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Applications of the Integral Area Between Two Curves

Subsection 1

Area Between Two Curves
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Applications of the Integral Area Between Two Curves

Area Between Two Curves

Consider two functions y = f (x) and y =
g(x), such that f (x) ≥ g(x), for all x in
[a, b];
Then the area of the region between the two
graphs is given by

A =

∫ b

a

f (x)dx −
∫ b

a

g(x)dx

=

∫ b

a

(f (x)− g(x))dx ;
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Applications of the Integral Area Between Two Curves

Computing Area Between Two Curves

Example: Find the area of the region bounded by the graphs of
f (x) = x2 − 4x + 10 and g(x) = 4x − x2, for 1 ≤ x ≤ 3;

By setting f (x) = g(x), we find that
the two graphs do not intersect. To
discover which graph is the top graph,
we compute f (2) = 6 > 4 = g(2);
Therefore f ’s graph is higher;
We get

A =

∫ 3

1

(f (x)− g(x))dx =

∫ 3

1
((x2 − 4x + 10) − (4x − x2))dx =

∫ 3

1
(2x2 − 8x + 10)dx =

(23x
3 − 4x2 + 10x)

∣

∣

3

1
= 12− 20

3
=

16

3
;

George Voutsadakis (LSSU) Calculus II February 2015 5 / 47



Applications of the Integral Area Between Two Curves

Intersecting Curves

Find the area between the graphs of f (x) = x2 − 5x − 7 and
g(x) = x − 12 over [−2, 5];

To discover the points of intersection in
[−2, 5], set f (x) = g(x) ⇒ x2 − 5x −
7 = x − 12 ⇒ x2 − 6x +5 = 0 ⇒ (x −
1)(x−5) = 0 ⇒ x = 1 or x = 5; Thus,
the two curves intersect at x = 1; Since
g(0) < f (0), f is higher on [−2, 1] and,
since f (2) < g(2), g is higher on [1, 5];

A =

∫ 1

−2

((x2 − 5x − 7)− (x − 12))dx +

∫ 5

1

((x − 12)− (x2 − 5x − 7))dx

=

∫ 1

−2

(x2 − 6x + 5)dx +

∫ 5

1

(−x2 + 6x − 5)dx = ( 13x
3 − 3x2 + 5x)

∣

∣

1

−2
+

(− 1
3x

3 + 3x2 − 5x)
∣

∣

5

1
= ( 73 − −74

3 ) + ( 253 − −7
3 ) = 113

3 ;
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Applications of the Integral Area Between Two Curves

Dividing the Region in Pieces

Find the area of the region bounded by the graphs of y =
8

x2
, y = 8x

and y = x ;

To discover the points of intersection,
we set

1
8

x2
= 8x ⇒ x3 = 1 ⇒ x = 1;

2
8

x2
= x ⇒ x3 = 8 ⇒ x = 2;

3 8x = x ⇒ 7x = 0 ⇒ x = 0;

A =

∫ 1

0
(8x − x)dx +

∫ 2

1
(
8

x2
− x)dx

=

∫ 1

0
7xdx +

∫ 2

1
(8x−2 − x)dx = (72x

2)
∣

∣

1

0
+ (− 8

x
− 1

2x
2)
∣

∣

2

1

= (72 − 0) + (−6− (−17
2 )) = 6;
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Applications of the Integral Area Between Two Curves

Area Between Two Curves Along the y -Axis

Consider two functions x = f (y) and x =
g(y), such that f (y) ≥ g(y), for all y in
[c , d ];
Then the area of the region between the two
graphs is given by

A =

∫ d

c

f (y)dy −
∫ d

c

g(y)dy

=

∫ d

c

(f (y)− g(y))dy ;
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Applications of the Integral Area Between Two Curves

Computing an Area Along y -Axis

Calculate the area of the region enclosed by h(y) = y2 − 1 and
g(y) = y2 − 1

8y
4 + 1;

