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Further Applications of the Integral and Taylor Polynomials  Arc Length and Surface Area

Subsection 1

Arc Length and Surface Area

George Voutsadakis (LSSU) Calculus 11 February 2015 3/32



Further Applications of the Integral and Taylor Polynomials  Arc Length and Surface Area

Arc Length Through Polygonal Approximation

@ We develop a formula for computing the arc length s of a given curve
y = f(x) from x = a to x = b;
@ The length of a small segment ds may be approximated by the length

of the hypothenuse:
ds® = dx? + dy?

= ds? = (1 + (Z)?)dx? y
= ds = /1 + [f'(x)]?dx;

Now, we integrate from x = a to 1
x = b to obtain the entire length s:

s = /b\/l + [F(x)]?dx;

)
~
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Further Applications of the Integral and Taylor Polynomials  Arc Length and Surface Area

Example |

@ Find the arc length s of the graph f(x) = 1—12x3 + x~ 1 over [1, 3];
f’(x):%xz—l' | ‘ ‘
VIFIFGIP = 1+ G2 — %P = |
VI GeE -2 32 5+ (B -
JERP+2 32 L+ (%P -

X
(B2 + 52 =+
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Further Applications of the Integral and Taylor Polynomials  Arc Length and Surface Area

Example Il

@ Find the arc length s of the graph f(x) = cosh x over [0, a;

f'(x) = sinhx;

I+ = +1+sinh®x
Vcosh? x

= coshx;

s=/oa\/mdx=/oacoshxdx=

sinh x|§ = sinha — sinh0 = sinh a;
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Further Applications of the Integral and Taylor Polynomials  Arc Length and Surface Area

Area of Surface of Revolution

@ We develop a formula for the surface area S of the surface obtained by
rotating the graph of y = f(x) along the x-axis from x = a to x = b;

@ The amount of surface area dS of a thin truncated cone at x, with
thickness (height) dx is ”
dS =27r(x) - ds =
2rf(x) - /14 [f'(x)]?dx;
Now, we integrate from x = a to 0 1a
X = b to obtain the entire area S:

S= 27r/abf(x)\/1 + [F(x)]?dx;
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Further Applications of the Integral and Taylor Polynomials  Arc Length and Surface Area

Example |

@ Find the surface area S of a sphere of radius R;

flx) = R?2 — x2;
! _ _ X .
f'lx) = i
2 ""ymﬁ’\\ \
X .‘i)’ i
THFOE = |1+ 2 ; Jon
RZ — x2 4 x2
= R2 _ 2
—_— R -
- R2 _ 2
5=27r/ 1+ f’x2dx—27r/ — X dx =
ONEED) R R

2R X|_R =27R - 2R = 47 R?;
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Further Applications of the Integral and Taylor Polynomials  Arc Length and Surface Area

Example Il

@ Find the surface area S of the surface obtained by rotating the graph
of f(x) = x1/2 — %x3/2 about the x-axis for 1 < x < 3;

f(X) = X1/2 — %X3/2;
L+ [ = \/1 + (Ax /22 — 2. L1t b

= \/ (3x12p2 +2- 3x-1/2. %X'Lﬁ + (1x1/2)2
_ \/(%x—1/2 L2 = 12 1,172

3
5= 2r [ F0)VTF FITo =
1
3
27r/ (x 1/2 _ 1 3/2)(1 —1/2+1X1/2)dx_
27T/ [2 3X—6X2]dX—27T (2X+6X _EX ‘1 %;
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Further Applications of the Integral and Taylor Polynomials Fluid Pressure and Force

Subsection 2

Fluid Pressure and Force
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Further Applications of the Integral and Taylor Polynomials Fluid Pressure and Force

Fluid Pressure

Fluid Pressure
The pressure p at depth h in a fluid of mass density p is

p = pgh;

At each point of a certain object, pressure acts perpendicularly to the
object’s surface at that point;

@ If the pressure is constant throughout an entire surface of area A,
then the total force exerted on the surface is

