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Infinite Series Sequences

Subsection 1

Sequences
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Infinite Series Sequences

Sequences

A sequence is an ordered collection of numbers defined by a function
f (n) on a set of integers;

The values an = f (n) are the terms of the sequence and n the index;

We think of {an} as a list a1, a2, a3, a4, . . .

The sequence may not start at n = 1; It may start at n = 0, n = 2 or
any other integer;

When an is given by a formula, then it is referred to as the general

term of the sequence;

Examples:

General Term Domain Sequence

an = 1− 1
n

n ≥ 1 0, 12 ,
2
3 ,

3
4 ,

4
5 , . . .

an = (−1)nn n ≥ 0 0, − 1, 2, − 3, 4, . . .

an = n2

n2−4
n ≥ 3 9

5 ,
16
12 ,

25
21 ,

36
32 ,

49
45 , . . .
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Infinite Series Sequences

Recursively Defined Sequences

A sequence is defined recursively if one or more of its first few terms
are given and the n-th term an is computed in terms of one or more
of the preceding terms an−1, an−2, . . .;

Example: Compute a2, a3, a4 for the sequence defined recursively by

a1 = 1, an =
1

2

(

an−1 +
2

an−1

)

;

a2 =
1

2

(

a1 +
2

a1

)

=
1

2

(

1 +
2

1

)

=
3

2
;

a3 =
1

2

(

a2 +
2

a2

)

=
1

2

(

3

2
+

2

3/2

)

=
1

2
· 17
6

=
17

12
;

a4 =
1

2

(

a3 +
2

a3

)

=
1

2

(

17

12
+

2

17/12

)

=
1

2
· 577
204

=
577

408
;
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Infinite Series Sequences

Limit of a Sequence

We say that the sequence {an} converges to a limit L, written
lim
n→∞

an = L or an → L, if the values of an get arbitrarily close to the

value L when n is taken sufficiently large;

If a sequence does not converge, we day it diverges;

If the terms increase without bound, {an} diverges to infinity;
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Infinite Series Sequences

Sequence Defined by a Function

Theorem (Limit of a Sequence Defined by a Function)

If lim
x→∞

f (x) exists, then the sequence an = f (n) converges to the same

limit, i.e., lim
n→∞

an = lim
x→∞

f (x);

Example: Show that lim
n→∞

an = 1, where an =
n + 4

n + 1
;

We consider the function f (x) =
x + 4

x + 1
; Clearly, an = f (n);

Therefore, by the Theorem, it suffices to show that lim
x→∞

f (x) = 1;

lim
x→∞

f (x) = lim
x→∞

x + 4

x + 1
= lim

x→∞

1 + 4
x

1 + 1
x

=
1 + 0

1 + 0
= 1;
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Infinite Series Sequences

Example I

Find the limit of the sequence
22 − 2

22
,
32 − 2

32
,
42 − 2

42
,
52 − 2

52
, . . .;

The general term of the given sequence is an =
n2 − 2

n2
; We consider

the function f (x) =
x2 − 2

x2
= 1− 2

x2
; Clearly, an = f (n); Therefore,

it suffices to find the limit lim
x→∞

f (x);

lim
x→∞

f (x) = lim
x→∞

(1− 2
x2
) = 1− 0 = 1;

Thus, lim
n→∞

an = 1;
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Infinite Series Sequences

Example II

Find the limit lim
n→∞

n + ln n

n2
;

We consider the function f (x) =
x + ln x

x2
; Clearly, an = f (n);

Therefore, it suffices to find the limit lim
x→∞

f (x);

lim
x→∞

f (x) = lim
x→∞

x + ln x

x2
=

(∞
∞

)

L’Hôpital
= lim

x→∞

(x + ln x)′

(x2)′
= lim

x→∞

1 + (1/x)

2x
= 0;

Thus, lim
n→∞

n+ ln n

n2
= 0;
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Infinite Series Sequences

Geometric Sequences

For r ≥ 0 and c > 0,

lim
n→∞

crn =







0, if 0 ≤ r < 1
c , if r = 1
∞, if r > 1

To see this, one considers the corresponding function f (x) = cr x ; If
r < 1, then, lim

x→∞
cr x = 0, and, if r > 1, then, lim

x→∞
cr x = ∞;
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Infinite Series Sequences

Limits Laws for Sequences

Limit Laws for Sequences

Assume {an} and {bn} are convergent sequences with

lim
n→∞

an = L, lim
n→∞

bn = M;

Then, we have:

1 lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn = L±M;

2 lim
n→∞

anbn = ( lim
n→∞

an)( lim
n→∞

bn) = LM;

3 lim
n→∞

an

bn
=

lim
n→∞

an

lim
n→∞

bn
=

L

M
, if M 6= 0;

4 lim
n→∞

can = c lim
n→∞

an = cL, (c a constant;)
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Infinite Series Sequences

Squeeze Theorem for Sequences

Squeeze Theorem for Sequences

Let {an}, {bn} and {cn} be sequences, such
that, for some number M,

bn ≤ an ≤ cn, for all n > M

and
lim
n→∞

bn = lim
n→∞

cn = L;

Then lim
n→∞

an = L;

Example: Show that if lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

Note that −|an| ≤ an ≤ |an|; By hypothesis lim
n→∞

|an| = 0; This also

implies lim
n→∞

(−|an|) = − lim
n→∞

|an| = 0; Now, by the Squeeze

Theorem for Sequences, lim
n→∞

an = 0;
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Infinite Series Sequences

Geometric Sequences with r < 0

For c 6= 0,

lim
n→∞

crn =

{

0, if − 1 < r < 0
diverges, if r ≤ −1

If −1 < r < 0, then 0 < |r | < 1 and, therefore
lim
n→∞

|crn| = lim
n→∞

|c | · |r |n = 0; Thus, since −|crn| ≤ crn ≤ |crn|, by
the Squeeze Theorem, we get lim

n→∞

crn = 0;

If r = −1, then lim
n→∞

(−1)nc diverges, since |(−1)nc | = |c | and its sign

keeps alternating;
If r < −1, then |r | > 1, whence |crn| = |c | · |r |n → ∞, whence
lim
n→∞

crn diverges in this case also;
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Infinite Series Sequences

Exploiting Continuity

Theorem

If f (x) is a continuous function and lim
n→∞

an = L, then

lim
n→∞

f (an) = f ( lim
n→∞

an) = f (L);

This says, informally speaking, that if f is continuous, we can “push the
limit in”;