To discover points of intersection, set
g(y) = h(y) ⇒ y2 − 1 = y2 − 1

8y
4 +

1 ⇒ 1
8y

4 = 2 ⇒ y4 = 16 ⇒ y = ±2;
Since g(0) > h(0), g is to the right:
We get

A =

∫ 2

−2

(g(y)− h(y))dy =

∫ 2

−2
(y2 − 1

8y
4 + 1)− (y2 − 1))dy =

∫ 2

−2
(2− 1

8y
4)dy =

(2y − 1
40y

5)
∣

∣

2

−2
= 16

5 − (−16
5 ) =

32
5 ;
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Subsection 2

Setting Up Integrals: Volume, Density, Average Value
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Volume

Suppose that we want to
compute the volume of the
solid shown in the figure on
the right:

At a given x in [a, b] the
area of the cross section is
known to be A(x);
We start by computing the volume of a thin slice of thickness dx ;

Assuming that the area of the side is almost constant and equal to
A(x), the volume of the slice is dV = A(x)dx ;

To compute the entire volume of the solid we integrate (i.e., take the
sum of the volumes of all slices and, then, the limit as the max
thickness of each slice approaches 0):

V =

∫ b

a

dV =

∫ b

a

A(x)dx ;
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Volume: Pyramid

Calculate the volume V of a
pyramid of height 12 meters
whose base is a square of side
4 meters;
Taking into account similar
triangles, we obtain
s

y
=

4

12
⇒ s =

1

3
y ;

Therefore, the area of a cross section at height y is

A(y) = s2 = (
1

3
y)2 =

1

9
y2;

Now we set up the volume integral:

V =

∫ 12

0
A(y)dy =

∫ 12

0

y2

9
dy =

1

9

∫ 12

0
y2dy =

1

9
(
1

3
y3)

∣

∣

∣

∣

12

0

= 64m3;
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Volume: Sphere

Calculate the volume V

of a sphere of radius r ;
Note that

x2 + y2 = r2

⇒ x2 = r2 − y2;

Therefore, the area of a cross section at height y is
A(y) = πx2 = π(r2 − y2) = πr2 − πy2;
Now we set up the volume integral:

V =

∫ r

−r

A(y)dy =

∫ r

−r

(πr2 − πy2)dy = (πr2y − 1

3
πy3)

∣

∣

∣

∣

r

−r

=

πr3 − 1

3
πr3 − (−πr3 +

1

3
πr3) =

4

3
πr3;
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Volume: Paraboloid

Calculate the volume V of the
solid whose base is the region
between the inverted parabola
y = 4− x2 and the x-axis and
whose vertical cross sections
perpendicular to the y -axis are
semicircles;

Note that, for fixed 0 ≤ y ≤ 4, the radius of the semicircle is x =
√
4− y ;

Thus, A(y) = 1
2πx

2 = 1
2π(

√
4− y)2 = π(2− 1

2
y); Now we set up the

volume integral:

V =

∫ 4

0
A(y)dy =

∫ 4

0
π(2− 1

2
y)dy =

π (2y − 1

4
y2)

∣

∣

∣

∣

4

0

= π(8− 4) = 4π;
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Linear Density

Consider a rod extending along the x-axis from x = a to x = b;

Assume that at point x , the rod has linear density ρ(x);

Then, the total mass M of the rod is given by

M =

∫ b

a

ρ(x)dx ;
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Mass of a Rod

What is the mass M of a 2 meter long rod of linear density
ρ(x) = 1 + x(2 − x) kg/m, where x is the distance from one end of
the rod;

M =

∫ 2

0
ρ(x)dx

=

∫ 2

0
(1 + x(2− x))dx

=

∫ 2

0
(−x2 + 2x + 1)dx

= (−1

3
x3 + x2 + x)

∣

∣

∣

∣

2

0

= − 8

3
+ 4 + 2

=
10

3
Kg;
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Radial Density

Consider a disk centered at the
origin with radius R ;

Assume that, at any point on the
disk, the density ρ(r) depends
only on the distance r of the
point from the center;

The area dA of a thin slice with radius r (considered almost constant)
and thickness dr is dA = 2πrdr ;

The mass dM of that thin slice is dM = ρ(r)dA = 2πrρ(r)dr ;

Therefore, the total mass M of the disk is given by

M = 2π

∫ R

0

rρ(r)dr ;
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Computing Total Population

The population in a city has radial density ρ(r) = 15(1 + r2)−1/2,
where r is the distance from the city center in kilometers and ρ is in
thousands of people per square kilometer; How many people live in
the ring between 10 and 30 kilometers from the city center?

