
Calculus I

George Voutsadakis1

1Mathematics and Computer Science
Lake Superior State University

LSSU Math 151

George Voutsadakis (LSSU) Calculus I November 2014 1 / 77



Outline

1 Applications of the Derivative
Linear Approximations
Extreme Values
The Mean Value Theorem and Monotonicity
The Shape of a Graph
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Applications of the Derivative Linear Approximations

Subsection 1

Linear Approximations
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Applications of the Derivative Linear Approximations

Linear Approximation of ∆f

If f is differentiable at x = a and ∆x is small, then the difference
∆y = f (a +∆x) − f (a) can be approximated by

∆y ≈ f ′(a)∆x .
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Applications of the Derivative Linear Approximations

Examples

Use a Linear Approximation to approximate 1
10.2 − 1

10 ;

Consider f (x) = 1
x
; Note that f ′(x) = − 1

x2
; We would like to

approximate f (10 + 0.2) − f (10); According to the linear
approximation scheme,

f (10.2) − f (10) ≈ f ′(10)∆x = − 1

102
⋅ 0.2 = − 0.002.

Approximate the value of 3
√
8.1;

Consider f (x) = 3
√
x ; Note that f ′(x) = 1

3x
−2/3; We would like to

approximate f (8.1); According to the linear approximation scheme,

f (8.1) − f (8) ≈ f ′(8)∆x = 1

3
8−2/3 ⋅ 0.1 = 1

120
.

Therefore 3
√
8.1 ≈ 3

√
8 + 1

120 = 241
120 ≈ 2.0083.
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Applications of the Derivative Linear Approximations

Applied Example: Thermal Expansion

A thin metal cable has length L = 12 cm when the temperature is
T = 21○C. Estimate the change in length when T rises to 24○C,
assuming that dL

dT
= kL, where k = 1.7 × 10−5○C−1 (k is the

coefficient of thermal expansion);

Consider the function L(T ); Note that dL
dT
= kL; We would like to

approximate L(24) − L(21); According to the linear approximation
scheme,

L(24) − L(21) ≈ dL
dT
∣T=21 ∆T = kL(21)∆T == 1.7 ⋅ 10−5 ⋅ 12 ⋅ 3 = 6.12 ⋅ 10−4.
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Applications of the Derivative Linear Approximations

Applied Example: Pizza Gimmicks

A pizza company at Corleone claims that its pizzas are circular with
diameter 50 cm. Find the area of each pizza and estimate the
quantity lost or gained if the diameter is off by at most 1.2 cm;

Consider the function A(d) = π(d2 )2 = π

4d
2; Note that A′(d) = π

2d ;
Thus, A(50) = π

450
2 = 625π cm2.

Next, We would like to approximate ∆A, which we take to be
A(51.2) −A(50) or A(50) − A(48.8); According to the linear
approximation scheme,

∣∆A∣ ≈ A′(d)∆d = π

2
d∆d = π

2
⋅ 50 ⋅ 1.2 = 30π cm2.
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Applications of the Derivative Linear Approximations

Linearization of a Function

If f is differentiable at x = a and x is a value close to a, then f (x)
may be approximated by

f (x) ≈ L(x) = f ′(a)(x − a) + f (a).
The straight line L(x) is called the linearization of f (x) at x = a;
Example: Compute the linearization of f (x) = √xex−1 at a = 1;
We have f (1) = √1e0 = 1; Moreover,

f ′(x) = ex−1

2
√
x
+√xex−1, whence f ′(1) =

1
2 + 1 = 3

2 ; Therefore,

L(x) = f ′(1)(x − 1) + f (1)= 3
2(x − 1) + 1 = 3

2x −
1
2 .
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Applications of the Derivative Linear Approximations

Error Estimates

If y = f (x) is a function, then the percentage error (in decimal)
incurred by estimating f (a +∆x) by using the linearization of f is the
absolute value of the actual error divided by the actual value:

PErr = ∣ f (a +∆x) − f (a) − f ′(a)∆x

f (a +∆x) ∣ .

Example: Estimate tan (π4 + 0.02) and compute the percentage error
of the estimation;
Let f (x) = tan x ; Thus, f ′(x) = sec2 x ; For a = π

4 and ∆x = 0.02, we
have

PErr = ∣ f (a+∆x)−f (a)−f ′(a)∆x

f (a+∆x) ∣
= ∣ tan (π4 +0.02)−tan π

4
−sec2 π

4
⋅0.02

tan (π
4
+0.02) ∣

≈ ∣1.0408−1−2⋅0.021.0408 ∣ = 0.0008
1.0408 ≈ 0.0008.
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Applications of the Derivative Extreme Values

Subsection 2

Extreme Values
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Applications of the Derivative Extreme Values

Absolute Extrema on an Interval

Let f (x) be a function on an interval I and a ∈ I ; We say that f (a) is
the

absolute minimum of f (x) on
I if f (a) ≤ f (x) for all x ∈ I ;
absolute maximum of f (x)
on I if f (x) ≤ f (a) for all x ∈ I ;

The process of finding the max or min values, collectively referred to
as extreme values, is called optimization;

Absolute Extrema on a Closed Interval

A continuous function f (x) on a closed interval I = [a,b] attains both a
minimum and a maximum value on I .
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Applications of the Derivative Extreme Values

Local Extrema

We say that f (x) has a
local (or relative) minimum at x = c if f (c) is the minimum value of
f on some open interval containing c ;
local (or relative) maximum at x = c if f (c) is the maximum value of
f on some open interval containing c ;

Observe that at the local extrema, if the derivative (slope of the
tangent line) exists, it has value 0.
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Applications of the Derivative Extreme Values

