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The Integral Approximating and Computing Area

Subsection 1

Approximating and Computing Area
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The Integral Approximating and Computing Area

Approximating Area by Rectangles

@ Suppose, we want to ap- /\
proximate the area under /
the graph of y = f(x) ;
from x = a to x = b;
/
@ We may cut the interval [a, b] into N subintervals of equal length;

The common length will be equal to Ax = %;

@ Suppose that in the first subinterval [a, x;], we take a point xj, in the
second [xq, x2] a point x3, etc.; Thus, in interval [x;_1, x;], we will
have a point x;;

@ Then we calculate the area of each rectangle by AA; = f(x*)Ax;

o Finally, we sum all the elementary rectangular areas:

Ar AX[FOq) + F(x3) + -+ FOQ)L
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The Integral Approximating and Computing Area

Approximating Area Under y = x2

@ We use the method to ap-
proximate the area under
f(x) = x? from x = 1 to
x = 3 using N = 4 subin-
tervals and taking as x;
the right endpoint of the
corresponding interval:

: _3-1_1
@ Since Ax = == = 3, we get

A =~ 3[f3)+f(2)+f(3)+f(3)
= slz+4+7+9
186 _ 43

24 4 -
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The Integral Approximating and Computing Area

Summation (Z) Notation

@ We use the notation

n

D aii=am+amit+cr+an1+an

i=m

@ Example: 5

D P=12422+3%+ 4%+ 5% =55,
i=1
@ Example: Compute

6

> (k2—2k) = (42-2-4)+(52-2-5)+(62—2-6)
k=4
= 8+ 15+ 24 = 47,

Example: 8L - 1=14+14+1+1+1=5;
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The Integral Approximating and Computing Area

Linearity Properties of Summation

Linearity of Summation
n n n
° Z(ai + bj) = Zai + Zbi;
i=m i=m i=m
n n
(*] ZCa,- = CZa;;
I=m I=m

n n
° Zk:nk and Zk:(n—m-i-l)k;
i=1 i=m

5
@ Example: Z:(i2 +i)=(3?+3)+(4*>+4)+ (5% +5) =
i=3

5 5
(32+42+52)+ (3+4+5) =) 2+ i;
i=3 i=3
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The Integral Approximating and Computing Area

Two More Examples

@ Example: The sum of the rectangle areas that approximate the area
under the curve y = f(x) on [a, b] can be written very succinctly
using summation notation

A = Ax[f(x,g) +f03) + -+ Fxy_g) + FOxp)]
b—a .
= = ;f(xi )-
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The Integral Approximating and Computing Area

Approximating Area Under y = %

@ Let us approximate the area under the graph of f(x) = % on [2,4]
using N = 6 and mid-points as the x/'s;

&

A ~ %¥§79+0_?5

i=1

6
_ %Zf(HH')

i=1
= [P T A ) = Al ) = A
= S tstotntatal
= A+t tiotatal

2-0.346 = 0.692.
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The Integral Approximating and Computing Area

Exact Area as the Limit of Approximations

f(x)
@ When the number of rectangles N /

approaches infinity, then the area %
enclosed by the approximating

rectangles tends to the exact . —
amount of area under the curve; ///'
@ Thus ax
N a b
b—a
A= lim === "f(x). )
N—oco N ( ! ) "

Ax

left-Riemann sum m right-Riemann sum
@ To use the limit of the approximating sums to compute areas, we
need some summation formulas;
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The Integral Approximating and Computing Area

Sums of Powers

Power Sums

N

- NN +1)

o ZI_1+2+.‘.+N_#'

i=1

N

N(N + 1)(2N + 1

°Zi2=12+22+‘“+N2= (N +1)( +);

2 6

i=1
° ii3—13+23+ +N3_w.

