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Further Applications of the Integral and Taylor Polynomials Arc Length and Surface Area

Subsection 1

Arc Length and Surface Area
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Further Applications of the Integral and Taylor Polynomials Arc Length and Surface Area

Arc Length Through Polygonal Approximation

We develop a formula for computing the arc length s of a given curve
y = f (x) from x = a to x = b;

The length of a small segment ds may be approximated by the length
of the hypothenuse:
ds2 = dx2 + dy2

⇒ ds2 = (1 + (dy
dx
)2)dx2

⇒ ds =
√

1 + [f ′(x)]2dx ;

Now, we integrate from x = a to
x = b to obtain the entire length s:

s =

∫ b

a

√

1 + [f ′(x)]2dx ;
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Further Applications of the Integral and Taylor Polynomials Arc Length and Surface Area

Example I

Find the arc length s of the graph f (x) = 1
12x

3 + x−1 over [1, 3];

f ′(x) = 1
4x

2 − 1
x2
;

√

1 + [f ′(x)]2 =
√

1 + (14x
2 − 1

x2
)2 =

√

1 + (14x
2)2 − 2 · 1

4x
2 · 1

x2
+ ( 1

x2
)2 =

√

(14x
2)2 + 2 · 1

4x
2 · 1

x2
+ ( 1

x2
)2 =

√

(14x
2 + 1

x2
)2 = 1

4x
2 + 1

x2
;

s =

∫ 3

1

√

1 + [f ′(x)]2dx =

∫ 3

1
(14x

2 + 1
x2
)dx =

( 1
12x

3 − 1
x
)
∣

∣

3

1
= (94 − 1

3)− ( 1
12 − 1) = 17

6 ;
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Further Applications of the Integral and Taylor Polynomials Arc Length and Surface Area

Example II

Find the arc length s of the graph f (x) = cosh x over [0, a];

f ′(x) = sinh x ;
√

1 + [f ′(x)]2 =
√

1 + sinh2 x

=
√
cosh2 x

= cosh x ;

s =

∫ a

0

√

1 + [f ′(x)]2dx =

∫ a

0
cosh xdx =

sinh x |a0 = sinh a − sinh 0 = sinh a;
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Further Applications of the Integral and Taylor Polynomials Arc Length and Surface Area

Area of Surface of Revolution

We develop a formula for the surface area S of the surface obtained by
rotating the graph of y = f (x) along the x-axis from x = a to x = b;

The amount of surface area dS of a thin truncated cone at x , with
thickness (height) dx is

dS = 2πr(x) · ds =
2πf (x) ·

√

1 + [f ′(x)]2dx ;

Now, we integrate from x = a to
x = b to obtain the entire area S :

S = 2π

∫ b

a

f (x)
√

1 + [f ′(x)]2dx ;
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Further Applications of the Integral and Taylor Polynomials Arc Length and Surface Area

Example I

Find the surface area S of a sphere of radius R ;

f (x) =
√
R2 − x2;

f ′(x) = − x√
R2 − x2

;

√

1 + [f ′(x)]2 =

√

1 +
x2

R2 − x2

=

√

R2 − x2 + x2

R2 − x2

=
R√

R2 − x2
;

S = 2π

∫ R

−R

f (x)
√

1 + [f ′(x)]2dx = 2π

∫ R

−R

√
R2 − x2

R√
R2 − x2

dx =

2πR x |R−R = 2πR · 2R = 4πR2;
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Further Applications of the Integral and Taylor Polynomials Arc Length and Surface Area

Example II

Find the surface area S of the surface obtained by rotating the graph
of f (x) = x1/2 − 1

3x
3/2 about the x-axis for 1 ≤ x ≤ 3;

f (x) = x1/2 − 1
3x

3/2;

f ′(x) = 1
2x

−1/2 − 1
2x

1/2;
√

1 + [f ′(x)]2 =
√

1 + (12x
−1/2)2 − 2 · 1

2x
−1/2 · 1

2x
1/2 + (12x

1/2)2

=
√

(12x
−1/2)2 + 2 · 1

2x
−1/2 · 1

2x
1/2 + (12x

1/2)2

=
√

(12x
−1/2 + 1

2x
1/2)2 = 1

2x
−1/2 + 1

2x
1/2;

