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The Integral Approximating and Computing Area

Subsection 1

Approximating and Computing Area
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The Integral Approximating and Computing Area

Approximating Area by Rectangles

Suppose, we want to ap-
proximate the area under
the graph of y = f (x)
from x = a to x = b;

We may cut the interval [a, b] into N subintervals of equal length;
The common length will be equal to ∆x = b−a

N
;

Suppose that in the first subinterval [a, x1], we take a point x∗1 , in the
second [x1, x2] a point x∗2 , etc.; Thus, in interval [xi−1, xi ], we will
have a point x∗i ;
Then we calculate the area of each rectangle by ∆Ai = f (x∗i )∆x ;

Finally, we sum all the elementary rectangular areas:
A ≈ ∆x [f (x∗1 ) + f (x∗2 ) + · · ·+ f (x∗N)];
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The Integral Approximating and Computing Area

Approximating Area Under y = x
2

We use the method to ap-
proximate the area under
f (x) = x2 from x = 1 to
x = 3 using N = 4 subin-
tervals and taking as x∗i
the right endpoint of the
corresponding interval:

Since ∆x = 3−1
4 = 1

2 , we get

A ≈ 1
2 [f (

3
2 ) + f (2) + f (52 ) + f (3)]

= 1
2 [

9
4 + 4 + 25

4 + 9]

= 1
2
86
4 = 43

4 .
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The Integral Approximating and Computing Area

Summation (
∑

) Notation

We use the notation
n∑

i=m

ai := am + am+1 + · · · + an−1 + an.

Example:
5∑

i=1

i2 = 12 + 22 + 32 + 42 + 52 = 55;

Example: Compute

6∑

k=4

(k2 − 2k) = (42 − 2 · 4) + (52 − 2 · 5) + (62 − 2 · 6)

= 8 + 15 + 24 = 47;

Example:
∑11

m=7 1 = 1 + 1 + 1 + 1 + 1 = 5;
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The Integral Approximating and Computing Area

Linearity Properties of Summation

Linearity of Summation
n∑

i=m

(ai + bi) =

n∑

i=m

ai +

n∑

i=m

bi ;

n∑

i=m

Cai = C

n∑

i=m

ai ;

n∑

i=1

k = nk and
n∑

i=m

k = (n −m + 1)k ;

Example:
5∑

i=3

(i2 + i) = (32 + 3) + (42 + 4) + (52 + 5) =

(32 + 42 + 52) + (3 + 4 + 5) =

5∑

i=3

i2 +

5∑

i=3

i ;
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The Integral Approximating and Computing Area

Two More Examples

Example:
50∑

i=0

(3i2 − 7i +8) =
50∑

i=0

3i2 −
50∑

i=0

7i +
50∑

i=0

8 = 3
50∑

i=0

i2 − 7
50∑

i=0

i +8
50∑

i=0

1;

Example: The sum of the rectangle areas that approximate the area
under the curve y = f (x) on [a, b] can be written very succinctly
using summation notation

A ≈ ∆x [f (x∗1 ) + f (x∗2 ) + · · ·+ f (x∗N−1) + f (x∗N)]

=
b − a

N

N∑

i=1

f (x∗i ).
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The Integral Approximating and Computing Area

Approximating Area Under y = 1
x

Let us approximate the area under the graph of f (x) = 1
x
on [2, 4]

using N = 6 and mid-points as the x∗i ’s;

A ≈ 4− 2

6

6∑

i=1

f (2 + (i − 1
2)

1
3)

= 1
3

6∑

i=1

f (11+2i
6 )

= 1
3 [f (

13
6 ) + f (156 ) + f (176 ) + f (196 ) + f (216 ) + f (236 )]

= 1
3 [

6
13 + 6

15 + 6
17 +

6
19 + 6

21 +
6
23 ]

= 2[ 1
13 + 1

15 + 1
17 +

1
19 + 1

21 + 1
23 ]

≈ 2 · 0.346 = 0.692.
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The Integral Approximating and Computing Area

Exact Area as the Limit of Approximations

When the number of rectangles N
approaches infinity, then the area
enclosed by the approximating
rectangles tends to the exact
amount of area under the curve;

Thus

A = lim
N→∞

b − a

N

N∑

i=1

f (x∗i ).