P = 2π

∫ 30

10

rρ(r)dr = 2π

∫ 30

10

15r(1 + r2)−1/2dr ;

Now use substitution:

u = 1 + r2 ⇒ du = 2rdr ; u(10) = 101; u(30) = 901;

Therefore,

P = 2π

∫ 901

101

15

2
u−1/2du = 15π (2u1/2)

∣

∣

901

101
=

30π(
√
901 −

√
101) ≈ 1881 thousand;
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Flow Rate

Consider a tube or blood vessel in which a fluid is flowing;

The flow rate Q is defined as the volume of the liquid flowing per
unit of time;

If all the particles of the fluid travel with the same velocity v and the
tube has radius R , then the flow rate is Q = πR2v ;

If, however, the velocity v(r) of a particle depends on the distance r

of the particle from the center of the tube, then

Q = 2π

∫ R

0

rv(r)dr ;
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Poiseuille’s Law for Blood Flow

Poiseuille’s Law gives the velocity of blood flowing in a vessel of
radius R cm as

v(r) = k(R2 − r2),

where r is the distance from the center of the vessel in cm and k is a
constant; What is the flow rate Q in terms of R?

Q = 2π

∫ R

0
rv(r)dr = 2π

∫ R

0
rk(R2 − r2)dr

= 2πk

∫ R

0
(R2r − r3)dr = 2πk (

1

2
R2r2 − 1

4
r4)

∣

∣

∣

∣

R

0

= 2πk(
1

2
R4 − 1

4
R4) = 2πk

1

4
R4 =

1

2
πkR4 cm3/sec;

George Voutsadakis (LSSU) Calculus II February 2015 20 / 47



Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Average Value of a Function

Consider a function f (x) continuous on [a, b];

The average value AV[a,b](f ) of
f on [a, b] is the height of a rect-
angle with base [a, b] that has the
same area as the area under the
curve from a to b;

Since the area under the curve is
∫ b

a
f (x)dx and the area of the

rectangle is (b − a)AV[a,b](f ), and these are equal:
∫ b

a

f (x)dx = (b − a)AV[a,b](f ), we get

AV[a,b](f ) =
1

b − a

∫ b

a

f (x)dx ;
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Computing Average I

Find the average value of f (x) =
√
x from x = 1 to x = 9;

AV[1,9](f ) =
1

9− 1

∫ 9

1

√
xdx

=
1

8
· 2
3
x3/2

∣

∣

∣

∣

9

1

=
1

12

√
x
3
∣

∣

∣

9

1

=
1

12
(27 − 1)

=
13

6
;
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Computing Average II

Find the average value of f (x) = sin x on [0, π];

AV[0,π](f ) =
1

π − 0

∫ π

0
sin xdx =

1

π
· (− cos x)|π0

=
1

π
(− cos π + cos 0) =

1

π
(−(−1) + 1) =

2

π
;
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Computing Average: An Application

The bushbaby has a remarkable vertical jumping ability; Find the
average speed during his jump if its initial velocity is v0 = 600 cm/sec
and its height is given by h(t) = v0t − 1

2gt
2 in centimeters, where

g = 980 cm/sec2;

First, we find when its jump ends: h = 0 ⇒
600t− 1

2 ·980t2 = 0 ⇒ t(600−490t) = 0 ⇒
t = 60

49 seconds;

Its velocity at time t is v(t) =
dh

dt
= v0 −

gt = 600−980t; Therefore, its average speed
during the jump is

AV[0, 60
49
](|v |) =

49

60

∫ 60/49

0
|600 − 980t|dt = 2

49

60
(600t − 490t2)

∣

∣

60/98

0

=
98

60
[600 · 60

98
− 490 · (60

98
)2] =

98

60
(
36000

98
− 18000

98
) = 300 cm/sec;
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Applications of the Integral Setting Up Integrals: Volume, Density, Average Value

Mean Value Theorem for Integrals

Mean Value Theorem for Integrals

If f (x) is continuous on [a, b], then there exists a value c ∈ [a, b], such
that

f (c) =
1

b − a

∫ b

a

f (x)dx .

Example: Let M be the average value of f (x) = x3 on [0,A], where
A > 0. Which theorem guarantees that f (c) = M has a solution c in
[0,A]? Find c .

