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Infinite Series  Sequences

Sequences

@ A sequence is an ordered collection of numbers defined by a function
f(n) on a set of integers;

@ The values a, = f(n) are the terms of the sequence and n the index;
@ We think of {a,} as a list a1, a2, a3, as, ...
@ The sequence may not start at n = 1; It may start at n=0,n =2 or

any other integer;

@ When a, is given by a formula, then it is referred to as the general
term of the sequence;

@ Examples:
General Term Domain Sequence
_ i T 2 3 4
an—].—; nZl 0,§,§,Z,g,...

an=(-1)"n n>0 0, —12 —3,4,...
2

n n>3 9 16 25 36 49

m—4 "2 55712721732’ 45

dn = 57107217327 457 """
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Infinite Series  Sequences

Recursively Defined Sequences

@ A sequence is defined recursively if one or more of its first few terms
are given and the n-th term a, is computed in terms of one or more
of the preceding terms a,_1,ap—2,...;

@ Example: Compute ap, a3, a4 for the sequence defined recursively by

1 2
31=1a an=§ an—1+a ) ;
=

1 2 1 2 3
a = §<31+a—1):§<1+1):§y

1 2 1/3 2 1 17 17
B = §<a2+a_2)=§<2 3/2>=§ 6 12

1 2 1 /17 2 1 577 577
= 5("”3+a—3>=§<ﬁ+17—1z)=5 204 408’
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Infinite Series  Sequences

Limit of a Sequence

@ We say that the sequence {a,} converges to a limit L, written
lim a, = L or a, — L, if the values of a, get arbitrarily close to the
C:IEZ L when n is taken sufficiently large;

@ If a sequence does not converge, we day it diverges;

@ If the terms increase without bound, {a,} diverges to infinity;

a,= cos(n)

George Voutsadakis (LSSU) Calculus 11 February 2015 6 /85



Infinite Series  Sequences

Sequence Defined by a Function

Theorem (Limit of a Sequence Defined by a Function)

If lim f(x) exists, then the sequence a, = f(n) converges to the same
X—00

limit, i.e., lim a, = lim f(x);
n—o00 X— 00

4
@ Example: Show that lim a, = 1, where a, = Do,

n—o00 n+1 !
4
We consider the function f(x) = X—+1; Clearly, a, = f(n);
X

Therefore, by the Theorem, it suffices to show that Ii_)m f(x) =1,

4 1+2 1
T T -

X—»00 x—oox + 1 x—>oo]_-|_l 1+0
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Infinite Series  Sequences

Example |

22-232-2 4-25-2
22 7 32 7 4 7 52 7
2

. . n .
The general term of the given sequence is a, = ——5—; We consider
n

: x? =2 2
the function f(x) = ——— =1~ —; Clearly, a, = f(n); Therefore,
X

it suffices to find the limit lim f(x )

X—>00

@ Find the limit of the sequence

lim f(x) = I|rrc1>o( —%)=1—0=1;

X—00

Thus, lim a, =1;
n—oo
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Infinite Series  Sequences

Example Il

|
o Find the limit lim "7,
n—o00 n |
We consider the function f(x) = X-i_#; Clearly, a, = f(n);
X

Therefore, it suffices to find the limit Ii_)m f(x);
X—>00

: . x+Inx
L es)= oy =—=7—=
<E) R Jim 7(’”’;”)/ — jim 2232,
00 X—00 (x )’ X—00 2x
|
Thus, lim 22010 _ o,
n—o00 n
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Infinite Series Sequences

Geometric Sequences

@ For r >0 and c > 0,

0, fo<r<l1
limer"=<¢ ¢, ifr=1
n—o0 .

oo, ifr>1

To see this, one considers the corresponding function f(x) = cr*; If

r <1, then, lim ¢r* =0, and, if r > 1, then, lim cr* = oo;
X—>00 X—>00

15 20
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Infinite Series  Sequences

Limits Laws for Sequences

Limit Laws for Sequences

Assume {a,} and {b,} are convergent sequences with

lima, =L, lim b, = M;
n—o0 n—oo

Then, we have:

Q lim (ap+b,) = lima,+ lim b, =L+ M,
n—o0 n—00 n—00

Q lim apb, = (lim a,)( lim b,) = LM,
n—o00 n—o00 n—o00

|
P 2l — 06D - wwm :
0 lim, im b, M’ i il =0

Q limca, =c lim a, = cL, (c a constant;)
n—o00 n—o0
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Infinite Series Sequences

Squeeze Theorem for Sequences

Squeeze Theorem for Sequences
Let {an}, {bn} and {c,} be sequences, such -

that, for some number M,
b, < a, < cp, foralln> M e
ol Lo,

and e

lim b, = lim ¢, = L;

n—o00 n—o0o
Then lim a, = L,

n—o0o 1ol -

@ Example: Show that if lim |a,| =0, then lim a, =0.
n—oo n—o0o
Note that —|a,| < a, < |a,|; By hypothesis Ii}m |an| = 0; This also
n—oo

implies lim (—|as|) = — lim |a,| = 0; Now, by the Squeeze
n—o00 n—oo

Theorem for Sequences, lim a, = 0;

n—o0
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Infinite Series  Sequences