To use the limit of the approximating sums to compute areas, we
need some summation formulas;
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The Integral Approximating and Computing Area

Sums of Powers

Power Sums

N∑

i=1

i = 1 + 2 + · · ·+ N =
N(N + 1)

2
;

N∑

i=1

i2 = 12 + 22 + · · · + N2 =
N(N + 1)(2N + 1)

6
;

N∑

i=1

i3 = 13 + 23 + · · · + N3 =
N2(N + 1)2

4
;

Consider the function f (x) = 1
2x . The area of the triangle under the

graph of y = f (x) from x = 0 to x = 4 can be computed using the
familiar formula A = 1

2base · height; It is equal to A = 1
24 · 2 = 4;

We are going to compute this area using the limit of the
approximating sums method in the next slide;
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The Integral Approximating and Computing Area

Using Limits of Approximating Sums

We write an expression using the summation notation for the
approximating sum of the area of the triangle under y = 1

2x on [0, 4]
using N rectangles and right endpoints as the x∗i ’s:

A ≈ 4− 0

N

N∑

i=1

f (4i
N
) =

4

N

N∑

i=1

1
2 · 4i

N
=

4

N

N∑

i=1

2
N
i

=
4

N

N∑

i=1

2
N
i =

8

N2

N∑

i=1

i =
8

N2
· N(N + 1)

2

=
8N(N + 1)

2N2
=

4N2 + 4N

N2
.

Therefore, the exact area is given by

A = lim
N→∞

4N2 + 4N

N2
= 4.
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The Integral Approximating and Computing Area

Finding Area Under Curve

Find the exact area under
f (x) = −x2 + 2x + 3 from
x = 1 to x = 3;

The approximation sum for N subin-
tervals using right endpoints for the
x∗i ’s is

A ≈ 3− 1

N

N∑

i=1

f (1 +
2i

N
)

=
2

N

N∑

i=1

[−(1 + 2i
N
)2 + 2(1 + 2i

N
) + 3]

=
2

N

N∑

i=1

[−1− 4i
N
− 4i2

N2 + 2 + 4i
N
+ 3]
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The Integral Approximating and Computing Area

Example (Cont’d)

A ≈ 2

N

N∑

i=1

[4− 4i2

N2 ]

=
2

N
[

N∑

i=1

4− 4
N2

N∑

i=1

i2]

=
2

N
[4N − 4N(N + 1)(2N + 1)

6N2
]

= 8− 4(N + 1)(2N + 1)

3N2
;

Therefore

A = lim
N→∞

(8− 4(N + 1)(2N + 1)

3N2
) = 8− 8

3
=

16

3
.
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The Integral Approximating and Computing Area

Area up to a Variable Endpoint

Find the exact area under f (x) = x2

from x = 0 to x = b (a fixed
constant);

The approximation sum for N subintervals
using right endpoints for the x∗i ’s is

A ≈ b − 0

N

N∑

i=1

f (0 +
bi

N
)

=
b

N

N∑

i=1

(
bi

N
)2 =

b

N

b2

N2

N∑

i=1

i2 =
b3

N3

N(N + 1)(2N + 1)

6
;

Therefore,
A = lim

N→∞

b3

N3

N(N + 1)(2N + 1)

6
=

1

3
b3.
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The Integral The Definite Integral

Subsection 2

The Definite Integral
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The Integral The Definite Integral

Riemann Sums and Definite Integrals

Consider a function f (x) on [a, b];
Choose a partition P of [a, b] of size N, i.e.,

P : a = x0 < x1 < x2 < · · · < xN = b

Choose sample points C = {c1, . . . , cN}, with ci ∈ [xi−1, xi ], for all i ;
Denoting ∆xi = xi − xi−1, we obtain the Riemann sum

R(f ,P ,C ) =

N∑

i=1

f (ci )∆xi ;

Definite Integral

The definite integral of f (x) over [a, b] is the limit of the Riemann sums
as the maximum length ‖P‖ of the partition subintervals approaches zero:

∫ b

a

f (x)dx = lim
‖P‖→0

R(f ,P ,C ) = lim
‖P‖→0

N∑

i=1

f (ci )∆xi .