Example: Since f (x) = ex and g(x) = x2 are both continuous, we
may use this theorem to compute:

lim
n→∞

e
3n
n+1 = lim

n→∞

f (
3n

n + 1
) = f ( lim

n→∞

3n

n + 1
) = f (3) = e3;

lim
n→∞

(
3n

n + 1
)2 = lim

n→∞

g(
3n

n+ 1
) = g( lim

n→∞

3n

n+ 1
) = g(3) = 9;
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Infinite Series Sequences

Bounded Sequences

A sequence {an} is

bounded from above if there is a number M , such that an ≤ M , for
all n; In this case M is called an upper bound;
bounded from below if there is a number m, such that an ≥ m, for all
n; In this case m is called a lower bound;

{an} is bounded if it is bounded from above and from below; A
sequence is unbounded if it is not bounded;

Theorem

If {an} converges, then {an} is bounded;
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Infinite Series Sequences

Is Every Bounded Sequence Convergent?
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Infinite Series Sequences

Bounded Monotonic Sequences

A sequence {an} is

increasing if an < an+1, for all n;
decreasing if an > an+1, for all n;
monotonic if it is either increasing or decreasing;

Theorem (Bounded Monotonic Sequences Converge)

If {an} is increasing and an ≤ M , then an converges and lim
n→∞

an ≤ M ;

If {an} is decreasing and an ≥ m, then an converges and lim
n→∞

an ≥ m;
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Infinite Series Sequences

Example I

Show that an =
√
n+ 1−√

n is decreasing and bounded from below;
Does lim

n→∞
an exist?

We show that an is decreasing by two different methods; The first
uses the sequence itself, the second uses the corresponding function;

Method 1: Rewrite an =
√
n+ 1−√

n =
(
√
n + 1 +

√
n)(

√
n + 1−√

n)√
n + 1 +

√
n

=
n+ 1− n√
n+ 1 +

√
n
=

1√
n + 1 +

√
n
;

Now we see
an =

1√
n + 1 +

√
n
>

1
√

(n + 1) + 1 +
√
n + 1

= an+1;

So {an} is decreasing;
Method 2: Consider f (x) =

√
x + 1−√

x and compute

f ′(x) =
1

2
√
x + 1

− 1

2
√
x
< 0, for x > 0; Thus, since f ′ < 0, we get

that f ց [0,∞), showing that {an} is a decreasing sequence;

Clearly an =
√
n + 1−√

n > 0, which shows that {an} is bounded
from below;
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Infinite Series Sequences

Example II

Show that the following sequence is bounded and increasing; Then
find its limit:

a1 =
√
2, a2 =

√

2
√
2, a3 =

√

2

√

2
√
2, . . .

The key here is to realize that an+1 =
√
2an, for all n;

We show {an} is bounded: Clearly, a1 =
√
2 < 2; If an < 2, then

an+1 =
√
2an <

√
2 · 2 = 2; Therefore, an < 2, for every n ≥ 1;

Next, we show that {an} is increasing:

an =
√
an · an <

√
2 · an = an+1;

Since {an} is increasing and bounded from above, the theorem asserts
that it converges; Let lim

n→∞
an = L; Then

an+1 =
√
2an ⇒ lim

n→∞
an+1 =

√

2 lim
n→∞

an ⇒ L =
√
2L ⇒ L2 = 2L ⇒

L2 − 2L = 0 ⇒ L(L− 2) = 0 ⇒ L = 0 or L = 2; So lim
n→∞

an = 2;
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Infinite Series Summing an Infinite Series

Subsection 2

Summing an Infinite Series
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Infinite Series Summing an Infinite Series

Introducing Infinite Series and Partial Sums

If we look carefully at the figure
on the right we realize that

1 =
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+ · · · ;

Infinite sums of this type are
called infinite series;
The partial sum SN of an infinite series is the sum of the terms up to
and including the N-th term:

S1 = 1
2 ;

S2 = 1
2 + 1

4 ;
S3 = 1

2 + 1
4 +

1
8 ;

S4 = 1
2 + 1

4 +
1
8 +

1
16 ;

...
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Infinite Series Summing an Infinite Series

Definition of Infinite Series and Partial Sums

An infinite series is an expression of the form
∞
∑

n=1

an = a1 + a2 + a3 + a4 + · · · ,

where {an} is any sequence;
Example:

Sequence General Term Infinite Series

1
3 ,

1
9 ,

1
27 , . . . an = 1

3n

∞
∑

n=1

1
3n = 1

3 +
1
9 + 1

27 + · · ·

1
1 ,

1
4 ,

1
9 ,

1
16 , . . . an = 1

n2

∞
∑

n=1

1
n2

= 1
1 +

1
4 +

1
9 + · · ·

The N-th partial sum SN is defined as the finite sum of the terms up
to and including aN :

SN =

N
∑

n=1

an = a1 + a2 + · · ·+ aN ;
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Infinite Series Summing an Infinite Series

Convergence of an Infinite Series

Convergence of an Infinite Series

An infinite series
∞
∑

n=k

an converges to the sum S if its partial sums

converge to S :
lim

N→∞
SN = S ;

In this case, we write S =
∞
∑

n=k

an;

If the limit lim
N→∞

SN does not exist, then we say the infinite series

diverges;

If lim
N→∞

SN = ∞, then we say that the infinite series diverges to

infinity;
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Infinite Series Summing an Infinite Series

Telescoping Series

Compute the sum S of the infinite series

S =

∞
∑

n=1

1

n(n + 1)
=

1

1(2)
+

1

2(3)
+

1

3(4)
+

1

4(5)
+ · · · ;

Note that
1

n(n+ 1)
=

1

n
− 1

n + 1
; Therefore, we have

1

1 · 2 = 1− 1

2
,

1

2 · 3 =
1

2
− 1

3
,

1

3 · 4 =
1

3
− 1

4
, . . .