Geometric Sequences with r < 0

@ For c #0,

lim cr" =
n—o00

0, if —1<r<©0
diverges, if r < —1

o If =1 < r <0, then 0 < |r| <1 and, therefore
lim |cr”| = lim |c|-|r|” = 0; Thus, since —|cr"| < cr" < |cr"|, by
n—o0 n—o0

the Squeeze Theorem, we get lim cr” = 0;
n—o0

o If r=—1, then lim (—1)"c diverges, since |(—1)"c| = |c| and its sign
n—oo
keeps alternating;
o If r < —1, then |r| > 1, whence |cr"| = |c| - |r|” — oo, whence
lim cr” diverges in this case also;
n—oo
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Infinite Series  Sequences

Exploiting Continuity

If f(x) is a continuous function and lim a, = L, then
n—o0
lim f(a,) = f( lim a,) = f(L);
n—o0 n—o0
This says, informally speaking, that if f is continuous, we can “push the
limit in";

@ Example: Since f(x) = & and g(x) = x?

are both continuous, we
may use this theorem to compute:

. 3 . 3n . 3n 5
T e = G = i) = e =

; n o, . no ; no »
° nll>n;o(n+1) _nllmog(n—i-l)_g(nlltgon-‘rl) g(3) =9
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Infinite Series  Sequences

Bounded Sequences

@ A sequence {a,} is
o bounded from above if there is a number M, such that a, < M, for
all n; In this case M is called an upper bound;
o bounded from below if there is a number m, such that a, > m, for all
n; In this case m is called a lower bound;
@ {a,} is bounded if it is bounded from above and from below; A
sequence is unbounded if it is not bounded;
Theorem

10,

If {an} converges, then {a,} is bounded,;

Convergent sequences are bounded!
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Infinite Series Sequences

Is Every Bounded Sequence Convergent?

150
10 . . .
.
.
.
. .
~dLc
O3S
o .
.
.
. . . . .
10 15 20 2
.
. .
.
=051 .« ®
.
. .
.
.
-1.0f . > . s
a= cos(n) is bounded but not convergent!
=15L
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Infinite Series  Sequences

Bounded Monotonic Sequences

o A sequence {a,} is

o increasing if a, < a1, for all n;
o decreasing if a, > a,.1, for all n;
@ monotonic if it is either increasing or decreasing;

Theorem (Bounded Monotonic Sequences Converge)

o If {a,} is increasing and a, < M, then a, converges and lim a, < M;
n—o0

o If {a,} is decreasing and a, > m, then a, converges and lim a, > m;
n—oo
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Infinite Series  Sequences

Example |

@ Show that a, = v/n+ 1 — \/n is decreasing and bounded from below;
Does lim a, exist?
n_>oo - - . .
We show that a, is decreasing by two different methods; The first
uses the sequence itself, the second uses the corresponding function;

o Method 1: Rewrite a, =vn+1—+/n=

(VaFl+VA)(Va+i—yA)  n+l—n 1
Vn+1++/n T Vntltyn vVatrl+yn
Now we see 1 1

= > = dn+1,
Vnti+yvn T Jint)+l4varl
So {an} is decreasing;
o Method 2: Consider f(x) = v/x + 1 — /x and compute

ey 11
P = me1 avx

that £\, [0, 00), showing that {a,} is a decreasing sequence;
Clearly a, = v/n+ 1 —/n > 0, which shows that {a,} is bounded
from below;

< 0, for x > 0; Thus, since f/ <0, we get
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Infinite Series  Sequences

Example Il

@ Show that the following sequence is bounded and increasing; Then
find its limit:

31:\/5, azzm, 33:\/2m,

The key here is to realize that a,11 = \/2a,, for all n;
We show {a,} is bounded: Clearly, a; = V2 < 2:If a, < 2, then
an+1 = V2ap, < V2 -2 =2; Therefore, a, < 2, for every n > 1;
Next, we show that {a,} is increasing:

an=+/an-ap < V2-a,=apt1;

Since {an} is increasing and bounded from above, the theorem asserts
that it converges; Let lim a, = L; Then
n—oo

ant1 =+V2ap = limay1 =, /2lima, = L=+v2L= [2=2] =
n—o0 n—oo

[2-2L=0=L(L-2)=0=L=00orL=2; So lima,=2;
n—oo
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Infinite Series  Summing an Infinite Series

Subsection 2

Summing an Infinite Series
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Infinite Series  Summing an Infinite Series

Introducing Infinite Series and Partial Sums

@ If we look carefully at the figure 1s2|—|
. . 1/64
on the right we realize that 1

116

1 1 1 1 1 "

l=c+3tstetn Tt

1/4
Infinite sums of this type are

called infinite series;
@ The partial sum Sy of an infinite series is the sum of the terms up to

and including the N-th term:

51 = %;
S = i4+1
S = i—i-i"i‘l;
R S G Gt
o= gzz o
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Infinite Series  Summing an Infinite Series

Definition of Infinite Series and Partial Sums

@ An infinite series is an expression of the form

(o]
E ap=a1ta+at+ag+---,
n=1
where {a,} is any sequence;
@ Example:
Sequence General Term Infinite Series
(o.0]
11 1 _ 1 L _ 1.1, 1. .
392w =73 D s=ststant
n=1
(o.0]
111 1 _ 1 I R R
D9 ter s AT 21Tz To T

@ The N-th partial sum Sy is defined ans:t]he finite sum of the terms up
to and including ap:

SN=) an=atat o +an
n=1
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Infinite Series  Summing an Infinite Series

