Calculus II

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 152

(1) Infinite Series

- Sequences
- Summing an Infinite Series
- Convergence of Series with Positive Terms
- Absolute and Conditional Convergence
- The Ratio and Root Tests
- Power Series
- Taylor Series

Subsection 1

Sequences

Sequences

- A sequence is an ordered collection of numbers defined by a function $f(n)$ on a set of integers;
- The values $a_{n}=f(n)$ are the terms of the sequence and n the index;
- We think of $\left\{a_{n}\right\}$ as a list $a_{1}, a_{2}, a_{3}, a_{4}, \ldots$
- The sequence may not start at $n=1$; It may start at $n=0, n=2$ or any other integer;
- When a_{n} is given by a formula, then it is referred to as the general term of the sequence;
- Examples:

General Term Domain Sequence

$a_{n}=1-\frac{1}{n}$	$n \geq 1$	$0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$
$a_{n}=(-1)^{n} n$	$n \geq 0$	$0,-1,2,-3,4, \ldots$
$a_{n}=\frac{n^{2}}{n^{2}-4}$	$n \geq 3$	$\frac{9}{5}, \frac{16}{12}, \frac{25}{21}, \frac{36}{32}, \frac{49}{45}, \ldots$

Recursively Defined Sequences

- A sequence is defined recursively if one or more of its first few terms are given and the n-th term a_{n} is computed in terms of one or more of the preceding terms a_{n-1}, a_{n-2}, \ldots;
- Example: Compute a_{2}, a_{3}, a_{4} for the sequence defined recursively by

$$
\begin{gathered}
a_{1}=1, \quad a_{n}=\frac{1}{2}\left(a_{n-1}+\frac{2}{a_{n-1}}\right) ; \\
a_{2}=\frac{1}{2}\left(a_{1}+\frac{2}{a_{1}}\right)=\frac{1}{2}\left(1+\frac{2}{1}\right)=\frac{3}{2} ; \\
a_{3}=\frac{1}{2}\left(a_{2}+\frac{2}{a_{2}}\right)=\frac{1}{2}\left(\frac{3}{2}+\frac{2}{3 / 2}\right)=\frac{1}{2} \cdot \frac{17}{6}=\frac{17}{12} ; \\
a_{4}=\frac{1}{2}\left(a_{3}+\frac{2}{a_{3}}\right)=\frac{1}{2}\left(\frac{17}{12}+\frac{2}{17 / 12}\right)=\frac{1}{2} \cdot \frac{577}{204}=\frac{577}{408} ;
\end{gathered}
$$

Limit of a Sequence

- We say that the sequence $\left\{a_{n}\right\}$ converges to a limit L, written $\lim _{n \rightarrow \infty} a_{n}=L$ or $a_{n} \rightarrow L$, if the values of a_{n} get arbitrarily close to the value L when n is taken sufficiently large;
- If a sequence does not converge, we day it diverges;
- If the terms increase without bound, $\left\{a_{n}\right\}$ diverges to infinity;

Sequence Defined by a Function

Theorem (Limit of a Sequence Defined by a Function)

If $\lim _{x \rightarrow \infty} f(x)$ exists, then the sequence $a_{n}=f(n)$ converges to the same limit, i.e., $\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} f(x)$;

- Example: Show that $\lim _{n \rightarrow \infty} a_{n}=1$, where $a_{n}=\frac{n+4}{n+1}$;

We consider the function $f(x)=\frac{x+4}{x+1}$; Clearly, $a_{n}=f(n)$; Therefore, by the Theorem, it suffices to show that $\lim _{x \rightarrow \infty} f(x)=1$;

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x+4}{x+1}=\lim _{x \rightarrow \infty} \frac{1+\frac{4}{x}}{1+\frac{1}{x}}=\frac{1+0}{1+0}=1
$$

Example I

- Find the limit of the sequence $\frac{2^{2}-2}{2^{2}}, \frac{3^{2}-2}{3^{2}}, \frac{4^{2}-2}{4^{2}}, \frac{5^{2}-2}{5^{2}}, \ldots$; The general term of the given sequence is $a_{n}=\frac{n^{2}-2}{n^{2}}$; We consider the function $f(x)=\frac{x^{2}-2}{x^{2}}=1-\frac{2}{x^{2}}$; Clearly, $a_{n}=f(n)$; Therefore, it suffices to find the limit $\lim _{x \rightarrow \infty} f(x)$;

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty}\left(1-\frac{2}{x^{2}}\right)=1-0=1 ;
$$

Thus, $\lim _{n \rightarrow \infty} a_{n}=1$;

Example II

- Find the limit $\lim _{n \rightarrow \infty} \frac{n+\ln n}{n^{2}}$;

We consider the function $f(x)=\frac{x+\ln x}{x^{2}}$; Clearly, $a_{n}=f(n)$; Therefore, it suffices to find the limit $\lim _{x \rightarrow \infty} f(x)$;

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x+\ln x}{x^{2}}= \\
& \left(\frac{\infty}{\infty}\right) \stackrel{\text { L'Hôpital }}{=} \lim _{x \rightarrow \infty} \frac{(x+\ln x)^{\prime}}{\left(x^{2}\right)^{\prime}}=\lim _{x \rightarrow \infty} \frac{1+(1 / x)}{2 x}=0
\end{aligned}
$$

Thus, $\lim _{n \rightarrow \infty} \frac{n+\ln n}{n^{2}}=0$;

Geometric Sequences

- For $r \geq 0$ and $c>0$,

$$
\lim _{n \rightarrow \infty} c r^{n}= \begin{cases}0, & \text { if } 0 \leq r<1 \\ c, & \text { if } r=1 \\ \infty, & \text { if } r>1\end{cases}
$$

To see this, one considers the corresponding function $f(x)=c r^{x}$; If $r<1$, then, $\lim _{x \rightarrow \infty} c r^{x}=0$, and, if $r>1$, then, $\lim _{x \rightarrow \infty} c r^{x}=\infty$;

Limits Laws for Sequences

Limit Laws for Sequences

Assume $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences with

$$
\lim _{n \rightarrow \infty} a_{n}=L, \quad \quad \lim _{n \rightarrow \infty} b_{n}=M
$$

Then, we have:
(1) $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}=L \pm M$;
(2) $\lim _{n \rightarrow \infty} a_{n} b_{n}=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} b_{n}\right)=L M$;
(3) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}=\frac{L}{M}$, if $M \neq 0$;
(9) $\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}=c L,(c$ a constant; $)$

Squeeze Theorem for Sequences

Squeeze Theorem for Sequences

Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be sequences, such that, for some number M,

$$
b_{n} \leq a_{n} \leq c_{n}, \text { for all } n>M
$$

and

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}=L ;
$$

Then $\lim _{n \rightarrow \infty} a_{n}=L$;

- Example: Show that if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$. Note that $-\left|a_{n}\right| \leq a_{n} \leq\left|a_{n}\right| ;$ By hypothesis $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$; This also implies $\lim _{n \rightarrow \infty}\left(-\left|a_{n}\right|\right)=-\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$; Now, by the Squeeze
Theorem for Sequences, $\lim _{n \rightarrow \infty} a_{n}=0$;

Geometric Sequences with $r<0$

- For $c \neq 0$,

$$
\lim _{n \rightarrow \infty} c r^{n}= \begin{cases}0, & \text { if }-1<r<0 \\ \text { diverges, } & \text { if } r \leq-1\end{cases}
$$