Force = pressure x area = pA;
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Further Applications of the Integral and Taylor Polynomials Fluid Pressure and Force

Example |

@ Calculate the fluid force on the top and bottom of a box of dimensions
2 X 2 x5 m, submerged in a pool of water with its top 3 m below the
water surface, given that density of water is p = 103 Kg/m?3;

The pressure p; on top is pr = pghy =

103-9.8 -3 = 29,400 Pascals; There- om
fore, the downward force at the top is

given by F; = p:A; = 29,400 - 4 = 5m
117,600 Newtons; T

The pressure p, on the bottom is p, = pgh, = 10% - 9.8 - 8 = 78,400
Pascals; Therefore, the upward force on the bottom is given by
Fi = ppAp = 78,400 - 4 = 313,600 Newtons;
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Further Applications of the Integral and Taylor Polynomials Fluid Pressure and Force

Example Il

@ Calculate the fluid force on the side of the same box;
The previous method cannot be applied since pressure varies with
depth!
We first compute the elementary pressure
p(y) on a narrow strip of thickness dy at om
(almost constant) depth y from the top
of the box; p(y) = pg(3 + y); Then, the o
elementary force exerted on that narrow T
strip is dF = p(y)dA = pg(3 + y)2dy;
Now, we sum over all those elementary forces due to pressure by

dy

integrating:
5 5
F= [ re(+y)2dy 20e [ (3+y)dy =
5
2pg 3y + §y2) = 55pg = 55-10%-9.8 = 539,000 Newtons;
0
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Further Applications of the Integral and Taylor Polynomials Fluid Pressure and Force

An Important Theorem

Fluid Force on Flat Surface Submerged Vertically

The force F on a flat side of an object Liquid surface
submerged vertically in a fluid is

b
7= pg/ yf(y)dy,
a

where f(y) is the horizontal width of
the side at depth y and the object | \\
extends from depth y = a to depth v N \
y=b
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Further Applications of the Integral and Taylor Polynomials Fluid Pressure and Force

Example |

@ What is the force F on one side of an equilateral triangular plate of

side 2 m submerged vertically in a tank of oil of density p = 900
Kg/m3?

Note that the height is h?> = 2212 = |
3, i.e., h = /3; Thus, using similar y
triangles, we get @ = % = f(y) = h ‘

25y

V3 V3 V3
F = pg/ yf(y)dy = pg/ y2Bydy = 2Bpg [ y2dy =
0 B 0
=2pg =2-900-9.8 = 17,640 Newtons;

0
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Further Applications of the Integral and Taylor Polynomials Fluid Pressure and Force

Example Il

@ What is the force F on the dam that is inclined at 45°, has height
700 ft and width 1500 ft, assuming that the reservoir is full of water
whose density is 62.5 Ib/ft3?

A narrow strip at depth y from the
top, whose vertical thickness is dy has
area dA = 1500/2dy; Moreover, the
product p- g gives the weight per unit
volume of the fluid, which is pg =
62.5 Ib/ft>; Therefore, we get

700 700 700
F = ,og/ ydA = ,og/ y15002dy = 1500\/§pg/ ydy =
0 2 700 0

1500v/2 - 62.5 y?

= 15002 - 62.5 - 7% ~ 3.25 x 10° Ib;

0
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Subsection 3

Center of Mass
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Moments and Center of Mass

@ The moments of a system of n particles with coordinates (x;, yj) and
mass m; is the sum

My = miyr+ mays + -+ Myyp;
M, = mix3+ moxo+ -+ MpXp;

@ The center of mass of the system is the point (xcu, Yo ), with

coordinates
M, M,
XCM = W7 YoM = V7

where M = my + my + - -- + m,, is the total mass;
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Example

@ The center of mass of a system of three particles located at
(0,2),(3,1) and (6,4) and having masses 2,4 and 8 is found as
follows:

M=2+4+8=14; 4 5
My=2-2+4-1+8-4=A40;
My,=2-0+4-3+8-6=60;