Convergence of an Infinite Series

Convergence of an Infinite Series

(e.0]
An infinite series Zan converges to the sum S if its partial sums

n=k
converge to S:
lim Sy = S;
N—oo

o
In this case, we write S = Za,,;
n=k
@ If the limit Nlim Sy does not exist, then we say the infinite series
— 00
diverges;

o If Nlim Sy = oo, then we say that the infinite series diverges to
—00

infinity;
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Infinite Series  Summing an Infinite Series

Telescoping Series

o Compute the sum S of the infinite series

[e.9]

221=1+1+1+1+”'_
o n(n+1) 1(2) 2(3) 3(4) 4(5 '
1 1 1
Note that ————— = — — ———:; Therefore, we have
n(ln+1) n n+1
I I O
1.2 27 2.3 2 3 34 3 &
Now, we compute the N-th partial sum:
AR 1, 1 1
SN — ;m=(l—§)+(§—§)+
1 1 1 1 u 1
Grar Gy "
Therefore, S = ,JianN = NILm@(l — N—+1) =1-0=1;
George Voutsadakis (LSSU) Calculus 11
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Infinite Series  Summing an Infinite Series

Sequence {a,} versus Series > a,

@ The previous example provides an opportunity to discuss the
difference between the sequence {a,} and the infinite series

oo
5=Zan=31+32+a3+--’;

n=1
1
@ The sequence a, = — is the list of numbers
n(n+1)
1 1 1 : .
1.2° 2.3° 3.4 Clearly nangoa,, - nll—[gom =0
o0
@ On the other hand, for the sum of the infinite series S = Zan, we
n=1
look not at lim a,, but rather at lim Sy, where
n—00 N—oo
N
1 1 1 1
Sy = _ e —
i Zla" 12) 23 3@ T TN
n=

We saw that this limit is 1, not 0!
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Infinite Series  Summing an Infinite Series

Linearity of Infinite Series

Linearity of Infinite Series

If the infinite series Za,, and Zb,, converge, then the series
Z(an + b,) and an,, also converge and we have

° Za,, o an = Z(an + by);
° Za,, — an = Z(an — bp);
° an,, = cZan;

@ In the sequel, we will be interested in establishing techniques for
determining whether an infinite series converges or diverges;

George Voutsadakis (LSSU) Calculus 11 February 2015
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Infinite Series  Summing an Infinite Series

Geometric Series

@ A geometric series with ratio r = 0 is a series defined by the
geometric sequence cr”, where ¢ # 0;
@ The series looks like

[o.¢]
SZZcr”:c+cr+cr2+cr3+cr4+...;

n=0
@ The following work determines the N-th partial sum Sy of the
geometric series:

Sy = @@ A @B A s e
Sy = @7 = @2 de @ e oo de @t 2b gl
SN — rSN = C — CI’,\H—1
Sv(l—r) = c(1— N+
Sy — c(l _ rN+1);
1—r c
o If [r| <1, the the Geometric Series converges and S = T

o If |[r] > 1, it diverges;
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Infinite Series  Summing an Infinite Series

Examples |

(oe)
o Evaluate 25_";

n=0
1 c:l,r:l<1 ]. 5
§:5_ E:( = 1=
n=0 1- 5 4
@ Evaluate i? (—é)n'
4 1
n=3
DT = TEDPHTED T+
= (=3P +(=2)+(-3)2+-]
c=1,r=— 1
= ° 7(_%)31 3
— (-3
_ _ 189 4 _ _ 27
= 64 7 — 16’
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Infinite Series  Summing an Infinite Series

Examples |l
243"
@ Evaluate S = Z + ;
243"
S -
>
n=0
o) 2 O Hp
- Y243E
n_05n n205n
(o] 1 n [o¢] 3 n
= 9 z =
>(3) +X(3)
n:Ol n=0
1 3
1-1"1-3
5 5
- 2.2.°2
4+2
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Infinite Series  Summing an Infinite Series

Divergence Test

Divergence Test

If the n-th term a, does not converge to 0, i.e., if lim a, # 0, then the
n—o0

(ee)
series E a, diverges;
n=1

@ Example: Prove the divergence of S = 24,7 i T

Clearly, nli_>n;04n,j|_ 1= Z = 0; Thus, by the Divergence Test, S

diverges;
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Infinite Series  Summing an Infinite Series

Another Example

@ Example: Determine the convergence or divergence of
n 1 2 3 4

— _1"_1—=___ - — — e

> Z( ) n+1 2 3 - 4 5 u

does not approach a limit; To see

The n-th term a, = (—1)"!

: n—+
this, note that:
o for even indices, 5 2
e — [ —
nll>n;oa2" = Imgo( 1 on+1 n|l>n;02n +1 ,
o for odd indices, on41 onat1
. T _ 2n+1—1L i ne ;
P e TFS s P LT R

Since lim a, # 0, by the Divergence Test, S diverges;
n—o00
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Infinite Series  Summing an Infinite Series

If lim,_~ a, = 0, Cannot Apply Divergence Test

1 1 1
@ Prove the divergence of S = Z\/_ \/_ \/— \/— oof

1
Note that I|m ap = lim — = 0; Therefore, the Divergence Test
— 00 n—oo n

cannot be apphed, We must find another way to prove that the series
diverges; We will use comparison instead!