- If $-1<r<0$, then $0<|r|<1$ and, therefore $\lim _{n \rightarrow \infty}\left|c r^{n}\right|=\lim _{n \rightarrow \infty}|c| \cdot|r|^{n}=0$; Thus, since $-\left|c r^{n}\right| \leq c r^{n} \leq\left|c r^{n}\right|$, by the Squeeze Theorem, we get $\lim _{n \rightarrow \infty} c r^{n}=0$;
- If $r=-1$, then $\lim _{n \rightarrow \infty}(-1)^{n} c$ diverges, since $\left|(-1)^{n} c\right|=|c|$ and its sign keeps alternating;
- If $r<-1$, then $|r|>1$, whence $\left|c r^{n}\right|=|c| \cdot|r|^{n} \rightarrow \infty$, whence $\lim _{n \rightarrow \infty} c r^{n}$ diverges in this case also;

Exploiting Continuity

Theorem

If $f(x)$ is a continuous function and $\lim _{n \rightarrow \infty} a_{n}=L$, then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)=f(L)
$$

This says, informally speaking, that if f is continuous, we can "push the limit in";

- Example: Since $f(x)=e^{x}$ and $g(x)=x^{2}$ are both continuous, we may use this theorem to compute:

- $\lim _{n \rightarrow \infty}\left(\frac{3 n}{n+1}\right)^{2}=\lim _{n \rightarrow \infty} g\left(\frac{3 n}{n+1}\right)=g\left(\lim _{n \rightarrow \infty} \frac{3 n}{n+1}\right)=g(3)=9$;

Bounded Sequences

- A sequence $\left\{a_{n}\right\}$ is
- bounded from above if there is a number M, such that $a_{n} \leq M$, for all n; In this case M is called an upper bound;
- bounded from below if there is a number m, such that $a_{n} \geq m$, for all n; In this case m is called a lower bound;
- $\left\{a_{n}\right\}$ is bounded if it is bounded from above and from below; A sequence is unbounded if it is not bounded;

Theorem

If $\left\{a_{n}\right\}$ converges, then $\left\{a_{n}\right\}$ is bounded;

Is Every Bounded Sequence Convergent?

Bounded Monotonic Sequences

- A sequence $\left\{a_{n}\right\}$ is
- increasing if $a_{n}<a_{n+1}$, for all n;
- decreasing if $a_{n}>a_{n+1}$, for all n;
- monotonic if it is either increasing or decreasing;

Theorem (Bounded Monotonic Sequences Converge)

- If $\left\{a_{n}\right\}$ is increasing and $a_{n} \leq M$, then a_{n} converges and $\lim _{n \rightarrow \infty} a_{n} \leq M$;
- If $\left\{a_{n}\right\}$ is decreasing and $a_{n} \geq m$, then a_{n} converges and $\lim _{n \rightarrow \infty} a_{n} \geq m$;

Example I

- Show that $a_{n}=\sqrt{n+1}-\sqrt{n}$ is decreasing and bounded from below; Does $\lim _{n \rightarrow \infty} a_{n}$ exist?
We show that a_{n} is decreasing by two different methods; The first uses the sequence itself, the second uses the corresponding function;
- Method 1: Rewrite $a_{n}=\sqrt{n+1}-\sqrt{n}=$

$$
\frac{(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}{\sqrt{n+1}+\sqrt{n}}=\frac{n+1-n}{\sqrt{n+1}+\sqrt{n}}=\frac{1}{\sqrt{n+1}+\sqrt{n}}
$$

Now we see

$$
a_{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}}>\frac{1}{\sqrt{(n+1)+1}+\sqrt{n+1}}=a_{n+1}
$$

So $\left\{a_{n}\right\}$ is decreasing;

- Method 2: Consider $f(x)=\sqrt{x+1}-\sqrt{x}$ and compute

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x+1}}-\frac{1}{2 \sqrt{x}}<0, \text { for } x>0 ; \text { Thus, since } f^{\prime}<0, \text { we get }
$$

that $f \searrow[0, \infty)$, showing that $\left\{a_{n}\right\}$ is a decreasing sequence;
Clearly $a_{n}=\sqrt{n+1}-\sqrt{n}>0$, which shows that $\left\{a_{n}\right\}$ is bounded from below;

Example II

- Show that the following sequence is bounded and increasing; Then find its limit:

$$
a_{1}=\sqrt{2}, \quad a_{2}=\sqrt{2 \sqrt{2}}, \quad a_{3}=\sqrt{2 \sqrt{2 \sqrt{2}}}, \quad \ldots
$$

The key here is to realize that $a_{n+1}=\sqrt{2 a_{n}}$, for all n;
We show $\left\{a_{n}\right\}$ is bounded: Clearly, $a_{1}=\sqrt{2}<2$; If $a_{n}<2$, then $a_{n+1}=\sqrt{2 a_{n}}<\sqrt{2 \cdot 2}=2$; Therefore, $a_{n}<2$, for every $n \geq 1$; Next, we show that $\left\{a_{n}\right\}$ is increasing:

$$
a_{n}=\sqrt{a_{n} \cdot a_{n}}<\sqrt{2 \cdot a_{n}}=a_{n+1}
$$

Since $\left\{a_{n}\right\}$ is increasing and bounded from above, the theorem asserts that it converges; Let $\lim _{n \rightarrow \infty} a_{n}=L$; Then

$$
\begin{aligned}
& a_{n+1}=\sqrt{2 a_{n}} \Rightarrow \lim _{n \rightarrow \infty} a_{n+1}=\sqrt{2 \lim _{n \rightarrow \infty} a_{n}} \Rightarrow L=\sqrt{2 L} \Rightarrow L^{2}=2 L \Rightarrow \\
& L^{2}-2 L=0 \Rightarrow L(L-2)=0 \Rightarrow L=0 \text { or } L=2 ; \text { So } \lim _{n \rightarrow \infty} a_{n}=2 ;
\end{aligned}
$$

Subsection 2

Summing an Infinite Series

Introducing Infinite Series and Partial Sums

- If we look carefully at the figure on the right we realize that

$$
1=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\cdots ;
$$

Infinite sums of this type are called infinite series;

- The partial sum S_{N} of an infinite series is the sum of the terms up to and including the N-th term:

$$
\begin{aligned}
& S_{1}=\frac{1}{2} ; \\
& S_{2}=\frac{1}{2}+\frac{1}{4} ; \\
& S_{3}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8} ; \\
& S_{4}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}
\end{aligned}
$$

Definition of Infinite Series and Partial Sums

- An infinite series is an expression of the form

$$
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+a_{4}+\cdots
$$

where $\left\{a_{n}\right\}$ is any sequence;

- Example:

Sequence	General Term	Infinite Series
$\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots$	$a_{n}=\frac{1}{3^{n}}$	$\sum_{n=1}^{\infty} \frac{1}{3^{n}}=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\cdots$
$\frac{1}{1}, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots$	$a_{n}=\frac{1}{n^{2}}$	$\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{1}+\frac{1}{4}+\frac{1}{9}+\cdots$

- The N-th partial sum S_{N} is defined as the finite sum of the terms up to and including a_{N} :

$$
S_{N}=\sum_{n=1}^{N} a_{n}=a_{1}+a_{2}+\cdots+a_{N}
$$

Convergence of an Infinite Series

Convergence of an Infinite Series

An infinite series $\sum_{n=k}^{\infty} a_{n}$ converges to the sum S if its partial sums converge to S :

$$
\lim _{N \rightarrow \infty} S_{N}=S
$$

In this case, we write $S=\sum_{n=k}^{\infty} a_{n}$;

- If the limit $\lim _{N \rightarrow \infty} S_{N}$ does not exist, then we say the infinite series diverges;
- If $\lim _{N \rightarrow \infty} S_{N}=\infty$, then we say that the infinite series diverges to infinity;