, - a 4 :

i=1
@ Consider the function f(x) = %x. The area of the triangle under the

graph of y = f(x) from x = 0 to x = 4 can be computed using the
familiar formula A = %base - height; It is equal to A = %4 -2 =4,

@ We are going to compute this area using the limit of the
approximating sums method in the next slide;
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The Integral Approximating and Computing Area

Using Limits of Approximating Sums

@ We write an expression using the summation notation for the
approximating sum of the area of the triangle under y = %x on [0, 4]
using N rectangles and right endpoints as the x;'s

4-0 4 4i 4 u 2 -
S N Zf W) NZ2 - NZN’
i i=1

L

i=1
el 8 Te mwen
= NN =i T s
i=1 i=1
_ BN(N+1) 4N2+4N
2nN2 N2
Therefore, the exact area is given by
. AN? + 4N
A = | —_— =
Ninoo N2
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The Integral Approximating and Computing Area

Finding Area Under Curve

@ Find the exact area under
f(x) = —x* + 2x + 3 from 4
x=1tox=3; /

The approximation sum for N subin-
tervals using right endpoints for the ‘
x's is /o

i=1 I

N
_ %Z[—(l +2Y2 421+ 2) 1 3]
i=1

N
2 ] ’ ;
:NE [F1-% - +2+ % +3]
i=1
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The Integral Approximating and Computing Area

Example (Cont'd)

o N )
A =~ NZ[“— iy
i=1
) N N
= DA%
i=1 i=1
2 4N(N +1)(2N + 1)
= - 612 ]
_ 5 4N +1)(2N +1)
- 3N2 '
Therefore
A lim (874(N+1)(2N+1))_87§_E
T Nooo 3N2 - 37 3°
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The Integral Approximating and Computing Area

Area up to a Variable Endpoint

@ Find the exact area under f(x) = x>
from x = 0 to x = b (a fixed
constant);

The approximation sum for N subintervals 2
using right endpomts for the x;"'s is

Zf(o biy

Z(b/ bb2 N o BPNN+1RN+1)
N

o b

f— N3 6 |
Therefore, P b N(N+1)2N +1) 1b3
N— oo N3 6 ; 3 .
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The Integral  The Definite Integral

Subsection 2

The Definite Integral
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The Integral  The Definite Integral

Riemann Sums and Definite Integrals

@ Consider a function f(x) on [a, b];
@ Choose a partition P of [a, b] of size N, i.e.,

Pia=xp<x1<xp<---<xy=b
@ Choose sample points C = {cj, ..., ey}, with ¢ € [xj_1, x;], for all 7;
@ Denoting Ax; = x; — x;_1, we obtain the Riemann sum
N

R(f,P,C) = f(c)Axi;

Definite Integral

|
—

The definite integral of f(x) over [a, b] is the limit of the Riemann sums
as the maximum length ||P|| of the partition subintervals approaches zero:

b
/ f(x)dx = lim R(f,P,C) = lim Zf (c))Ax;.
a

lIPll—0 IIF’||—>0

If the limit exists f(x) is called integrable over |a, b];
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The Integral  The Definite Integral

Signed Areas

@ Signed Area = (Area Above x-Axis) — (Area Below x-Axis);

y
y=/x)

@ That is exactly the geometric interpretation of the definite integral

b
/ f(x)dx = Signed Area Between Graph and x-Axis over |[a, b]
a
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The Integral  The Definite Integral

Interpretation into Signed Area

o Compute [ (3 — x)dx

According to the previous interpretation, |
we have
f05 (3 — x)dx
= (Area Above) — (Area Below) - i [
_1 1
= 5303 = 52-2
_9 L
=2-2
_ 5.
=32,
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The Integral  The Definite Integral

Constant Functions and Linearity

Integral of a Constant

/adeX — C(b—a).

Linearity of the Definite Integral

If f, g are integrable over [a, b|, then f &+ g and Cf are also integrable over
[a, b] and'

(f ) £ g(x))dx = / f(x)dx £ /abg(x)

/Cf(x)dx—C/ f(x)dx.