Critical Points of a Function f (x)
A number c in the domain of f (x) is a critical point if f ′(c) = 0 or
f ′(c) does not exist;
Example: Consider f (x) = x3 − 9x2 + 24x − 10;
We have f ′(x) = 3x2 − 18x + 24 = 3(x2 − 6x + 8) = 3(x − 4)(x − 2).
Therefore, the critical points of f (x) are x = 2 and x = 4;
Example: Consider f (x) = ∣x ∣;
We saw that f ′(x) = { −1, if x < 0

1, if x > 0 Therefore, the only critical

point of f (x) is x = 0;
Fermat’s Theorem for Local Extrema

If f (c) is a local min or max, then c is a critical point of f (x).
Caution: The converse is not true!! Even though c might be a critical
point, f (c) might not be a local extremum.
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Applications of the Derivative Extreme Values

Optimization in a Closed Interval

Extreme Values on Closed Interval

If f is continuous on [a,b] and f (c) is an extreme value of f on [a,b],
then either c is a critical point or one of the endpoints a or b.

Example: Find the extrema of f (x) = 2x3 − 15x2 + 24x + 7 on [0,6];
We have f ′(x) = 6x2 − 30x + 24 =
6(x2 − 5x + 4) = 6(x − 4)(x − 1).
Therefore, the critical points of f in[0,6] are x = 1 and x = 4; Now, we
compute: f (0) = 7, f (1) =
18, f (4) = − 9, f (6) = 43; Thus, in[0,6], f (4) is the absolute min and
f (6) is the absolute max of f ;
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Applications of the Derivative Extreme Values

Another Example

Find the max value of f (x) = 1 − (x − 1)2/3 on [−1,2];
We have
f ′(x) = 2

3(x − 1)−1/3 = 2

3 3√
x−1

; Thus,

in [−1,2], f has the critical point
x = 1; We have f (−1) = 1 − 3

√
4,

f (1) = 1 and f (2) = 0; Therefore,
f (1) is the absolute max and f (−1)
the absolute min of f in [−1,2];

How about the extreme values of f (x) = x2 − 8 ln x on [1,4]?
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Applications of the Derivative Extreme Values

A Third Example

Find the max value of f (x) = sin x + cos2 x on [0,2π];
We have
f ′(x) = cos x − 2cos x sin x =
cos x(1 − 2 sin x); Thus, in [0,2π],
f has the critical points x = π

2 ,
3π
2

and x = π

6 ,
5π
6 ; We have f (0) = 1,

f (π6 ) = 5
4 , f (π2 ) = 1, f (5π6 ) = 5

4 ,

f (3π2 ) = − 1, f (2π) = 1; Therefore,

f (3π2 ) is the absolute min and

f (π6 ) = f (5π6 ) the absolute max of f
in [0,2π];
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Applications of the Derivative Extreme Values

Rolle’s Theorem

Rolle’s Theorem

If f (x) is continuous on [a,b] and differentiable on (a,b), and
f (a) = f (b), then there exists a c ∈ (a,b), such that f ′(c) = 0.
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Applications of the Derivative Extreme Values

Illustration of Rolle’s Theorem

Verify Rolle’s Theorem for f (x) = x4 − x2 on [−2,2];
Clearly, f (x) is continuous in [−2,2], since it is a polynomial function;
It is differentiable on (−2,2), with derivative
f ′(x) = 4x3 − 2x = 2x(2x2 − 1); Therefore, by Rolle’s Theorem, there
exists a c between −2 and 2, such that f ′(c) = 2c(2c2 − 1) = 0.
Actually, there are three solutions c = 0, or c = ± √2

2 ;
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Applications of the Derivative Extreme Values

Using Rolle’s Theorem to Prove Uniqueness of Roots

Show that the equation x3 + 9x − 4 has precisely one real root.

Consider the function f (x) = x3 + 9x − 4; Since f (0) = −4 < 0, whereas
f (1) = 6 > 0, by the Intermediate Value Theorem, there exists a c in(0,1), such that f (c) = c3 + 9c − 4 = 0; Therefore, the given equation
has at least one real solution;

Assume that it has two real solutions
a and b, with a < b; This means that
f (a) = f (b) = 0; Since f is continuous
on [a,b] and differentiable on (a,b),
with derivative f ′(x) = 3x2 + 9, by
Rolle’s Theorem, there exists
c ∈ (a,b), such that f ′(c) = 3c2 + 9 =
0; But this is impossible!!

Therefore, f (x) = 0 has at most one real solution, i.e., it has exactly
one real solution!
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Applications of the Derivative The Mean Value Theorem and Monotonicity

Subsection 3

The Mean Value Theorem and Monotonicity
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Applications of the Derivative The Mean Value Theorem and Monotonicity

The Mean Value Theorem

The Mean Value Theorem

If f (x) is continuous on the closed interval [a,b] and differentiable on the
open interval (a,b), then there exists at least one value c in (a,b), such
that

f ′(c) = f (b) − f (a)
b − a ;
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Applications of the Derivative The Mean Value Theorem and Monotonicity

An Example

Consider f (x) =√x ;
This function is continuous on [1,9]
as a root function; Moreover, it is
differentiable on (1,9), with
derivative f ′(x) = 1

2
√
x
; By the

MVT, we may conclude that there
exists at least one c ∈ (1,9), such
that

f ′(c) = f (9) − f (1)
9 − 1 ;

This equation says that 1
2
√
c
= 1

4 ;

Solving this, yields c = 4;
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Applications of the Derivative The Mean Value Theorem and Monotonicity