Telescoping Series

- Compute the sum S of the infinite series

$$
S=\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\frac{1}{1(2)}+\frac{1}{2(3)}+\frac{1}{3(4)}+\frac{1}{4(5)}+\cdots
$$

Note that $\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$; Therefore, we have

$$
\frac{1}{1 \cdot 2}=1-\frac{1}{2}, \quad \frac{1}{2 \cdot 3}=\frac{1}{2}-\frac{1}{3}, \quad \frac{1}{3 \cdot 4}=\frac{1}{3}-\frac{1}{4}
$$

Now, we compute the N-th partial sum:

$$
\begin{aligned}
S_{N}= & \sum_{n=1}^{N} \frac{1}{n(n+1)}=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+ \\
& \left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{N}-\frac{1}{N+1}\right)=1-\frac{1}{N+1}
\end{aligned}
$$

Therefore, $S=\lim _{N \rightarrow \infty} S_{N}=\lim _{N \rightarrow \infty}\left(1-\frac{1}{N+1}\right)=1-0=1$;

Sequence $\left\{a_{n}\right\}$ versus Series $\sum a_{n}$

- The previous example provides an opportunity to discuss the difference between the sequence $\left\{a_{n}\right\}$ and the infinite series $S=\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+a_{3}+\cdots ;$
- The sequence $a_{n}=\frac{1}{n(n+1)}$ is the list of numbers

$$
\frac{1}{1 \cdot 2}, \quad \frac{1}{2 \cdot 3}, \quad \frac{1}{3 \cdot 4}, \quad \ldots \text { Clearly } \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{n(n+1)}=0
$$

- On the other hand, for the sum of the infinite series $S=\sum_{n=1} a_{n}$, we look not at $\lim _{n \rightarrow \infty} a_{n}$, but rather at $\lim _{N \rightarrow \infty} S_{N}$, where

$$
S_{N}=\sum_{n=1}^{N} a_{n}=\frac{1}{1(2)}+\frac{1}{2(3)}+\frac{1}{3(4)}+\cdots+\frac{1}{N(N+1)}
$$

We saw that this limit is 1 , not 0 !

Linearity of Infinite Series

Linearity of Infinite Series

If the infinite series $\sum a_{n}$ and $\sum b_{n}$ converge, then the series
$\sum\left(a_{n} \pm b_{n}\right)$ and $\sum c a_{n}$ also converge and we have

- $\sum a_{n}+\sum b_{n}=\sum\left(a_{n}+b_{n}\right) ;$
- $\sum a_{n}-\sum b_{n}=\sum\left(a_{n}-b_{n}\right)$;
- $\sum c a_{n}=c \sum a_{n}$;
- In the sequel, we will be interested in establishing techniques for determining whether an infinite series converges or diverges;

Geometric Series

- A geometric series with ratio $r \neq 0$ is a series defined by the geometric sequence $c r^{n}$, where $c \neq 0$;
- The series looks like

$$
S=\sum^{\infty} c r^{n}=c+c r+c r^{2}+c r^{3}+c r^{4}+\cdots
$$

- The following work ${ }^{n=0}$ determines the N-th partial sum S_{N} of the geometric series:

$$
\begin{aligned}
S_{N} & =c+c r+c r^{2}+c r^{3}+\cdots+c r^{N} \\
r S_{N} & =c r+c r^{2}+c r^{3}+\cdots+c r^{N}+c r^{N+1} \\
S_{N}-r S_{N} & =c-c r^{N+1} \\
S_{N}(1-r) & =c\left(1-r^{N+1}\right) \\
S_{N} & =\frac{c\left(1-r^{N+1}\right)}{1-r}
\end{aligned}
$$

- If $|r|<1$, the the Geometric Series converges and $S=\frac{c}{1-r}$;
- If $|r| \geq 1$, it diverges;

Examples I

- Evaluate $\sum_{n=0}^{\infty} 5^{-n}$;

$$
\sum_{n=0}^{\infty} 5^{-n}=\sum_{n=0}^{\infty}\left(\frac{1}{5}\right)^{n^{c=1, r=\frac{1}{5}<1}}=\frac{1}{1-\frac{1}{5}}=\frac{5}{4}
$$

- Evaluate $\sum_{n=3}^{\infty} 7\left(-\frac{3}{4}\right)^{n}$;

$$
\begin{array}{rll}
\sum_{n=3}^{\infty} 7\left(-\frac{3}{4}\right)^{n} & = & 7\left(-\frac{3}{4}\right)^{3}+7\left(-\frac{3}{4}\right)^{4}+7\left(-\frac{3}{4}\right)^{5}+\cdots \\
& = & 7\left(-\frac{3}{4}\right)^{3}\left[1+\left(-\frac{3}{4}\right)+\left(-\frac{3}{4}\right)^{2}+\cdots\right] \\
c=1, r=-\frac{3}{4} & 7\left(-\frac{3}{4}\right)^{3} \frac{1}{1-\left(-\frac{3}{4}\right)} \\
& = & -\frac{189}{64} \cdot \frac{4}{7}=-\frac{27}{16}
\end{array}
$$

Examples II

- Evaluate $S=\sum_{n=0}^{\infty} \frac{2+3^{n}}{5^{n}}$;

$$
\begin{aligned}
S & =\sum_{n=0}^{\infty} \frac{2+3^{n}}{5^{n}} \\
& =\sum_{n=0}^{\infty} \frac{2}{5^{n}}+\sum_{n=0}^{\infty} \frac{3^{n}}{5^{n}} \\
& =2 \sum_{n=0}^{\infty}\left(\frac{1}{5}\right)^{n}+\sum_{n=0}^{\infty}\left(\frac{3}{5}\right)^{n} \\
& =2 \cdot \frac{1}{1-\frac{1}{5}}+\frac{1}{1-\frac{3}{5}} \\
& =2 \cdot \frac{5}{4}+\frac{5}{2} \\
& =5 ;
\end{aligned}
$$

Divergence Test

Divergence Test

If the n-th term a_{n} does not converge to 0 , i.e., if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ diverges;

- Example: Prove the divergence of $S=\sum_{n=1}^{\infty} \frac{n}{4 n+1}$;

Clearly, $\lim _{n \rightarrow \infty} \frac{n}{4 n+1}=\frac{1}{4} \neq 0$; Thus, by the Divergence Test, S diverges;

Another Example

- Example: Determine the convergence or divergence of
$S=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{n+1}=\frac{1}{2}-\frac{2}{3}+\frac{3}{4}-\frac{4}{5}+\cdots$;
The n-th term $a_{n}=(-1)^{n-1} \frac{n}{n+1}$ does not approach a limit; To see this, note that:
- for even indices,

$$
\lim _{n \rightarrow \infty} a_{2 n}=\lim _{n \rightarrow \infty}(-1)^{2 n-1} \frac{2 n}{2 n+1}=\lim _{n \rightarrow \infty} \frac{-2 n}{2 n+1}=-1 ;
$$

- for odd indices,

$$
\lim _{n \rightarrow \infty} a_{2 n+1}=\lim _{n \rightarrow \infty}(-1)^{2 n+1-1} \frac{2 n+1}{2 n+1+1}=\lim _{n \rightarrow \infty} \frac{2 n+1}{2 n+2}=1 ;
$$

Since $\lim _{n \rightarrow \infty} a_{n} \neq 0$, by the Divergence Test, S diverges;

If $\lim _{n \rightarrow \infty} a_{n}=0$, Cannot Apply Divergence Test

- Prove the divergence of $S=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots$;

Note that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$; Therefore, the Divergence Test cannot be applied; We must find another way to prove that the series diverges; We will use comparison instead!