6 - 1,111

S “? S
> e — oo —x
B \/N VN \/N VN
= N—=+vVN;

N

Now note that lim v/N = co; Therefore, since Sy > \/N, we also

. Ni}m . . . . .
have lim Sy = oo, showing that S diverges to infinity;
N—oo
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Subsection 3

Convergence of Series with Positive Terms
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Infinite Series  Convergence of Series with Positive Terms

Positive Series

@ A positive series ) _ a, is one with a, > 0, for all n;

@ The terms can be thought of as
areas of rectangles with width 1
and height a,;

The partial sum

i

Sy=a1+---+an

is equal to the area of the first
N rectangles;
@ Clearly, the partial sums form an increasing sequence Sy < Sn+1;
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Infinite Series  Convergence of Series with Positive Terms

Dichotomy and Integral Test

Dichotomy for Positive Series

oo
If S = Za,, is a positive series, then either
n=1
@ The partial sums Sy are bounded above, in which case S converges,
or

© The partial sums Sy are not bounded above, in which case S diverges.

The Integral Test

Let a, = f(n), where the function f(x) is positive, decreasing and
continuous for x > 1;

(e}

(o.0]
(%) If/ f(x)dx converges, then Zan converges;
1

n=1
Q If/ f(x)dx diverges, then Zan diverges;
1 n=1
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Infinite Series  Convergence of Series with Positive Terms

Applying the Integral Test on the Harmonic Series

oo
1
@ The Harmonic Series Diverges: Show that E — diverges;
n
n=1

1
Consider the function f(x) = —; For x > 1, it is positive, decreasing
X

and continuous, and, moreover, f(n) = — = a,; So we check

— = limInR = o0;
1 R—)oo R—o00

o
1
Therefore, by the Integral Test, the series E — diverges;
n
n=1
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Infinite Series  Convergence of Series with Positive Terms

Another Application of the Integral Test

00
n 1 2 3
@ Does Zm 22 T = 52 T == 102 + - -- converge?

; It is positive and continuous

Consider the function f(x) =

(24172
for x > 1; Is it also decreasing for x > 17 Let us compute its first
derivative( V2 ) (02 1 17
X< + — X|(x +
f/ . =
0= T e aypp
(P+1)2—x-2(x2+1)-2x  (x®*+1)—4 1-3x2 0
(x2 4+ 1) (2 +1)3 (X2 +1)3

Thus, the Integral Test is applicable and we get

0 X o X u:x2+1 it ].
X dx = i X g T — du=
/1 212 Ri‘lo/l 2+12 Ri“oo/z 227"
R

1 1 1 > n
= lim (Z — ﬁ) = Z, SO, ;m converges;
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Infinite Series  Convergence of Series with Positive Terms

The p-Series

Convergence of the p-Series

The infinite series E — converges, if p > 1, and diverges, otherwise.
n
n=1

1
o If p< 0, lim— #0; By Divergence Test, p-series diverges;
n—o0 NP

1
o If p> 0, f(x) = — is positive, decreasing and continuous on [1, c0);
xP
Thus, the Integral Test applies and

1
1 — . ifp>1
1 00, ifp<1

o o0
1 1
o Example: E ? diverges, and E — converges;
n n
= n=1
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Infinite Series  Convergence of Series with Positive Terms

Comparison Test

Comparison Test

Assume that for some M >0, 0 < a, < b, for all n > M;

o o0
Q If Zb,, converges, then Za,, also converges;

n=1 n=1
(o.] [o.¢]

Q If Zan diverges, then an also diverges;
n=1 n=1

o0
1
@ Example: Does Z converge?
n=1

=/ =

11 L)’
Clearly, for all n > 1, we have 0 < NGRD < 30 Moreover, 2 (5)

converges since it is a geometric series with ration 3 < 1; Therefore,

o
by Comparison E also converges;
n=1

L
V/n3"
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Infinite Series  Convergence of Series with Positive Terms

Example

5
@ Does Z O converge?’

Consider the function f(x) = x3 — x? — 3; We show that for x > 2,
f(x) > 0; Note f(2) =23 —22 —3 =1 > 0; Moreover, for x > 2
f'(x) = 3x? — 2x = x(3x — 2) > 0, so f is increasing; Thus f > 0, all
x> 2;

We have shown, for n>2, f(n)=n*-n*>-3>0=n>n>+3 =

o0
1
2 1/3 1 1. - . :
n>(n?+3)Y3 = o < FaE But E o s the harmonic series

(n
n=2

that diverges; therefore, by Comparison Z also diverges;
n=

1
< (n? + 3)1/3
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Infinite Series  Convergence of Series with Positive Terms

Limit Comparison Test

Limit Comparison Test

. . a
Let {a,} and {b,} be positive sequences and assume that L = lim ==

n—oo b,
exists;

o o
Q If L >0, then Za,, converges if and only if an converges;
n=1

n=1
o o
Q If L =00 and Za,, converges, then Zb,, also converges;
n=1 n=1
o o
QIfL=0and Zb,, converges, then Zan also converges;
n=1

n=1
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Infinite Series  Convergence of Series with Positive Terms

Example |

2

o0
n
o Show that » —————
n —_—
n=2

converges;
n—1

2
: 1
Pick dn = m and bn = ?, Then
2 2
20 L
L __nUQL> . __nUQ;3n4 —n—1 1
nUQ;l 1 1 =1

oo oo
. 1 n? -
Since g — converges, g P a— also converges by the Limit
n n*—n—
n=2 n=2

Comparison Test;
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Infinite Series  Convergence of Series with Positive Terms

Example Il

o0
1
@ Show that 27 diverges;
n:31\/n2 +4 .
Pick a, = —— and b, = —; Then
n?+4 n
L= lim 2" = jim —L_ =
- nl}n;obn - nl}n;o\/,ﬂ + 4 -
1
lim ——— = 1;
n—oo 1+ni.2

o (0.9]
1 1
Since E — diverges, E ————— also diverges by the Limit
n=3 n n=3 n? +4

Comparison Test;
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Subsection 4

Absolute and Conditional Convergence
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Infinite Series  Absolute and Conditional Convergence

Absolute Convergence

Absolute Convergence

The series E a, converges absolutely if E |an| converges.

