Calculus I

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 151

(1) The Integral

- Approximating and Computing Area
- The Definite Integral
- The Fundamental Theorem of Calculus, Part I
- The Fundamental Theorem of Calculus, Part II
- Net Change as the Integral of a Rate
- Substitution Method
- Further Transcendental Functions
- Exponential Growth and Decay

Subsection 1

Approximating and Computing Area

Approximating Area by Rectangles

- Suppose, we want to approximate the area under the graph of $y=f(x)$ from $x=a$ to $x=b$;

- We may cut the interval $[a, b]$ into N subintervals of equal length; The common length will be equal to $\Delta x=\frac{b-a}{N}$;
- Suppose that in the first subinterval $\left[a, x_{1}\right]$, we take a point x_{1}^{*}, in the second $\left[x_{1}, x_{2}\right]$ a point x_{2}^{*}, etc.; Thus, in interval $\left[x_{i-1}, x_{i}\right]$, we will have a point x_{i}^{*};
- Then we calculate the area of each rectangle by $\Delta A_{i}=f\left(x_{i}^{*}\right) \Delta x$;
- Finally, we sum all the elementary rectangular areas:
$A \approx \Delta x\left[f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+\cdots+f\left(x_{N}^{*}\right)\right] ;$

Approximating Area Under $y=x^{2}$

- We use the method to approximate the area under $f(x)=x^{2}$ from $x=1$ to $x=3$ using $N=4$ subintervals and taking as x_{i}^{*} the right endpoint of the corresponding interval:

- Since $\Delta x=\frac{3-1}{4}=\frac{1}{2}$, we get

$$
\begin{aligned}
A & \approx \frac{1}{2}\left[f\left(\frac{3}{2}\right)+f(2)+f\left(\frac{5}{2}\right)+f(3)\right] \\
& =\frac{1}{2}\left[\frac{9}{4}+4+\frac{25}{4}+9\right] \\
& =\frac{1}{2} \frac{86}{4}=\frac{43}{4} .
\end{aligned}
$$

Summation $\left(\sum\right)$ Notation

- We use the notation

$$
\sum_{i=m}^{n} a_{i}:=a_{m}+a_{m+1}+\cdots+a_{n-1}+a_{n}
$$

- Example:

$$
\sum_{i=1}^{5} i^{2}=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=55
$$

- Example: Compute

$$
\begin{aligned}
\sum_{k=4}^{6}\left(k^{2}-2 k\right) & =\left(4^{2}-2 \cdot 4\right)+\left(5^{2}-2 \cdot 5\right)+\left(6^{2}-2 \cdot 6\right) \\
& =8+15+24=47
\end{aligned}
$$

Example: $\sum_{m=7}^{11} 1=1+1+1+1+1=5$;

Linearity Properties of Summation

Linearity of Summation

- $\sum_{i=m}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=m}^{n} a_{i}+\sum_{i=m}^{n} b_{i} ;$
- $\sum_{i=m}^{n} C a_{i}=C \sum_{i=m}^{n} a_{i} ;$
- $\sum_{i=1}^{n} k=n k \quad$ and $\quad \sum_{i=m}^{n} k=(n-m+1) k$;
- Example: $\sum_{i=3}^{5}\left(i^{2}+i\right)=\left(3^{2}+3\right)+\left(4^{2}+4\right)+\left(5^{2}+5\right)=$

$$
\left(3^{2}+4^{2}+5^{2}\right)+(3+4+5)=\sum_{i=3}^{5} i^{2}+\sum_{i=3}^{5} i
$$

Two More Examples

- Example:

$$
\sum_{i=0}^{50}\left(3 i^{2}-7 i+8\right)=\sum_{i=0}^{50} 3 i^{2}-\sum_{i=0}^{50} 7 i+\sum_{i=0}^{50} 8=3 \sum_{i=0}^{50} i^{2}-7 \sum_{i=0}^{50} i+8 \sum_{i=0}^{50} 1
$$

- Example: The sum of the rectangle areas that approximate the area under the curve $y=f(x)$ on $[a, b]$ can be written very succinctly using summation notation

$$
\begin{aligned}
A & \approx \Delta x\left[f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+\cdots+f\left(x_{N-1}^{*}\right)+f\left(x_{N}^{*}\right)\right] \\
& =\frac{b-a}{N} \sum_{i=1}^{N} f\left(x_{i}^{*}\right)
\end{aligned}
$$

Approximating Area Under $y=\frac{1}{x}$

- Let us approximate the area under the graph of $f(x)=\frac{1}{x}$ on $[2,4]$ using $N=6$ and mid-points as the $x_{i}^{* ' s ; ~}$

$$
\begin{aligned}
A & \approx \frac{4-2}{6} \sum_{i=1}^{6} f\left(2+\left(i-\frac{1}{2}\right) \frac{1}{3}\right) \\
& =\frac{1}{3} \sum_{i=1}^{6} f\left(\frac{11+2 i}{6}\right) \\
& =\frac{1}{3}\left[f\left(\frac{13}{6}\right)+f\left(\frac{15}{6}\right)+f\left(\frac{17}{6}\right)+f\left(\frac{19}{6}\right)+f\left(\frac{21}{6}\right)+f\left(\frac{23}{6}\right)\right] \\
& =\frac{1}{3}\left[\frac{6}{13}+\frac{6}{15}+\frac{6}{17}+\frac{6}{19}+\frac{6}{21}+\frac{6}{23}\right] \\
& =2\left[\frac{1}{13}+\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}+\frac{1}{23}\right] \\
& \approx 2 \cdot 0.346=0.692 .
\end{aligned}
$$