Now, we compute the N-th partial sum:

SN =

N
∑

n=1

1

n(n + 1)
= (1− 1

2
) + (

1

2
− 1

3
)+

(
1

3
− 1

4
) + · · · + (

1

N
− 1

N + 1
) = 1− 1

N + 1
;

Therefore, S = lim
N→∞

SN = lim
N→∞

(1− 1

N + 1
) = 1− 0 = 1;
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Infinite Series Summing an Infinite Series

Sequence {an} versus Series
∑

an

The previous example provides an opportunity to discuss the
difference between the sequence {an} and the infinite series

S =
∞
∑

n=1

an = a1 + a2 + a3 + · · ·;

The sequence an =
1

n(n+ 1)
is the list of numbers

1

1 · 2 ,
1

2 · 3 ,
1

3 · 4 , . . . Clearly lim
n→∞

an = lim
n→∞

1

n(n + 1)
= 0;

On the other hand, for the sum of the infinite series S =

∞
∑

n=1

an, we

look not at lim
n→∞

an, but rather at lim
N→∞

SN , where

SN =

N
∑

n=1

an =
1

1(2)
+

1

2(3)
+

1

3(4)
+ · · ·+ 1

N(N + 1)
;

We saw that this limit is 1, not 0!
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Infinite Series Summing an Infinite Series

Linearity of Infinite Series

Linearity of Infinite Series

If the infinite series
∑

an and
∑

bn converge, then the series
∑

(an ± bn) and
∑

can also converge and we have
∑

an +
∑

bn =
∑

(an + bn);
∑

an −
∑

bn =
∑

(an − bn);
∑

can = c
∑

an;

In the sequel, we will be interested in establishing techniques for
determining whether an infinite series converges or diverges;
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Infinite Series Summing an Infinite Series

Geometric Series

A geometric series with ratio r 6= 0 is a series defined by the
geometric sequence crn, where c 6= 0;

The series looks like

S =

∞
∑

n=0

crn = c + cr + cr2 + cr3 + cr4 + · · · ;

The following work determines the N-th partial sum SN of the
geometric series:

SN = c + cr + cr2 + cr3 + · · · + crN

rSN = cr + cr2 + cr3 + · · ·+ crN + crN+1

SN − rSN = c − crN+1

SN(1− r) = c(1− rN+1)

SN =
c(1− rN+1)

1− r
;

If |r | < 1, the the Geometric Series converges and S =
c

1− r
;

If |r | ≥ 1, it diverges;
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Infinite Series Summing an Infinite Series

Examples I

Evaluate
∞
∑

n=0

5−n;

∞
∑

n=0

5−n =
∞
∑

n=0

(
1

5
)n

c = 1, r = 1
5

< 1

=
1

1− 1
5

=
5

4
;

Evaluate

∞
∑

n=3

7

(

−3

4

)n

;

∞
∑

n=3

7(−3
4 )

n = 7(−3
4)

3 + 7(−3
4 )

4 + 7(−3
4 )

5 + · · ·

= 7(−3
4)

3[1 + (−3
4) + (−3

4)
2 + · · · ]

c=1,r=− 3
4= 7(−3

4)
3 1

1− (−3
4)

= − 189
64 · 4

7 = − 27
16 ;
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Infinite Series Summing an Infinite Series

Examples II

Evaluate S =

∞
∑

n=0

2 + 3n

5n
;

S =

∞
∑

n=0

2 + 3n

5n

=

∞
∑

n=0

2

5n
+

∞
∑

n=0

3n

5n

= 2

∞
∑

n=0

(

1

5

)n

+

∞
∑

n=0

(

3

5

)n

= 2 · 1

1− 1
5

+
1

1− 3
5

= 2 · 5
4
+

5

2
= 5;

George Voutsadakis (LSSU) Calculus II February 2015 29 / 85



Infinite Series Summing an Infinite Series

Divergence Test

Divergence Test

If the n-th term an does not converge to 0, i.e., if lim
n→∞

an 6= 0, then the

series

∞
∑

n=1

an diverges;

Example: Prove the divergence of S =

∞
∑

n=1

n

4n + 1
;

Clearly, lim
n→∞

n

4n + 1
=

1

4
6= 0; Thus, by the Divergence Test, S

diverges;
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Infinite Series Summing an Infinite Series

Another Example

Example: Determine the convergence or divergence of

S =

∞
∑

n=1

(−1)n−1 n

n + 1
=

1

2
− 2

3
+

3

4
− 4

5
+ · · ·;

The n-th term an = (−1)n−1 n

n + 1
does not approach a limit; To see

this, note that:

for even indices,

lim
n→∞

a2n = lim
n→∞

(−1)2n−1 2n

2n+ 1
= lim

n→∞

−2n

2n + 1
= − 1;

for odd indices,

lim
n→∞

a2n+1 = lim
n→∞

(−1)2n+1−1 2n+ 1

2n+ 1 + 1
= lim

n→∞

2n + 1

2n + 2
= 1;

Since lim
n→∞

an 6= 0, by the Divergence Test, S diverges;
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Infinite Series Summing an Infinite Series

If limn→∞ an = 0, Cannot Apply Divergence Test

Prove the divergence of S =

∞
∑

n=1

1√
n
=

1√
1
+

1√
2
+

1√
3
+ · · ·;

Note that lim
n→∞

an = lim
n→∞

1√
n
= 0; Therefore, the Divergence Test

cannot be applied; We must find another way to prove that the series
diverges; We will use comparison instead!

SN =
1√
1
+

1√
2
+

1√
3
+ · · ·+ 1√

N

≥ 1√
N

+
1√
N

+
1√
N

+ · · ·+ 1√
N

= N
1√
N

=
√
N ;

Now note that lim
N→∞

√
N = ∞; Therefore, since SN ≥

√
N , we also

have lim
N→∞

SN = ∞, showing that S diverges to infinity;
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Infinite Series Convergence of Series with Positive Terms

Subsection 3

Convergence of Series with Positive Terms
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Infinite Series Convergence of Series with Positive Terms

Positive Series

A positive series
∑

an is one with an > 0, for all n;

The terms can be thought of as
areas of rectangles with width 1
and height an;
The partial sum

SN = a1 + · · ·+ aN

is equal to the area of the first
N rectangles;

Clearly, the partial sums form an increasing sequence SN < SN+1;
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Infinite Series Convergence of Series with Positive Terms

Dichotomy and Integral Test

Dichotomy for Positive Series

If S =

∞
∑

n=1

an is a positive series, then either

1 The partial sums SN are bounded above, in which case S converges,
or

2 The partial sums SN are not bounded above, in which case S diverges.

The Integral Test

Let an = f (n), where the function f (x) is positive, decreasing and
continuous for x ≥ 1;

1 If

∫ ∞

1
f (x)dx converges, then

∞
∑

n=1

an converges;

2 If

∫ ∞

1
f (x)dx diverges, then

∞
∑

n=1

an diverges;
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Infinite Series Convergence of Series with Positive Terms

Applying the Integral Test on the Harmonic Series

The Harmonic Series Diverges: Show that
∞
∑

n=1

1

n
diverges;

Consider the function f (x) =
1

x
; For x ≥ 1, it is positive, decreasing

and continuous, and, moreover, f (n) =
1

n
= an; So we check

∫ ∞

1

dx

x
= lim

R→∞

∫ R

1

dx

x
= lim

R→∞
lnR = ∞;

Therefore, by the Integral Test, the series

∞
∑

n=1

1

n
diverges;
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Infinite Series Convergence of Series with Positive Terms

Another Application of the Integral Test

Does

∞
∑

n=1

n

(n2 + 1)2
=

1

22
+

2

52
+

3

102
+ · · · converge?