S = 2π

∫ 3

1
f (x)

√

1 + [f ′(x)]2dx =

2π

∫ 3

1
(x1/2 − 1

3x
3/2)(12x

−1/2 + 1
2x

1/2)dx =

2π

∫ 3

1
[12 + 1

3x − 1
6x

2]dx = 2π (12x + 1
6x

2 − 1
18x

3)
∣

∣

3

1
= 16π

9 ;
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Further Applications of the Integral and Taylor Polynomials Fluid Pressure and Force

Subsection 2

Fluid Pressure and Force
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Further Applications of the Integral and Taylor Polynomials Fluid Pressure and Force

Fluid Pressure

Fluid Pressure

The pressure p at depth h in a fluid of mass density ρ is

p = ρgh;

At each point of a certain object, pressure acts perpendicularly to the
object’s surface at that point;

If the pressure is constant throughout an entire surface of area A,
then the total force exerted on the surface is

Force = pressure× area = pA;
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Further Applications of the Integral and Taylor Polynomials Fluid Pressure and Force

Example I

Calculate the fluid force on the top and bottom of a box of dimensions
2× 2× 5 m, submerged in a pool of water with its top 3 m below the
water surface, given that density of water is ρ = 103 Kg/m3;

The pressure pt on top is pt = ρght =
103 · 9.8 · 3 = 29, 400 Pascals; There-
fore, the downward force at the top is
given by Ft = ptAt = 29, 400 · 4 =
117, 600 Newtons;

The pressure pb on the bottom is pb = ρghb = 103 · 9.8 · 8 = 78, 400
Pascals; Therefore, the upward force on the bottom is given by
Fb = pbAb = 78, 400 · 4 = 313, 600 Newtons;

George Voutsadakis (LSSU) Calculus II February 2015 12 / 32



Further Applications of the Integral and Taylor Polynomials Fluid Pressure and Force

Example II

Calculate the fluid force on the side of the same box;
The previous method cannot be applied since pressure varies with
depth!

We first compute the elementary pressure
p(y) on a narrow strip of thickness dy at
(almost constant) depth y from the top
of the box; p(y) = ρg(3 + y); Then, the
elementary force exerted on that narrow
strip is dF = p(y)dA = ρg(3 + y)2dy ;

Now, we sum over all those elementary forces due to pressure by
integrating:

F =

∫ 5

0
ρg(3 + y)2dy = 2ρg

∫ 5

0
(3 + y)dy =

2ρg (3y +
1

2
y2)

∣

∣

∣

∣

5

0

= 55ρg = 55 · 103 · 9.8 = 539, 000 Newtons;
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Further Applications of the Integral and Taylor Polynomials Fluid Pressure and Force

An Important Theorem

Fluid Force on Flat Surface Submerged Vertically

The force F on a flat side of an object
submerged vertically in a fluid is

F = ρg

∫ b

a

yf (y)dy ,

where f (y) is the horizontal width of
the side at depth y and the object
extends from depth y = a to depth
y = b;
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Further Applications of the Integral and Taylor Polynomials Fluid Pressure and Force

Example I

What is the force F on one side of an equilateral triangular plate of
side 2 m submerged vertically in a tank of oil of density ρ = 900
Kg/m3?

Note that the height is h2 = 22−12 =
3, i.e., h =

√
3; Thus, using similar

triangles, we get f (y)
y

= 2√
3
⇒ f (y) =

2
√
3

3 y ;

F = ρg

∫

√
3

0
yf (y)dy = ρg

∫

√
3

0
y 2

√
3

3 ydy = 2
√
3

3 ρg

∫

√
3

0
y2dy =

2
√
3

3 ρg
y3

3

∣

∣

∣

∣

√
3

0

= 2ρg = 2 · 900 · 9.8 = 17, 640 Newtons;

George Voutsadakis (LSSU) Calculus II February 2015 15 / 32



Further Applications of the Integral and Taylor Polynomials Fluid Pressure and Force

Example II

What is the force F on the dam that is inclined at 45◦, has height
700 ft and width 1500 ft, assuming that the reservoir is full of water
whose density is 62.5 lb/ft3?