Since f (x) = x3 is continuous on [0,A], the Intermediate Value
Theorem for Integrals guarantees that there exists c ∈ [0,A], such

that f (c) = M = 1
A

∫ A

0 x3dx . We have:

c3 =
1

A

x4

4

∣

∣

∣

∣

A

0

=
1

A

A4

4
⇒ c3 =

A3

4
⇒ c =

A
3
√
4
.
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Applications of the Integral Volumes of Revolution

Subsection 3

Volumes of Revolution
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Applications of the Integral Volumes of Revolution

Volume of Revolution: Disk Method

A solid of revolution is obtained by rotating a region in the xy -plane
about an axis;

Consider y = f (x) for a ≤ x ≤ b;
All vertical cross-sections of the
solid obtained by rotating the re-
gion around the x-axis are circles;
The area of such a cross-section is
A(x) = πf (x)2;

Thus, a small volume of a thin slice of thickness dx is
dV = A(x)dx = πf (x)2dx ;

The volume of the entire solid is then given by

V =

∫ b

a

πf (x)2dx ;
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Applications of the Integral Volumes of Revolution

Example of Computing a Volume of Revolution

Calculate the volume V of the solid obtained by rotating the region
under y = x2 around the x-axis for 0 ≤ x ≤ 2;

V =

∫ 2

0
πf (x)2dx =

π

∫ 2

0
x4dx =

π (
1

5
x5)

∣

∣

∣

∣

2

0

=

32π

5
;
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Applications of the Integral Volumes of Revolution

Region Between Two Curves

Consider the region between two curves y = f (x) and y = g(x);
Rotation about the x axis results in a solid whose volume can be seen
as the sum of elementary volumes dV of washers of thickness dx ;

We have dV = πf (x)2dx − πg(x)2dx = π[f (x)2 − g(x)2]dx ;

So the volume of the entire solid is

V =

∫ b

a

π[f (x)2 − g(x)2]dx ;
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Applications of the Integral Volumes of Revolution

Example of Region Between Two Curves

Calculate the volume V of the solid obtained by revolving the region
between y = x2 + 4 and y = 2 about the x-axis for 1 ≤ x ≤ 3;

V =

∫ 3

1
π[f (x)2 − g(x)2]dx =

π

∫ 3

1
((x2 + 4)2 − 22)dx =

π

∫ 3

1
(x4 + 8x2 + 12)dx =

π (
1

5
x5 +

8

3
x3 + 12x)

∣

∣

∣

∣

3

1

=

π

[

243

5
+ 72 + 36− (

1

5
+

8

3
+ 12)

]

=
2126π

15
;
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Applications of the Integral Volumes of Revolution

Revolving About a Horizontal Axis I

Find the volume V of the “wedding band” obtained by rotating the
region between the graphs of f (x) = x2 + 2 and g(x) = 4− x2 about
the horizontal line y = −3;

The key is to realize that, for given
x , the upper radius is g(x)+3 and
the lower radius is f (x)+3 and not
simply g(x) and f (x), as in pre-
vious examples; To find the end-
points, we solve f (x) = g(x) ⇒
x2+2 = 4−x2 ⇒ 2x2−2 = 0 ⇒
2(x2−1) = 0 ⇒ 2(x+1)(x−1) =
0 ⇒ x = −1 or x = 1;
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Applications of the Integral Volumes of Revolution

Revolving About a Horizontal Axis I (Cont’d)

f (x) = x2 + 2

g(x) = 4− x2

V =

∫ 1

−1
π[(g(x) + 3)2 − (f (x) + 3)2]dx =

π

∫ 1

−1
[(7− x2)2 − (x2 + 5)2]dx =

π

∫ 1

−1
[(49− 14x2 + x4)− (x4 + 10x2 + 25)]dx =

π

∫ 1

−1
(24− 24x2)dx = π (24x − 8x3)

∣

∣

1

−1
= 32π;
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Applications of the Integral Volumes of Revolution

Revolving About a Horizontal Axis II

Find the volume V of the solid obtained by rotating the region
between the graphs of f (x) = 9− x2 and g(x) = 12 about the
horizontal line y = 15;

The key, again, is to realize that, for
given x , the upper radius is 15− f (x)
and the lower radius is 15− 12 = 3;