Consider the function f (x) =
x

(x2 + 1)2
; It is positive and continuous

for x ≥ 1; Is it also decreasing for x ≥ 1? Let us compute its first
derivative

f ′(x) =
(x)′(x2 + 1)2 − x [(x2 + 1)2]′

[(x2 + 1)2]2
=

(x2 + 1)2 − x · 2(x2 + 1) · 2x
(x2 + 1)4

=
(x2 + 1)− 4x2

(x2 + 1)3
=

1− 3x2

(x2 + 1)3
< 0;

Thus, the Integral Test is applicable and we get
∫ ∞

1

x

(x2 + 1)2
dx = lim

R→∞

∫ R

1

x

(x2 + 1)2
dx

u=x2+1
= lim

R→∞

∫ R

2

1

2u2
du =

lim
R→∞

−1

2u

∣

∣

∣

∣

R

2

= lim
R→∞

(

1

4
− 1

2R

)

=
1

4
; So,

∞
∑

n=1

n

(n2 + 1)2
converges;
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Infinite Series Convergence of Series with Positive Terms

The p-Series

Convergence of the p-Series

The infinite series
∞
∑

n=1

1

np
converges, if p > 1, and diverges, otherwise.

If p ≤ 0, lim
n→∞

1

np
6= 0; By Divergence Test, p-series diverges;

If p > 0, f (x) =
1

xp
is positive, decreasing and continuous on [1,∞);

Thus, the Integral Test applies and

∫ ∞

1

1

xp
dx =







1

p − 1
, if p > 1

∞, if p ≤ 1

Example:
∞
∑

n=1

1
3
√
n
diverges, and

∞
∑

n=1

1

n2
converges;
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Infinite Series Convergence of Series with Positive Terms

Comparison Test

Comparison Test

Assume that for some M > 0, 0 ≤ an ≤ bn, for all n ≥ M;

1 If

∞
∑

n=1

bn converges, then

∞
∑

n=1

an also converges;

2 If
∞
∑

n=1

an diverges, then
∞
∑

n=1

bn also diverges;

Example: Does

∞
∑

n=1

1√
n3n

converge?

Clearly, for all n ≥ 1, we have 0 ≤ 1√
n3n

≤ 1

3n
; Moreover,

∞
∑

n=1

(

1

3

)n

converges since it is a geometric series with ration
1

3
< 1; Therefore,

by Comparison

∞
∑

n=1

1√
n3n

also converges;
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Infinite Series Convergence of Series with Positive Terms

Example

Does
∞
∑

n=2

1

(n2 + 3)1/3
converge?

Consider the function f (x) = x3 − x2 − 3; We show that for x ≥ 2,
f (x) > 0; Note f (2) = 23 − 22 − 3 = 1 > 0; Moreover, for x ≥ 2
f ′(x) = 3x2 − 2x = x(3x − 2) > 0, so f is increasing; Thus f > 0, all
x ≥ 2;
We have shown, for n ≥ 2, f (n) = n3 − n2 − 3 > 0 ⇒ n3 > n2 + 3 ⇒

n > (n2 + 3)1/3 ⇒ 1
n
< 1

(n2+3)1/3
; But

∞
∑

n=2

1

n
is the harmonic series

that diverges; therefore, by Comparison

∞
∑

n=2

1

(n2 + 3)1/3
also diverges;

George Voutsadakis (LSSU) Calculus II February 2015 40 / 85



Infinite Series Convergence of Series with Positive Terms

Limit Comparison Test

Limit Comparison Test

Let {an} and {bn} be positive sequences and assume that L = lim
n→∞

an

bn
exists;

1 If L > 0, then
∞
∑

n=1

an converges if and only if
∞
∑

n=1

bn converges;

2 If L = ∞ and

∞
∑

n=1

an converges, then

∞
∑

n=1

bn also converges;

3 If L = 0 and

∞
∑

n=1

bn converges, then

∞
∑

n=1

an also converges;
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Infinite Series Convergence of Series with Positive Terms

Example I

Show that

∞
∑

n=2

n2

n4 − n− 1
converges;

Pick an =
n2

n4 − n − 1
and bn =

1

n2
; Then

L = lim
n→∞

an

bn
= lim

n→∞

n2

n4 − n − 1
· n

2

1
=

lim
n→∞

1

1− 1
n3

− 1
n4

= 1;

Since

∞
∑

n=2

1

n2
converges,

∞
∑

n=2

n2

n4 − n − 1
also converges by the Limit

Comparison Test;
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Infinite Series Convergence of Series with Positive Terms

Example II

Show that

∞
∑

n=3

1√
n2 + 4

diverges;

Pick an =
1√

n2 + 4
and bn =

1

n
; Then

L = lim
n→∞

an

bn
= lim

n→∞

n√
n2 + 4

=

lim
n→∞

1
√

1 + 4
n2

= 1;

Since

∞
∑

n=3

1

n
diverges,

∞
∑

n=3

1√
n2 + 4

also diverges by the Limit

Comparison Test;
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Infinite Series Absolute and Conditional Convergence

Subsection 4

Absolute and Conditional Convergence
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Infinite Series Absolute and Conditional Convergence

Absolute Convergence

Absolute Convergence

The series
∑

an converges absolutely if
∑

|an| converges.

Example: Verify that
∞
∑

n=1

(−1)n−1

n2
=

1

12
− 1

22
+

1

32
− 1

42
+ · · ·

converges absolutely;
We check

∞
∑

n=1

∣

∣

∣

∣

(−1)n−1

n2

∣

∣

∣

∣

=

∞
∑

n=1

1

n2

which converges as a p-series with p > 1;
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Infinite Series Absolute and Conditional Convergence

Absolute Convergence Implies Convergence

Theorem (Absolute Convergence Implies Convergence)

If
∑

|an| converges, then
∑

an also converges.

Example: Verify that

∞
∑

n=1

(−1)n−1

n2
converges;

It was shown in the previous slide that
∞
∑

n=1

∣

∣

∣

∣

(−1)n−1

n2

∣

∣

∣

∣

converges;

Therefore, by the Theorem,

∞
∑

n=1

(−1)n−1

n2
also converges;
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Infinite Series Absolute and Conditional Convergence

Another Example

Does S =

∞
∑

n=1

(−1)n−1

√
n

=
1√
1
− 1√

2
+

1√
3
− · · · converge absolutely?