$$
\begin{aligned}
S_{N} & =\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{N}} \\
& \geq \frac{1}{\sqrt{N}}+\frac{1}{\sqrt{N}}+\frac{1}{\sqrt{N}}+\cdots+\frac{1}{\sqrt{N}} \\
& =N \frac{1}{\sqrt{N}}=\sqrt{N}
\end{aligned}
$$

Now note that $\lim _{N \rightarrow \infty} \sqrt{N}=\infty$; Therefore, since $S_{N} \geq \sqrt{N}$, we also have $\lim _{N \rightarrow \infty} S_{N}=\infty$, showing that S diverges to infinity;

Subsection 3

Convergence of Series with Positive Terms

Positive Series

- A positive series $\sum a_{n}$ is one with $a_{n}>0$, for all n;
- The terms can be thought of as areas of rectangles with width 1 and height a_{n};
The partial sum

$$
S_{N}=a_{1}+\cdots+a_{N}
$$

is equal to the area of the first
 N rectangles;

- Clearly, the partial sums form an increasing sequence $S_{N}<S_{N+1}$;

Dichotomy and Integral Test

Dichotomy for Positive Series

If $S=\sum_{n=1}^{\infty} a_{n}$ is a positive series, then either
(1) The partial sums S_{N} are bounded above, in which case S converges, or
(2) The partial sums S_{N} are not bounded above, in which case S diverges.

The Integral Test

Let $a_{n}=f(n)$, where the function $f(x)$ is positive, decreasing and continuous for $x \geq 1$;
(1) If $\int_{1}^{\infty} f(x) d x$ converges, then $\sum_{n=1}^{\infty} a_{n}$ converges;
(2) If $\int_{1}^{\infty} f(x) d x$ diverges, then $\sum_{n=1}^{\infty} a_{n}$ diverges;

Applying the Integral Test on the Harmonic Series

- The Harmonic Series Diverges: Show that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges; Consider the function $f(x)=\frac{1}{x}$; For $x \geq 1$, it is positive, decreasing and continuous, and, moreover, $f(n)=\frac{1}{n}=a_{n}$; So we check

$$
\int_{1}^{\infty} \frac{d x}{x}=\lim _{R \rightarrow \infty} \int_{1}^{R} \frac{d x}{x}=\lim _{R \rightarrow \infty} \ln R=\infty
$$

Therefore, by the Integral Test, the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges;

Another Application of the Integral Test

- Does $\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+1\right)^{2}}=\frac{1}{2^{2}}+\frac{2}{5^{2}}+\frac{3}{10^{2}}+\cdots$ converge?

Consider the function $f(x)=\frac{x}{\left(x^{2}+1\right)^{2}}$; It is positive and continuous for $x \geq 1$; Is it also decreasing for $x \geq 1$? Let us compute its first derivative

$$
\begin{aligned}
& f^{\prime}(x)=\frac{(x)^{\prime}\left(x^{2}+1\right)^{2}-x\left[\left(x^{2}+1\right)^{2}\right]^{\prime}}{\left[\left(x^{2}+1\right)^{2}\right]^{2}}= \\
& \frac{\left(x^{2}+1\right)^{2}-x \cdot 2\left(x^{2}+1\right) \cdot 2 x}{\left(x^{2}+1\right)^{4}}=\frac{\left(x^{2}+1\right)-4 x^{2}}{\left(x^{2}+1\right)^{3}}=\frac{1-3 x^{2}}{\left(x^{2}+1\right)^{3}}<0 ;
\end{aligned}
$$

Thus, the Integral Test is applicable and we get

$$
\begin{aligned}
& \int_{1}^{\infty} \frac{x}{\left(x^{2}+1\right)^{2}} d x=\lim _{R \rightarrow \infty} \int_{1}^{R} \frac{x}{\left(x^{2}+1\right)^{2}} d x \stackrel{u=x^{2}+1}{=} \lim _{R \rightarrow \infty} \int_{2}^{R} \frac{1}{2 u^{2}} d u= \\
& \left.\lim _{R \rightarrow \infty} \frac{-1}{2 u}\right|_{2} ^{R}=\lim _{R \rightarrow \infty}\left(\frac{1}{4}-\frac{1}{2 R}\right)=\frac{1}{4} ; \text { So, } \sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+1\right)^{2}} \text { converges; }
\end{aligned}
$$

The p-Series

Convergence of the p-Series

The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges, if $p>1$, and diverges, otherwise.

- If $p \leq 0, \lim _{n \rightarrow \infty} \frac{1}{n^{p}} \neq 0$; By Divergence Test, p-series diverges;
- If $p>0, f(x)=\frac{1}{x^{p}}$ is positive, decreasing and continuous on $[1, \infty)$; Thus, the Integral Test applies and

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x= \begin{cases}\frac{1}{p-1}, & \text { if } p>1 \\ \infty, & \text { if } p \leq 1\end{cases}
$$

- Example: $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ diverges, and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges;

Comparison Test

Comparison Test

Assume that for some $M>0,0 \leq a_{n} \leq b_{n}$, for all $n \geq M$;
(1) If $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ also converges;
(2) If $\sum_{n=1}^{\infty} a_{n}$ diverges, then $\sum_{n=1}^{\infty} b_{n}$ also diverges;

- Example: Does $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} 3^{n}}$ converge?

Clearly, for all $n \geq 1$, we have $0 \leq \frac{1}{\sqrt{n} 3^{n}} \leq \frac{1}{3^{n}}$; Moreover, $\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}$
converges since it is a geometric series with ration $\frac{1}{3}<1$; Therefore, by Comparison $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} 3^{n}}$ also converges;

Example

- Does $\sum_{n=2}^{\infty} \frac{1}{\left(n^{2}+3\right)^{1 / 3}}$ converge?

Consider the function $f(x)=x^{3}-x^{2}-3$; We show that for $x \geq 2$, $f(x)>0$; Note $f(2)=2^{3}-2^{2}-3=1>0$; Moreover, for $x \geq 2$ $f^{\prime}(x)=3 x^{2}-2 x=x(3 x-2)>0$, so f is increasing; Thus $f>0$, all $x \geq 2$;
We have shown, for $n \geq 2, f(n)=n^{3}-n^{2}-3>0 \Rightarrow n^{3}>n^{2}+3 \Rightarrow$ $n>\left(n^{2}+3\right)^{1 / 3} \Rightarrow \frac{1}{n}<\frac{1}{\left(n^{2}+3\right)^{1 / 3}} ;$ But $\sum_{n=2}^{\infty} \frac{1}{n}$ is the harmonic series that diverges; therefore, by Comparison $\sum_{n=2}^{\infty} \frac{1}{\left(n^{2}+3\right)^{1 / 3}}$ also diverges;

Limit Comparison Test

Limit Comparison Test

Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be positive sequences and assume that $L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}$ exists;
(1) If $L>0$, then $\sum_{n=1}^{\infty} a_{n}$ converges if and only if $\sum_{n=1}^{\infty} b_{n}$ converges;
(2) If $L=\infty$ and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} b_{n}$ also converges;
(3) If $L=0$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then $\sum_{n=1}^{\infty} a_{n}$ also converges;

Example I

- Show that $\sum_{n=2}^{\infty} \frac{n^{2}}{n^{4}-n-1}$ converges;

Pick $a_{n}=\frac{n^{2}}{n^{4}-n-1}$ and $b_{n}=\frac{1}{n^{2}}$; Then

$$
\begin{aligned}
& L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{4}-n-1} \cdot \frac{n^{2}}{1}= \\
& \lim _{n \rightarrow \infty} \frac{1}{1-\frac{1}{n^{3}}-\frac{1}{n^{4}}}=1
\end{aligned}
$$