Sign of the Derivative and Monotonicity

A function f (x) is
increasing on (a,b) if f (x1) < f (x2), for all x1 < x2 in (a,b);
decreasing on (a,b) if f (x1) > f (x2), for all x1 < x2 in (a,b);

f (x) is monotonic on (a,b) if it is either increasing or decreasing on(a,b);
Sign of the Derivative

If f is differentiable on (a,b), then:
If f ′(x) > 0 for all x ∈ (a,b), then f is increasing on (a,b);
If f ′(x) < 0 for all x ∈ (a,b), then f is decreasing on (a,b);

Geometrically, the theorem says that the sign of the slopes of the
tangent lines to y = f (x) determines the kind of the monotonicity of
f on (a,b);
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Applications of the Derivative The Mean Value Theorem and Monotonicity

First Derivative Test for Critical Points

First Derivative Test

If f (x) is differentiable and that c is a critical point of f (x), then:
if f ′(x) changes from + to − at c , then f (c) is a local maximum;

if f ′(x) changes from − to + at c , then f (c) is a local minimum;

Example: Let f (x) = x2 − 2x − 3; we have
f ′(x) = 2x − 2 = 2(x − 1); Thus, x = 1
is a critical point of f ; The following is a
sign table for f ′(x) and summarizes the
behavior of f (x) with respect to mono-
tonicity;

Function x < 1 x > 1
f ′(x) − +
f (x) ↘ ↗

It shows that f (1) is a local minimum;
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Applications of the Derivative The Mean Value Theorem and Monotonicity

Second Example

Consider the function f (x) = x3 − 27x − 20;
We have f ′(x) = 3x2 − 27 = 3(x2 − 9) = 3(x + 3)(x − 3); Therefore, f (x)
has critical points at x = ± 3; The following is a sign table for f ′(x) and
summarizes the monotonicity of f (x):

Function x < −3 −3 < x < 3 x > 3
f ′(x) + − +
f (x) ↗ ↘ ↗

It shows that f (−3) is a local maximum
and f (3) is a local minimum;
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Applications of the Derivative The Mean Value Theorem and Monotonicity

Third Example

Consider the function f (x) = cos2 x + sin x in (0, π);
We have f ′(x) = − 2cos x sin x + cos x = cos x(1 − 2 sin x); Therefore, f (x)
has critical points at x = π

2 and x = π

6 ,
5π
6 . The following is a sign table for

f ′(x) and summarizes the monotonicity of f (x):
Function 0 < x < π

6
π

6 < x < π

2
π

2 < x < 5π
6

5π
6 < x < π

f ′(x) + − + −
f (x) ↗ ↘ ↗ ↘

It shows that f (π6 ), f (5π6 ) are local maxima and f (π2 ) is a local minimum;
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Applications of the Derivative The Shape of a Graph

Subsection 4

The Shape of a Graph
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Applications of the Derivative The Shape of a Graph

Concavity and Inflection Points

If f (x) is differentiable in an open interval (a,b), then
f is concave up on (a,b) if f ′(x) is increasing on (a,b);
f is concave down on (a,b) if f ′(x) is decreasing on (a,b);

Test for Concavity

If f ′′(x) exists for all x ∈ (a,b), then:
If f ′′(x) > 0 for all x ∈ (a,b), then f is concave up on (a,b);
If f ′′(x) < 0 for all x ∈ (a,b), then f is concave down on (a,b);

The points where concavity changes are called inflection points;

Test for Inflection Points

Assuming that f ′′(c) exists, if f ′′(c) = 0 and f ′′(x) changes sign at x = c ,
then f (x) has an inflection point at x = c .
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Applications of the Derivative The Shape of a Graph

First Example

Study the function f (x) = cos x on [0,2π] with respect to
monotonicity and concavity;

We have f ′(x) = − sin x ; Therefore, f (x) has critical points at
x = 0, π,2π; We have f ′′(x) = − cos x ; Therefore, f ′′(x) zeros at
x = π

2 ,
3π
2 ; The following is a combined sign table for f ′(x), f ′′(x) and

summarizes the monotonicity and concavity of f (x):
Function 0 < x < π

2
π

2 < x < π π < x < 3π
2

3π
2 < x < 2π

f ′(x) − − + +
f ′′(x) − + + −
f (x) ¿ Ç Ä ¼

It shows that f (0), f (2π) are lo-
cal maxima, f (π) is a local mini-
mum and at π

2 ,
3π
2 f has inflection

points;
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Applications of the Derivative The Shape of a Graph

Second Example

Study the function f (x) = 3x5 − 5x4 + 1 with respect to monotonicity
and concavity;

We have f ′(x) = 15x4 − 20x3 = 5x3(3x − 4); Therefore, f (x) has critical
points at x = 0, 43 ; We have f ′′(x) = 60x3 − 60x2 = 60x2(x − 1); Therefore,
f ′′(x) zeros at x = 0,1; The following is a combined sign table for
f ′(x), f ′′(x) and summarizes the monotonicity and concavity of f (x):
Function x < 0 0 < x < 1 1 < x < 4

3
4
3
< x

f ′(x) + − − +
f ′′(x) − − + +
f (x) ¼ ¿ Ç Ä

It shows that f (0) is a local maximum, f (43)
is a local minimum and at x = 1 f has an
inflection point;
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Applications of the Derivative The Shape of a Graph

Second Derivative Test for Critical Points

Second Derivative Test

Let c be a critical point of f (x). If f ′′(c) exists, then:
if f ′′(c) > 0, then f (c) is a local minimum;

if f ′′(c) < 0, then f (c) is a local maximum;

if f ′′(c) = 0, the test is inconclusive.
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Applications of the Derivative The Shape of a Graph