Exact Area as the Limit of Approximations

- When the number of rectangles N approaches infinity, then the area enclosed by the approximating rectangles tends to the exact amount of area under the curve;
- Thus

$$
A=\lim _{N \rightarrow \infty} \frac{b-a}{N} \sum_{i=1}^{N} f\left(x_{i}^{*}\right) .
$$

- To use the limit of the approximating sums to compute areas, we need some summation formulas;

Sums of Powers

Power Sums

$$
\begin{aligned}
& \text { } \sum_{i=1}^{N} i=1+2+\cdots+N=\frac{N(N+1)}{2} \\
& \text { - } \sum_{i=1}^{N} i^{2}=1^{2}+2^{2}+\cdots+N^{2}=\frac{N(N+1)(2 N+1)}{6}
\end{aligned}
$$

$$
\sum_{i=1}^{N} i^{3}=1^{3}+2^{3}+\cdots+N^{3}=\frac{N^{2}(N+1)^{2}}{4}
$$

- Consider the function $f(x)=\frac{1}{2} x$. The area of the triangle under the graph of $y=f(x)$ from $x=0$ to $x=4$ can be computed using the familiar formula $A=\frac{1}{2}$ base \cdot height; It is equal to $A=\frac{1}{2} 4 \cdot 2=4$;
- We are going to compute this area using the limit of the approximating sums method in the next slide;

Using Limits of Approximating Sums

- We write an expression using the summation notation for the approximating sum of the area of the triangle under $y=\frac{1}{2} x$ on $[0,4]$ using N rectangles and right endpoints as the $x_{i}^{* \prime}$ s:

$$
\begin{aligned}
A & \approx \frac{4-0}{N} \sum_{i=1}^{N} f\left(\frac{4 i}{N}\right)=\frac{4}{N} \sum_{i=1}^{N} \frac{1}{2} \cdot \frac{4 i}{N}=\frac{4}{N} \sum_{i=1}^{N} \frac{2}{N} i \\
& =\frac{4}{N} \sum_{i=1}^{N} \frac{2}{N^{2}} i=\frac{8}{N^{2}} \sum_{i=1}^{N} i=\frac{8}{N^{2}} \cdot \frac{N(N+1)}{2} \\
& =\frac{8 N(N+1)}{2 N^{2}}=\frac{4 N^{2}+4 N}{N^{2}}
\end{aligned}
$$

Therefore, the exact area is given by

$$
A=\lim _{N \rightarrow \infty} \frac{4 N^{2}+4 N}{N^{2}}=4
$$

Finding Area Under Curve

- Find the exact area under

$$
\begin{aligned}
& f(x)=-x^{2}+2 x+3 \text { from } \\
& x=1 \text { to } x=3
\end{aligned}
$$

The approximation sum for N subintervals using right endpoints for the $x_{i}^{* ' s}$ is

$$
\begin{array}{rl}
A \approx \frac{3-1}{N} \sum_{i=1}^{N} & f\left(1+\frac{2 i}{N}\right) \\
& =\frac{2}{N} \sum_{i=1}^{N}\left[-\left(1+\frac{2 i}{N}\right)^{2}+2\left(1+\frac{2 i}{N}\right)+3\right] \\
& =\frac{2}{N} \sum_{i=1}^{N}\left[-1-\frac{4 i}{N}-\frac{4 i^{2}}{N^{2}}+2+\frac{4 i}{N}+3\right]
\end{array}
$$

Example (Cont'd)

$$
\begin{aligned}
A & \approx \frac{2}{N} \sum_{i=1}^{N}\left[4-\frac{4 i^{2}}{N^{2}}\right] \\
& =\frac{2}{N}\left[\sum_{i=1}^{N} 4-\frac{4}{N^{2}} \sum_{i=1}^{N} i^{2}\right] \\
& =\frac{2}{N}\left[4 N-\frac{4 N(N+1)(2 N+1)}{6 N^{2}}\right] \\
& =8-\frac{4(N+1)(2 N+1)}{3 N^{2}}
\end{aligned}
$$

Therefore

$$
A=\lim _{N \rightarrow \infty}\left(8-\frac{4(N+1)(2 N+1)}{3 N^{2}}\right)=8-\frac{8}{3}=\frac{16}{3} .
$$

Area up to a Variable Endpoint

- Find the exact area under $f(x)=x^{2}$ from $x=0$ to $x=b$ (a fixed constant);

The approximation sum for N subintervals using right endpoints for the x_{i}^{*} 's is

$$
\begin{aligned}
A & \approx \frac{b-0}{N} \sum_{i=1}^{N} f\left(0+\frac{b i}{N}\right) \\
& =\frac{b}{N} \sum_{i=1}^{N}\left(\frac{b i}{N}\right)^{2}=\frac{b}{N} \frac{b^{2}}{N^{2}} \sum_{i=1}^{N} i^{2}=\frac{b^{3}}{N^{3}} \frac{N(N+1)(2 N+1)}{6}
\end{aligned}
$$