Since $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ converges, $\sum_{n=2}^{\infty} \frac{n^{2}}{n^{4}-n-1}$ also converges by the Limit
Comparison Test;

Example II

- Show that $\sum_{n=3}^{\infty} \frac{1}{\sqrt{n^{2}+4}}$ diverges;

Pick $a_{n}=\frac{1}{\sqrt{n^{2}+4}}$ and $b_{n}=\frac{1}{n}$; Then

$$
\begin{aligned}
& L=\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+4}}= \\
& \lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{4}{n^{2}}}}=1
\end{aligned}
$$

Since $\sum_{n=3}^{\infty} \frac{1}{n}$ diverges, $\sum_{n=3}^{\infty} \frac{1}{\sqrt{n^{2}+4}}$ also diverges by the Limit
Comparison Test;

Subsection 4

Absolute and Conditional Convergence

Absolute Convergence

Absolute Convergence

The series $\sum a_{n}$ converges absolutely if $\sum\left|a_{n}\right|$ converges.

- Example: Verify that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}=\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots$ converges absolutely; We check

$$
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{n^{2}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

which converges as a p-series with $p>1$;

Absolute Convergence Implies Convergence

Theorem (Absolute Convergence Implies Convergence)

If $\sum\left|a_{n}\right|$ converges, then $\sum a_{n}$ also converges.

- Example: Verify that $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}$ converges;

It was shown in the previous slide that $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{n^{2}}\right|$ converges;
Therefore, by the Theorem, $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}}$ also converges;

Another Example

- Does $S=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\cdots$ converge absolutely?

We have

$$
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{\sqrt{n}}\right|=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}
$$

which is a p-series, with $p=\frac{1}{2} \leq 1$, and so diverges; Therefore $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$ is not absolutely convergent;

Conditional Convergence

- We saw than absolute convergence implies convergence:

$$
\text { If } \sum\left|a_{n}\right| \text { converges, then } \sum a_{n} \text { also converges; }
$$

- The converse is not true in general! I.e., the convergence of a series does not necessarily imply its absolute convergence;

Conditional Convergence

An infinite series $\sum a_{n}$ converges conditionally if $\sum a_{n}$ converges but $\sum\left|a_{n}\right|$ diverges.

Alternating Series

- An alternating series is an infinite series of the form

$$
S=\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots
$$

where $a_{n}>0$ and decrease to 0 ;

Leibniz Test for Alternating Series

Suppose $\left\{a_{n}\right\}$ is a positive sequence that is decreasing and converges to 0 :

$$
a_{1}>a_{2}>a_{3}>\cdots>0, \quad \lim _{n \rightarrow \infty} a_{n}=0
$$

Then the alternating series $S=\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots$ converges; Moreover, we have

$$
0<S<a_{1} \quad \text { and } \quad S_{2 N}<S<S_{2 N+1}, N \geq 1
$$

Example

- Show that $S=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}-\cdots$ converges conditionally and that $0 \leq S \leq 1$;
- We already saw that $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{\sqrt{n}}\right|=\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$ is a divergent p-series;
- On the other hand, S converges by the Leibniz Test, since $a_{n}=\frac{1}{\sqrt{n}}$ is a positive decreasing sequence converging to 0 ;
- Therefore, S is conditionally convergent;
- By the last part of the Leibniz Test, $0<S<a_{1}=1$;

Error of Approximation of Alternating Series

Theorem

Let $S=\sum_{n=1}^{\infty}(-1)^{n-1} a_{n}$, where a_{n} is a positive decreasing sequence that converges to 0 ; Then

$$
\left|S-S_{N}\right|<a_{N+1}
$$

I.e., the error committed when we approximate S by S_{N} is less than the size of the first omitted term a_{N+1};

Alternating Harmonic Series

- Show that $S=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$ converges conditionally;

Since $a_{n}=\frac{1}{n}$ is positive, decreasing and has limit 0 , we get by the Leibniz Test that S converges;
Moreover $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n-1}}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n}$ which diverges (harmonic series);
Thus, S is conditionally convergent;

- Show that $\left|S-S_{6}\right|<\frac{1}{7}$;

By the approximation error theorem, we get that

$$
\left|S-S_{6}\right|<a_{6+1}=a_{7}=\frac{1}{7}
$$

- Find an N, such that S_{N} approximates S with an error less than 10^{-3}; We know that $\left|S-S_{N}\right|<a_{N+1}$; To make the error $\left|S-S_{N}\right|<10^{-3}$ it suffices to arrange N so that
$a_{N+1} \leq 10^{-3} \Rightarrow \frac{1}{N+1} \leq 10^{-3} \Rightarrow N+1 \geq 1000 \Rightarrow N \geq 999 ;$

Subsection 5

The Ratio and Root Tests

The Ratio Test

Theorem (Ratio Test)

Assume that $\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|$ exists;
(1) If $\rho<1$, then $\sum a_{n}$ converges absolutely;
(2) If $\rho>1$, then $\sum a_{n}$ diverges;
(3) If $\rho=1$, then test is inconclusive.

Applying the Ratio Test I

- Prove that $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges;

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^{n}}\right|=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0
$$

Since $\rho<1$, the series $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ converges by the Ratio Test;

- Does the series $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$ converge?

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)^{2}}{2^{n+1}} \cdot \frac{2^{n}}{n^{2}}\right|=\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{2 n^{2}}=\frac{1}{2}
$$

Since $\rho<1$, the series $\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}$ converges by the Ratio Test;

Applying the Ratio Test II

- Does the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{n!}{1000^{n}}$ converge?

$$
\begin{aligned}
& \rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(n+1)!}{1000^{n+1}} \cdot \frac{1000^{n}}{(-1)^{n} n!}\right|= \\
& \lim _{n \rightarrow \infty} \frac{n+1}{1000}=+\infty
\end{aligned}
$$

Since $\rho>1$, the series $\sum_{n=0}^{\infty}(-1)^{n} \frac{n!}{1000^{n}}$ diverges by the Ratio Test;

If Ratio Test is Inconclusive Anything Can Happen

- Consider $\sum_{n=1}^{\infty} n^{2}$;

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}}=1 ;
$$

So Ratio Test is inconclusive; However, $\lim _{n \rightarrow \infty} a_{n} \neq 0$, so the series $\sum_{n=1}^{\infty} n^{2}$ diverges by Divergence Test;

- Consider $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$;

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+2 n+1}=1 ;
$$

So Ratio Test is again inconclusive; However, $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a p-series with $p=2>1$ and, hence, it converges!

The Root Test

Theorem (Root Test)

Assume that $L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$ exists;
(1) If $L<1$, then $\sum a_{n}$ converges absolutely;
(2) If $L>1$, then $\sum a_{n}$ diverges;
(3) If $L=1$, the test is inconclusive.