Example of Second Derivative Test

Use Second derivative test to analyze the critical points of
f (x) = (2x − x2)ex ;
f ′(x) = (2 − 2x)ex + (2x − x2)ex =(2 − x2)ex ; Therefore x = ±√2
are the critical points; Moreover,
f ′′(x) = − 2xex + (2 − x2)ex =(2 − 2x − x2)ex ; Thus,
f ′′(−√2) > 0 and f ′′(√2) < 0,
showing that f has a local min
f (−√2) and a local max f (√2);
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Applications of the Derivative The Shape of a Graph

One More Example

Use Second derivative test to analyze the critical points of
f (x) = x5 − 5x4;
f ′(x) = 5x4 − 20x3 = 5x3(x − 4);
Therefore x = 0,4 are the critical
points; Moreover,
f ′′(x) = 20x3 − 60x2 = 20x2(x − 3);
Thus, f ′′(0) = 0 and f ′′(4) > 0,
showing that f has a local min
f (4) but the Second Derivative
Test for x = 0 is inconclusive; One
needs to revert to the signs of the
first derivative!
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Applications of the Derivative L’Hôpital’s Rule

Subsection 5

L’Hôpital’s Rule
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Applications of the Derivative L’Hôpital’s Rule

L’Hôpital’s Rule

Assume that f (x),g(x) are differentiable on an open interval
containing a, that f (a) = g(a) = 0 and that g ′(x) ≠ 0 (except perhaps
at a); Then

lim
x→a

f (x)
g(x) = limx→a

f ′(x)
g ′(x) ,

assuming that the limit on the right exists or is infinite;

The same conclusion holds if f (x),g(x) are differentiable for x near,
but not equal to, a and

lim
x→a

f (x) = ±∞ and lim
x→a

g(x) = ±∞;

The rule may also be applied for one-side limits;
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Applications of the Derivative L’Hôpital’s Rule

Applying L’Hôpital’s Rule I

Compute lim
x→2

x3 − 8
x4 + 2x − 20;

Set f (x) = x3 − 8 and g(x) = x4 + 2x − 8;
We have f (2) = 0 = g(2);
Therefore, by L’Hôpital’s Rule,

limx→2
f (x)
g(x) = limx→2

f ′(x)
g ′(x)

= limx→2
3x2

4x3+2= 12
34= 6
17 .
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Applications of the Derivative L’Hôpital’s Rule

Applying L’Hôpital’s Rule II

Compute lim
x→2

4 − x2
sin (πx) ;

Set f (x) = 4 − x2 and g(x) = sin (πx);
We have f (2) = 0 = g(2);
Therefore, by L’Hôpital’s Rule,

limx→2
f (x)
g(x) = limx→2

f ′(x)
g ′(x)

= limx→2
−2x

π cos (πx)

= − 4
π
.
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Applications of the Derivative L’Hôpital’s Rule

Applying L’Hôpital’s Rule III

Compute lim
x→π

2

cos2 x

1 − sin x ;

Set f (x) = cos2 x and g(x) = 1 − sin x ;
We have f (π2 ) = 0 = g(π2 );
Therefore, by L’Hôpital’s Rule,

limx→π

2

f (x)
g(x) = limx→π

2

f ′(x)
g ′(x)

= limx→π

2

−2cos x sin x
− cos x

= limx→π

2
(2 sin x)

= 2.
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Applications of the Derivative L’Hôpital’s Rule

The Form 0 ⋅ ∞
Compute lim

x→0+
(x ln x);

Note that limx→0+ x = 0 and limx→0+ ln x = −∞; The form 0 ⋅ ∞ is
indeterminate; The following method may be used to lift this
indeterminacy:
Rewrite x ln x = ln x

1
x

; Set f (x) = ln x and g(x) = 1
x
;

We have limx→0+ ln x = −∞ and limx→0+
1
x
= +∞;

Therefore, by L’Hôpital’s Rule,

limx→0+
f (x)
g(x) = limx→0+

f ′(x)
g ′(x)

= limx→0+
1
x

−
1

x2= limx→0+ (−x) = 0.
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Applications of the Derivative L’Hôpital’s Rule

Using Rule Twice

Evaluate lim
x→0

ex − x − 1
cos x − 1 ;

limx→0
ex−x−1
cos x−1 = (00)

= limx→0
(ex−x−1)′
(cos x−1)′

= limx→0
ex−1
− sin x= (00)

= limx→0
(ex−1)′
(− sin x)′

= limx→0
ex

− cos x= − 1.
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Applications of the Derivative L’Hôpital’s Rule

Care Needed Before Applying L’Hôpital’s Rule

Evaluate lim
x→1

x2 + 1
2x + 1;

lim
x→1

x2 + 1
2x + 1 =

2

3
.

We do not want to apply L’Hôpital’s Rule, when the form we are
dealing with is not 0

0 or ∞
∞
;

Careless application in the example above would yield the
INCORRECT CONCLUSION

lim
x→1

x2 + 1
2x + 1 =®

Error!!

lim
x→1

2x

2
= lim

x→1
x = 1 ≠ 2

3
.
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Applications of the Derivative L’Hôpital’s Rule

The Form ∞−∞
Compute lim

x→0
( 1

sin x
− 1

x
);

Note that limx→0
1

sinx =∞ and limx→0
1
x
=∞; The form ∞−∞ is

indeterminate; The following method may be used to lift this
indeterminacy:
Rewrite 1

sin x −
1
x
= x−sinx

x sin x ; Set f (x) = x − sin x and g(x) = x sin x ;
We have limx→0 (x − sin x) = 0 and limx→0 x sin x = 0;
Therefore, by L’Hôpital’s Rule,

limx→0
f (x)
g(x) = limx→0

f ′(x)
g ′(x)

