation Related Rates

Subsection 11

Related Rates
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Differentiation Related Rates

Sliding Ladder

A 5 meter ladder leans against a
wall. The bottom is 1.5 meters
from the wall at time t = 0 and
slides away at a rate of 0.8 meters
per second. What is the velocity
of the top of the ladder at t = 1?

x2 + h2 = 52, whence d
dt
(x2 + h2) = 0, and, therefore, 2x dx

dt
+ 2h dh

dt
= 0,

yielding dh
dt

= − x
h
dx
dt
.

Note that, at t = 1, we have x(1) = 2.3, whence we obtain
h(1) =

√
25− 2.32 ≈ 4.44. Now, we substitute in these values:

dh
dt

= − 2.3
4.44 · 0.8 = −0.41 meters per second.
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Differentiation Related Rates

Filling a Rectangular Tank

Water pours into a tank at a rate of
0.3 cubic meters per minute. How fast
is water level rising if the base of the
tank is a rectangle of dimensions 2×3
meters?

The volume V is related to the height h by the equation V = 2 · 3 · h,
whence dV

dt
= 6dh

dt
, and, therefore, dh

dt
= 1

6
dV
dt

.
Now, we substitute the appropriate value:

dh

dt
=

1

6
· 0.3 = 0.05 meters per minute.
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Differentiation Related Rates

Filling a Conical Tank

Water pours into a conical tank of height
10 m and radius 4 m at a rate of 6
m3/min. At what rate is the water ris-
ing when the level is 5 m high?

The volume V is related to the height h and the radius r by the equation
V = 1

3πhr
2. Moreover, by the two similar triangles of the figure, we have

that r
h
= 4

10 , whence r = 2
5h. Therefore, V = 1

3πh
4
25h

2, yielding
V = 4π

75 h
3. Computing derivatives of both sides with respect to t, we get

dV
dt

= 4π
75 3h

2 dh
dt
. So, we obtain

dh

dt
=

25

4πh2
dV

dt
.

Substituting the appropriate values: dh
dt

= 25
4π256 = 3

2π m/min.
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Differentiation Related Rates

Velocity of a Rocket

A rocket is launched vertically
from a launching pad 6 Km away from a
radar station. If at a certain moment the an-
gle θ between the line of observation and the
ground is π

3 and increasing at 0.9 rad/min,
what is the rocket’s velocity v at that time?

The angle θ is related to the height h and the distance from the launching
pad by tan θ = h

6 , whence we get h = 6 tan θ. Computing derivatives of
both sides with respect to t, we get

dh

dt
= 6 sec2 θ

dθ

dt
.

So, we obtain dh
dt

= 6 · 22 · 0.9 = 21.6 Km/min.
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