H~t 1 1 1 1
@ Example: Verlfythat27)=p—2—2+?—ﬁ+"'

n=1
converges absolutely;
We check - .
>[5
2
n=1 n=1 n

which converges as a p-series with p > 1;
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Infinite Series  Absolute and Conditional Convergence

Absolute Convergence Implies Convergence

Theorem (Absolute Convergence Implies Convergence)

If E |an| converges, then E a, also converges.

S (_l)n—l
@ Example: Verify that E W converges;
n=1
0 (_1)n—1
It was shown in the previous slide that E —>5——| converges;
n
n=1

X  1\n—-1
Therefore, by the Theorem, Z% also converges;

n=1
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Another Example

Syt 11
VI V2 V3

e By B 3

which is a p-series, with p = % < 1, and so diverges; Therefore

- converge absolutely?

_ 1
E (T is not absolutely convergent;
n
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Conditional Convergence

@ We saw than absolute convergence implies convergence:

If E |an| converges, then E ap also converges;

@ The converse is not true in general! l.e., the convergence of a series
does not necessarily imply its absolute convergence;

Conditional Convergence

An infinite series Za,, converges conditionally if Zan converges but

Z|a,,| diverges.
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Alternating Series

@ An alternating series is an infinite series of the form
o
SZZ(—l)"_lanzal—32+33—34+"' )
n=1

where a, > 0 and decrease to 0;

Leibniz Test for Alternating Series

Suppose {a,} is a positive sequence that is decreasing and converges to 0:

ay>ap >az>--- >0, lim a, =0;

n—o0

(0.]

Then the alternating series S = Z(—l)”‘lan —ay—atay—ag+---
n=1

converges; Moreover, we have

0<S<a and Son < S < Sony1, N> 1,
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Example

[ 1 1
@ Show that S = E =— — — 4+ — —--- converges
\/_ \/_

conditionally and that 0<S5<1;
Et
Vvn

@ On the other hand, S converges by the Leibniz Test, since a, =

S
>

o0
o We already saw that Z
n=1

1 . .
= E —— is a divergent p-series;
nl/2
n=1

Sk
S

a positive decreasing sequence converging to 0;
o Therefore, S is conditionally convergent;
o By the last part of the Leibniz Test, 0 < S < a; = 1;
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Error of Approximation of Alternating Series

Theorem

Let S = Z )" La,, where a, is a positive decreasing sequence that

converges to 0; Then
|S — Sn| < an+1;

l.e., the error committed when we approximate S by Sy is less than the
size of the first omitted term ap1;
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Alternating Harmonic Series

9 (_1)n—1
@ Show that S = E ——— converges conditionally;
n

n=1

1
Since a, = — is positive, decreasing and has limit 0, we get by the
n

Leibniz Test that S converges;
I o

M =2 | =) = whichdi h ic series):

oreover 2 p 25 which diverges (harmonic series)

Thus, S is conditionally convergent;

@ Show that |S — Sg| < %;
By the approximation error theorem, we get that
S — Se| < ap+1 = a7 = 3;

@ Find an N, such that Sy approximates S with an error less than 1073;
We know that |S — Sy| < any1; To make the error |S — Sy| < 1073
it suffices to arrange N so that

1
aN+1§10‘3:>N—+1§10_3:>N+121000:>N2999;
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Subsection 5

The Ratio and Root Tests
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The Ratio Test

Theorem (Ratio Test)

Assume that p = lim
n— o0

exists;

an

O If p <1, then Zan converges absolutely;
Q If p>1, then Zan diverges;

© If p =1, then test is inconclusive.
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Applying the Ratio Test |

o 2!1
@ Prove that Z—| converges;
n!

n=1
i B i |27 A —0;
P n—oo| ap n—00 (n-|—1)| 2n n—oon + 1 '

o0
2"
Since p < 1, the series E — converges by the Ratio Test;
n

n=1 "
@ Does the series Zg_n converge?
n=1
. lans (n+1)2 27 n”?+2n+1 1
p=lim N i S e U
n—oo| ap, n—oo| 2n+1 n> n—00 2n2 2
© 2
: : n : .
Since p < 1, the series Zg_n converges by the Ratio Test;
n=1
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Applying the Ratio Test Il

= n!
@ Does th i —1)" 7
oes the series g( ) Toogn Sonverge
i |2 (-1 (n+1)! 1000" |
p=Jim o = m T To0on (—1)7n!
. n+1
1000 ~ T

Since p > 1, the series Z( 1)" diverges by the Ratio Test;

1000”
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If Ratio Test is Inconclusive Anything Can Happen

o0
@ Consider Zn2;

n=1

: 1)? . n’42n+1
,0=||mﬂ |m@=llmn+2n+ 1;

n—oo| ap n—oco N n—o0 n

So Ratio Test is inconclusive; However, lim a, # 0, so the series
n—oo

o
an diverges by Divergence Test;

n=1
. =1
@ Consider E —
n
n=1 2 2
p= lim S| |mn7— Iimni— :
n—oo| ap n—>oo(n 1)2 n—oon? +2n+1 ’

So Ratio Test is again inconclusive; However, > >
with p =2 > 1 and, hence, it converges!