A narrow strip at depth y from the
top, whose vertical thickness is dy has
area dA = 1500

√
2dy ; Moreover, the

product ρ ·g gives the weight per unit
volume of the fluid, which is ρg =
62.5 lb/ft3; Therefore, we get

F = ρg

∫ 700

0
ydA = ρg

∫ 700

0
y1500

√
2dy = 1500

√
2ρg

∫ 700

0
ydy =

1500
√
2 · 62.5 y2

2

∣

∣

∣

∣

700

0

= 1500
√
2 · 62.5 · 7002

2 ≈ 3.25 × 1010 lb;
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Subsection 3

Center of Mass
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Moments and Center of Mass

The moments of a system of n particles with coordinates (xj , yj) and
mass mj is the sum

Mx = m1y1 +m2y2 + · · · +mnyn;
My = m1x1 +m2x2 + · · · +mnxn;

The center of mass of the system is the point (xCM, yCM), with
coordinates

xCM =
My

M
, yCM =

Mx

M
,

where M = m1 +m2 + · · ·+mn is the total mass;
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Example

The center of mass of a system of three particles located at
(0, 2), (3, 1) and (6, 4) and having masses 2, 4 and 8 is found as
follows:

M = 2 + 4 + 8 = 14;
Mx = 2 · 2 + 4 · 1 + 8 · 4 = 40;
My = 2 · 0 + 4 · 3 + 8 · 6 = 60;

Thus, xCM =
60

14
=

30

7
and yCM =

40

14
=

20

7
;
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Moments of Laminas (Thin Plates) I

Consider a lamina of constant mass
density ρ occupying the region
under the graph of y = f (x) over
[a, b], where f is continuous with
f (x) ≥ 0 on [a, b]; Then, the
y -moment of the lamina is given by

My = ρ

∫ b

a

xf (x)dx ;

If the lamina occupies the region between the graphs of y = f1(x) and
y = f2(x) over [a, b], with f1(x) ≥ f2(x), then

My = ρ

∫ b

a

x [f1(x)− f2(x)]dx ;
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Moments of Laminas (Thin Plates) II

If the lamina occupies the region
between the graphs of x = g1(y)
and x = g2(y) over [c , d ], with
g1(y) ≥ g2(y), then

Mx = ρ

∫ d

c

y [g1(y)− g2(y)]dy ;

The total mass of the lamina is

M = ρA = ρ

∫ b

a

(f1(x)− f2(x))dx or ρ

∫ d

c

(g1(y)− g2(y))dy ;

Finally, its center of mass is (xCM, yCM), with xCM =
My

M
and

yCM =
Mx

M
;
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Example
Find the moments and center of mass of the lamina of uniform density ρ

occupying the region under y = x2, for 0 ≤ x ≤ 2;

M = ρ

∫ 2

1
x2dx = ρ

x3

3

∣

∣

∣

∣

2

0

=
8ρ

3
;

My = ρ

∫ 2

0
xf (x)dx = ρ

∫ 2

0
x3dx =

ρ
x4

4

∣

∣

∣

∣

2

0

= 4ρ;

Mx = ρ

∫ 4

0
y [2−√

y ]dy = ρ

∫ 4

0
(2y − y3/2)dy =

ρ (y2 − 2
5y

5/2)
∣

∣

4

0
= ρ(16− 2

5 · 32) = 16ρ
5 ;

xCM =
My

M
= 4ρ

8ρ/3 = 3
2 , yCM = Mx

M
= 16ρ/5

8ρ/3 = 6
5 ;
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Alternative Formula for Mx

The formula Mx = ρ

∫ d

c

y [g1(y)− g2(y)]dy requires expressing the

boundaries as functions of x in terms of y ;

If that is not possible, we can still determine the x-moment;

If the region has boundaries f1(x)
and f2(x) over [a, b], with
f1(x) ≥ f2(x), then the x-moment is
given by

Mx =
1

2
ρ

∫ b

a

(f1(x)
2 − f2(x)

2)dx ;
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Example
Find the moments and center of mass of the lamina of uniform density ρ

occupying the region lying under y = ex for 1 ≤ x ≤ 3;