Therefore,

$$
A=\lim _{N \rightarrow \infty} \frac{b^{3}}{N^{3}} \frac{N(N+1)(2 N+1)}{6}=\frac{1}{3} b^{3} .
$$

Subsection 2

The Definite Integral

Riemann Sums and Definite Integrals

- Consider a function $f(x)$ on $[a, b]$;
- Choose a partition P of $[a, b]$ of size N, i.e.,

$$
P: a=x_{0}<x_{1}<x_{2}<\cdots<x_{N}=b
$$

- Choose sample points $C=\left\{c_{1}, \ldots, c_{N}\right\}$, with $c_{i} \in\left[x_{i-1}, x_{i}\right]$, for all i;
- Denoting $\Delta x_{i}=x_{i}-x_{i-1}$, we obtain the Riemann sum

$$
R(f, P, C)=\sum_{i=1}^{N} f\left(c_{i}\right) \Delta x_{i}
$$

Definite Integral

The definite integral of $f(x)$ over $[a, b]$ is the limit of the Riemann sums as the maximum length $\|P\|$ of the partition subintervals approaches zero:

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} R(f, P, C)=\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{N} f\left(c_{i}\right) \Delta x_{i}
$$

If the limit exists $f(x)$ is called integrable over $[a, b]$;

Signed Areas

- Signed Area $=($ Area Above x-Axis $)-($ Area Below x-Axis $) ;$

- That is exactly the geometric interpretation of the definite integral:

$$
\int_{a}^{b} f(x) d x=\text { Signed Area Between Graph and } x \text {-Axis over }[a, b] ;
$$

Interpretation into Signed Area

- Compute $\int_{0}^{5}(3-x) d x$

According to the previous interpretation, we have

$$
\begin{aligned}
& \int_{0}^{5}(3-x) d x \\
& =(\text { Area Above })-(\text { Area Below }) \\
& =\frac{1}{2} 3 \cdot 3-\frac{1}{2} 2 \cdot 2 \\
& =\frac{9}{2}-2 \\
& =\frac{5}{2}
\end{aligned}
$$

Constant Functions and Linearity

Integral of a Constant

$\int_{a}^{b} C d x=C(b-a)$

Linearity of the Definite Integral

If f, g are integrable over $[a, b]$, then $f \pm g$ and $C f$ are also integrable over $[a, b]$ and:

- $\int_{a}^{b}(f(x) \pm g(x)) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$;
- $\int_{a}^{b} C f(x) d x=C \int_{a}^{b} f(x) d x$.

Example: Recall that $\int_{0}^{b} x^{2} d x=\frac{1}{3} b^{3}$; Therefore, we have

$$
\begin{aligned}
& \int_{0}^{3}\left(2 x^{2}-5\right) d x=\int_{0}^{3} 2 x^{2} d x-\int_{0}^{3} 5 d x=2 \int_{0}^{3} x^{2} d x-\int_{0}^{3} 5 d x= \\
& 2 \frac{3^{3}}{3}-5(3-0)=3
\end{aligned}
$$

Reversing the Limits and Adding Over Intervals

Reversing the Limits of Integration

If $a<b$, then

$$
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

Additivity over Adjacent Intervals
If $a \leq b \leq c$ and $f(x)$ is integrable, then:
$\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

Comparison Theorem

Comparison Theorem

If f and g are integrable and $g(x) \leq f(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) d x
$$

Example: If $x \geq 1, x^{2} \geq x$ and, hence, $\frac{1}{x^{2}} \leq \frac{1}{x}$. Therefore,

$$
\int_{1}^{4} \frac{1}{x^{2}} d x \leq \int_{1}^{4} \frac{1}{x} d x
$$

Establishing Bounds

Consider the function $f(x)=\frac{1}{x}$ on [$\frac{1}{2}$, 2]; Clearly, if $\frac{1}{2} \leq x \leq 2, \frac{1}{2} \leq \frac{1}{x}^{x} \leq 2$; Therefore, by the Comparison Theorem,

$$
\int_{1 / 2}^{2} \frac{1}{2} d x \leq \int_{1 / 2}^{2} \frac{1}{x} d x \leq \int_{1 / 2}^{2} 2 d x
$$

This yields

$$
\frac{3}{2} \cdot \frac{1}{2} \leq \int_{1 / 2}^{2} \frac{1}{x} d x \leq \frac{3}{2} \cdot 2 ; \quad \text { i.e., } \quad \frac{3}{4} \leq \int_{1 / 2}^{2} \frac{1}{x} d x \leq 3
$$

Subsection 3

The Fundamental Theorem of Calculus, Part I

The Fundamental Theorem of Calculus, Part I

The Fundamental Theorem of Calculus, Part I

If $f(x)$ is continuous on $[a, b]$ and $F(x)$ is an antiderivative of $f(x)$ on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

- The difference $F(b)-F(a)$ is denoted $\left.F(x)\right|_{a} ^{b}$. Using this notation, we get

$$
\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}
$$

Example: Calculate the area under $f(x)=x^{3}$ over [2, 4];

$$
\begin{aligned}
A & =\int_{2}^{4} x^{3} d x=\left.\frac{1}{4} x^{4}\right|_{2} ^{4} \\
& =\frac{1}{4}\left(4^{4}-2^{4}\right)=60
\end{aligned}
$$

More Examples

Example: Calculate the area under $f(x)=x^{-3 / 4}+3 x^{5 / 3}$ over [1, 3]; $A=\int_{1}^{3}\left(x^{-3 / 4}+3 x^{5 / 3}\right) d x$
$=\left.\left(4 x^{1 / 4}+\frac{9}{8} x^{8 / 3}\right)\right|_{1} ^{3}$
$=\left(4 \cdot 3^{1 / 4}+\frac{9}{8} \cdot 3^{8 / 3}\right)-\left(4+\frac{9}{8}\right) \approx 21.2$.