1 2 is a p-series
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The Root Test

Theorem (Root Test)

Assume that L = lim {/|a,]| exists;
n— o0
O If L <1, then Zan converges absolutely;
Q If L >1, then Za,, diverges;

Q If L =1, the test is inconclusive.

n
@ Example: Does Z (2 +3) converge?

o . n "_ . n 1
L_nll—>no10 ‘an‘_nll—tro]o (2n+3> _nll—>ngo2n+3_2'

Since L < 1, the series Z (

n
T 3> converges by the Root Test;

George Voutsadakis (LSSU) Calculus 11 February 2015 58 / 85



Infinite Series  Power Series

Subsection 6

Power Series

George Voutsadakis (LSSU) Calculus 11 February 2015 59 / 85



Infinite Series  Power Series

Power Series Centered at ¢

@ A power series with center c is an infinite series

F(x) = D an(x—o)"
n=0

= atalx—c)ta(x—c)?+az(x—c)®+-;
@ Example: The following is a power series centered at ¢ = 2:
F(x)=1+(x—=2)+2(x =22 +3(x =23 +---;

@ A power series may converge for some values of x and diverge for

some other values of x;
@ Take a look again at

F(x)=1+(x—2)+2(x =22 +3(x—2)3+---;
o F(3)=14+1+2(1+3(3FP+---= 22—’1 This series converges by
n=0

the Ratio Test!
@ F(3)=1+1+4+2+3+4+---; This series diverges by the Divergence
Test!
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Radius and Interval of Convergence

Theorem (Radius of Convergence)

Every power series F(x Za,,(x — ¢)" has a radius of convergence R,

which is either a nonnegative number (R > 0) or infinity (R = 00).
o If R is finite, F(x) converges absolutely when |x — c| < R (i.e., in
(c — R,c+ R)) and diverges when |[x — ¢| > R;
o If R = 0o, then F(x) converges absolutely for all x.
@ According to the Theorem, F(x) converges in an interval of
convergence consisting of the open (¢ — R, ¢+ R) and possibly one
or both of the endpoints ¢ — R and ¢ + R;

diverges converges absolutely diverges

/ AN\ //lxc»<R\\ /AN

R e c+R

Pos slble hur not celhm “cony ergence!
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Using the Ratio Test |

X n
: : X
@ Find the interval of convergence of Zg_n
n=0
Xn
Let a, = o and compute the ratio p of the Ratio Test:
Xn+1 on
= lim

n—o0

x|
2

= lim .
=i an 2nt1l xn

Therefore, we get p < 1= — < 1= |x| < 2; This shows that, if

|x| < 2 the series converges absolutely; If |x| > 2 the series diverges;
o0 o0
A\
o If x = -2, then 22'7 = Z( 2n) = Z(—l)”, which diverges!
n_ n—O n=0
2" : .
o If x =2, then ;)E = ;Oﬁ = ;)1, which also diverges!

Thus, the interval of convergence is (—2,2);
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Using the Ratio Test Il

—1)"
@ Find the interval of convergence of F(x) = Z%(x —5)"

4[1
— n=1
Let a, = ( D" (x — 5)" and compute the ratio p of the Ratio Test:
"n
N P B T Ll .
2= L a, | n—oo 4n+l(p 4 1) (=1)"(x = 5)"
n

lim |———| = ~|x — 5|;

e = 8 fim, (n—l—l)‘ g | |
5

Therefore, we get p < 1 = % < 1= |x — 5| < 4; This shows

that, if [x — 5| < 4 the series converges absolutely; If [x — 5| > 4 the
series diverges; < (~1)n ~ 1
o If x —5 = —4, then F(1) = Z T (—4)" = Z;, which diverges!

n=1 n=0
oo 71 n o0 71 n
o If x—5=4, then F(9) = Z%M)” = Z%, which
n=1

n=0
converges! Thus, interval of convergence is (1, 9];
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An Even Power Series

9 2n
@ Where does Z(;n)| converge?
2n
Let a, = (2 ) and compute the ratio p of the Ratio Test:
p= lim |2L| — ) (2n)!
n—oo| ap n—ool (2(n+ 1)) x2"
2n+2 (2[7)' 1

lim =x2 i
n|—>oo (2n =+ 2) x2n X n|—>moo (2n =+ 1)(2[‘1 + 2)

Therefore, we get p < 1, for all x; This shows that the series is
absolutely convergent everywhere;
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Geometric Power Series

@ Recall that the geometric infinite series S = a+ ar + ar® + - - -
converges when |r| <1 and has sum S = ;
@ As a special case, when a =1 and r = x, we get the geometric series

(oe)
with center 0: Zx" =14+x+x2+x3+---: We have
n=0

o
=2
=» x", for|x| <1,
1—x e
o

1 1
@ Example: Show that 1o = ;Z"X", for [x| < 3;

If |x] < %, then 2|x| < 1 and, therefore |2x| < 1; Thus, the geometric
series with ratio 2x converges; We have

1 - .
1 2 Geometéc Sum Z(zx)n — Zznxn;
— X
n=0 n=0
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Another Example of a Geometric Power Series