M = ρ

∫ 3

1
exdx = ρ ex |31 = ρ(e3 − e);

My = ρ

∫ 3

1
xf (x)dx = ρ

∫ 3

1
xexdx =

ρ

∫ 3

1
x(ex )′dx = ρ[xex |31 −

∫ 3

1
exdx ] =

ρ[xex |31 − ex |31] = 2ρe3;

Mx = 1
2ρ

∫ 3

1
f (x)2dx = 1

2ρ

∫ 3

1
e2xdx = 1

2ρ
e2x

2

∣

∣

∣

3

1
= 1

2ρ(
1
2e

6 − 1
2e

2) =

1
4ρe

2(e4 − 1);

xCM =
My

M
= 2ρe3

ρe(e2−1)
= 2e2

e2−1
, yCM = Mx

M
=

1
4
ρe2(e4−1)

ρe(e2−1)
= e(e2+1)

4 ;
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Further Applications of the Integral and Taylor Polynomials Center of Mass

Using Symmetry

Symmetry Principle

If a lamina is symmetric with respect to a line, then its centroid lies on
that line.

Example: Find the centroid of a semicircle of radius 3;

M = ρ
π32

2
=

9ρπ

2
;

My = 0;

Mx =
1

2
ρ

∫ 3

−3
(
√
9− x2)2dx =

1

2
ρ

∫ 3

−3
(9− x2)dx =

1

2
ρ (9x − 1

3x
3)
∣

∣

3

−3
=

1

2
ρ[(27 − 9)− (−27 + 9)] = 18ρ

xCM =
My

M
= 0, yCM = Mx

M
= 18ρ

9ρπ/2 = 4
π ;
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Further Applications of the Integral and Taylor Polynomials Taylor Polynomials

Subsection 4

Taylor Polynomials
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Further Applications of the Integral and Taylor Polynomials Taylor Polynomials

Taylor Polynomials

Recall that the linearization L(x) = f (a) + f ′(a)(x − a) of a
function f (x) near a is a linear function, such that L(x) ≈ f (x) for
values of x close to a;

In fact, this is a special case for n = 1 of the n-th Taylor polynomial

of f (x) centered at a:

Tn(x) = f (a) +
f ′(a)
1!

(x − a) +
f ′′(a)
2!

(x − a)2 + · · ·+ f (n)(a)

n!
(x − a)n;

Taylor Theorem

The polynomial Tn(x) centered at a agrees with f (x) and all its
derivatives up to order n at x = a and it is the only polynomial of degree
at most n having this property.

Sometimes we use the notation Tn(x) =
n

∑

j=0

f (j)(a)

j!
(x − a)j ;

Moreover, note that Tn(x) = Tn−1(x) +
f (n)(a)

n! (x − a)n;
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Further Applications of the Integral and Taylor Polynomials Taylor Polynomials

Maclaurin Polynomials

The n-th Maclaurin polynomial is the special case of the n-th
Taylor polynomial centered at a = 0:

Tn(x) = f (0) +
f ′(0)
1!

x +
f ′′(0)
2!

x2 + · · · + f (n)(0)

n!
xn;

Example: Find the n-th Maclaurin polynomial for f (x) = ex ;
We have

f (x) = ex , f ′(x) = ex , f ′′(x) = ex , . . . , f (n)(x) = ex ;

f (0) = 1, f ′(0) = 1, f ′′(0) = 1, . . . , f (n)(0) = 1;

Therefore,

Tn(x) = f (0) +
f ′(0)
1!

x +
f ′′(0)
2!

x2 + · · ·+ f (n)(0)

n!
xn

= 1 + x +
1

2!
x2 +

1

3!
x3 + · · · + 1

n!
xn;
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Further Applications of the Integral and Taylor Polynomials Taylor Polynomials

Computing a Taylor Polynomial

Compute the Taylor polynomial T4(x) centered at a = 3 for
f (x) =

√
x + 1;

f (x) = (x + 1)1/2 ⇒ f (3) = 2

f ′(x) = 1
2 (x + 1)−1/2 ⇒ f ′(3) = 1

2 · 1
2 = 1

4

f ′′(x) = − 1
4(x + 1)−3/2 ⇒ f ′′(3) = − 1

4 · 1
8 = − 1

32

f ′′′(x) = 3
8(x + 1)−5/2 ⇒ f ′′′(3) = 3

8 · 1
32 = 3

256

f (4)(x) = − 15
16(x + 1)−7/2 ⇒ f (4)(3) = − 15

16 · 1
128 = − 15

2048

T4(x) =

f (3) +
f ′(3)
1!