We have
∞
∑

n=1

∣

∣

∣

∣

(−1)n−1

√
n

∣

∣

∣

∣

=

∞
∑

n=1

1√
n
=

∞
∑

n=1

1

n1/2
,

which is a p-series, with p = 1
2 ≤ 1, and so diverges; Therefore

∞
∑

n=1

(−1)n−1

√
n

is not absolutely convergent;
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Infinite Series Absolute and Conditional Convergence

Conditional Convergence

We saw than absolute convergence implies convergence:

If
∑

|an| converges, then
∑

an also converges;

The converse is not true in general! I.e., the convergence of a series
does not necessarily imply its absolute convergence;

Conditional Convergence

An infinite series
∑

an converges conditionally if
∑

an converges but
∑

|an| diverges.
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Infinite Series Absolute and Conditional Convergence

Alternating Series

An alternating series is an infinite series of the form

S =

∞
∑

n=1

(−1)n−1an = a1 − a2 + a3 − a4 + · · · ,

where an > 0 and decrease to 0;

Leibniz Test for Alternating Series

Suppose {an} is a positive sequence that is decreasing and converges to 0:

a1 > a2 > a3 > · · · > 0, lim
n→∞

an = 0;

Then the alternating series S =

∞
∑

n=1

(−1)n−1an = a1 − a2 + a3 − a4 + · · ·

converges; Moreover, we have

0 < S < a1 and S2N < S < S2N+1, N ≥ 1;

George Voutsadakis (LSSU) Calculus II February 2015 49 / 85



Infinite Series Absolute and Conditional Convergence

Example

Show that S =
∞
∑

n=1

(−1)n−1

√
n

=
1√
1
− 1√

2
+

1√
3
− · · · converges

conditionally and that 0 ≤ S ≤ 1;

We already saw that
∞
∑

n=1

∣

∣

∣

∣

(−1)n−1

√
n

∣

∣

∣

∣

=
∞
∑

n=1

1

n1/2
is a divergent p-series;

On the other hand, S converges by the Leibniz Test, since an =
1√
n
is

a positive decreasing sequence converging to 0;
Therefore, S is conditionally convergent;
By the last part of the Leibniz Test, 0 < S < a1 = 1;
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Infinite Series Absolute and Conditional Convergence

Error of Approximation of Alternating Series

Theorem

Let S =
∞
∑

n=1

(−1)n−1an, where an is a positive decreasing sequence that

converges to 0; Then
|S − SN | < aN+1;

I.e., the error committed when we approximate S by SN is less than the
size of the first omitted term aN+1;
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Infinite Series Absolute and Conditional Convergence

Alternating Harmonic Series

Show that S =
∞
∑

n=1

(−1)n−1

n
converges conditionally;

Since an =
1

n
is positive, decreasing and has limit 0, we get by the

Leibniz Test that S converges;

Moreover
∞
∑

n=1

∣

∣

∣

∣

(−1)n−1

n

∣

∣

∣

∣

=
∞
∑

n=1

1

n
which diverges (harmonic series);

Thus, S is conditionally convergent;

Show that |S − S6| < 1
7 ;

By the approximation error theorem, we get that
|S − S6| < a6+1 = a7 =

1
7 ;

Find an N, such that SN approximates S with an error less than 10−3;
We know that |S − SN | < aN+1; To make the error |S − SN | < 10−3

it suffices to arrange N so that

aN+1 ≤ 10−3 ⇒ 1

N + 1
≤ 10−3 ⇒ N + 1 ≥ 1000 ⇒ N ≥ 999;
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Infinite Series The Ratio and Root Tests

Subsection 5

The Ratio and Root Tests
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Infinite Series The Ratio and Root Tests

The Ratio Test

Theorem (Ratio Test)

Assume that ρ = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

exists;

1 If ρ < 1, then
∑

an converges absolutely;

2 If ρ > 1, then
∑

an diverges;

3 If ρ = 1, then test is inconclusive.
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Infinite Series The Ratio and Root Tests

Applying the Ratio Test I

Prove that

∞
∑

n=1

2n

n!
converges;

ρ = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

2n+1

(n + 1)!
· n!
2n

∣

∣

∣

∣

= lim
n→∞

2

n + 1
= 0;

Since ρ < 1, the series
∞
∑

n=1

2n

n!
converges by the Ratio Test;

Does the series
∞
∑

n=1

n2

2n
converge?

ρ = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

(n + 1)2

2n+1
· 2

n

n2

∣

∣

∣

∣

= lim
n→∞

n2 + 2n + 1

2n2
=

1

2
;

Since ρ < 1, the series

∞
∑

n=1

n2

2n
converges by the Ratio Test;
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Infinite Series The Ratio and Root Tests

Applying the Ratio Test II

Does the series
∞
∑

n=0

(−1)n
n!

1000n
converge?

ρ = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

(−1)n+1(n + 1)!

1000n+1
· 1000n

(−1)nn!

∣

∣

∣

∣

=

lim
n→∞

n + 1

1000
= +∞;

Since ρ > 1, the series
∞
∑

n=0

(−1)n
n!

1000n
diverges by the Ratio Test;
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Infinite Series The Ratio and Root Tests

If Ratio Test is Inconclusive Anything Can Happen

Consider

∞
∑

n=1

n2;

ρ = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

(n + 1)2

n2
= lim

n→∞

n2 + 2n + 1

n2
= 1;

So Ratio Test is inconclusive; However, lim
n→∞

an 6= 0, so the series
∞
∑

n=1

n2 diverges by Divergence Test;

Consider

∞
∑

n=1

1

n2
;

ρ = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

n2

(n + 1)2
= lim

n→∞

n2

n2 + 2n + 1
= 1;

So Ratio Test is again inconclusive; However,
∑∞

n=1
1
n2

is a p-series
with p = 2 > 1 and, hence, it converges!
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Infinite Series The Ratio and Root Tests

The Root Test

Theorem (Root Test)

Assume that L = lim
n→∞

n
√

|an| exists;

1 If L < 1, then
∑

an converges absolutely;

2 If L > 1, then
∑

an diverges;

3 If L = 1, the test is inconclusive.

Example: Does

∞
∑

n=1

(

n

2n + 3

)n

converge?