If the limit exists f (x) is called integrable over [a, b];
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The Integral The Definite Integral

Signed Areas

Signed Area = (Area Above x-Axis)− (Area Below x-Axis);

That is exactly the geometric interpretation of the definite integral:

∫ b

a

f (x)dx = Signed Area Between Graph and x-Axis over [a, b];
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The Integral The Definite Integral

Interpretation into Signed Area

Compute
∫ 5
0 (3− x)dx

According to the previous interpretation,
we have

∫ 5
0 (3− x)dx

= (Area Above)− (Area Below)

= 1
23 · 3− 1

22 · 2

= 9
2 − 2

= 5
2 ;
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The Integral The Definite Integral

Constant Functions and Linearity

Integral of a Constant
∫ b

a

Cdx = C (b − a).

Linearity of the Definite Integral

If f , g are integrable over [a, b], then f ± g and Cf are also integrable over
[a, b] and:

∫ b

a

(f (x)± g(x))dx =

∫ b

a

f (x)dx ±
∫ b

a

g(x)dx ;

∫ b

a

Cf (x)dx = C

∫ b

a

f (x)dx .

Example: Recall that
∫ b

0 x2dx = 1
3b

3; Therefore, we have
∫ 3
0 (2x2 − 5)dx =

∫ 3
0 2x2dx −

∫ 3
0 5dx = 2

∫ 3
0 x2dx −

∫ 3
0 5dx =

233

3 − 5(3 − 0) = 3;
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The Integral The Definite Integral

Reversing the Limits and Adding Over Intervals

Reversing the Limits of Integration

If a < b, then
∫ b

a

f (x)dx = −
∫ a

b

f (x)dx .

Additivity over Adjacent Intervals

If a ≤ b ≤ c and f (x) is integrable,
then:

∫ b

a

f (x)dx =

∫ c

a

f (x)dx +

∫ b

c

f (x)dx .
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The Integral The Definite Integral

Comparison Theorem

Comparison Theorem

If f and g are integrable and g(x) ≤ f (x)
for all x ∈ [a, b], then

∫ b

a

g(x)dx ≤
∫ b

a

f (x)dx .

Example: If x ≥ 1, x2 ≥ x and, hence,
1
x2

≤ 1
x
. Therefore,

∫ 4

1

1

x2
dx ≤

∫ 4

1

1

x
dx ;
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The Integral The Definite Integral

Establishing Bounds

Consider the function f (x) = 1
x

on
[12 , 2]; Clearly, if

1
2 ≤ x ≤ 2, 1

2 ≤ 1
x
≤ 2;

Therefore, by the Comparison Theo-
rem,

∫ 2

1/2

1

2
dx ≤

∫ 2

1/2

1

x
dx ≤

∫ 2

1/2
2dx ;

This yields

3

2
· 1
2
≤

∫ 2

1/2

1

x
dx ≤ 3

2
· 2; i.e.,

3

4
≤

∫ 2

1/2

1

x
dx ≤ 3;

George Voutsadakis (LSSU) Calculus I November 2014 23 / 58



The Integral The Fundamental Theorem of Calculus, Part I

Subsection 3

The Fundamental Theorem of Calculus, Part I
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The Integral The Fundamental Theorem of Calculus, Part I

The Fundamental Theorem of Calculus, Part I

The Fundamental Theorem of Calculus, Part I

If f (x) is continuous on [a, b] and F (x) is an antiderivative of f (x) on
[a, b], then ∫ b

a

f (x)dx = F (b)− F (a).

The difference F (b)− F (a) is denoted F (x) |ba . Using this notation,
we get ∫ b

a

f (x)dx = F (x)|ba .