= limx→0
1−cosx

sin x+x cos x = (00)= limx→0
sin x

cos x+cos x−x sin x = 0
2 = 0.
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Applications of the Derivative L’Hôpital’s Rule

The Form 00

Compute lim
x→0+

xx ;

Consider f (x) = xx ; Then
limx→0+ ln f (x) = limx→0+ ln (xx)

= limx→0+ (x ln x)
= limx→0+

ln x
1
x

= limx→0+
1
x

−
1

x2= limx→0+ (−x) = 0.
Therefore

lim
x→0+

f (x) = lim
x→0+

e ln f (x) = e limx→0+ ln f (x) = e0 = 1.
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Applications of the Derivative L’Hôpital’s Rule

L’Hôpital’s Rule for Limits at Infinity

Suppose that f (x),g(x) are differentiable in an interval (b,∞) and
that g ′(x) ≠ 0 for x > b;
If lim

x→∞
f (x) and lim

x→∞
g(x) exist and either both are zero or both

infinite, then

lim
x→∞

f (x)
g(x) = lim

x→∞

f ′(x)
g ′(x)

assuming that the limit on the right exists;

An analogous result holds for x → −∞;
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Applications of the Derivative L’Hôpital’s Rule

Form ∞
∞

Suppose we want to discover which of the two functions f (x) = x2
and g(x) = x ln x grows faster as x →∞; To this end, we compute

lim
x→∞

x2

x lnx ;

limx→∞
x2

x ln x = limx→∞
x
lnx = (∞∞) = limx→∞

1
1
x= limx→∞ x =∞;

Thus f (x) grows asymptotically faster than g(x);
Suppose we want to discover which of the two functions
f (x) = (ln x)2 and g(x) =√x grows faster as x →∞; To this end, we

compute lim
x→∞

√
x

(ln x)2 ;

limx→∞

√
x

(ln x)2 = (∞
∞
) = limx→∞

1
2
√

x

2 ln x
x

= limx→∞

√
x

4 ln x

= (∞
∞
) = limx→∞

1
2
√

x
4
x

= limx→∞

√
x

8 =∞;

Thus g(x) grows asymptotically faster than f (x);
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Applications of the Derivative L’Hôpital’s Rule

Super-polynomial Growth of ex

We show that f (x) = ex grows asymptotically faster than any power
function f (x) = xn, for fixed n;

We calculate

limx→∞
ex

xn
= limx→∞

ex

nxn−1= limx→∞
ex

n(n−1)xn−2

= limx→∞
ex

n(n−1)(n−2)xn−3

= ⋯
= limx→∞

ex

n!= 1
n! limx→∞ ex =∞.

Therefore f (x) grows asymptotically faster than g(x);
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Applications of the Derivative Graph Sketching and Asymptotes

Subsection 6

Graph Sketching and Asymptotes
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Applications of the Derivative Graph Sketching and Asymptotes

Graph Sketching I

Study the function f (x) = x2 − 4x + 3 and sketch its graph;

We have f ′(x) = 2x − 4 = 2(x − 2); Therefore, f (x) has a critical point at
x = 2; We have f ′′(x) = 2; Therefore, f ′′(x) does not have any zeros; The
following is a combined sign table for f ′(x), f ′′(x) and summarizes the
monotonicity and concavity of f (x):

Function x < 2 2 < x
f ′(x) − +
f ′′(x) + +
f (x) Ç Ä

It shows that f (2) = −1 is a local mini-
mum;
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Applications of the Derivative Graph Sketching and Asymptotes

Graph Sketching II

Study the function f (x) = 1
3x

3 − 1
2x

2 − 2x + 3 and sketch its graph;

We have f ′(x) = x2 − x − 2 = (x + 1)(x − 2); Therefore, f (x) has critical
points at x = − 1,2; We have f ′′(x) = 2x − 1; Therefore, f ′′(x) has a zero
x = 1

2 ; The following is a combined sign table for f ′(x), f ′′(x) and
summarizes the monotonicity and concavity of f (x):
Function x < −1 −1 < x < 1

2
1
2 < x < 2 2 < x

f ′(x) + − − +
f ′′(x) − − + +
f (x) ¼ ¿ Ç Ä
It shows that f (2) is a local minimum, f (−1) is a
local maximum and at x = 1

2 f has an inflection point;
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Applications of the Derivative Graph Sketching and Asymptotes

Graph Sketching III

Study the function f (x) = 3x4 − 8x3 + 6x2 + 1 and sketch its graph;

We have f ′(x) = 12x3 − 24x2 + 12x = 12x(x − 1)2; Therefore, f (x) has
critical points at x = 0,1; We have f ′′(x) = 36x2 − 48x + 12 =
12(3x2 − 4x + 1) = 12(x − 1)(3x − 1); Therefore, f ′′(x) has zeros x = 1

3 ,1;
The following is a combined sign table for f ′(x), f ′′(x) and summarizes
the monotonicity and concavity of f (x):

Function x < 0 0 < x < 1
3

1
3 < x < 1 1 < x

f ′(x) − + + +
f ′′(x) + + − +
f (x) Ç Ä ¼ Ä

It shows that f (0) is a local minimum, and at
x = 1

3 ,1 f has inflection points;
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Applications of the Derivative Graph Sketching and Asymptotes

Graph Sketching with Trigonometric Functions

Study the function f (x) = cos x + 1
2x on [0, π] and sketch its graph;

We have f ′(x) = − sin x + 1
2 ; Therefore, f (x) has critical points at

x = π

6 ,
5π
6 ; We have f ′′(x) = − cos x ; Therefore, f ′′(x) has zero x = π

2 ;
The following is a combined sign table for f ′(x), f ′′(x) and summarizes
the monotonicity and concavity of f (x):