- Example: Does $\sum_{n=1}^{\infty}\left(\frac{n}{2 n+3}\right)^{n}$ converge?

$$
L=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left(\frac{n}{2 n+3}\right)^{n}}=\lim _{n \rightarrow \infty} \frac{n}{2 n+3}=\frac{1}{2}
$$

Since $L<1$, the series $\sum_{n=1}^{\infty}\left(\frac{n}{2 n+3}\right)^{n}$ converges by the Root Test;

Subsection 6

Power Series

Power Series Centered at c

- A power series with center c is an infinite series

$$
\begin{aligned}
F(x) & =\sum_{n=0}^{\infty} a_{n}(x-c)^{n} \\
& =a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots ;
\end{aligned}
$$

- Example: The following is a power series centered at $c=2$:

$$
F(x)=1+(x-2)+2(x-2)^{2}+3(x-2)^{3}+\cdots
$$

- A power series may converge for some values of x and diverge for some other values of x;
- Take a look again at $F(x)=1+(x-2)+2(x-2)^{2}+3(x-2)^{3}+\cdots ;$
- $F\left(\frac{5}{2}\right)=1+\frac{1}{2}+2\left(\frac{1}{2}\right)^{2}+3\left(\frac{1}{2}\right)^{3}+\cdots=\sum_{n=0}^{\infty} \frac{n}{2^{n}}$; This series converges by the Ratio Test!
- $F(3)=1+1+2+3+4+\cdots$; This series diverges by the Divergence Test!

Radius and Interval of Convergence

Theorem (Radius of Convergence)

Every power series $F(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ has a radius of convergence R, which is either a nonnegative number $(R \geq 0)$ or infinity $(R=\infty)$.

- If R is finite, $F(x)$ converges absolutely when $|x-c|<R$ (i.e., in $(c-R, c+R))$ and diverges when $|x-c|>R$;
- If $R=\infty$, then $F(x)$ converges absolutely for all x.
- According to the Theorem, $F(x)$ converges in an interval of convergence consisting of the open ($c-R, c+R$) and possibly one or both of the endpoints $c-R$ and $c+R$;

Using the Ratio Test I

- Find the interval of convergence of $\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}$;

Let $a_{n}=\frac{x^{n}}{2^{n}}$ and compute the ratio ρ of the Ratio Test:

$$
\rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{2^{n+1}} \cdot \frac{2^{n}}{x^{n}}\right|=\lim _{n \rightarrow \infty} \frac{|x|}{2}=\frac{|x|}{2} ;
$$

Therefore, we get $\rho<1 \Rightarrow \frac{|x|}{2}<1 \Rightarrow|x|<2$; This shows that, if $|x|<2$ the series converges absolutely; If $|x|>2$ the series diverges;

- If $x=-2$, then $\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}=\sum_{n=0}^{\infty} \frac{(-2)^{n}}{2^{n}}=\sum_{n=0}^{\infty}(-1)^{n}$, which diverges!
- If $x=2$, then $\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}=\sum_{n=0}^{\infty} \frac{2^{n}}{2^{n}}=\sum_{n=0}^{\infty} 1$, which also diverges!

Thus, the interval of convergence is $(-2,2)$;

Using the Ratio Test II

- Find the interval of convergence of $F(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{4^{n} n}(x-5)^{n}$;

Let $a_{n}=\frac{(-1)^{n}}{4^{n} n}(x-5)^{n}$ and compute the ratio ρ of the Ratio Test:

$$
\begin{aligned}
& \rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1}(x-5)^{n+1}}{4^{n+1}(n+1)} \cdot \frac{4^{n} n}{(-1)^{n}(x-5)^{n}}\right|= \\
& |x-5| \lim _{n \rightarrow \infty}\left|\frac{n}{4(n+1)}\right|=\frac{1}{4}|x-5|
\end{aligned}
$$

Therefore, we get $\rho<1 \Rightarrow \frac{|x-5|}{4}<1 \Rightarrow|x-5|<4$; This shows that, if $|x-5|<4$ the series converges absolutely; If $|x-5|>4$ the series diverges;

- If $x-5=-4$, then $F(1)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{4^{n} n}(-4)^{n}=\sum_{n=0}^{\infty} \frac{1}{n}$, which diverges!
- If $x-5=4$, then $F(9)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{4^{n} n}(4)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n}$, which converges! Thus, interval of convergence is (1, 9];

An Even Power Series

- Where does $\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}$ converge?

Let $a_{n}=\frac{x^{2 n}}{(2 n)!}$ and compute the ratio ρ of the Ratio Test:

$$
\begin{aligned}
& \rho=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{2(n+1)}}{(2(n+1))!} \cdot \frac{(2 n)!}{x^{2 n}}\right|= \\
& \lim _{n \rightarrow \infty}\left|\frac{x^{2 n+2}}{(2 n+2)!} \cdot \frac{(2 n)!}{x^{2 n}}\right|=x^{2} \lim _{n \rightarrow \infty} \frac{1}{(2 n+1)(2 n+2)}=0
\end{aligned}
$$

Therefore, we get $\rho<1$, for all x; This shows that the series is absolutely convergent everywhere;

Geometric Power Series

- Recall that the geometric infinite series $S=a+a r+a r^{2}+\cdots$ converges when $|r|<1$ and has sum $S=\frac{a}{1-r}$;
- As a special case, when $a=1$ and $r=x$, we get the geometric series with center 0 : $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots$; We have

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}, \quad \text { for }|x|<1
$$

- Example: Show that $\frac{1}{1-2 x}=\sum_{n=0}^{\infty} 2^{n} x^{n}$, for $|x|<\frac{1}{2}$;

If $|x|<\frac{1}{2}$, then $2|x|<1$ and, therefore $|2 x|<1$; Thus, the geometric series with ratio $2 x$ converges; We have

$$
\frac{1}{1-2 x} \stackrel{\text { Geometric Sum }}{=} \sum_{n=0}^{\infty}(2 x)^{n}=\sum_{n=0}^{\infty} 2^{n} x^{n}
$$

Another Example of a Geometric Power Series

- Find a power series expansion with center $c=0$ for $f(x)=\frac{1}{5+4 x^{2}}$ and find the interval of convergence;

$$
\frac{1}{5+4 x^{2}}=\frac{1}{5} \cdot \frac{1}{1+\frac{4}{5} x^{2}}=\frac{1}{5} \cdot \frac{1}{1-\left(-\frac{4}{5} x^{2}\right)}
$$

Therefore, if $\left|-\frac{4}{5} x^{2}\right|=\frac{4}{5} x^{2}<1 \Rightarrow x^{2} \leq \frac{5}{4} \Rightarrow|x| \leq \frac{\sqrt{5}}{2}$, we have

$$
\begin{aligned}
& \frac{1}{5+4 x^{2}}=\frac{1}{5} \cdot \frac{1}{1-\left(-\frac{4}{5} x^{2}\right)} \stackrel{\text { Geometric }}{=} \frac{1}{5} \sum_{n=0}^{\infty}\left(-\frac{4}{5} x^{2}\right)^{n}= \\
& \frac{1}{5} \sum_{n=0}^{\infty}(-1)^{n} \frac{4^{n}}{5^{n}} x^{2 n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{4^{n}}{5^{n+1}} x^{2 n}
\end{aligned}
$$

Term-by-Term Differentiation and Integration

Term-by-Term Differentiation and Integration

Assume that $F(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ has radius of convergence $R>0$;
Then $F(x)$ is differentiable on $(c-R, c+R)$ (or for all x, if $R=\infty$); Moreover, we can integrate and differentiate term-by-term, i.e.,
(1) $F^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n}(x-c)^{n-1}$;
(2) $\int F(x) d x=A+\sum_{n=0}^{\infty} \frac{a_{n}}{n+1}(x-c)^{n+1}$;

Both series for $F^{\prime}(x)$ and $\int F(x) d x$ have the same radius of convergence R as $F(x)$;

Example of Differentiation of Power Series

- Prove that for $-1<x<1$,

$$
\frac{1}{(1-x)^{2}}=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\cdots
$$

We know that, for $|x|<1$, we have

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+x^{5}+\cdots ;
$$

Therefore, by Term-by-Term Differentiation, we get, for $|x|<1$:

$$
\begin{aligned}
\frac{1}{(1-x)^{2}} & =\left(\frac{1}{1-x}\right)^{\prime} \\
& =\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+\cdots\right)^{\prime} \\
& =1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\cdots
\end{aligned}
$$