(x − 3) +
f ′′(3)
2!

(x − 3)2 +
f ′′′(3)
3!

(x − 3)3 +
f (4)

4!
(x − 3)4

= 2 + 1
4 (x − 3)− 1

32·2! (x − 3)2 + 3
256·3! (x − 3)3 − 15

2048·4! (x − 3)4;
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Further Applications of the Integral and Taylor Polynomials Taylor Polynomials

General Formula for Tn(x)

Find Tn(x) for f (x) = ln x centered at a = 1;

f (x) = ln x ⇒ f (1) = 0;

f ′(x) = 1
x

⇒ f ′(1) = 1;
f ′′(x) = − 1

x2
⇒ f ′′(1) = − 1;

f ′′′(x) = 1·2
x3

⇒ f ′′′(1) = 1 · 2;
f (4)(x) = − 1·2·3

x4
⇒ f (4)(1) = − 3!;

f (5)(x) = 1·2·3·4
x5

⇒ f (5)(1) = 4!;
...

f (n)(x) = (−1)n−1 (n−1)!
xn

⇒ f (n)(1) = (−1)n−1(n − 1)!;

Tn(x) =
n

∑

j=1

f (j)(1)

j!
(x − 1)j =

n
∑

j=1

(−1)j−1

j
(x − 1)j

= (x − 1)− 1
2(x − 1)2 + 1

3 (x − 1)3 + · · ·+ (−1)n−1

n
(x − 1)n;
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Further Applications of the Integral and Taylor Polynomials Taylor Polynomials

Maclaurin Series for Cosine

Find Tn(x) for f (x) = cos x centered at a = 0;

f (x) = cos x ⇒ f (0) = 1;
f ′(x) = − sin x ⇒ f ′(0) = 0;
f ′′(x) = − cos x ⇒ f ′′(0) = − 1;
f ′′′(x) = sin x ⇒ f ′′′(0) = 0;

f (4)(x) = cos x ⇒ f (4)(0) = 1;

f (5)(x) = − sin x ⇒ f (5)(0) = 0;
...

f (2n)(x) = (−1)n cos x ⇒ f (2n)(0) = (−1)n;

Tn(x) =

⌊n/2⌋
∑

j=0

f (2j)(0)

(2j)!
x2j =

⌊n/2⌋
∑

j=0

(−1)j

(2j)!
x2j

= 1− 1
2x

2 + 1
4!x

4 − 1
6!x

6 + · · · ;
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Further Applications of the Integral and Taylor Polynomials Taylor Polynomials

Error Bound

Error Bound of Taylor Approximation

If f (n+1)(x) exists, is continuous and |f (n+1)(u)| ≤ K , for u between a and
x , then

|f (x)− Tn(x)| ≤ K
|x − a|n+1

(n + 1)!
where Tn(x) is n-th Taylor polynomial centered at x = a;

Example: Recall that for f (x) = ln x around a = 1,

f (n)(x) = (−1)n−1 (n − 1)!

xn
;

Tn(x) = (x − 1)− 1

2
(x − 1)2 +

1

3
(x − 1)3 − · · ·+ (−1)n−1 1

n
(x − 1)n;

Note that for 1 ≤ x ≤ 1.2, we have |f (4)(x)| = | (−1)3·3!
x4

| = 6
x4

≤ 6;
So K = 6; Let us find

| ln (1.2) − T3(1.2)| ≤ K
|1.2− 1|4

4!
= 6

0.24

4!
= 0.0004;

George Voutsadakis (LSSU) Calculus II February 2015 32 / 32


	Further Applications of the Integral and Taylor Polynomials
	Arc Length and Surface Area
	Fluid Pressure and Force
	Center of Mass
	Taylor Polynomials