Example: Recall that fob x2dx = $b%; Therefore, we have
f03 (2x% — 5)dx = f03 2x2%dx — f03 5dx =2 f03 x2dx — f03 5dx =
2¥ _53-0)=3;
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The Integral  The Definite Integral

Reversing the Limits and Adding Over Intervals

Reversing the Limits of Integration
If a < b, then

Additivity over Adjacent Intervals

If a < b < ¢ and f(x) is integrable, \
then: \
n . b i
/ f(x)dx=/ f(x)dx—i—/ f(x)dx.
a a c b 4 “x‘
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The Integral  The Definite Integral

Comparison Theorem

Comparison Theorem

If 7 and g are integrable and g(x) < f(x) \\‘ T
for all x € [a, b], then A PR
b b Vi \\
[ ataax< [ rian
a a - \\‘\
a b “‘\:\\

Example' If x > 1, x2 > x and, hence,
1 < . Therefore,

/ @S / —dx; !
X
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The Integral  The Definite Integral

Establishing Bounds

Consider the function f(x) = 1 on
[%,2]; Clearly, if% <x <2, % < % <2

Therefore, by the Comparison Theo-
rem,
2 q 2 q 2
—dx < —dx < 2dx: _ V=122
1/2 2 1/2 X 1/2

This yields |
3.1 21 3 3 2
—-—g/ Sdx <22 e, —g/)—w<&
2 2 1/2 X 2 4 1/2 X
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The Integral The Fundamental Theorem of Calculus, Part |

Subsection 3

The Fundamental Theorem of Calculus, Part |
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The Integral The Fundamental Theorem of Calculus, Part |

The Fundamental Theorem of Calculus, Part |

The Fundamental Theorem of Calculus, Part |

If f(x) is continuous on [a, b] and F(x) is an antiderivative of f(x) on

[a, b], then b
/ f(x)dx = F(b) — F(a).

@ The difference F(b) — F(a) is denoted F(x) |5. Using this notation,
we get b
/ F(x)dx = F(x)[2.
a

Example: Calculate the area under :
f(x) = x> over [2,4]; /

_ 4 3, 1. 4|4 y.
A = [[xdx=2x*3 )

= ;(4*-2% =60
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The Integral The Fundamental Theorem of Calculus, Part |

More Examples

Example: Calculate the area under
f(x) = x—3/% 4 3x5/3 over [1,3];
A= [3(x73/% 4 3x5/3)dx W/

= (4x/* + %x8/3) 3 :
= (43144 2.333) —(4+3) = 21.2.

\ y=tx) | Example: Calculate the area under
\ [ _ 2 T m].
‘ | f(x) = sec” x over [T, Z1;

A= fﬂij4sec2xdx = tanx |71/:/4:

tan7 —tan(—7) =2.

George Voutsadakis (LSSU) Calculus | November 2014 26 / 58



The Integral

Additional Examples

The Fundamental Theorem of Calculus, Part |

Example: Calculate the area un-
der f(x) = e3*~1 over [-1,1];
A— f_11 ol %e3x—1 |1_1:
1(e? —e*) ~ 2457

George Voutsadakis (LSSU)

Calculus |

3x-1

fx)=¢

Example: Calculate the area un-
der f(x) = L over [2,8];

A= f28%dx= Inx [3

=1In8 —1In2 = 1.386.
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The Integral The Fundamental Theorem of Calculus, Part Il

Subsection 4

The Fundamental Theorem of Calculus, Part Il
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The Integral The Fundamental Theorem of Calculus, Part Il

lllustration of Main Concept

o Consider f(x) = 3x?;

The area A(x) under y = f(x) .|
over [1,x] is given by fx) = 35

Ax) = []3t%dt

- ok

— X3 —1 : 1

@ Now, note that A'(x) = (x3 — 1) = 3x% = f(x);
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The Integral The Fundamental Theorem of Calculus, Part Il