@ Find a power series expansion with center ¢ = 0 for f(x) = L
and fincFi) the interval o? convergence; N 5
t 1 11
5+4x2 5 1-|—§x2 5 1—(— % 2)’
Therefore, if | — 2x%}[ = 2x2 <1=x*> < 2 = [x| < %, we have

1 _ 1 1 Geometric 1 > 4 2\n __
5+4x2 5 1—(—ix2) - 52_:( 5X) -

_Z Z( 1)" 5n+1 k
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Term-by-Term Differentiation and Integration

Term-by-Term Differentiation and Integration

Assume that F(x) = Zan(x — ¢)" has radius of convergence R > 0;

n=0
Then F(x) is differentiable on (¢ — R, c + R) (or for all x, if R = c0);
Moreover, we can integrate and differentiate term-by-term, i.e.,

Q F(x)= inan(x — o)t

o /F(x dx—A+Zn+1 e =@

Both series for F/(x) and /F(x)dx have the same radius of convergence
R as F(x);
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Example of Differentiation of Power Series

@ Prove that for —1 < x < 1,

1
= = 1+4+2x+3x2 +4x3 +5x* + .- ;
(1—x)?

We know that, for |x| < 1, we have

1
T—x =1+x+x+3+x 40+
— X

Therefore, by Term-by-Term Differentiation, we get, for |x| < 1:

= - ()

= (I+x+2+x3+x*+x5+)
1+2x4+3x2 +4x3 +5x* + - ;
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Example of Integration of Power Series

@ Prove that for |x| < 1, we have
oD
N (_1)nx2n+1 X3 X5 X7 X9
an X Z_:O mr1 S 3 tE Tt

=14+x+x2+x3+x4+ -, we

Since for x| < 1, we have 5

obtain, also for |x| < 1,
1 1
_ R BT R R
1+x2  1—(—x2) XXX

Therefore, by Term-by-Term Integration we get

1
tan~1 = ——d
I
= (1—x2+x* —x® 4+ x8 — .. )dx
X3 X5 X7 X9
= X—Z At

3 5 7 9
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Power Series Solution of Differential Equations

@ Consider y' =y and y(0) = 1,
Assume that the power series F(x Za,,x = ag+ aix + axx? + -

=0
is a squt|on of the given initial value problem Compute

F'(x) = Znanx”_1 = a; + 2aox +3a3x® + -+ ; Since F(x) = F/'(x),
n=1
we must have ag = a1, a1 = 2a, a = 3a3,a3 = 4a, ...; Looking at

, an-
these carefully, we obtain a, = <X, for all n; Thus,
n

1 1 1 1 1 1
= Tl = S =
1

t = ao = — 4o,

n(n—1)(n—-2)-----1
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Example | (Cont'd)

@ We were solving y' = y and y(0) =1,

1
We assumed F(x Zanx is a solution; We found a, = 'ao; This

n=0
1 1
yields F(x):ao+alx+azx2+a3x3+---:ao-l—aol x-l—aoZ' s L
1 1 1 1 :
3|x +- (1+ﬁx+§x +§x + - :aozoﬁ; Since
o Xn a
F(0) =1 = ap, we get F(X)ZZOH;
n—=

@ Since € is also a solution, we get

2 X3 X4

o0 n e
Z—|—1+x+§+3 + ot
=0
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Example Il

: : : 2.1 / 2 _ . / 1.
o Find a series solution to x“y" + xy’ + (x* = 1)y = 0, with y'(0) = 1;

Let F(x) = Zanx"; Then y' = F'(x) = Z:na,,x"_1 and
n= 0

y" = F"(x Zn n — 1)a,x"~2; Plug those in equation:
x? ”-I—xy +(X —1)}/—

2Zn(n— 1)a,x"~2 —i—xZna x4 (x2 - 1) Zanx =
Zn(n —1)a,x" + Znanx — Za,,x + Zan+2x =
Z:(n2 — 1Dapx" + Zan_gx" =0;

n=0 n=2
Thus, 00 00 2
2 n n n—2
E n—lax:—ga,gx = a,=—————;
0( ) n n i n2—1
n=

George Voutsadakis (LSSU) Calculus 11 February 2015 72 /85



Infinite Series  Power Series

Example Il (Cont'd)

@ We were solving x2y” —|— xy' + (x> — 1)y = 0, with y/(0) =

We assumed F(x Zanx is a solution; We found a, = — - 1;
n=0 n

Now, note ag = 0; Thus, a2 = — 5725 = 0; Then ay = — ;727 =0;
We see that ap, = 0, for all n;

Moreover, a; = 1; Thus 3= —giy= — ﬁ; Then

— a ___a 1 .

a = —pig =T 2446, Also a7 = =1 = — 344668 In general
5 _ (=1)" (=1)" (=1)"

2n+1 = 2.2.2.6.6.-- (2n)(2n+2) 27(1-23--n)20 (234 (nt1)) — amnl(nt1)l’

1 n
So we get F(x) = ZM'SI nZL1)IX2"+1
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Subsection 7

Taylor Series
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Taylor Series

@ Assume that a function f(x) is represented by a power series centered
atx=con (c—R,c+ R)with R >0, ie,

f(X) = Zan(x—c)” = ao+a1(X—C)+a2(x—c)2+a3(x—c)3_|_. =
n=0
@ Then, for the derivatives of f on (¢ — R,c+ R), we have
f(x) = aptax—c)ta(x—c)P+taz(x—c)+---;
f/(X) = 81+232(X— C)+333(X—C)2+4a4(x—c)3_|_... ;
f'(x) = 2a+2-3a3(x —c)+3-4a(x —c)*+4-5(x—c)’ -
fm(X) = 2'333+2'3'434(X—C)+3-4-5(X—C)2_|_...;