Example of Integration of Power Series

- Prove that for $|x|<1$, we have
$\tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\cdots ;$
Since for $|x|<1$, we have $\frac{1}{1-x}=1+x+x^{2}+x^{3}+x^{4}+\cdots$, we obtain, also for $|x|<1$,

$$
\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}=1-x^{2}+x^{4}-x^{6}+x^{8}-\cdots ;
$$

Therefore, by Term-by-Term Integration we get

$$
\begin{aligned}
\tan ^{-1} x & =\int \frac{1}{1+x^{2}} d x \\
& =\int\left(1-x^{2}+x^{4}-x^{6}+x^{8}-\cdots\right) d x \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\frac{x^{9}}{9}-\cdots
\end{aligned}
$$

Power Series Solution of Differential Equations

- Consider $y^{\prime}=y$ and $y(0)=1$;

Assume that the power series $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots$ is a solution of the given initial value problem; Compute

$$
F^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots ; \text { since } F(x)=F^{\prime}(x)
$$

we must have $a_{0}=a_{1}, a_{1}=2 a_{2}, a_{2}=3 a_{3}, a_{3}=4 a_{4}, \ldots$; Looking at these carefully, we obtain $a_{n}=\frac{a_{n-1}}{n}$, for all n; Thus,

$$
\begin{aligned}
& a_{n}=\frac{1}{n} a_{n-1}=\frac{1}{n} \frac{1}{n-1} a_{n-2}=\frac{1}{n} \frac{1}{n-1} \frac{1}{n-2} a_{n-3}= \\
& \cdots=\frac{1}{n(n-1)(n-2) \cdots \cdots 1} a_{0}=\frac{1}{n!} a_{0}
\end{aligned}
$$

Example I (Cont'd)

- We were solving $y^{\prime}=y$ and $y(0)=1$;

We assumed $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is a solution; We found $a_{n}=\frac{1}{n!} a_{0}$; This yields $F(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots=a_{0}+a_{0} \frac{1}{1!} x+a_{0} \frac{1}{2!} x^{2}+$ $a_{0} \frac{1}{3!} x^{3}+\cdots=a_{0}\left(1+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots\right)=a_{0} \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$; Since
$F(0)=1=a_{0}$, we get $F(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$;

- Since e^{x} is also a solution, we get

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots
$$

Example II

- Find a series solution to $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0$, with $y^{\prime}(0)=1$; Let $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$; Then $y^{\prime}=F^{\prime}(x)=\sum_{n=0}^{\infty} n a_{n} x^{n-1}$ and $y^{\prime \prime}=F^{\prime \prime}(x)=\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}$; Plug those in equation: $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=$ $x^{2} \sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}+x \sum_{n=1}^{\infty} n a_{n} x^{n-1}+\left(x^{2}-1\right) \sum_{n=0}^{\infty} a_{n} x^{n}=$ $\sum_{\substack{n=0 \\ \infty}}^{\infty} n(n-1) a_{n} x^{n}+\sum_{\substack{n=0 \\ \infty}}^{\infty} n a_{n} x^{n}-\sum_{n=0}^{\infty} a_{n} x^{n}+\sum_{n=0}^{\infty} a_{n+2} x^{n}=$ $\sum_{n=0}^{\infty}\left(n^{2}-1\right) a_{n} x^{n}+\sum_{n=2}^{\infty} a_{n-2} x^{n}=0 ;$
Thus,

$$
\sum_{n=0}^{\infty}\left(n^{2}-1\right) a_{n} x^{n}=-\sum_{n=2}^{\infty} a_{n-2} x^{n} \Rightarrow a_{n}=-\frac{a_{n-2}}{n^{2}-1}
$$

Example II (Cont'd)

- We were solving $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0$, with $y^{\prime}(0)=1$;

We assumed $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is a solution; We found $a_{n}=-\frac{a_{n-2}}{n^{2}-1}$;
Now, note $a_{0}=0$; Thus, $a_{2}=-\frac{a_{0}}{2^{2}-1}=0 ;$ Then $a_{4}=-\frac{a_{2}}{4^{2}-1}=0$;
We see that $a_{2 n}=0$, for all n; Moreover, $a_{1}=1$; Thus, $a_{3}=-\frac{a_{1}}{3^{2}-1}=-\frac{1}{2 \cdot 4}$; Then $a_{5}=-\frac{a_{3}}{5^{2}-1}=+\frac{1}{2 \cdot 4 \cdot 4 \cdot 6} ;$ Also $a_{7}=-\frac{a_{5}}{7^{2}-1}=-\frac{1}{2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8} ;$ In general $a_{2 n+1}=\frac{(-1)^{n}}{2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdots \cdot(2 n)(2 n+2)}=\frac{(-1)^{n}}{2^{n}(1 \cdot 2 \cdot 3 \cdots \cdots \cdot n)^{n}(2 \cdot 3 \cdot 4 \cdots \cdots \cdot(n+1))}=\frac{(-1)^{n}}{4^{n}!(n+1)!} ;$ So we get $F(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n} n!(n+1)!} x^{2 n+1}$;

Subsection 7

Taylor Series

Taylor Series

- Assume that a function $f(x)$ is represented by a power series centered at $x=c$ on $(c-R, c+R)$ with $R>0$, i.e.,

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots ;
$$

- Then, for the derivatives of f on $(c-R, c+R)$, we have
$f(x)=a_{0}+a_{1}(x-c)+a_{2}(x-c)^{2}+a_{3}(x-c)^{3}+\cdots ;$
$f^{\prime}(x)=a_{1}+2 a_{2}(x-c)+3 a_{3}(x-c)^{2}+4 a_{4}(x-c)^{3}+\cdots ;$
$f^{\prime \prime}(x)=2 a_{2}+2 \cdot 3 a_{3}(x-c)+3 \cdot 4 a_{4}(x-c)^{2}+4 \cdot 5(x-c)^{3} \cdots$;
$f^{\prime \prime \prime}(x)=2 \cdot 3 a_{3}+2 \cdot 3 \cdot 4 a_{4}(x-c)+3 \cdot 4 \cdot 5(x-c)^{2}+\cdots$;
- Plug in $x=c$ to get

$$
f(c)=a_{0}, f^{\prime}(c)=a_{1}, f^{\prime \prime}(c)=2!a_{2}, f^{\prime \prime \prime}(c)=3!a_{3}, f^{(4)}(c)=4!a_{4}, \ldots ;
$$

- In general, we get $a_{n}=\frac{f^{(n)}(c)}{n!}$;

Taylor and Maclaurin Series

Taylor Series Expansion

If f is represented as a power series centered at $x=c$ in an interval $|x-c|<R, R>0$, then the power series is the Taylor series:

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

Maclaurin Series

The special case of the Taylor series for $c=0$ is the Maclaurin series:

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots
$$

Finding a Taylor Series

- Find the Taylor series for $f(x)=x^{-3}$ centered at $c=1$;

$$
\begin{aligned}
& f(x)=x^{-3}, \quad f(1)=1 \\
& f^{\prime}(x)=(-3) x^{-4}, \quad f^{\prime}(1)=-3 \\
& f^{\prime \prime}(x)=(-3)(-4) x^{-5}, \quad f^{\prime \prime}(1)=+3 \cdot 4 \\
& f^{\prime \prime \prime}(x)=(-3)(-4)(-5) x^{-6}, \quad f^{\prime \prime \prime}(1)=-3 \cdot 4 \cdot 5
\end{aligned}
$$

$$
f^{(n)}(x)=(-3)(-4) \cdots \cdots(-n-2) x^{-n-3}
$$

$$
f^{(n)}(1)=(-1)^{n} \cdot 2 \cdot 3 \cdot 4 \cdots \cdots(n+2)=\frac{(-1)^{n}}{2}(n+2)!
$$