Fundamental Theorem of Calculus, Part Il

Fundamental Theorem of Calculus, Part Il

If £(x) is continuous on an open interval / and a € /, then the area
function

A(x) = / f(t)dt
a
is an antiderivative of f(x) on /, i.e., A’'(x) = f(x); Equivalently,
d X
&/a f(t)dt = f(x);

Note that this antiderivative satisfies the initial condition A(a) = 0.
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The Integral The Fundamental Theorem of Calculus, Part Il

Examples

@ Suppose F(x) is a particular antiderivative of f(x) = sin (x?)
satisfying F(—+/m) = 0. Express F(x) as an integral.

According to the Part Il of the Fundamental Theorem, we have

F(x)=/_Xﬁf(t)dx=/_xﬁsin(t2)dt.

@ Find the derivative of A(x) = / V14 t3dt;
2

By Part Il of the Fundamental Theorem,

%:%/mdt:m.
2

dx
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The Integral The Fundamental Theorem of Calculus, Part Il

Fundamental Theorem of Calculus and the Chain Rule

x2

@ Let us find the derivative of G(x) = / sin tdt;
-2

It is important to realize that G(x) = A(x?), where

X
A(x) =/ sin tdt;
—
Thus, G(x) is a composite function and, as such, the Chain Rule
must be used to compute its derivative:
d d d du
) = Al )\_—,_;d—uA(U)a

= f(u)-2x = sinu-2x

= 2xsin(x?).
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The Integral Net Change as the Integral of a Rate

Subsection 5

Net Change as the Integral of a Rate
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The Integral Net Change as the Integral of a Rate

Net Change as Integral of Rate of Change

@ The net change in s(t) over an interval [t;, tp] is the integral

/ 2s’(t)dt = s(to) — s(t1);

t1

Example: If water leaks from a

bucket at a rate of 24 5t It/hr, A
where t is number of hours after 2 F
7 AM, how much water is lost igE
between 9 and 11 AM?
We have
4
s(4) —s(2) = / —(2+5¢t)dt = (—2t - 32|

— (348) —(—14) = —34 lts.
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The Integral Net Change as the Integral of a Rate

The Integral of Velocity

@ For an object in linear motion with velocity v(t),

ty
o Displacement during [t1, to] :/ v(t)dt;

5%

%]
o Distance traveled during [t1, t2] = / |v(t)|dt;
t1

Example: If v(t) = t3 — 10t? + 24t m/sec, compute both the
displacement and the total distance over [0, 6];

Thus, we have

J2 v(t)dt /
— [®(t3 — 10¢2 + 24t)dt

0
— (%t4—1—39t3+12t2)|g i
= 36 meters;
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The Integral Net Change as the Integral of a Rate

The Integral of Velocity: Example (Cont'd)

Note that |v(t)| =
t3 — 10t% + 24t, ifo<t<4
—(t3 —10t% +24t), if4<t<6

Thus, we have
6
Jo Iv(t)ldt
= [F(t3 — 10¢% + 24t)dt + [0 —(t3 — 10¢% + 24¢)dt
= (24 =L i) o (=LA 4 15 )

— 128 |, 20 _ 148
=3 +3 == meters.
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The Integral Net Change as the Integral of a Rate

Total Versus Marginal Cost

@ Let C(x) be cost for producing x units of a product or a commodity;
@ The derivative C'(x) is called the marginal cost;
@ The cost of increasing production from a to b is

b
C[a,b]=/ C'(x)dx;

Example: Suppose that the marginal cost for producing x computer
chips (x in thousands) is C’(x) = 300x? — 4000x -+ 40, 000 dollars per
thousand chips;
@ Determine the cost of increasing production from 10,000 to 15,000
chips. 15
C[10,15] = 10 C'(x)dx
o (300x2 — 4000x + 40, 000)dx
= (100x3 — 2000x2 + 40,000x)| ;7
—  $187,500.
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The Integral Net Change as the Integral of a Rate