60 30
Th = — = — —
us, xem = 7, = and ycum
40 _ 20
14 7
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Moments of Laminas (Thin Plates) |

v

@ Consider a lamina of constant mass
density p occupying the region e
under the graph of y = f(x) over \
[a, b], where f is continuous with
f(x) > 0 on [a, b]; Then, the
y-moment of the lamina is given by

/|y ="15x)

b ) y
M, = p/ xf(x)dx; : b 5
a

@ If the lamina occupies the region between the graphs of y = f;(x) and
y = f(x) over [a, b], with fi(x) > f2(x), then

b
M, = p [ )~ Bl
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Moments of Laminas (Thin Plates) Il

@ If the lamina occupies the region
between the graphs of x = gi(y)
and x = g»(y) over [c, d], with )
g1(y) > g(y). then /

d
M, = p/ ylgi1(y) — &2(y)ldy;

@ The total mass of the lamina is J
M =pA=p [ (0~ Rl orp [ (ly) - ay))dy;
a C

. : : . M
@ Finally, its center of mass is (xcn, Yo ), with xcy = Vy and
—_— MX-
yCM - M ]
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Example

Find the moments and center of mass of the lamina of uniform density p
occupying the region under y = x?, for 0 < x < 2;

2 3)2 .
M:p/x2dxsz— :8_p;
2 2
I\/lyzp/ xf(x)dxzp/ x3dx =
2 *0 0 1
P,
| = .

-1

4
’V’X—P/ [Q—W]dy—p/ (2y —y*?)dy =

p(y2 — 25|y = p(16 — 2 -32) = 12,
_M_4 _3 _I\/IX_16P/5_6.
XeM = 1 = 8p73 YCM =M = Bp/3 — 5
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Alternative Formula for M,

d
@ The formula M, = p/ ylg1(y) — g2(y)]dy requires expressing the

C
boundaries as functions of x in terms of y;

@ If that is not possible, we can still determine the x-moment;

@ If the region has boundaries f;(x) ' —
and f(x) over [a, b], with 4 h
fi(x) > f2(x), then the x-moment is
given by

b
1 I
= 5”/ (A(x)? = fa(x)*)dx; ~_ /=
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Example
Find the moments and center of mass of the lamina of uniform density p
occupying the region lying under y = e* for 1 < x < 3;

3
M:p/ exdx:pex|?:p(e3—e);
13 3
I\/lyzp/ xf(x)dxzp/ xe~dx =
1 1

3 3
p/ x(e¥) dx = p[xe*[3 — / e*dx] =
1 1

plxe]i — e¥[3] = 2p€?; :

3 3 3
_1 24, — 1 2x gy — 1 e>|7 _ 1 (1.6 1.2\ __
Mx—iplf(X)dX—Ep\/l\e dX_EpTl_Ep(Ee_Ee)_
Ipe?(e* —1);
M, _ 2 _ 2¢% _ M, _ 3P 1) e(el41),
XCM = 1 = pe(e2—1) = e2-1° YeM = v = pe(e2—1) — 4
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Using Symmetry

Symmetry Principle

If a lamina is symmetric with respect to a line, then its centroid lies on
that line.

Example: Find the centroid of a semicircle of radius 3;
732 Oprm
M=p— = —;
o =7

M, = 0; /\

3 1
5P (9x =3 )= 2p[(27 9) — (—27+9)] = 18p
M, . 18p _ 4.
XCM:Wyzo’ yCMzMW_Q,mr72_%'
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Further Applications of the Integral and Taylor Polynomials ylor Polynomials

Subsection 4

Taylor Polynomials
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Further Applications of the Integral and Taylor Polynomials  Taylor Polynomials

Taylor Polynomials

@ Recall that the linearization L(x) = f(a) + f'(a)(x — a) of a
function f(x) near a is a linear function, such that L(x) ~ f(x) for
values of x close to a;

@ In fact, this is a special case for n = 1 of the n-th Taylor polynomial
of f(x) centered at a:

/ " (n)
Ta(x) = f(a) + fl(f’)(x— ) fz(!a) (x—af 4ot l n!(a) (x—a);