Example: Calculate the area under $f(x)=\sec ^{2} x$ over $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$;
$A=\int_{-\pi / 4}^{\pi / 4} \sec ^{2} x d x=\left.\tan x\right|_{-\pi / 4} ^{\pi / 4}=$ $\tan \frac{\pi}{4}-\tan \left(-\frac{\pi}{4}\right)=2$.

Additional Examples

Example: Calculate the area un$\operatorname{der} f(x)=e^{3 x-1}$ over $[-1,1]$;
$A=\int_{-1}^{1} e^{3 x-1} d x=\left.\frac{1}{3} e^{3 x-1}\right|_{-1} ^{1}=$ $\frac{1}{3}\left(e^{2}-e^{-4}\right) \approx 2.457$

Example: Calculate the area un$\operatorname{der} f(x)=\frac{1}{x}$ over $[2,8]$;
$A=\int_{2}^{8} \frac{1}{x} d x=\left.\ln x\right|_{2} ^{8}$
$=\ln 8-\ln 2 \approx 1.386$.

Subsection 4

The Fundamental Theorem of Calculus, Part II

Illustration of Main Concept

- Consider $f(x)=3 x^{2}$;

The area $A(x)$ under $y=f(x)$ over $[1, x]$ is given by

$$
\begin{aligned}
A(x) & =\int_{1}^{x} 3 t^{2} d t \\
& =\left.t^{3}\right|_{1} ^{x} \\
& =x^{3}-1
\end{aligned}
$$

- Now, note that $A^{\prime}(x)=\left(x^{3}-1\right)^{\prime}=3 x^{2}=f(x)$;

Fundamental Theorem of Calculus, Part II

Fundamental Theorem of Calculus, Part II

If $f(x)$ is continuous on an open interval I and $a \in I$, then the area function

$$
A(x)=\int_{a}^{x} f(t) d t
$$

is an antiderivative of $f(x)$ on I, i.e., $A^{\prime}(x)=f(x)$; Equivalently,

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Note that this antiderivative satisfies the initial condition $A(a)=0$.

Examples

- Suppose $F(x)$ is a particular antiderivative of $f(x)=\sin \left(x^{2}\right)$ satisfying $F(-\sqrt{\pi})=0$. Express $F(x)$ as an integral.

According to the Part II of the Fundamental Theorem, we have

$$
F(x)=\int_{-\sqrt{\pi}}^{x} f(t) d x=\int_{-\sqrt{\pi}}^{x} \sin \left(t^{2}\right) d t
$$

- Find the derivative of $A(x)=\int_{2}^{x} \sqrt{1+t^{3}} d t$;

By Part II of the Fundamental Theorem,

$$
\frac{d A}{d x}=\frac{d}{d x} \int_{2}^{x} \sqrt{1+t^{3}} d t=\sqrt{1+x^{3}}
$$

Fundamental Theorem of Calculus and the Chain Rule

- Let us find the derivative of $G(x)=\int_{-2}^{x^{2}} \sin t d t$;

It is important to realize that $G(x)=A\left(x^{2}\right)$, where
$A(x)=\int_{-2}^{x} \sin t d t$;
Thus, $G(x)$ is a composite function and, as such, the Chain Rule must be used to compute its derivative:

$$
\begin{aligned}
\frac{d}{d x} G(x) & =\frac{d}{d x} A\left(x^{2}\right) \underbrace{=}_{u=x^{2}} \frac{d}{d u} A(u) \frac{d u}{d x} \\
& =f(u) \cdot 2 x=\sin u \cdot 2 x \\
& =2 x \sin \left(x^{2}\right) .
\end{aligned}
$$

Subsection 5

Net Change as the Integral of a Rate

Net Change as Integral of Rate of Change

- The net change in $s(t)$ over an interval $\left[t_{1}, t_{2}\right]$ is the integral

$$
\int_{t_{1}}^{t_{2}} s^{\prime}(t) d t=s\left(t_{2}\right)-s\left(t_{1}\right)
$$

Example: If water leaks from a bucket at a rate of $2+5 t \mathrm{lt} / \mathrm{hr}$, where t is number of hours after 7 AM, how much water is lost between 9 and 11 AM ?