Function 0 < x < π

6
π

6 < x < π

2
π

2 < x < 5π
6

5π
6 < x < π

f ′(x) + − − +
f ′′(x) − − + +
f (x) ¼ ¿ Ç Ä

It shows that f (0), f (5π6 ) are local minima,
f (π6 ), f (π) are local maxima and at x = π

2 f

has inflection points;
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Applications of the Derivative Graph Sketching and Asymptotes

Graph Sketching with Exponential Functions

Study the function f (x) = xex and sketch its graph;

We have f ′(x) = ex + xex = (1 + x)ex ; Therefore, f (x) has critical points
at x = − 1; We have f ′′(x) = ex + ex + xex = (2 + x)ex ; Therefore, f ′′(x)
has zero x = − 2; The following is a combined sign table for f ′(x), f ′′(x)
and summarizes the monotonicity and concavity of f (x):
Function x < −2 −2 < x < −1 −1 < x
f ′(x) − − +
f ′′(x) − + +
f (x) ¿ Ç Ä
It shows that f (−1) are local minima and
at x = − 2 f has inflection point; Since
limx→−∞ f (x) = 0, x = 0 is a horizontal
asymptote as x → −∞;
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Applications of the Derivative Graph Sketching and Asymptotes

Graph Sketching with Rational Functions

Study the function f (x) = 3x+2
2x−4 and sketch its graph;

We have Dom(f ) = R − {2}; Since limx→2− f (x) = −∞ and
limx→2+ f (x) =∞, the line x = 2 is a vertical asymptote to y = f (x); Since
limx→−∞ f (x) = 3

2 and limx→∞ f (x) = 3
2 , the line y = 3

2 is a horizontal
asymptote to y = f (x);
We have f ′(x) = 3(2x−4)−2(3x+2)

(2x−4)2 = − 4
(x−2)2 ; Therefore, f (x) has critical

point at x = 2; We have f ′′(x) = 8
(x−2)3 ; Therefore, f ′′(x) is undefined at

x = 2; The following is a combined sign table for f ′(x), f ′′(x) and
summarizes the monotonicity and concavity of f (x):
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Applications of the Derivative Graph Sketching and Asymptotes

Study of f (x) = 3x+2
2x−4 (Cont’d)

Recall

f ′(x) = − 4(x − 2)2 and f ′′(x) = 8(x − 2)3 .
Function x < 2 2 < x
f ′(x) − −
f ′′(x) − +
f (x) ¿ Ç

x = 2 is outside the domain of f ; so it
cannot be either a local extremum or an
inflection point; Taking into account the
arrows of the table and the asymptotes,
we sketch the graph:
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Applications of the Derivative Graph Sketching and Asymptotes

Graphs of Rational Functions II

Study the function f (x) = 1
x2−1

and sketch its graph;

We have Dom(f ) = R − {−1,1}; Since
limx→−1− f (x) =∞, limx→−1+ f (x) = −∞ and limx→1− f (x) = −∞,

limx→1+ f (x) =∞, the lines x = −1 and x = 1 are a vertical asymptotes to
y = f (x); Since limx→−∞ f (x) = 0 and limx→∞ f (x) = 0, the line y = 0 is a
horizontal asymptote to y = f (x);
We have f ′(x) = [(x2 − 1)−1]′ = − 2x

(x2−1)2 ; Therefore, f (x) has critical
points at x = 0,±1; We also have

f ′′(x) = − 2(x2−1)2−2x2(x2−1)2x
(x2−1)4 = − 2(x2−1)−8x2

(x2−1)3

= − −6x2−2(x2−1)3 = 2(3x2+1)
(x2−1)3 ;

Therefore, f ′′(x) is undefined at x = ± 1; The following is a combined
sign table for f ′(x), f ′′(x) and summarizes the monotonicity and concavity
of f (x):
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Applications of the Derivative Graph Sketching and Asymptotes

Study of f (x) = 1
x2−1 (Cont’d)

Recall f ′(x) = − 2x
(x2−1)2 and f ′′(x) = 2(3x2+1)

(x2−1)3 .

Function x < −1 −1 < x < 0 0 < x < 1 1 < x
f ′(x) + + − −
f ′′(x) + − − +
f (x) Ä ¼ ¿ Ç

x = ±1 are outside the domain of f ; so
they cannot be either local extrema or in-
flection points; Taking into account the
arrows of the table and the asymptotes,
we sketch the graph:
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Applications of the Derivative Applied Optimization

Subsection 7

Applied Optimization
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Applications of the Derivative Applied Optimization

Rectangle of Fixed Perimeter with Maximum Area

A piece of wire of length L is bent into a rectangular shape. Which
dimensions produce a rectangle with maximum possible area?

The objective function to be maximized is A = ℓw ; The auxiliary condition
2ℓ + 2w = L allows us to reduce w by solving for it: w = 1

2L − ℓ; Thus
A(ℓ) = ℓ(12L − ℓ) = − ℓ2 + 1

2Lℓ; Compute derivative A′(ℓ) = − 2ℓ + 1
2L; Find

critical point: −2ℓ + 1
2L = 0 implies ℓ = 1

4L; Thus, the rectangle must be of

dimensions 1
4L ×

1
4L and it will have max area Amax = 1

16L
2;
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Applications of the Derivative Applied Optimization

Minimizing Travel Time

George is swimming a quarter mile from shore and sees Jessica on the
beach two miles down from his closest point to the beach. He must
reach her as soon as possible in case she leaves. If he can run a mile
in 10 minutes and swim a mile in 40 minutes how can he get to
Jessica in the least time possible?