L = lim
n→∞

n
√

|an| = lim
n→∞

n

√

(

n

2n + 3

)n

= lim
n→∞

n

2n + 3
=

1

2
;

Since L < 1, the series

∞
∑

n=1

(

n

2n + 3

)n

converges by the Root Test;
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Infinite Series Power Series

Subsection 6

Power Series
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Infinite Series Power Series

Power Series Centered at c

A power series with center c is an infinite series

F (x) =

∞
∑

n=0

an(x − c)n

= a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + · · · ;
Example: The following is a power series centered at c = 2:

F (x) = 1 + (x − 2) + 2(x − 2)2 + 3(x − 2)3 + · · · ;
A power series may converge for some values of x and diverge for
some other values of x ;
Take a look again at
F (x) = 1 + (x − 2) + 2(x − 2)2 + 3(x − 2)3 + · · · ;

F ( 52 ) = 1 + 1
2 + 2( 12 )

2 + 3( 12 )
3 + · · · =

∞
∑

n=0

n

2n
; This series converges by

the Ratio Test!
F (3) = 1+ 1+ 2+ 3+ 4+ · · · ; This series diverges by the Divergence
Test!
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Infinite Series Power Series

Radius and Interval of Convergence

Theorem (Radius of Convergence)

Every power series F (x) =

∞
∑

n=0

an(x − c)n has a radius of convergence R ,

which is either a nonnegative number (R ≥ 0) or infinity (R = ∞).

If R is finite, F (x) converges absolutely when |x − c | < R (i.e., in
(c − R , c + R)) and diverges when |x − c | > R ;

If R = ∞, then F (x) converges absolutely for all x .

According to the Theorem, F (x) converges in an interval of

convergence consisting of the open (c − R , c + R) and possibly one
or both of the endpoints c − R and c + R ;
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Infinite Series Power Series

Using the Ratio Test I

Find the interval of convergence of

∞
∑

n=0

xn

2n
;

Let an =
xn

2n
and compute the ratio ρ of the Ratio Test:

ρ = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

xn+1

2n+1
· 2

n

xn

∣

∣

∣

∣

= lim
n→∞

|x |
2

=
|x |
2
;

Therefore, we get ρ < 1 ⇒ |x |
2

< 1 ⇒ |x | < 2; This shows that, if

|x | < 2 the series converges absolutely; If |x | > 2 the series diverges;

If x = −2, then
∞
∑

n=0

xn

2n
=

∞
∑

n=0

(−2)n

2n
=

∞
∑

n=0

(−1)n, which diverges!

If x = 2, then

∞
∑

n=0

xn

2n
=

∞
∑

n=0

2n

2n
=

∞
∑

n=0

1, which also diverges!

Thus, the interval of convergence is (−2, 2);
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Infinite Series Power Series

Using the Ratio Test II

Find the interval of convergence of F (x) =

∞
∑

n=1

(−1)n

4nn
(x − 5)n;

Let an =
(−1)n

4nn
(x − 5)n and compute the ratio ρ of the Ratio Test:

ρ = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

(−1)n+1(x − 5)n+1

4n+1(n + 1)
· 4nn

(−1)n(x − 5)n

∣

∣

∣

∣

=

|x − 5| lim
n→∞

∣

∣

∣

∣

n

4(n + 1)

∣

∣

∣

∣

=
1

4
|x − 5|;

Therefore, we get ρ < 1 ⇒ |x − 5|
4

< 1 ⇒ |x − 5| < 4; This shows

that, if |x − 5| < 4 the series converges absolutely; If |x − 5| > 4 the
series diverges;

If x − 5 = −4, then F (1) =
∞
∑

n=1

(−1)n

4nn
(−4)n =

∞
∑

n=0

1

n
, which diverges!

If x − 5 = 4, then F (9) =

∞
∑

n=1

(−1)n

4nn
(4)n =

∞
∑

n=0

(−1)n

n
, which

converges! Thus, interval of convergence is (1, 9];
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Infinite Series Power Series

An Even Power Series

Where does
∞
∑

n=0

x2n

(2n)!
converge?

Let an =
x2n

(2n)!
and compute the ratio ρ of the Ratio Test:

ρ = lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

∣

x2(n+1)

(2(n + 1))!
· (2n)!
x2n

∣

∣

∣

∣

∣

=

lim
n→∞

∣

∣

∣

∣

x2n+2

(2n + 2)!
· (2n)!
x2n

∣

∣

∣

∣

= x2 lim
n→∞

1

(2n + 1)(2n + 2)
= 0;

Therefore, we get ρ < 1, for all x ; This shows that the series is
absolutely convergent everywhere;
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Infinite Series Power Series

Geometric Power Series

Recall that the geometric infinite series S = a + ar + ar2 + · · ·
converges when |r | < 1 and has sum S = a

1−r
;

As a special case, when a = 1 and r = x , we get the geometric series

with center 0:
∞
∑

n=0

xn = 1 + x + x2 + x3 + · · · ; We have

1

1− x
=

∞
∑

n=0

xn, for |x | < 1;

Example: Show that
1

1− 2x
=

∞
∑

n=0

2nxn, for |x | < 1
2 ;

If |x | < 1
2 , then 2|x | < 1 and, therefore |2x | < 1; Thus, the geometric

series with ratio 2x converges; We have

1

1− 2x

Geometric Sum
=

∞
∑

n=0

(2x)n =

∞
∑

n=0

2nxn;
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Infinite Series Power Series

Another Example of a Geometric Power Series

Find a power series expansion with center c = 0 for f (x) =
1

5 + 4x2
and find the interval of convergence;

1

5 + 4x2
=

1

5
· 1

1 + 4
5x

2
=

1

5
· 1

1− (−4
5x

2)
;

Therefore, if | − 4
5x

2| = 4
5x

2 < 1 ⇒ x2 ≤ 5
4 ⇒ |x | ≤

√
5
2 , we have

1

5 + 4x2
=

1

5
· 1

1− (−4
5x

2)

Geometric
=

1

5

∞
∑

n=0

(−4

5
x2)n =

1

5

∞
∑

n=0

(−1)n
4n

5n
x2n =

∞
∑

n=0

(−1)n
4n

5n+1
x2n;
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Infinite Series Power Series

Term-by-Term Differentiation and Integration

Term-by-Term Differentiation and Integration

Assume that F (x) =
∞
∑

n=0

an(x − c)n has radius of convergence R > 0;

Then F (x) is differentiable on (c − R , c + R) (or for all x , if R = ∞);
Moreover, we can integrate and differentiate term-by-term, i.e.,

1 F ′(x) =

∞
∑

n=1

nan(x − c)n−1;

2

∫

F (x)dx = A+

∞
∑

n=0

an

n + 1
(x − c)n+1;