V =

∫ 3

0
π[(15 − f (x))2 − 32]dx =

π

∫ 3

0
[(x2 + 6)2 − 9]dx =

π

∫ 3

0
(x4 + 12x2 + 27)dx =

π (
1

5
x5 + 4x3 + 27x)

∣

∣

∣

∣

3

0

=
1188π

5
;
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Applications of the Integral Volumes of Revolution

Revolving About a Vertical Axis

Find the volume V of the solid obtained by rotating the region under
the graph of f (x) = 9− x2 for 0 ≤ x ≤ 3 about the vertical line
x = −2;

For given y , the outer radius is 2 +√
9− y and the inner radius is 2;

V =

∫ 9

0
π[(2 +

√
9− y)2 − 22]dy =

π

∫ 9

0
[4 + 4

√
9− y + (

√
9− y)2 − 4]dy =

π

∫ 9

0
(9− y + 4

√
9− y)dy =

π (9y − 1

2
y2 − 8

3
(
√
9− y)3)

∣

∣

∣

∣

9

0

= π[(81 − 81

2
)− (−8

3
· 27)] = 225π

2
;
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Applications of the Integral The Method of Cylindrical Shells

Subsection 4

The Method of Cylindrical Shells
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Applications of the Integral The Method of Cylindrical Shells

Volume of Revolution: The Shell Method

Consider the cylindrical shell shown in the
picture; Its volume is given by

V = πR2h− πr2h = πh(R2 − r2) =

πh(R + r)(R − r) = 2πh
R + r

2
∆r ≈

2πhR∆r ;

To compute the volume of the solid of
revolution of f (x) around the y -axis, we
estimate the volume dV of a cylindrical
shell: dV = 2πxf (x)dx and then inte-
grate from a to b

V =

∫ b

a

2πxf (x)dx ;
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Applications of the Integral The Method of Cylindrical Shells

Example of the Shell Method

Find the volume V of the solid obtained by rotating the region under
the graph of f (x) = 1− 2x + 3x2 − 2x3 over [0, 1] about the y -axis;

V = 2π

∫ 1

0
xf (x)dx =

2π

∫ 1

0
x(1− 2x + 3x2 − 2x3)dx =

2π

∫ 1

0
(x − 2x2 + 3x3 − 2x4)dx =

2π (
1

2
x2 − 2

3
x3 +

3

4
x4 − 2

5
x5)

∣

∣

∣

∣

1

0

=

11π

30
;
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Applications of the Integral The Method of Cylindrical Shells

Region Between Two Curves

In case we rotate the region be-
tween two curves f (x) and g(x)
around the y -axis, we get

V = 2π

∫ b

a

(Radius)(Height)dx

= 2π

∫ b

a

x(f (x)− g(x))dx ;
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Applications of the Integral The Method of Cylindrical Shells

Example With Two Curves

Find the volume V obtained by rotating the region enclosed by
f (x) = x(5 − x) and g(x) = 8− x(5 − x) about the y -axis;

Find points of intersection: x(5−x) =
8− x(5− x) ⇒ 2x2 − 10x + 8 = 0 ⇒
x2 − 5x + 4 = 0 ⇒ (x − 1)(x − 4) =
0 ⇒ x = 1 or x = 4;

V = 2π

∫ 4

1
x(f (x)− g(x))dx =

2π

∫ 4

1
(−2x3 + 10x2 − 8x)dx =

2π (−1

2
x4 +

10

3
x3 − 4x2)

∣

∣

∣

∣

4

1

= 45π;
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Applications of the Integral The Method of Cylindrical Shells

Rotating About a Vertical Axis

Calculate the volume V obtained by rotating the region under the
graph of f (x) = x−1/2 over [1, 4] about x = −3;

Note that the radius of revolution is
x + 3 and the height of the shell is
f (x): Thus, we get

V = 2π

∫ 4

1
(x + 3)x−1/2dx =

2π

∫ 4

1
(x1/2 + 3x−1/2)dx =

2π (
2

3
x3/2 + 6x1/2)

∣

∣

∣

∣

4

1

=

2π(
16

3
+ 12− (

2

3
+ 6)) =

64π

3
;
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Applications of the Integral The Method of Cylindrical Shells