Taylor Theorem

The polynomial T,(x) centered at a agrees with f(x) and all its
derivatives up to order n at x = a and it is the only polynomial of degree
at most n having this property.

no

£0) ;

@ Sometimes we use the notation T,(x) = E "(a) (x — ay;
J!

j=0
@ Moreover, note that T,(x) = Tp—1(x) + %(x —a)
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Further Applications of the Integral and Taylor Polynomials  Taylor Polynomials

Maclaurin Polynomials

@ The n-th Maclaurin polynomial is the special case of the n-th
Taylor polynomial centered at a = 0:

(0 (0 £(n) (0o
Tn(X):f(O)-F%X-I-%Xz_F..._F n!( )x";
@ Example: Find the n-th Maclaurin polynomial for f(x) = e*;

We have
fix)=eX, fl(x)=¢, f"(x)=¢ f‘(n)( ) = e,
fO)=1, f(0)=1, f£"(0)= 1,” £(n )( )= 1;
Therefore,

) = 0+ D M0 O,

= +X+§x +3 +---+mx,
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Further Applications of the Integral and Taylor Polynomials  Taylor Polynomials

Computing a Taylor Polynomial

@ Compute the Taylor polynomial T4(x) centered at a = 3 for

fx)=vx+1,

flx)=(x+1)Y2 = f(3)=2
fix)=3(x+1)72 = f(3)=
fiix) = —t(x+1)732 = f'(3)= — % r= =

f”/(X) _ %(X'F 1)—5/2 — f”’(3) % 3% _ %
FO0) = - R+ )77 = fOE)= - % 5 =~
T4(X) = @
F(3 (3 (3 f
f(3)-|——1(')(x—3)+#(x—3)2+ 3(, )(x—3)3+7(x—3)4

:2+%(X_3)_ﬁ(x_3)2+ﬁ(x_3) 20484'(X 3)%
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Further Applications of the Integral and Taylor Polynomials  Taylor Polynomials

General Formula for T,(x)

@ Find T,(x) for f(x) = Inx centered at a = 1;

f(x)=In = f(1)=0;
fllx)=% = f(1)=
flx)=-% = f(1)= -1

f”’(x) 1—3 = f"(1)=1-2
— 123 o M) = -3y
f<5)( )_ 1232 = o) =4,

A = (-1 AL — (1 - 1)
(1 1 ;
T =3 W1y = Z( D -1y

Jj=1
=(x—1) = L(x— 1)+ }(x —1)3+---+%(X—1)";
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Further Applications of the Integral and Taylor Polynomials  Taylor Polynomials

Maclaurin Series for Cosine

@ Find Tp(x) for f(x) = cos x centered at a = 0;
f(x)=cosx = f(0)=1,
f'(x)= —sinx = f'(0)=0;
f"(x)= —cosx = f"(0)= —
f(x)=sinx = f"(0)=0;
fA(x) = cosx = fA(0)=1;
fO(x) = —sinx = ®)(0)=0;

-f(z”)(x) =(-1)"cosx = f(2")( )= (-1)"

L"/2Jf(2)(0) ' L"/2J( 1),
T()_Z @y < Z(zj -

zl_%xz+ﬂx4_; 6+...;

.°_‘
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Further Applications of the Integral and Taylor Polynomials  Taylor Polynomials

Error Bound

Error Bound of Taylor Approximation

If £(n+1)(x) exists, is continuous and |f("1)(u)| < K, for u between a and

X, then Ix — a|n+1

X
F(x) = Ta(x)| < Kot
60 = Tofo)| < K2
where T,(x) is n-th Taylor polynomial centered at x = a;

@ Example: Recall that for f(x) = Inx around a =1,
n—1)!
f(")( ) ( )n 1( = ) ;

To(x) = (X—l)——(x—l) (x—1)3 -—l—(—l)"_l%(x—l)”;

Note that for 1 < x < 1.2, we have\f(”')( )| = ]w]=%§6;

So K = 6; Let us find A .
12-1 0.2

ln(1.2) — T5(1.2)] < K. : " _6 - = 0.0004,
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