Example: Calculate the area under
f (x) = x3 over [2, 4];

A =
∫ 4
2 x3dx = 1

4x
4 |42

= 1
4(4

4 − 24) = 60.

George Voutsadakis (LSSU) Calculus I November 2014 25 / 58



The Integral The Fundamental Theorem of Calculus, Part I

More Examples

Example: Calculate the area under
f (x) = x−3/4 + 3x5/3 over [1, 3];

A =
∫ 3
1 (x−3/4 + 3x5/3)dx

= (4x1/4 + 9
8x

8/3) |31
= (4·31/4+ 9

8 ·38/3)−(4+ 9
8) ≈ 21.2.

Example: Calculate the area under
f (x) = sec2 x over [−π

4 ,
π
4 ];

A =
∫ π/4
−π/4 sec

2 xdx = tan x |π/4−π/4=

tan π
4 − tan (−π

4 ) = 2.
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The Integral The Fundamental Theorem of Calculus, Part I

Additional Examples

Example: Calculate the area un-
der f (x) = e3x−1 over [−1, 1];

A =
∫ 1
−1 e

3x−1dx = 1
3e

3x−1 |1−1=
1
3(e

2 − e−4) ≈ 2.457

Example: Calculate the area un-
der f (x) = 1

x
over [2, 8];

A =
∫ 8
2

1
x
dx = ln x |82

= ln 8− ln 2 ≈ 1.386.
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The Integral The Fundamental Theorem of Calculus, Part II

Subsection 4

The Fundamental Theorem of Calculus, Part II

George Voutsadakis (LSSU) Calculus I November 2014 28 / 58



The Integral The Fundamental Theorem of Calculus, Part II

Illustration of Main Concept

Consider f (x) = 3x2;

The area A(x) under y = f (x)
over [1, x ] is given by

A(x) =
∫ x

1 3t2dt

= t3
∣
∣x

1

= x3 − 1;

Now, note that A′(x) = (x3 − 1)′ = 3x2 = f (x);
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The Integral The Fundamental Theorem of Calculus, Part II

Fundamental Theorem of Calculus, Part II

Fundamental Theorem of Calculus, Part II

If f (x) is continuous on an open interval I and a ∈ I , then the area
function

A(x) =

∫ x

a

f (t)dt

is an antiderivative of f (x) on I , i.e., A′(x) = f (x); Equivalently,

d

dx

∫ x

a

f (t)dt = f (x);

Note that this antiderivative satisfies the initial condition A(a) = 0.
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The Integral The Fundamental Theorem of Calculus, Part II

Examples

Suppose F (x) is a particular antiderivative of f (x) = sin (x2)
satisfying F (−√

π) = 0. Express F (x) as an integral.

According to the Part II of the Fundamental Theorem, we have

F (x) =

∫ x

−√
π

f (t)dx =

∫ x

−√
π

sin (t2)dt.

Find the derivative of A(x) =

∫ x

2

√
1 + t3dt;

By Part II of the Fundamental Theorem,

dA

dx
=

d

dx

∫ x

2

√

1 + t3dt =
√

1 + x3.

George Voutsadakis (LSSU) Calculus I November 2014 31 / 58



The Integral The Fundamental Theorem of Calculus, Part II

Fundamental Theorem of Calculus and the Chain Rule

Let us find the derivative of G (x) =

∫ x2

−2
sin tdt;

It is important to realize that G (x) = A(x2), where

A(x) =

∫ x

−2
sin tdt;

Thus, G (x) is a composite function and, as such, the Chain Rule
must be used to compute its derivative:

d

dx
G (x) =

d

dx
A(x2) =

︸︷︷︸

u=x2

d

du
A(u)

du

dx

= f (u) · 2x = sin u · 2x
= 2x sin (x2).
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The Integral Net Change as the Integral of a Rate

Subsection 5

Net Change as the Integral of a Rate
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The Integral Net Change as the Integral of a Rate

Net Change as Integral of Rate of Change

The net change in s(t) over an interval [t1, t2] is the integral
∫ t2

t1

s ′(t)dt = s(t2)− s(t1);

Example: If water leaks from a
bucket at a rate of 2+ 5t lt/hr,
where t is number of hours after
7 AM, how much water is lost
between 9 and 11 AM?