Now we get by the Taylor series formula

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!}(x-1)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}(n+2)!}{2 \cdot n!}(x-1)^{n}= \\
& \sum_{n=0}^{\infty} \frac{(-1)^{n}(n+1)(n+2)}{2}(x-1)^{n}
\end{aligned}
$$

Convergence Issues

- We know that if $f(x)$ can be represented by a power series centered at $x=c$, then that power series will be the Taylor series

$$
T(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

- However, there is no guarantee that $T(x)$ converges; Moreover, there is no guarantee that, even if it converges, it will converge to $f(x)$!
- Let
$T_{k}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(c-x)^{2}+\cdots+\frac{f^{(k)}(c)}{k!}(x-c)^{k} ;$
Define the remainder

$$
R_{k}(x)=f(x)-T_{k}(x)
$$

The Taylor series converges to $f(x)$ if and only if $\lim _{k \rightarrow \infty} R_{k}(x)=0$;

Convergence Theorem

Theorem

Let $I=(c-R, c+R), R>0$; If there exists a $K>0$, such that all derivatives of f are bounded by K on I, i.e.,

$$
\left|f^{(k)}(x)\right| \leq K, \text { for all } k \geq 0, x \in I
$$

then, for all $x \in I$,

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!}(x-c)^{n}
$$

Sine and Cosine

- Show that

$$
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} \quad \text { and } \quad \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

Let $f(x)=\sin x$;

$f(x)$	$f^{\prime}(x)$	$f^{\prime \prime}(x)$	$f^{\prime \prime \prime}(x)$	$f^{(4)}(x)$	\cdots
$\sin x$	$\cos x$	$-\sin x$	$-\cos x$	$\sin x$	\cdots
0	1	0	-1	0	\cdots

Note, also that for all $x,\left|f^{(k)}(x)\right| \leq 1$; Therefore, we have convergence of the Taylor series of f centered at $x=0$ to $f(x)=\sin x$ everywhere and

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

One either works similarly from scratch for $g(x)=\cos x$ or notices that $\cos x=(\sin x)^{\prime}$ and appeals to term-by-term differentiation of the series for $\sin x$;

Infinite Series for e^{x}

- The Maclaurin series for $f(x)=e^{x}$ is

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

- Example: Find a Maclaurin series for $f(x)=x^{2} e^{x}$;

$$
\begin{aligned}
f(x) & =x^{2} e^{x}=x^{2}\left[1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right] \\
& =x^{2}+x^{3}+\frac{x^{4}}{2!}+\frac{x^{5}}{3!}+\frac{x^{6}}{4!}+\cdots=\sum_{n=2}^{\infty} \frac{x^{n}}{(n-2)!}
\end{aligned}
$$

- Example: Find the Maclaurin series for $f(x)=e^{-x^{2}}$;

$$
\begin{aligned}
f(x) & =e^{-x^{2}}=1+\left(-x^{2}\right)+\frac{\left(-x^{2}\right)^{2}}{2!}+\frac{\left(-x^{2}\right)^{3}}{3!}+\frac{\left(-x^{2}\right)^{4}}{4!}+\cdots \\
& =1-x^{2}+\frac{x^{4}}{2!}-\frac{x^{6}}{3!}+\frac{x^{8}}{4!}-\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{n!}
\end{aligned}
$$

Using Integration

- Find the Maclaurin series for $f(x)=\ln (1+x)$;

$$
\begin{aligned}
\frac{1}{1-x} & =1+x+x^{2}+x^{3}+x^{4}+\cdots \\
\frac{1}{1+x} & =\frac{1}{1-(-x)}=1-x+x^{2}-x^{3}+x^{4}-\cdots \\
\ln (1+x) & =\int \frac{1}{1+x} d x \\
& =\int\left(1-x+x^{2}-x^{3}+x^{4}-\cdots\right) d x \\
& =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\cdots \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}
\end{aligned}
$$

Binomial Coefficients

- For any number a (integer or not) and any integer $n \geq 0$, we define the binomial coefficient

$$
\binom{a}{n}=\frac{a(a-1)(a-2) \cdots(a-n+1)}{n!}, \quad\binom{a}{0}=1
$$

- Example:

$$
\begin{aligned}
& \binom{6}{3}=\frac{6 \cdot 5 \cdot 4}{3!}=20 ; \\
& \binom{\frac{4}{3}}{3}=\frac{\frac{4}{3} \cdot \frac{1}{3} \cdot\left(-\frac{2}{3}\right)}{3!}=\frac{-\frac{8}{27}}{6}=-\frac{4}{81} ;
\end{aligned}
$$

Binomial Series

The Binomial Series

For any exponent a and for $|x|<1$,
$(1+x)^{a}=1+\frac{a}{1!} x+\frac{a(a-1)}{2!} x^{2}+\frac{a(a-1)(a-2)}{3!} x^{3}+\cdots+\binom{a}{n} x^{n}+\cdots ;$

- Example: Find the terms through degree four of the Maclaurin expansion of $f(x)=(1+x)^{4 / 3}$;

$$
\begin{aligned}
& T_{4}(x)= 1+\frac{a}{1!} x+\frac{a(a-1)}{2!} x^{2}+\frac{a(a-1)(a-2)}{3!} x^{3}+ \\
& \frac{a(a-1)(a-2)(a-3)}{4!} x^{4} \\
&= 1+\frac{\frac{4}{3}}{1!} x+\frac{\frac{4}{3} \cdot \frac{1}{3}}{2!} x^{2}+\frac{\frac{4}{3} \cdot \frac{1}{3} \cdot\left(-\frac{2}{3}\right)}{3!} x^{3}+ \\
& \frac{\frac{4}{3} \cdot \frac{1}{3} \cdot\left(-\frac{2}{3}\right) \cdot\left(-\frac{5}{3}\right)}{4!} x^{4} \\
&= 1+\frac{4}{3} x+\frac{2}{9} x^{2}-\frac{4}{81} x^{3}+\frac{5}{243} x^{4}
\end{aligned}
$$

Applying the Binomial Series Expansion

- Find the Maclaurin series for $f(x)=\frac{1}{\sqrt{1-x^{2}}}$; Recall that $(1+x)^{a}=\sum_{n=0}\binom{a}{n} x^{n}$; Hence, for $a=-\frac{1}{2}$, we get

$$
(1+x)^{-1 / 2}=\sum_{n=0}^{\infty}\binom{-1 / 2}{n} x^{n}
$$

Therefore, we obtain

$$
\begin{aligned}
& f(x)=\frac{1}{\sqrt{1-x^{2}}}=\left(1-x^{2}\right)^{-1 / 2}=\left(1+\left(-x^{2}\right)\right)^{-1 / 2}=\sum_{n=0}^{\infty}\binom{-1 / 2}{n}\left(-x^{2}\right)^{n} \\
& =1+\sum_{n=1}^{\infty} \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) \cdots\left(-\frac{1}{2}-n+1\right)}{n!}(-1)^{n} x^{2 n} \\
& =1+\sum_{n=1}^{\infty} \frac{(-1)^{n} 1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)}{2^{n} n!}(-1)^{n} x^{2 n} \\
& =1+\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots \cdot(2 n-1)}{2^{n} n!} x^{2 n}
\end{aligned}
$$