We have

$$
\begin{aligned}
s(4)-s(2) & =\int_{2}^{4}-(2+5 t) d t=\left.\left(-2 t-\frac{5}{2} t^{2}\right)\right|_{2} ^{4} \\
& =(-48)-(-14)=-34 \text { Its. }
\end{aligned}
$$

The Integral of Velocity

- For an object in linear motion with velocity $v(t)$,
- Displacement during $\left[t_{1}, t_{2}\right]=\int_{t_{1}}^{t_{2}} v(t) d t$;
- Distance traveled during $\left[t_{1}, t_{2}\right]=\int_{t_{1}}^{t_{2}}|v(t)| d t$;

Example: If $v(t)=t^{3}-10 t^{2}+24 t \mathrm{~m} / \mathrm{sec}$, compute both the displacement and the total distance over $[0,6]$;

Thus, we have

$$
\begin{aligned}
& \int_{0}^{6} v(t) d t \\
& =\int_{0}^{6}\left(t^{3}-10 t^{2}+24 t\right) d t \\
& =\left.\left(\frac{1}{4} t^{4}-\frac{10}{3} t^{3}+12 t^{2}\right)\right|_{0} ^{6} \\
& =36 \text { meters; }
\end{aligned}
$$

The Integral of Velocity: Example (Cont'd)

Note that $|v(t)|=$

$$
\begin{cases}t^{3}-10 t^{2}+24 t, & \text { if } 0 \leq t \leq 4 \\ -\left(t^{3}-10 t^{2}+24 t\right), & \text { if } 4 \leq t \leq 6\end{cases}
$$

Thus, we have

$$
\begin{aligned}
& \int_{0}^{6}|v(t)| d t \\
& =\int_{0}^{4}\left(t^{3}-10 t^{2}+24 t\right) d t+\int_{4}^{6}-\left(t^{3}-10 t^{2}+24 t\right) d t \\
& =\left.\left(\frac{1}{4} t^{4}-\frac{10}{3} t^{3}+12 t^{2}\right)\right|_{0} ^{4}+\left.\left(-\frac{1}{4} t^{4}+\frac{10}{3} t^{3}-12 t^{2}\right)\right|_{4} ^{6} \\
& =\frac{128}{3}+\frac{20}{3}=\frac{148}{3} \text { meters. }
\end{aligned}
$$

Total Versus Marginal Cost

- Let $C(x)$ be cost for producing x units of a product or a commodity;
- The derivative $C^{\prime}(x)$ is called the marginal cost;
- The cost of increasing production from a to b is

$$
C[a, b]=\int_{a}^{b} C^{\prime}(x) d x
$$

Example: Suppose that the marginal cost for producing x computer chips (x in thousands) is $C^{\prime}(x)=300 x^{2}-4000 x+40,000$ dollars per thousand chips;

- Determine the cost of increasing production from 10,000 to 15,000 chips.

$$
\begin{aligned}
C[10,15] & =\int_{10}^{15} C^{\prime}(x) d x \\
& =\int_{10}^{15}\left(300 x^{2}-4000 x+40,000\right) d x \\
& =\left.\left(100 x^{3}-2000 x^{2}+40,000 x\right)\right|_{10} ^{15} \\
& =\$ 187,500 .
\end{aligned}
$$

Total Versus Marginal Cost: Example (Cont'd)

- The marginal cost for producing x computer chips (x in thousands) is $C^{\prime}(x)=300 x^{2}-4000 x+40,000$ dollars per thousand chips;
- Determine the total production cost for 15,000 chips assuming that the company incurs a cost of $\$ 30,000$ for setting up the manufacturing run, i.e., that $C(0)=30,000$;

$$
\begin{aligned}
C(x) & =\int C^{\prime}(x) d x \\
& =\int\left(300 x^{2}-4000 x+40,000\right) d x \\
& =100 x^{3}-2000 x^{2}+40,000 x+C .
\end{aligned}
$$

Since $C(0)=30,000$, we get $C=30,000$; Hence,

$$
C(x)=100 x^{3}-2000 x^{2}+40,000 x+30,000
$$

Therefore,

$$
C(15)=100 \cdot 15^{3}-2000 \cdot 15^{2}+40,000 \cdot 15+30,000=\$ 517,500 ;
$$

Subsection 6

Substitution Method

The Substitution Method

- Recall the Chain Rule for computing derivatives:

$$
\frac{d}{d x} F(u(x))=F^{\prime}(u(x)) u^{\prime}(x)=f(u(x)) u^{\prime}(x)
$$

where, of course $F(x)$ is an antiderivative of $f(x)$;

- This rule yields the Substitution Rule for computing indefinite integrals:

$$
\int f(u(x)) u^{\prime}(x) d x=F(u(x))+C
$$

- Usually, the Substitution Rule is applied in the form of the Substitution or Change of Variable Method:
- We want to compute $\int f(u(x)) u^{\prime}(x) d x$;
- Note that since $\frac{d u}{d x}=u^{\prime}(x)$, one gets $d u=u^{\prime}(x) d x$;
- Therefore $\int f(u(x)) u^{\prime}(x) d x=\int f(u) d u=F(u)+C$;

Example I

- Evaluate $\int 3 x^{2} \sin \left(x^{3}\right) d x$
- Method 1 (Substitution Rule):

$$
\begin{aligned}
\int 3 x^{2} \sin \left(x^{3}\right) d x & =\int\left(x^{3}\right)^{\prime} \sin \left(x^{3}\right) d x \\
& =-\cos \left(x^{3}\right)+C
\end{aligned}
$$

- Method 2 (Substitution Method):