Rotating About the x-Axis

Calculate, using the shell method, the volume V obtained by rotating
the region under y = 9− x2 over [0, 3] about the x-axis;

Note that the radius of revolution is
y and the height of the shell is x =√
9− y : Thus, we get

V = 2π

∫ 9

0
y
√
9− ydx

u=9−y
=

− 2π

∫ 0

9
(9− u)u1/2du =

2π

∫ 9

0
(9u1/2 − u3/2)du =

2π (6u3/2 − 2

5
u5/2)

∣

∣

∣

∣

9

0

=

2π(6 · 27− 2

5
· 243) = 648π

5
;
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Applications of the Integral Work and Energy

Subsection 5

Work and Energy
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Applications of the Integral Work and Energy

Work and Hooke’s Law

The energy expended when a force is applied to move an object is
called work;

If a constant force F is applied to move an object a distance d in the
direction of the force, then the work W is defined by W = F · d ;
If a varying force F (x) is applied along the x-axis to move an object
along the axes from a point a to a point b, then the work expended is

W =

∫ b

a

F (x)dx ;

Hooke’s Law: When a spring is
stretched or compressed by distance
x from equilibrium, it exerts restor-
ing force of magnitude −kx , where
k is spring constant;
To stretch or compress the spring we must apply force F = kx to
counteract the restoring force of the string;
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Applications of the Integral Work and Energy

Example on Hooke’s Law

Suppose that a spring has spring constant k = 400 N/m;

Find the work required to stretch the spring 10 cm beyond equilibrium;

W =

∫ 0.1

0

F (x)dx =

∫ 0.1

0

kxdx = 400
1

2
x2
∣

∣

∣

∣

0.1

0

=

200(0.12 − 02) = 200 · 0.01 = 2 J;

Find the work required to compress the string 2 cm more when it is
already compressed 3 cm;

W =

∫

−0.05

−0.03

F (x)dx =

∫

−0.05

−0.03

kxdx = 400
1

2
x2
∣

∣

∣

∣

−0.05

−0.03

=

200((−0.05)2 − (−0.03)2) = 200 · 0.0016 = 0.32 J;
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Applications of the Integral Work and Energy

Building a Cement Column

Compute the work against gravity required to build a cement column
of height 5 meters and square base of side 2 meters, assuming that
cement has density 1500 Kg/m3;
Consider a thin layer of cement of thickness dy at height y , having
volume dV , mass dM and requiring force dF to be lifted to height y ;
Then, we have

dV = l · w · h = 2 · 2 · dy = 4dy ;
dM = ρ · dV = 4ρdy ;
dF = g · dM = 4ρgdy = 4 · 1500 · 9.8dy = 58800dy ;

Thus, we get

W =

∫ 5

0
ydF =

∫ 5

0
58800ydy = (29400y2)

∣

∣

5

0
=

29400(25 − 0) = 735, 000 J;

George Voutsadakis (LSSU) Calculus II February 2015 45 / 47



Applications of the Integral Work and Energy

Pumping Water Out of a Tank

A spherical tank of radius R meters is filled
with water; Calculate the work needed against
gravity in pumping out the water through a
small hole at the top, assuming the density of
water is 1000 Kg/m3;
Consider a thin layer of water of thickness dz
at depth R − z , having volume dV , mass dM
and requiring force dF to be lifted by a height
h = R − z ;
Then, we have

dV = πy2dz = π(R2 − z2)dz ;
dM = ρ · dV = 1000π(R2 − z2)dz ;
dF = g · dM = 1000 · 9.8π(R2 − z2)dz = 9800π(R2 − z2)dz ;
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Applications of the Integral Work and Energy

Pumping Water Out of a Tank (Cont’d)

dF = 9800π(R2 − z2)dz ;
Thus, we get

W =

∫ R

−R

(R − z)dF =
∫ R

−R

9800π(R2 − z2)(R − z)dz =

9800π

∫ R

−R

(z3 − Rz2 − R2z + R3)dz =

9800π (
1

4
z4 − 1

3
Rz3 − 1

2
R2z2 + R3z)

∣

∣

∣

∣

R

−R

=

9800π[(
R4

4
− R4

3
− R4

2
+ R4)− (

R4

4
+

R4

3
− R4

2
− R4)] =

9800π
4R4

3
=

39200πR4

3
J;
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