Suppose that George swims to a point x miles down the beach from the
closest point and then runs the remaining distance on the beach.
The objective function to be maximized is time

T (x) = √x2+ 1
16

1
40

+ 2−x
1
10

= 40√x2 + 1
16 − 10(x − 2); The derivative is

T ′(x) = 40 2x

2
√

x2+ 1
16

− 10 = 40x−10
√

x2+ 1
16√

x2+ 1
16

; Set that equal to zero and solve

40x = 10√x2 + 1
16 ; so 16x2 = x2 + 1

16 , i.e., x = 1
4
√
15

miles;
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Applications of the Derivative Applied Optimization

Optimizing Price for Maximum Profit

An apartment building has 30 units all of which are rented at $ 1,000
per month. For each $ 40 increase in rent an additional unit becomes
vacant. Assume the maintenance cost per occupied unit is $ 120 per
month. What is the rental price that maximizes the monthly profit?

To devise an objective function for the profit, set x be the number of
$ 40 increments and subtract revenue from cost:

P(x) = R(x) −C(x) =
price/unit³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(1000 + 40x)

# of units³¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹µ(30 − x) −
maintenace costs³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
120(30 − x)= − 40x2 + 200x + 30000 − 3600 + 120x= − 40x2 + 320x + 26400.

Thus, the maximum profit occurs when P ′(x) = 0, i.e., when
−80x + 320 = 0, giving x = 4. Thus, the most profitable rental price is
1000 + 40 ⋅ 4 = $1160 per month.
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Applications of the Derivative Applied Optimization

Can of Fixed Volume Using Least Aluminum

What are the dimensions of a cylindrical can of
volume 900 cm3 that uses the least amount of
aluminum, i.e., that has the minimum surface
area?

The objective function is A =
top & bottom¬
2πr2 +

side­
2πrh; The volume is πr2h = 900,

whence, we get that h = 900
πr2

; This allows us to express the objective
function as

A(r) = 2πr2 + 1800

r
;

This has derivative A′(r) = 4πr − 1800
r2
= 4πr3−1800

r2
and has critical points

r = 0, 3
√

450
π
; The second yields the min area; What is the required h?
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Applications of the Derivative Newton’s Method

Subsection 8

Newton’s Method
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Applications of the Derivative Newton’s Method

Newton’s Method I

Suppose that f (x) is a continuous function and that we would like to
find a root of the equation f (x) = 0; This root is the x-intercept of
the graph of y = f (x);
Assume, in addition, that we have an initial guess x0 “close” to the
real solution;
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Applications of the Derivative Newton’s Method

Newton’s Method II

The slope of the tangent line at x0 is f ′(x0); Thus, an equation of the
tangent line at x0 is y − f (x0) = f ′(x0)(x − x0); Hence, its x-intercept
x1 is x1 = x0 − f (x0)

f ′(x0) ;

The slope of the tangent line at x1 is f ′(x1); Thus, an equation of the
tangent line at x1 is y − f (x1) = f ′(x1)(x − x1); Hence, its x-intercept
x2 is x2 = x1 − f (x1)

f ′(x1) ;
We iterate this process, thus obtaining Newton’s formula for
approximating the roots of f (x) = 0;
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Applications of the Derivative Newton’s Method

Newton’s Approximation Formula

Newton’s Method

To compute a root of f (x) = 0:
Choose an initial guess x0 suspected to be close to root;

Generate successive approximations using

xn+1 = xn − f (xn)
f ′(xn) ;
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Applications of the Derivative Newton’s Method

Approximating the
√
3

To approximate the
√
3, we consider the function f (x) = x2 − 3 and

try to find its zero;

We have f ′(x) = 2x ;
Let us take x0 = 2;
Then we obtain successively:

x1 = 2 − f (2)
f ′(2) = 2 − 1

4 = 1.75
x2 = 1.75 − f (1.75)

f ′(1.75) = 1.75 − 0.0625
3.5 = 1.732

x3 = 1.732 − f (1.732)
f ′(1.732) = 1.732 − −0.0001763.464 = 1.7320508.

Note that, using a calculator, we get
√
3 ≈ 1.7320508;
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Applications of the Derivative Newton’s Method

Approximating a root of cos 3x = sin x

Consider the function
f (x) = sin x − cos 3x and try to
find a zero;

We have
f ′(x) = cos x + 3 sin x3x ;
Let us take x0 = 1;

Then we obtain successively:

x1 = 1 − f (1)
f ′(1) = 1 − 1.8315

0.964 = − 0.9
x2 = − 0.9 − f (−0.9)

f ′(−0.9) = − 0.9 − 0.121
−0.661 = − 0.717

x3 = − 0.717 − f (−0.717)
f ′(−0.717) = − 0.717 − −0.109−1.755 = − 0.779

x4 = − 0.779 − f (−0.779)
f ′(−0.779) = − 0.779 − −0.009−1.45 = − 0.785
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Applications of the Derivative Antiderivatives

Subsection 9

Antiderivatives
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Applications of the Derivative Antiderivatives

Antiderivatives

A function F (x) is an antiderivative of f (x) on the interval (a,b) if
F ′(x) = f (x) for all x ∈ (a,b);
What is an antiderivative of f (x) = cos x?
F (x) = sin x ;
Is it the only one?

What is an antiderivative of f (x) = x2?
F (x) = 1

3x
3;

Is it the only one?

The General Antiderivative

If F (x) is an antiderivative of f (x) on (a,b), then every other
anti-derivative on (a,b) is of the form F (x) + C for some constant C .