Total Versus Marginal Cost: Example (Cont'd)

@ The marginal cost for producing x computer chips (x in thousands) is
C'(x) = 300x% — 4000x + 40, 000 dollars per thousand chips;

o Determine the total production cost for 15,000 chips assuming that the
company incurs a cost of $ 30,000 for setting up the manufacturing
run, i.e., that C(0) = 30, 000;

C(x) = [C'(x)dx
S (300x2 — 4000x + 40, 000)dx
= 100x3 — 2000x2 + 40,000x + C.

Since C(0) = 30,000, we get C = 30,000; Hence,
C(x) = 100x® — 2000x? + 40, 000x + 30, 000.
Therefore,

C(15) = 100 - 15> — 2000 - 152 4 40,000 - 15 + 30, 000 = $517, 500;
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The Integral Substitution Method

Subsection 6

Substitution Method
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The Integral Substitution Method

The Substitution Method

@ Recall the Chain Rule for computing derivatives:

d%F(U(X)) = F'(u())'(x) = F(u(x))u' (),

where, of course F(x) is an antiderivative of f(x);

@ This rule yields the Substitution Rule for computing indefinite
integrals:

/f(u(x))u'(x)dx = F(u(x)) + C;

@ Usually, the Substitution Rule is applied in the form of the
Substitution or Change of Variable Method:
o We want to compute [ f(u(x))u’(x)dx;
o Note that since 2 = u/(x), one gets du = u'(x)dx;

o Therefore [ f(u(x))u'(x)dx = [ f(u)du = F(u) + C;
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The Integral Substitution Method

Example |

o Evaluate /3x2 sin (x3)dx;
@ Method 1 (Substitution Rule):
/3x2 sin(x3)dx = /(X3)’sin (x3)dx
= —cos(x®)+C;

@ Method 2 (Substitution Method):
Let u = x3; Then % = 3x2; Therefore, du = 3x2%dx;

So we have
/3x2 sin(x3)dx = /sin u du

= —cosu-+C
= —cos(x’)+C;
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The Integral Substitution Method

Example Il

o Evaluate /x(x2 +9)5dx;
@ Method 1 (Substitution Rule):

/x(x2 +9)%dx = %/2X(X2 + 9)°dx
/(x2 +9)'(x* + 9)°dx

1
2
12+ 9)°+ G

@ Method 2 (Substitution Method):
Let u = x2+9; Then % — 2x; Therefore, 2du = xdx;

So we have
/x(x2+9)5dx = / uddu
u6—i— C
(X +9) + C;

N[

N|"' MlH
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The Integral Substitution Method

Example IlI

o Evaluate /wﬁjﬁdx;
Let u = x3+3x? 4+ 12; Then % = 3x2 + 6x = 3(x% + 2x);
Therefore, 2du = (x? + 2x)dx;
So we have

— 1
/(x3+3x2+12)6 dx = ub du

Wik W~

}5u_5—|—C
- —ec

_ 1 .
_ 15(x3+3x2+12)° + C’
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The Integral Substitution Method

More Examples

o Evaluate /sin (760 + 5)do;
Let u =76 +5; Then % = 7; Therefore, %du = do;
So we have
/sin (70 +5)do = %/sin udu
= i(—cosu)+C
= —2lcos(70+5)+C;
o Evaluate /e‘gtdt;

Let u = —9t; Then % = —9; Therefore, —3du = dt;
So we have

/e‘gtdt = é\/e“du

= —ge'+C
1

= — geigt T C,
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The Integral Substitution Method

Additional Examples

o Evaluate /tan 0do,
Rewrite [tanfdf = [ £n8 49,

cos
Let u = cos@; Then % = —sin@; Therefore, —du = sin0d@; Thus,
[tan0dg = [228d0=— [Lldy
= —Inlul+ C= —In|cosb| + C;