Both series for F ′(x) and

∫

F (x)dx have the same radius of convergence

R as F (x);
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Example of Differentiation of Power Series

Prove that for −1 < x < 1,
1

(1− x)2
= 1 + 2x + 3x2 + 4x3 + 5x4 + · · ·;

We know that, for |x | < 1, we have

1

1− x
= 1 + x + x2 + x3 + x4 + x5 + · · · ;

Therefore, by Term-by-Term Differentiation, we get, for |x | < 1:

1

(1− x)2
=

(

1

1− x

)′

= (1 + x + x2 + x3 + x4 + x5 + · · · )′
= 1 + 2x + 3x2 + 4x3 + 5x4 + · · · ;
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Example of Integration of Power Series

Prove that for |x | < 1, we have

tan−1 x =
∞
∑

n=0

(−1)nx2n+1

2n + 1
= x − x3

3
+

x5

5
− x7

7
+

x9

9
− · · ·;

Since for |x | < 1, we have
1

1− x
= 1 + x + x2 + x3 + x4 + · · · , we

obtain, also for |x | < 1,

1

1 + x2
=

1

1− (−x2)
= 1− x2 + x4 − x6 + x8 − · · · ;

Therefore, by Term-by-Term Integration we get

tan−1 x =

∫

1

1 + x2
dx

=

∫

(1− x2 + x4 − x6 + x8 − · · · )dx

= x − x3

3
+

x5

5
− x7

7
+

x9

9
− · · · ;
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Power Series Solution of Differential Equations

Consider y ′ = y and y(0) = 1;

Assume that the power series F (x) =

∞
∑

n=0

anx
n = a0+ a1x + a2x

2 + · · ·

is a solution of the given initial value problem; Compute

F ′(x) =
∞
∑

n=1

nanx
n−1 = a1 +2a2x +3a3x

2 + · · · ; Since F (x) = F ′(x),

we must have a0 = a1, a1 = 2a2, a2 = 3a3, a3 = 4a4, . . . ; Looking at

these carefully, we obtain an =
an−1

n
, for all n; Thus,

an =
1

n
an−1 =

1

n

1

n − 1
an−2 =

1

n

1

n− 1

1

n− 2
an−3 =

· · · = 1

n(n − 1)(n − 2) · · · · · 1a0 =
1

n!
a0;
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Example I (Cont’d)

We were solving y ′ = y and y(0) = 1;

We assumed F (x) =

∞
∑

n=0

anx
n is a solution; We found an =

1

n!
a0; This

yields F (x) = a0 + a1x + a2x
2 + a3x

3 + · · · = a0 + a0
1

1!
x + a0

1

2!
x2 +

a0
1

3!
x3 + · · · = a0(1 +

1

1!
x +

1

2!
x2 +

1

3!
x3 + · · · ) = a0

∞
∑

n=0

xn

n!
; Since

F (0) = 1 = a0, we get F (x) =
∞
∑

n=0

xn

n!
;

Since ex is also a solution, we get

ex =

∞
∑

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ · · · ;
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Example II

Find a series solution to x2y ′′ + xy ′ + (x2 − 1)y = 0, with y ′(0) = 1;

Let F (x) =

∞
∑

n=0

anx
n; Then y ′ = F ′(x) =

∞
∑

n=0

nanx
n−1 and

y ′′ = F ′′(x) =

∞
∑

n=0

n(n − 1)anx
n−2; Plug those in equation:

x2y ′′ + xy ′ + (x2 − 1)y =

x2
∞
∑

n=2

n(n− 1)anx
n−2 + x

∞
∑

n=1

nanx
n−1 + (x2 − 1)

∞
∑

n=0

anx
n =

∞
∑

n=0

n(n − 1)anx
n +

∞
∑

n=0

nanx
n −

∞
∑

n=0

anx
n +

∞
∑

n=0

an+2x
n =

∞
∑

n=0

(n2 − 1)anx
n +

∞
∑

n=2

an−2x
n = 0;

Thus, ∞
∑

n=0

(n2 − 1)anx
n = −

∞
∑

n=2

an−2x
n ⇒ an = − an−2

n2 − 1
;
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Example II (Cont’d)

We were solving x2y ′′ + xy ′ + (x2 − 1)y = 0, with y ′(0) = 1;

We assumed F (x) =

∞
∑

n=0

anx
n is a solution; We found an = − an−2

n2 − 1
;

Now, note a0 = 0; Thus, a2 = − a0
22−1

= 0; Then a4 = − a2
42−1

= 0;
We see that a2n = 0, for all n;
Moreover, a1 = 1; Thus, a3 = − a1

32−1
= − 1

2·4 ; Then

a5 = − a3
52−1

= + 1
2·4·4·6 ; Also a7 = − a5

72−1
= − 1

2·4·4·6·6·8 ; In general

a2n+1 =
(−1)n

2·4·4·6·6·····(2n)(2n+2) =
(−1)n

2n(1·2·3·····n)2n(2·3·4·····(n+1)) =
(−1)n

4nn!(n+1)! ;

So we get F (x) =
∞
∑

n=0

(−1)n

4nn!(n+1)! x
2n+1;
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Subsection 7

Taylor Series
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Taylor Series

Assume that a function f (x) is represented by a power series centered
at x = c on (c − R , c + R) with R > 0, i.e.,

f (x) =

∞
∑

n=0

an(x−c)n = a0+a1(x−c)+a2(x−c)2+a3(x−c)3+ · · · ;

Then, for the derivatives of f on (c − R , c + R), we have

f (x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + · · · ;
f ′(x) = a1 + 2a2(x − c) + 3a3(x − c)2 + 4a4(x − c)3 + · · · ;
f ′′(x) = 2a2 + 2 · 3a3(x − c) + 3 · 4a4(x − c)2 + 4 · 5(x − c)3 · · · ;
f ′′′(x) = 2 · 3a3 + 2 · 3 · 4a4(x − c) + 3 · 4 · 5(x − c)2 + · · · ;

Plug in x = c to get

f (c) = a0, f
′(c) = a1, f

′′(c) = 2!a2, f
′′′(c) = 3!a3, f

(4)(c) = 4!a4, . . . ;

In general, we get an =
f (n)(c)

n!
;
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Taylor and Maclaurin Series

Taylor Series Expansion

If f is represented as a power series centered at x = c in an interval
|x − c | < R ,R > 0, then the power series is the Taylor series:

f (x) =

∞
∑

n=0

f (n)(c)

n!
(x − c)n;