We have

s(4) − s(2) =

∫ 4

2
−(2 + 5t)dt = (−2t − 5

2t
2)
∣
∣4

2

= (−48)− (−14) = −34 lts.
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The Integral Net Change as the Integral of a Rate

The Integral of Velocity

For an object in linear motion with velocity v(t),

Displacement during [t1, t2] =

∫ t2

t1

v(t)dt ;

Distance traveled during [t1, t2] =

∫ t2

t1

|v(t)|dt ;

Example: If v(t) = t3 − 10t2 + 24t m/sec, compute both the
displacement and the total distance over [0, 6];

Thus, we have

∫ 6
0 v(t)dt

=
∫ 6
0 (t3 − 10t2 + 24t)dt

= (14t
4 − 10

3 t
3 + 12t2)

∣
∣6

0
= 36 meters;
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The Integral Net Change as the Integral of a Rate

The Integral of Velocity: Example (Cont’d)

Note that |v(t)| =
{

t3 − 10t2 + 24t, if 0 ≤ t ≤ 4
−(t3 − 10t2 + 24t), if 4 ≤ t ≤ 6

Thus, we have

∫ 6
0 |v(t)|dt
=

∫ 4
0 (t3 − 10t2 + 24t)dt +

∫ 6
4 −(t3 − 10t2 + 24t)dt

= (14 t
4 − 10

3 t
3 + 12t2)

∣
∣
4

0
+ (−1

4t
4 + 10

3 t
3 − 12t2)

∣
∣
6

4

= 128
3 + 20

3 = 148
3 meters.
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The Integral Net Change as the Integral of a Rate

Total Versus Marginal Cost

Let C (x) be cost for producing x units of a product or a commodity;

The derivative C ′(x) is called the marginal cost;

The cost of increasing production from a to b is

C [a, b] =

∫ b

a

C ′(x)dx ;

Example: Suppose that the marginal cost for producing x computer
chips (x in thousands) is C ′(x) = 300x2 − 4000x + 40, 000 dollars per
thousand chips;

Determine the cost of increasing production from 10,000 to 15,000
chips.

C [10, 15] =
∫ 15

10 C ′(x)dx

=
∫ 15

10
(300x2 − 4000x + 40, 000)dx

= (100x3 − 2000x2 + 40, 000x)
∣
∣
15

10

= $187, 500.
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The Integral Net Change as the Integral of a Rate

Total Versus Marginal Cost: Example (Cont’d)

The marginal cost for producing x computer chips (x in thousands) is
C ′(x) = 300x2 − 4000x + 40, 000 dollars per thousand chips;

Determine the total production cost for 15,000 chips assuming that the
company incurs a cost of $ 30,000 for setting up the manufacturing
run, i.e., that C (0) = 30, 000;

C (x) =
∫
C ′(x)dx

=
∫
(300x2 − 4000x + 40, 000)dx

= 100x3 − 2000x2 + 40, 000x + C .

Since C (0) = 30, 000, we get C = 30, 000; Hence,

C (x) = 100x3 − 2000x2 + 40, 000x + 30, 000.

Therefore,

C (15) = 100 · 153 − 2000 · 152 + 40, 000 · 15 + 30, 000 = $517, 500;
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The Integral Substitution Method

Subsection 6

Substitution Method

George Voutsadakis (LSSU) Calculus I November 2014 39 / 58



The Integral Substitution Method

The Substitution Method

Recall the Chain Rule for computing derivatives:

d

dx
F (u(x)) = F ′(u(x))u′(x) = f (u(x))u′(x),

where, of course F (x) is an antiderivative of f (x);

This rule yields the Substitution Rule for computing indefinite
integrals:

∫

f (u(x))u′(x)dx = F (u(x)) + C ;

Usually, the Substitution Rule is applied in the form of the
Substitution or Change of Variable Method:

We want to compute
∫
f (u(x))u′(x)dx ;

Note that since du
dx

= u′(x), one gets du = u′(x)dx ;

Therefore
∫
f (u(x))u′(x)dx =

∫
f (u)du = F (u) + C ;
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The Integral Substitution Method

Example I

Evaluate

∫

3x2 sin (x3)dx ;

Method 1 (Substitution Rule):
∫

3x2 sin (x3)dx =

∫

(x3)′sin (x3)dx

= − cos (x3) + C ;

Method 2 (Substitution Method):
Let u = x3; Then du

dx
= 3x2; Therefore, du = 3x2dx ;

So we have
∫

3x2 sin (x3)dx =

∫

sin u du

= − cos u + C

= − cos (x3) + C ;
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The Integral Substitution Method

Example II

Evaluate

∫

x(x2 + 9)5dx ;

Method 1 (Substitution Rule):
∫

x(x2 + 9)5dx = 1
2

∫

2x(x2 + 9)5dx

= 1
2

∫

(x2 + 9)′(x2 + 9)5dx

= 1
2 · 1

6(x
2 + 9)6 + C ;

Method 2 (Substitution Method):
Let u = x2 + 9; Then du

dx
= 2x ; Therefore, 1

2du = xdx ;
So we have ∫

x(x2 + 9)5dx = 1
2

∫

u5du

= 1
2 · 1

6u
6 + C

= 1
12 (x

2 + 9)6 + C ;
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The Integral Substitution Method

Example III

Evaluate

∫

x2+2x
(x3+3x2+12)6

dx ;

Let u = x3 + 3x2 + 12; Then du
dx

= 3x2 + 6x = 3(x2 + 2x);
Therefore, 1

3du = (x2 + 2x)dx ;
So we have

∫

x2+2x
(x3+3x2+12)6

dx = 1
3

∫

1
u6du

= 1
3 · 1

−5u
−5 + C

= − 1
15u5 + C

= − 1
15(x3+3x2+12)5

+ C ;
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The Integral Substitution Method

More Examples

Evaluate

∫

sin (7θ + 5)dθ;

Let u = 7θ + 5; Then du
dθ = 7; Therefore, 1

7du = dθ;
So we have

∫

sin (7θ + 5)dθ = 1
7

∫

sin udu

= 1
7(− cos u) + C

= − 1
7 cos (7θ + 5) + C ;

Evaluate

∫

e−9tdt;

Let u = −9t; Then du
dt

= −9; Therefore, −1
9du = dt;

So we have ∫

e−9tdt = −1
9

∫

eudu

= − 1
9e

u + C

= − 1
9e

−9t + C ;
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The Integral Substitution Method

Additional Examples

Evaluate

∫

tan θdθ;

Rewrite
∫
tan θdθ =

∫
sin θ
cos θdθ;

Let u = cos θ; Then du
dθ = − sin θ; Therefore, −du = sin θdθ; Thus,

∫
tan θdθ =

∫
sin θ
cos θdθ = −

∫
1
u
du

= − ln |u|+ C = − ln |cos θ|+ C ;

Evaluate

∫

x
√
5x + 1dx ;

Let u = 5x + 1; Then, x = 1
5u − 1

5 ; Also,
du
dx

= 5; So, 1
5du = dx ;

We now have
∫
x
√
5x + 1dx = 1

5

∫
(15u − 1

5)
√
udu = 1

25

∫
(u3/2 − u1/2)du

= 1
25(

2
5u

5/2 + 2
3u

3/2) + C = 2
125u

5/2 + 2
75u

3/2 + C

= 2
125(5x + 1)5/2 + 2

75(5x + 1)3/2 + C
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The Integral Substitution Method

Substitution for Definite Integration

∫ b

a

f (u(x))u′(x)dx =

∫ u(b)

u(a)

f (u)du;

Example: Evaluate

∫ 2

0
x2
√
x3 + 1dx ;