@ Plug in x = ¢ to get
f(c) = ao, f'(c) = a1, f"’(c) = 2lap, "'(c) = 3las, f(4)(c) =4la,,...;

F()(c).
nl '

@ In general, we get a, =
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Taylor and Maclaurin Series

Taylor Series Expansion

If f is represented as a power series centered at x = ¢ in an interval
|x — c| < R,R > 0, then the power series is the Taylor series:

oo

(n)
f(x) = Z f n!(c) (x =)™

n=0

Maclaurin Series

The special case of the Taylor series for ¢ = 0 is the Maclaurin series:

> £(M(0)
n!

/ 1 "

flx) = 1 2! 3!

n=0
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Finding a Taylor Series

=3

@ Find the Taylor series for f(x) = x~° centered at ¢ = 1;

fix)=x3 f(1)=1,

Fl) = (=3, F1)= -3,

F(x) = (=3)(-4)x75, f'(1)= +3-4

f"(x) = (=3)(—4)(=5)x"%, f"(1)= —3-4-.5;

FO(x) = (~3)(—4) -+ (=n =22,

FEA)=(-1)"-2-3-4..... (n+2) =
Now we get by the Taylor series formula

% £(n)

Z( 1°(n +21)<n+2)(xl)n;

(_ )n( _|_2)

n=0
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Convergence Issues

@ We know that if f(x) can be represented by a power series centered
at x = ¢, then that power series will be the Taylor series

[e.9]

o
709 = 3 ey

n=0

@ However, there is no guarantee that T(x) converges; Moreover, there
is no guarantee that, even if it converges, it will converge to f(x)!
o Let

Tel) = F() + () ) 4 2 (e = o4

Define the remainder
Ri(x) = f(x) = Ti(x);
The Taylor series converges to f(x) if and only if klim Ri(x) =0;
—00
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Convergence Theorem

Theorem

Let / = (¢ — R,c+ R), R > 0; If there exists a K > 0, such that all
derivatives of f are bounded by K on /, i.e.,

1FR)(x)| < K, forall k >0,x € I,

then, for all x € /,

Z (X—C
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Sine and Cosine

@ Show that - - ~ )
X2t xn
i = —1 W= == —1 n
sin x E_O( ) @n 1) and cosx E_o( ) @)

)| F(x) | F(x) | F(x) | FA(x)
sinx | cosx | —sinx | —cosx | sinx
0 1 0 -1 0

Note, also that for all x, |f(¥)(x)| < 1; Therefore, we have
convergence of the Taylor series of f centered at x =0 to
f(x) = sin x everywhere and

x> x> X

SinX:X—g-l-a—F-l-"' .
One either works similarly from scratch for.g(x) = cos x or notices

that cos x = (sin x)" and appeals to term-by-term differentiation of
the series for sin x;
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Infinite Series for e~

@ The Maclaurin series for f(x) = e* is

2 3 4 > 0
x* x> X X
F=lixt gttt =)
n=0
@ Example: Find a Maclaurin series for f(x) = x?e*;
2 3 4
flx) = x% =x2 1+x+%+§ —i—%—i— ]
x4 X3 6 e~ X"
= x*+x3 -I-E-I-?-I-—-l- ;m,
o Example: Find the Maclaurin series for f(x) = e™";
2)2 2)3 2)4
e (-2 (=P | (¥
fix) = e * =1+(—x?)+ 5 4 30 e i dooc
4 6 8 o 2n
N T ST S T — N X
—1x—|—2' TR = 0(1) o
n—=
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Using Integration

@ Find the Maclaurin series for f(x) = In(1 + x);

1
1 = 1+x+x2+x3+x4+-
—X
1 1
_ —1_ 23 4 .
1+ x T X+ x X7+ X ;
1
In (1 = d.
n(1+x) /1+Xx

= /(1—x+x2—x3+x4—---)dx

2 3 4 5

X +X X +X
2 3 4 5
n—|—1n

n=1
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Binomial Coefficients

@ For any number a (integer or not) and any integer n > 0, we define
the binomial coefficient

(77) _ a(a—l)(a—2,3!...(a—n+1), (;) .

@ Example:
6-5-4
6 .
(3) — 3l = 20;
4 1 2 8
&) = 373 (53— 4
£ 3! 6 81’
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Binomial Series

The Binomial Series

For any exponent a and for |x| < 1,

— 1l —1)(a—-2
(1+x)—1+%x+a(a2| )2 2 ?’)l(a )x3+~~+(a)x”+

@ Example: Find the terms through degree four of the Maclaurin
expansion of f(x) = (14 x)*/3;

Ta(x) = 1+ ix—l— o=

-1 2
I 2+( a=2),

ga(a 3
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Applying the Binomial Series Expansion

o Find the Maclaurin series for f(x) = ﬁ; Recall that

(1+x)?= Z(")x”; Hence, for a = —1, we get

. (1+x)"Y2 = i (‘i/z) x";

n=0
Therefore, we obtain

(x) = s = (L= 2 = (L + () V2 = g(‘%)(—xz)“
RS (G s I JECTC RTRR TR

n=1
=1+n§1 3.5 -2-"',7'|(2n—1) 2n,
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