What are the most general antiderivatives of f (x) = x6 and
g(x) = sin x?
F (x) = 1

7x
7 + C ; G(x) = − cos x + C ;
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Applications of the Derivative Antiderivatives

Integration and Indefinite Integrals

The process of determining an antiderivative is called integration;

Indefinite Integral

If F ′(x) = f (x), we write

∫ f (x)dx = F (x) +C ;

The most general antiderivative F (x) +C is called the indefinite integral
of f (x);

Find the indefinite integral ∫ xndx , for n ≠ −1.
∫ xndx = 1

n + 1x
n+1 +C ;
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Applications of the Derivative Antiderivatives

Power Rule for Indefinite Integrals

Power Rule

∫ xndx = 1

n + 1x
n+1 +C , if n ≠ −1;

Example: Use the power rule to compute the indefinite integrals:

∫ x12dx = 1
13
x13 + C

∫ 1
x7
dx = ∫ x−7dx = 1

−6x
−6 + C = − 1

6x6
+ C

∫ x4/7dx = 1
11/7x

11/7 + C = 7
11
x11/7 + C

∫ 1
5√
x3
dx = ∫ x−3/5dx = 1

2/5x
2/5 + C = 5

2

5
√
x2 + C
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Applications of the Derivative Antiderivatives

y = 1
x
, Sum and Constant Factor Rules

Antiderivative of y = 1
x

∫ 1

x
dx = ln ∣x ∣ + C ;

Linearity of the Indefinite Integral

Sum/Difference Rule: ∫ (f (x) ± g(x))dx = ∫ f (x)dx ±∫ g(x)dx
Constant Factor Rule: ∫ cf (x)dx = c∫ f (x)dx
Example: Use the rules to evaluate the indefinite integral:

∫ (5x2 − 3x4/5 + x−9)dx = ∫ 5x2dx −∫ 3x4/5dx +∫ x−9dx =
5∫ x2dx − 3∫ x4/5dx +∫ x−9dx = 5 1

3
x3 − 3 5

9
x9/5 − 1

8
x−8 + C =

5
3
x3 − 5

3
x9/5 − 1

8
x−8 + C ;
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Applications of the Derivative Antiderivatives

Basic Trigonometric Integrals

The following formulas give the basic trigonometric integrals:

∫ sin xdx = − cos x +C ∫ cos xdx = sin x +C

∫ sec2 xdx = tan x + C ∫ csc2 xdx = − cot x + C
∫ sec x tan xdx = sec x +C ∫ csc x cot xdx = − csc x +C

Based on the basic formulas, we obtain:

∫ cos (kx + b)dx = 1
k
sin (kx + b) + C

∫ sin (kx + b)dx = − 1
k
cos (kx + b) +C

Example: Evaluate: ∫ (sin (8x − 3) + 20cos 9x)dx =
∫ sin (8x − 3)dx + 20∫ cos 9xdx = − 1

8 cos (8x − 3) + 20
9 sin 9x +C ;
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Applications of the Derivative Antiderivatives

Integrals Involving ex

Integrals Involving ex

∫ exdx = ex +C ∫ ekx+bdx = 1

k
ekx+b +C

Example:

∫ (7ex − 4x3)dx = 7∫ exdx − 4∫ x3dx = 7ex − 4 x4

4
+ C = 7ex − x4 + C

∫ 12e7−3xdx = 12∫ e7−3xdx = 12 1
−3e

7−3x + C = − 4e7−3x + C
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Applications of the Derivative Antiderivatives

Differential Equations and Initial Conditions

An antiderivative of a function f (x) is a solution to the differential
equation

dy

dx
= f (x);

The most general antiderivative of the form ∫ f (x)dx = F (x) +C
involving C is called the general solution of the equation;

By imposing an initial condition, i.e., some equation of the form
y(x0) = y0, for some specific values x0 and y0, one may specify a
particular solution of the differential equation, i.e., enable the
specification of a value for C ;

The group { dy
dx
= f (x)

y(x0) = y0 (differential equation plus initial condition)

is called an initial value problem;
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Applications of the Derivative Antiderivatives

Solving an Initial Value Problem

Solve dy
dx
= 4x7 subject to the initial condition y(0) = 4;

We have y(x) = ∫ 4x7dx = 4∫ x7dx = 4x8

8 +C = 1
2x

8 +C ; Since

y(0) = 4, we get 4 = 0 +C , i.e., C = 4; Therefore, we obtain the
particular solution

y(x) = 1

2
x8 + 4;

Solve dy
dt
= sin (πt) subject to the initial condition y(2) = 2;

We have y(t) = ∫ sin (πt)dt = − 1
π
cos (πt) +C ; Since y(2) = 2, we

get 2 = − 1
π
cos (2π) + C , i.e., C = 2 + 1

π
; Therefore, we obtain the

particular solution

y(t) = − 1
π
cos (πt) + 2 + 1

π
.
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Applications of the Derivative Antiderivatives

Applied Initial Value Problem

A car traveling with velocity 50 m/s begins to slow down at t = 0 with
a constant deceleration of a = −10 m/s2. What is the velocity v(t) at
time t and what distance will be traveled before the car stops?

We have v(t) = ∫ −10dt = − 10t +C ; Since v(0) = 50, we get

C = 50, i.e., v(t) = −10t + 50; Therefore, setting v = 0, we find that it
will take t = 5 s for the car to stop;

Moreover, s(t) = ∫ v(t)dt = ∫ (−10t + 50)dt = − 5t2 + 50t + C ;

Since s(0) = 0, we get C = 0, i.e., s(t) = −5t2 + 50t; Therefore,
setting t = 5, we find that the car will travel s(5) = 125 m before it
comes to a halt;
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