Let u = x3 + 1; Then, du
dx

= 3x2; So, 1
3du = x2dx ; Also, for x = 0,

u = 1 and for x = 2, u = 9;
We now have

∫ 2

0
x2
√
x3 + 1dx = 1

3

∫ 9

1

√
udu = 1

3
2
3

√
u3
∣
∣
∣

9

1

= 2
9(27 − 1) = 52

9 ;
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The Integral Substitution Method

Two More Examples

Evaluate

∫ π/4

0
tan3 θ sec2 θdθ;

Let u = tan θ; Then, du
dθ = sec2 θ; So, du = sec2 θdθ; Also, for θ = 0,

u = 0 and for θ = π
4 , u = 1; We now have

∫ π/4

0
tan3 θ sec2 θdθ =

∫ 1

0
u3du = 1

4u
4
∣
∣1

0
= 1

4 ;

Evaluate

∫ 3

1

x

x2 + 1
dx ;

Let u = x2 + 1; Then, du
dx

= 2x ;
So, 1

2du = xdx ; Also, for x = 1,
u = 2 and for x = 3, u = 10;
∫ 3
1

x

x2 + 1
dx = 1

2

∫ 10
2

1

u
du =

1
2 ln u|102 = 1

2(ln 10 − ln 2);
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The Integral Further Transcendental Functions

Subsection 7

Further Transcendental Functions
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The Integral Further Transcendental Functions

Transcendental Functions Using Substitution

Evaluate

∫ 1

0

1

x2 + 1
dx ;

We have
∫ 1

0

1

x2 + 1
dx = tan−1 x

∣
∣1

0
= tan−1 1− tan−1 0 = π

4 ;

Evaluate

∫ 1

1/
√
2

1

x
√
4x2 − 1

dx ;

Let u = 2x ; Then, du
dx

= 2; So, 1
2du = dx ; Also, for x = 1√

2
, u =

√
2

and, for x = 1, u = 2; We now have
∫ 1

1/
√
2

1

x
√
4x2 − 1

dx =

∫ 2

√
2

1
2

1
2u

√
u2 − 1

du =

∫ 2

√
2

1

u
√
u2 − 1

du

= sec−1 u
∣
∣2√

2
= sec−1 2− sec−1

√
2

= π
3 − π

4 = π
12 ;
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The Integral Further Transcendental Functions

Two More Examples

Evaluate

∫ 3/4

0

1√
9− 16x2

dx ;

Rewrite 1√
9−16x2

= 1

3
√

1− 16
9
x2

= 1

3
√

1−( 4x
3
)2
; Set u = 4x

3 ; Thus,

du
dx

= 4
3 ; So, 3

4du = dx ; For x = 0, u = 0; and for x = 3
4 , u = 1;

∫ 3/4

0

1√
9− 16x2

dx =

∫ 3/4

0

1

3
√

1− (4x3 )
2
dx =

∫ 1

0

1

4

1√
1− u2

du

=
1

4
sin−1 u

∣
∣1

0
= 1

4 · π
2 ;

Evaluate

∫ π/2

0
(cos θ)10sin θdθ;

Let u = sin θ; Then, du
dθ = cos θ; So, du = cos θdθ; Also, for θ = 0,

u = 0 and, for θ = π
2 , u = 1; We now have

∫ π/2

0
(cos θ)10sin θdθ =

∫ 1

0
10udu =

1

ln 10
10u |10 =

9

ln 10
;

George Voutsadakis (LSSU) Calculus I November 2014 50 / 58



The Integral Exponential Growth and Decay

Subsection 8

Exponential Growth and Decay
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The Integral Exponential Growth and Decay

Exponential Growth and Decay

The quantity P(t) depends exponentially on time t, if it varies
according to

P(t) = P0e
kt ;

If k > 0, then P(t) grows exponentially and k is the growth

constant;
If k < 0, then P(t) decays exponentially and k is the decay

constant;

Example: If an E-coli culture grows exponentially with growth
constant k = 0.41 hours−1 and there are 1000 bacteria at time t = 0,
what is the population P(t) at time t? When will the population
reach the level of 10, 000?
We have P(t) = 1000e0.41t ;
Therefore, the population will reach 10,000 when
1000e0.41t = 10, 000; This yields e0.41t = 10, or t = 1

0.41 ln 10;
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The Integral Exponential Growth and Decay

Differential Equations with Exponential Solutions

Theorem (Solutions of y ′ = ky)

If y(t) obeys the differential equation y ′ = ky , then

y(t) = P0e
ky ,

where P0 = y(0).