Maclaurin Series

The special case of the Taylor series for c = 0 is the Maclaurin series:

f (x) =

∞
∑

n=0

f (n)(0)

n!
xn = f (0) +

f ′(0)

1!
x +

f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 + · · · ;
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Finding a Taylor Series

Find the Taylor series for f (x) = x−3 centered at c = 1;
f (x) = x−3, f (1) = 1;
f ′(x) = (−3)x−4, f ′(1) = − 3;
f ′′(x) = (−3)(−4)x−5, f ′′(1) = + 3 · 4;
f ′′′(x) = (−3)(−4)(−5)x−6, f ′′′(1) = − 3 · 4 · 5;
...

f (n)(x) = (−3)(−4) · · · · · (−n − 2)x−n−3,

f (n)(1) = (−1)n · 2 · 3 · 4 · · · · · (n + 2) =
(−1)n

2
(n + 2)!;

Now we get by the Taylor series formula

f (x) =

∞
∑

n=0

f (n)(1)

n!
(x − 1)n =

∞
∑

n=0

(−1)n(n + 2)!

2 · n! (x − 1)n =

∞
∑

n=0

(−1)n(n + 1)(n + 2)

2
(x − 1)n;
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Convergence Issues

We know that if f (x) can be represented by a power series centered
at x = c , then that power series will be the Taylor series

T (x) =

∞
∑

n=0

f (n)(c)

n!
(x − c)n;

However, there is no guarantee that T (x) converges; Moreover, there
is no guarantee that, even if it converges, it will converge to f (x)!

Let

Tk(x) = f (c) + f ′(c)(x − c) +
f ′′(c)

2!
(c − x)2 + · · ·+ f (k)(c)

k!
(x − c)k ;

Define the remainder

Rk(x) = f (x)− Tk(x);

The Taylor series converges to f (x) if and only if lim
k→∞

Rk(x) = 0;
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Convergence Theorem

Theorem

Let I = (c − R , c + R), R > 0; If there exists a K > 0, such that all
derivatives of f are bounded by K on I , i.e.,

|f (k)(x)| ≤ K , for all k ≥ 0, x ∈ I ,

then, for all x ∈ I ,

f (x) =

∞
∑

n=0

f (n)(x)

n!
(x − c)n.
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Sine and Cosine

Show that

sin x =

∞
∑

n=0

(−1)n
x2n+1

(2n + 1)!
and cos x =

∞
∑

n=0

(−1)n
x2n

(2n)!

Let f (x) = sin x ;

f (x) f ′(x) f ′′(x) f ′′′(x) f (4)(x) · · ·
sin x cos x − sin x − cos x sin x · · ·
0 1 0 − 1 0 · · ·

Note, also that for all x , |f (k)(x)| ≤ 1; Therefore, we have
convergence of the Taylor series of f centered at x = 0 to
f (x) = sin x everywhere and

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · · ;

One either works similarly from scratch for g(x) = cos x or notices
that cos x = (sin x)′ and appeals to term-by-term differentiation of
the series for sin x ;
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Infinite Series for ex

The Maclaurin series for f (x) = ex is

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞
∑

n=0

xn

n!
;

Example: Find a Maclaurin series for f (x) = x2ex ;

f (x) = x2ex = x2
[

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·

]

= x2 + x3 +
x4

2!
+

x5

3!
+

x6

4!
+ · · · =

∞
∑

n=2

xn

(n − 2)!
;

Example: Find the Maclaurin series for f (x) = e−x2 ;

f (x) = e−x2 = 1 + (−x2) +
(−x2)2

2!
+

(−x2)3

3!
+

(−x2)4

4!
+ · · ·

= 1− x2 +
x4

2!
− x6

3!
+

x8

4!
− · · · =

∞
∑

n=0

(−1)n
x2n

n!
;
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Using Integration

Find the Maclaurin series for f (x) = ln (1 + x);

1

1− x
= 1 + x + x2 + x3 + x4 + · · ·

1

1 + x
=

1

1− (−x)
= 1− x + x2 − x3 + x4 − · · · ;

ln (1 + x) =

∫

1

1 + x
dx

=

∫

(1− x + x2 − x3 + x4 − · · · )dx

= x − x2

2
+

x3

3
− x4

4
+

x5

5
− · · ·

=

∞
∑

n=1

(−1)n+1xn

n
;
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Binomial Coefficients

For any number a (integer or not) and any integer n ≥ 0, we define
the binomial coefficient

(

a

n

)

=
a(a − 1)(a − 2) · · · (a − n + 1)

n!
,

(

a

0

)

= 1;

Example:

(

6
3

)

=
6 · 5 · 4

3!
= 20;

( 4
3
3

)

=
4
3 · 1

3 · (−2
3)

3!
=

− 8
27

6
= − 4

81
;
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Binomial Series

The Binomial Series

For any exponent a and for |x | < 1,

(1+x)a = 1+
a

1!
x+

a(a − 1)

2!
x2+

a(a − 1)(a − 2)

3!
x3+ · · ·+

(

a

n

)

xn+ · · · ;

Example: Find the terms through degree four of the Maclaurin
expansion of f (x) = (1 + x)4/3;

T4(x) = 1 +
a

1!
x +

a(a− 1)

2!
x2 +

a(a− 1)(a − 2)

3!
x3 +

a(a − 1)(a − 2)(a − 3)

4!
x4

= 1 +
4
3

1!
x +

4
3 · 1

3

2!
x2 +

4
3 · 1

3 · (−2
3)

3!
x3 +

4
3 · 1

3 · (−2
3) · (−5

3)

4!
x4

= 1 +
4

3
x +

2

9
x2 − 4

81
x3 +

5

243
x4;
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Applying the Binomial Series Expansion

Find the Maclaurin series for f (x) = 1√
1−x2

; Recall that

(1 + x)a =

∞
∑

n=0

(

a
n

)

xn; Hence, for a = −1
2 , we get

(1 + x)−1/2 =

∞
∑

n=0

(−1/2

n

)

xn;

Therefore, we obtain

f (x) =
1√

1− x2
= (1− x2)−1/2 = (1 + (−x2))−1/2 =

∞
∑

n=0

(−1/2
n

)

(−x2)n

= 1 +

∞
∑

n=1

(−1
2 )(−3

2)(−5
2 ) · · · (−1

2 − n + 1)

n!
(−1)nx2n

= 1 +

∞
∑

n=1

(−1)n1 · 3 · 5 · · · · · (2n − 1)

2nn!
(−1)nx2n

= 1 +

∞
∑

n=1

1 · 3 · 5 · · · · · (2n − 1)

2nn!
x2n;
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