Let $u=x^{3}$; Then $\frac{d u}{d x}=3 x^{2}$; Therefore, $d u=3 x^{2} d x$; So we have

$$
\begin{aligned}
\int 3 x^{2} \sin \left(x^{3}\right) d x & =\int \sin u d u \\
& =-\cos u+C \\
& =-\cos \left(x^{3}\right)+C
\end{aligned}
$$

Example II

- Evaluate $\int x\left(x^{2}+9\right)^{5} d x$
- Method 1 (Substitution Rule):

$$
\begin{aligned}
\int x\left(x^{2}+9\right)^{5} d x & =\frac{1}{2} \int 2 x\left(x^{2}+9\right)^{5} d x \\
& =\frac{1}{2} \int\left(x^{2}+9\right)^{\prime}\left(x^{2}+9\right)^{5} d x \\
& =\frac{1}{2} \cdot \frac{1}{6}\left(x^{2}+9\right)^{6}+C
\end{aligned}
$$

- Method 2 (Substitution Method):

Let $u=x^{2}+9$; Then $\frac{d u}{d x}=2 x$; Therefore, $\frac{1}{2} d u=x d x$;
So we have

$$
\begin{aligned}
\int x\left(x^{2}+9\right)^{5} d x & =\frac{1}{2} \int u^{5} d u \\
& =\frac{1}{2} \cdot \frac{1}{6} u^{6}+C \\
& =\frac{1}{12}\left(x^{2}+9\right)^{6}+C
\end{aligned}
$$

Example III

- Evaluate $\int \frac{x^{2}+2 x}{\left(x^{3}+3 x^{2}+12\right)^{6}} d x$;

Let $u=x^{3}+3 x^{2}+12$; Then $\frac{d u}{d x}=3 x^{2}+6 x=3\left(x^{2}+2 x\right)$; Therefore, $\frac{1}{3} d u=\left(x^{2}+2 x\right) d x$;
So we have

$$
\begin{aligned}
\int \frac{x^{2}+2 x}{\left(x^{3}+3 x^{2}+12\right)^{6}} d x & =\frac{1}{3} \int \frac{1}{u^{6}} d u \\
& =\frac{1}{3} \cdot \frac{1}{-5} u^{-5}+C \\
& =-\frac{1}{15 u^{5}}+C \\
& =-\frac{1}{15\left(x^{3}+3 x^{2}+12\right)^{5}}+C
\end{aligned}
$$

More Examples

- Evaluate $\int \sin (7 \theta+5) d \theta$;

Let $u=7 \theta+5$; Then $\frac{d u}{d \theta}=7$; Therefore, $\frac{1}{7} d u=d \theta$;
So we have

$$
\begin{aligned}
\int \sin (7 \theta+5) d \theta & =\frac{1}{7} \int \sin u d u \\
& =\frac{1}{7}(-\cos u)+C \\
& =-\frac{1}{7} \cos (7 \theta+5)+C
\end{aligned}
$$

- Evaluate $\int e^{-9 t} d t$;

Let $u=-9 t$; Then $\frac{d u}{d t}=-9$; Therefore, $-\frac{1}{9} d u=d t$;
So we have

$$
\begin{aligned}
\int e^{-9 t} d t & =-\frac{1}{9} \int e^{u} d u \\
& =-\frac{1}{9} e^{u}+C \\
& =-\frac{1}{9} e^{-9 t}+C
\end{aligned}
$$

Additional Examples

- Evaluate $\int \tan \theta d \theta$;

Rewrite $\int \tan \theta d \theta=\int \frac{\sin \theta}{\cos \theta} d \theta$;
Let $u=\cos \theta$; Then $\frac{d u}{d \theta}=-\sin \theta$; Therefore, $-d u=\sin \theta d \theta$; Thus,

$$
\begin{aligned}
\int \tan \theta d \theta & =\int \frac{\sin \theta}{\cos \theta} d \theta=-\int \frac{1}{u} d u \\
& =-\ln |u|+C=-\ln |\cos \theta|+C ;
\end{aligned}
$$

- Evaluate $\int x \sqrt{5 x+1} d x$;

Let $u=5 x+1$; Then, $x=\frac{1}{5} u-\frac{1}{5}$; Also, $\frac{d u}{d x}=5$; So, $\frac{1}{5} d u=d x$;
We now have

$$
\begin{aligned}
\int x \sqrt{5 x+1} d x & =\frac{1}{5} \int\left(\frac{1}{5} u-\frac{1}{5}\right) \sqrt{u} d u=\frac{1}{25} \int\left(u^{3 / 2}-u^{1 / 2}\right) d u \\
& =\frac{1}{25}\left(\frac{2}{5} u^{5 / 2}+\frac{2}{3} u^{3 / 2}\right)+C=\frac{2}{125} u^{5 / 2}+\frac{2}{75} u^{3 / 2}+C \\
& =\frac{2}{125}(5 x+1)^{5 / 2}+\frac{2}{75}(5 x+1)^{3 / 2}+C
\end{aligned}
$$

Substitution for Definite Integration

$$
\int_{a}^{b} f(u(x)) u^{\prime}(x) d x=\int_{u(a)}^{u(b)} f(u) d u
$$

- Example: Evaluate $\int_{0}^{2} x^{2} \sqrt{x^{3}+1} d x$;