Example: What are the general solutions of y ′ = 3y? Which one
satisfies the initial condition y(0) = 9?
According to the Theorem,

y(t) = P0e
3t ;

Moreover, if y(0) = 9, then P0 = 9, whence y(t) = 9e3t ;
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The Integral Exponential Growth and Decay

Administering a Drug

Suppose that a drug leaves the bloodstream at a rate proportional to
the amount present.

Write a differential equation expressing this statement;
If 50 mg of the drug remain in the blood 7 hours after an injection of
450 mg, what is the decay constant?
At what time, will there be 200 mg present in the blood?

We work as follows:

If y is the amount present, then y ′ = − ky ;
The general solution of this equation is y = P0e

−kt ; Under hypotheses,
50 = 450e−7k; Therefore, −7k = ln 1

9 = − ln 9, i.e., k = ln 9
7 ;

We must solve 200 = 450e−
ln 9
7 t ; So e−

ln 9
7 t = 4

9 , i.e., − ln 9
7 t = ln 4

9 ;

Thus, we get t = − 7 ln (4/9)
ln 9 ;
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The Integral Exponential Growth and Decay

Doubling Time and Half-Life

If P(t) = P0e
kt , with k > 0, then the doubling time of P is

Doubling Time =
ln 2

k
;

If P(t) = P0e
−kt , with k > 0, then the half-life of P is

Half-Life =
ln 2

k
;

The formulas above are very easy to establish; They need not be
memorized!
Set P(t) = 2P0; Then 2P0 = P0e

kt ; Now solve for t: 2 = ekt ,

whence kt = ln 2, and, therefore, t =
ln 2

k
;
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The Integral Exponential Growth and Decay

Compound Interest

If P0 dollars are invested in an account earning interest at annual rate
r , compounded M times yearly, then the future amount P(t) after t
years is

P(t) = P0

(

1 +
r

M

)Mt

;

Theorem (Limit Formulas for e and ex )

e = lim
n→∞

(

1 +
1

n

)n

and ex = lim
n→∞

(

1 +
x

n

)n

.

If P0 dollars are invested in an account earning interest at annual rate
r , compounded continuously, then the future amount P(t) after t
years is

P(t) = P0e
rt ;
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The Integral Exponential Growth and Decay

Present Value of Future Amount

Present Value

The present value PV of P dollars to be received t years in the future
under continuous compounding at an annual rate r , is given by

PV = Pe−rt ;

Example: If the annual interest rate is r = 0.03, is it better to receive
$ 2000 today or $ 2200 in two years?
The present value of $ 2200 received two years from now is
PV = Pe−rt i.e., PV = 2200e−0.03·2 ≈ 2, 071.88; Therefore, it is
better to receive $ 2,200 two years from now;
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The Integral Exponential Growth and Decay

Present value of an Income Stream

PV of an Income Stream

If the annual interest rate is r , the present value of an income stream
paying out R(t) dollars per year continuously for T years is

PV =

∫ T

0

R(t)e−rtdt;

Example: An investment pays U100,000 per year continuously for 10
years. What is the investment’s present value for r = 0.06?

PV =

∫ 10

0
100, 000e−0.06tdt = 100,000

−0.06 e−0.06
∣
∣
∣

10

0

≈ 1, 666, 666.67(e−0.6 − 1) ≈ U751, 980.61;
Example: An investment pays e50,000 per year continuously for 5
years. What is the investment’s present value for r = 0.02?

PV =

∫ 5

0
50, 000e−0.02tdt = 50,000

−0.02 e
−0.02

∣
∣
∣

5

0

≈ 2, 500, 500(e−0.2 − 1) ≈ e453, 173.12;
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