@ Evaluate /x\/5x + 1dx;

Let u =5x+1; Then, x = %u — L. Also, % = 5; So, %du = dx;
We now have

[ xv/Bx+1dx = %f(%u %)\/ﬂdu 215‘[( 3/2 _ y1/2)dy
= (3P + 2082+ C= Su¥2+ 2?24+ C
= Zs(6x T 12+ H(6x+ 12+ C
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The Integral Substitution Method

Substitution for Definite Integration

b u(b)
/ f(u(x))u'(x)dxz/() f(u)du

2
@ Example: Evaluate/ x2V/x3 + 1dx;

0
Let u = x3 + 1; Then, % = 3x2: So, %du = x2dx; Also, for x = 0,
u=1and forx =2, u=09;
We now have

/02x2\/x3—+1dx = /\/_du
= fi—1)=

©|S Wl
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The Integral Substitution Method

Two More Examples

/4
9 Evaluate/ tan3 6 sec? 6d0:
0

Let u = tan@; Then, % = sec? 0: So, du = sec?26d6; Also, for § = 0,

u=0and for § = 7, u=1; We now have

/4 1 )
/ tan30sec20df = / u3du = %”4‘0 = %;
0 0

3 X
Q Evaluate/ 2—dx;
1 X == 1

L&Y :l
Let v = x2 + 1; Then, % = 2x; “I P
So, %du = xdx; Also, for x = 1, } }
u = 2 and for x = 3,1u = 10;
3 X _ 1 rlo _
f]. —X2+1dX = 3 J> Edu-
%Inugo = 1(In10—In2);
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The Integral Further Transcendental Functions

Subsection 7

Further Transcendental Functions
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The Integral Further Transcendental Functions

Transcendental Functions Using Substitution

L |
9 Evaluate/ > dx;
0 X == 1

We have
19 o 1 1
/0 X2-|-1dX = tan X‘O:tan_ 1 —tan— 0:%,
! 1
o Evaluate/ — - dx;
1/vV2xVax2 — 1

Let u = 2x; Then, % = 2: So, %du = dx; Also, for x =
and, for x =1, u = 2; We now have

5
|
S

1 2 1 2
1 5 1
[ = [ h a1l
1/vV2xVax? —1 Vasuvu? —1 Vauvu? —1
sec”! u‘f@ = sec 12 —sec 1?2

_ m.
- 12

_ @m_m
= 37 3

George Voutsadakis (LSSU) Calculus | November 2014 49 / 58



The Integral Further Transcendental Functions

Two More Examples

3/4 1
o Evaluate /
o

7dX,
V9 — 16X . A
Rewrite = = : Set u = =%; Thus
\/9 16X2 3, /1— X2 3,/1— (4><)2' 3
o T
dx 3

3du—dx Forx—O u=0; andforx=3, u=1:

4
3/4 1 3/4 1
/ R / dx—/
0 \/9—].6X2 3 /]_ (4X 4\/1 u?

= ZSIn U|0 =

/2 )
o Evaluate / (cos 0)105"9d0);
0

4 2

Let u =sin@; Then, % = cosf; So, du = cos@d@; Also, for 6 = 0,
u =0 and, for § = % u=1;: We now have

e 0)105" 9 dg 110“d BTV
/0 (cos ) _/0 b= 170 1% = g
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The Integral Exponential Growth and Decay

Subsection 8

Exponential Growth and Decay
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The Integral Exponential Growth and Decay

Exponential Growth and Decay

@ The quantity P(t) depends exponentially on time t, if it varies
according to

P(t) = Poe*;
o If k > 0, then P(t) grows exponentially and k is the growth
constant;
o If k <0, then P(t) decays exponentially and k is the decay
constant;