Let $u=x^{3}+1$; Then, $\frac{d u}{d x}=3 x^{2}$; So, $\frac{1}{3} d u=x^{2} d x$; Also, for $x=0$, $u=1$ and for $x=2, u=9$;
We now have

$$
\begin{aligned}
\int_{0}^{2} x^{2} \sqrt{x^{3}+1} d x & =\frac{1}{3} \int_{1}^{9} \sqrt{u} d u=\left.\frac{1}{3} \frac{2}{3} \sqrt{u^{3}}\right|_{1} ^{9} \\
& =\frac{2}{9}(27-1)=\frac{52}{9}
\end{aligned}
$$

Two More Examples

- Evaluate $\int_{0}^{\pi / 4} \tan ^{3} \theta \sec ^{2} \theta d \theta$;

Let $u=\tan \theta$; Then, $\frac{d u}{d \theta}=\sec ^{2} \theta$; So, $d u=\sec ^{2} \theta d \theta$; Also, for $\theta=0$, $u=0$ and for $\theta=\frac{\pi}{4}, u=1$; We now have

$$
\int_{0}^{\pi / 4} \tan ^{3} \theta \sec ^{2} \theta d \theta=\int_{0}^{1} u^{3} d u=\left.\frac{1}{4} u^{4}\right|_{0} ^{1}=\frac{1}{4}
$$

- Evaluate $\int_{1}^{3} \frac{x}{x^{2}+1} d x$;

Let $u=x^{2}+1$; Then, $\frac{d u}{d x}=2 x$;
So, $\frac{1}{2} d u=x d x$; Also, for $x=1$, $u=2$ and for $x=3, u=10$;

$$
\begin{aligned}
\int_{1}^{3} \frac{x}{x^{2}+1} d x & =\frac{1}{2} \int_{2}^{10} \frac{1}{u} d u= \\
\left.\frac{1}{2} \ln u\right|_{2} ^{10} & =\frac{1}{2}(\ln 10-\ln 2)
\end{aligned}
$$

Subsection 7

Further Transcendental Functions

Transcendental Functions Using Substitution

- Evaluate $\int_{0}^{1} \frac{1}{x^{2}+1} d x$;

We have

$$
\int_{0}^{1} \frac{1}{x^{2}+1} d x=\left.\tan ^{-1} x\right|_{0} ^{1}=\tan ^{-1} 1-\tan ^{-1} 0=\frac{\pi}{4}
$$

- Evaluate $\int_{1 / \sqrt{2}}^{1} \frac{1}{x \sqrt{4 x^{2}-1}} d x$;

Let $u=2 x$; Then, $\frac{d u}{d x}=2$; So, $\frac{1}{2} d u=d x$; Also, for $x=\frac{1}{\sqrt{2}}, u=\sqrt{2}$ and, for $x=1, u=2$; We now have

$$
\begin{aligned}
\int_{1 / \sqrt{2}}^{1} \frac{1}{x \sqrt{4 x^{2}-1}} d x & =\int_{\sqrt{2} \frac{1}{2} u \sqrt{u^{2}-1}}^{2} d u=\int_{\sqrt{2}}^{2} \frac{1}{u \sqrt{u^{2}-1}} d u \\
& =\left.\sec ^{-1} u\right|_{\sqrt{2}} ^{2}=\sec ^{-1} 2-\sec ^{-1} \sqrt{2} \\
& =\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12}
\end{aligned}
$$

Two More Examples

- Evaluate $\int_{0}^{3 / 4} \frac{1}{\sqrt{9-16 x^{2}}} d x$; Rewrite $\frac{1}{\sqrt{9-16 x^{2}}}=\frac{1}{\sqrt[3]{1-\frac{16}{9} x^{2}}}=\frac{1}{\sqrt[3]{1-\left(\frac{4 x}{3}\right)^{2}}}$; Set $u=\frac{4 x}{3}$; Thus, $\frac{d u}{d x}=\frac{4}{3}$; So, $\frac{3}{4} d u=d x$; For $x=0, u=0$; and for $x=\frac{3}{4}, u=1$;
$\int_{0}^{3 / 4} \frac{1}{\sqrt{9-16 x^{2}}} d x=\int_{0}^{3 / 4} \frac{1}{3 \sqrt{1-\left(\frac{4 x}{3}\right)^{2}}} d x=\int_{0}^{1} \frac{1}{4} \frac{1}{\sqrt{1-u^{2}}} d u$

$$
=\left.\frac{1}{4} \sin ^{-1} u\right|_{0} ^{1}=\frac{1}{4} \cdot \frac{\pi}{2}
$$

- Evaluate $\int_{0}^{\pi / 2}(\cos \theta) 10^{\sin \theta} d \theta$;

Let $u=\sin \theta$; Then, $\frac{d u}{d \theta}=\cos \theta$; So, $d u=\cos \theta d \theta$; Also, for $\theta=0$, $u=0$ and, for $\theta=\frac{\pi}{2}, u=1$; We now have

$$
\int_{0}^{\pi / 2}(\cos \theta) 10^{\sin \theta} d \theta=\int_{0}^{1} 10^{u} d u=\left.\frac{1}{\ln 10} 10^{u}\right|_{0} ^{1}=\frac{9}{\ln 10}
$$