Example: If an E-coli culture grows exponentially with growth
constant k = 0.41 hours™! and there are 1000 bacteria at time t = 0,
what is the population P(t) at time t? When will the population
reach the level of 10,0007

We have P(t) = 1000e%4';

Therefore, the population will reach 10,000 when

100041t = 10,000; This yields e®41f = 10, or t = 527 In 10;
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The Integral Exponential Growth and Decay

Differential Equations with Exponential Solutions

If y(t) obeys the differential equation y’ = ky, then
y(t) = Poe',
where Py = y(0).
Example: What are the general solutions of y’ = 3y? Which one

satisfies the initial condition y(0) = 97
According to the Theorem,

y(t) = Poe;

Moreover, if y(0) = 9, then Py =9, whence y(t) = 9¢3¢;

George Voutsadakis (LSSU) Calculus | November 2014 53 / 58



The Integral Exponential Growth and Decay

Administering a Drug

@ Suppose that a drug leaves the bloodstream at a rate proportional to
the amount present.
o Write a differential equation expressing this statement;
o If 50 mg of the drug remain in the blood 7 hours after an injection of
450 mg, what is the decay constant?
o At what time, will there be 200 mg present in the blood?

@ We work as follows:

o If y is the amount present, then y/ = — ky;

o The general solution of this equation is y = Pye *; Under hypotheses,
50 = 450e~"*; Therefore, —7Tk =In§ =—1In9, ie, k = 22;

o We must solve 200 = 450e~"t: So e~ "7t = 3 ie, -2t =In};
Thus, we get t = 7%‘;/9);
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The Integral Exponential Growth and Decay

Doubling Time and Half-Life

o If P(t) = Pyet, with k > 0, then the doubling time of P is

In2
Doubling Time = "T;

o If P(t) = Pye~kt, with k > 0, then the half-life of P is

In2
Half-Life = —;
alf-Life p
@ The formulas above are very easy to establish; They need not be
memorized!
Set P(t) = 2Py; Then 2Py = Pyekt; Now solve for t: 2 = ekt

whence kt = In 2, and, therefore, t = InT2;
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The Integral Exponential Growth and Decay

Compound Interest

@ If Py dollars are invested in an account earning interest at annual rate
r, compounded M times yearly, then the future amount P(t) after t
years is

Piy=Po(14 )",

Theorem (Limit Formulas for e and &)

. 1\" . X\ N
e= lim (1—1——) and &* = |lim <1+—) .
n— 0o n n—ro0 n

@ If Py dollars are invested in an account earning interest at annual rate
r, compounded continuously, then the future amount P(t) after t
years is

P(t) = Pye";
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The Integral Exponential Growth and Decay

Present Value of Future Amount

Present Value
The present value PV of P dollars to be received t years in the future
under continuous compounding at an annual rate r, is given by

PV = Pe"t;

Example: If the annual interest rate is r = 0.03, is it better to receive
$ 2000 today or $ 2200 in two years?

The present value of $ 2200 received two years from now is

PV = Pe~" ie., PV = 2200e 9932 ~ 2,071.88; Therefore, it is
better to receive $ 2,200 two years from now;
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The Integral Exponential Growth and Decay

Present value of an Income Stream

PV of an Income Stream

If the annual interest rate is r, the present value of an income stream
paying out R(t) dollars per year continuously for T years is

-
PV=/ R(t)e "dt;
0

Example: An investment pays ¥100,000 per year continuously for 10
years. What is the investment’s present value for r = 0.067

10
PV = 100, 000e 099t g — 10930 ¢-005
) —0.06 0

0
~ 1,666,666.67(e9° — 1) ~ ¥751,980.61;
Example: An investment pays €50,000 per year continuously for 5
years. What is the investment’s present value for r = 0.027

5
PV = / 50,000e 002 gt = —5°6°g§e*0~°2‘5
0 o 0
~ 2,500,500(e %2 — 1) ~ €453,173.12;
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