Subsection 8

Exponential Growth and Decay

Exponential Growth and Decay

- The quantity $P(t)$ depends exponentially on time t, if it varies according to

$$
P(t)=P_{0} e^{k t}
$$

- If $k>0$, then $P(t)$ grows exponentially and k is the growth constant;
- If $k<0$, then $P(t)$ decays exponentially and k is the decay constant;

Example: If an E-coli culture grows exponentially with growth constant $k=0.41$ hours $^{-1}$ and there are 1000 bacteria at time $t=0$, what is the population $P(t)$ at time t ? When will the population reach the level of 10,000 ?
We have $P(t)=1000 e^{0.41 t}$;
Therefore, the population will reach 10,000 when $1000 e^{0.41 t}=10,000$; This yields $e^{0.41 t}=10$, or $t=\frac{1}{0.41} \ln 10$;

Differential Equations with Exponential Solutions

Theorem (Solutions of $y^{\prime}=k y$)

If $y(t)$ obeys the differential equation $y^{\prime}=k y$, then

$$
y(t)=P_{0} e^{k y}
$$

where $P_{0}=y(0)$.
Example: What are the general solutions of $y^{\prime}=3 y$? Which one satisfies the initial condition $y(0)=9$?
According to the Theorem,

$$
y(t)=P_{0} e^{3 t}
$$

Moreover, if $y(0)=9$, then $P_{0}=9$, whence $y(t)=9 e^{3 t}$;

Administering a Drug

- Suppose that a drug leaves the bloodstream at a rate proportional to the amount present.
- Write a differential equation expressing this statement;
- If 50 mg of the drug remain in the blood 7 hours after an injection of 450 mg , what is the decay constant?
- At what time, will there be 200 mg present in the blood?
- We work as follows:
- If y is the amount present, then $y^{\prime}=-k y$;
- The general solution of this equation is $y=P_{0} e^{-k t}$; Under hypotheses, $50=450 e^{-7 k}$; Therefore, $-7 k=\ln \frac{1}{9}=-\ln 9$, i.e., $k=\frac{\ln 9}{7}$;
- We must solve $200=450 e^{-\frac{\ln 9}{7} t}$; So $e^{-\frac{\ln 9}{7} t}=\frac{4}{9}$, i.e., $-\frac{\ln 9}{7} t=\ln \frac{4}{9}$; Thus, we get $t=-\frac{7 \ln (4 / 9)}{\ln 9}$;

Doubling Time and Half-Life

- If $P(t)=P_{0} e^{k t}$, with $k>0$, then the doubling time of P is

$$
\text { Doubling Time }=\frac{\ln 2}{k} ;
$$

- If $P(t)=P_{0} e^{-k t}$, with $k>0$, then the half-life of P is

$$
\text { Half-Life }=\frac{\ln 2}{k}
$$

- The formulas above are very easy to establish; They need not be memorized!
Set $P(t)=2 P_{0}$; Then $2 P_{0}=P_{0} e^{k t}$; Now solve for $t: 2=e^{k t}$, whence $k t=\ln 2$, and, therefore, $t=\frac{\ln 2}{k}$;

Compound Interest

- If P_{0} dollars are invested in an account earning interest at annual rate r, compounded M times yearly, then the future amount $P(t)$ after t years is

$$
P(t)=P_{0}\left(1+\frac{r}{M}\right)^{M t}
$$

Theorem (Limit Formulas for e and e^{x})

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \quad \text { and } \quad e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

- If P_{0} dollars are invested in an account earning interest at annual rate r, compounded continuously, then the future amount $P(t)$ after t years is

$$
P(t)=P_{0} e^{r t}
$$

Present Value of Future Amount

Present Value

The present value PV of P dollars to be received t years in the future under continuous compounding at an annual rate r, is given by

$$
P V=P e^{-r t} ;
$$

Example: If the annual interest rate is $r=0.03$, is it better to receive $\$ 2000$ today or \$ 2200 in two years?
The present value of $\$ 2200$ received two years from now is $P V=P e^{-r t}$ i.e., $P V=2200 e^{-0.03 .2} \approx 2,071.88$; Therefore, it is better to receive $\$ 2,200$ two years from now;

Present value of an Income Stream

PV of an Income Stream

If the annual interest rate is r, the present value of an income stream paying out $R(t)$ dollars per year continuously for T years is

$$
\mathrm{PV}=\int_{0}^{T} R(t) e^{-r t} d t
$$

Example: An investment pays $¥ 100,000$ per year continuously for 10 years. What is the investment's present value for $r=0.06$?

$$
\begin{aligned}
P V & =\int_{0}^{10} 100,000 e^{-0.06 t} d t=\left.\frac{100,000}{-0.06} e^{-0.06}\right|_{0} ^{10} \\
& \approx 1,666,666.67\left(e^{-0.6}-1\right) \approx ¥ 751,980.61 ;
\end{aligned}
$$

Example: An investment pays $€ 50,000$ per year continuously for 5 years. What is the investment's present value for $r=0.02$?

$$
\begin{aligned}
\mathrm{PV} & =\int_{0}^{5} 50,000 e^{-0.02 t} d t=\left.\frac{50,000}{-0.02} e^{-0.02}\right|_{0} ^{5} \\
& \approx 2,500,500\left(e^{-0.2}-1\right) \approx € 453,173.12
\end{aligned}
$$

