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Differential Equations and Solutions

o A differential equation is one that involves a function y = f(x) and
its first or higher derivatives; An example is y' = —2y;

@ A solution is a function that satisfies the given equation; For example,
y = Ce=* is a solution of the differential equation given above;

@ Because it contains one or more unspecified constants, it is called a
general solution;

@ For each specific value of C we obtain a particular solution;

@ The order of a differential equation is the order of the highest
derivative appearing;

o A differential equation is linear if it is of form

an(x)y(" + ap1 ("D 4+ ar(x)y’ + ao(x)y = b(x);

@ Another example is % = t with general solution y = %tz + C; Yet

another example is y” + y = 0 with general solution
y = Asinx + B cos x;
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Examples Regarding Order and Linearity

Diff. Equation  Order Linear/Non-Linear

X2y’ + e*y =4 First-Order Linear
X(y')2 =y +x First-Order Non-Linear
y” = (sinx)y’  Second-Order Linear

/)

y" = x(siny)  Third-Order  Non-Linear
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Separation of Variables

@ A simple differential equation of the form y’ = f(x) has as its general
solution y = /f(x)dx;
@ A differential equation is called separable if it has the form

& 0080

For mstance = (sin x)y is separable, but dy = X+ y is not;

@ Separable equatlons can be solved using the method of separation
of variables:

L~ 1(ely) = sy = Faax = [y = [

Then, try to solve for y;
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Applying Separation of Variables

: : . . : d
@ Find the general solution of the differential equation yd—y —x=0;
X

10

dy
ya—x—o
dy _
de : .
= ydy = xdx
= [ydy = [ xdx
= %y2 = %x2+c
= y’=x>+C (C=20) '
= y==xVx2+C
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An Initial Value Problem

@ Solve the initial value problem

y'=—ty, y(0)=3;

d 1
—y=—ty = —dy = —tdt
dt ) 3%
= /—dyz/—tdt = In]y\z—%tz—i-c
y
= |yl= e~ 3t = gfe3t’
1t2

= y=*+ee 2
= y=Ce 2%
Since y(0) = 3, we get 3 = Ce® = C; Therefore, the particular
solution of the initial value problem is

y(t) = 3e 3t
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Emptying Tank and Torricelli's Law

Consider a tank full of water that is slowly
emptying through a hole of area B at its
bottom; Suppose that at time ¢, the water
level is y and A(y) is the area of the hori-
zontal cross section of the tank at height y;
Let v(y) be the velocity of the water flowing
through the hole when the tank is filled to

height y;
Then, the water lost between time t and time t + dt is
dy _ Bv(y)
A(y)dy = B dt — = :
(y)dy = Bv(y)dt = — Aly)

Torricelli's Law for Velocity v(y)

The velocity of the water leaving the tank when it is
filled to height y is v(y) = —+/2gy, where g = 9.8
m /sec?;

George Voutsadakis (LSSU) Calculus 11 February 2015 9 /28



Introduction to Differential Equations Solving Differential Equations

Application: Torricelli's Law

A cylindrical tank of height 4 m and radius 1 m is filled  mo
with water; Water drains through a square hole of side ~——
2 cm in the bottom; Determine the water level y(t) at m
time t seconds;
dy _Bvly) B2y <>
dt A(y) 2A(y) 0]
dy 0.02)y/2-9.8 -y =
N ? _ ( )77 = _ _ 4\/19.7? 10 sy =
= d_}; = K,/y, where K = —2/19.010~ 19'7?'1074;

1
/Wdy:/Kdt = 2)y=Kt+c = Jy=3iKt+C
= y(t) = (3Kt + C)%
Since y(0) = 4, we get C = 2; Therefore, y(t) = (2 — 27”9'7?'10_4 t)%
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Rate of Change of y Proportional to Amount y — b

dy
A Y — k(y — b);
® Assume - (y — b);

= o =kt

/—dy /kdt

In(y — b) = kt +c (assuming y > b)
y — b= ekt+c c Jkt

= e‘e
y = b+ Ce;

L S
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Newton's Law of Cooling

Newton's Law of Cooling

The rate of cooling (change of temperature) % is proportional to the

temperature difference y — Tp of y from the ambient temperature Tp:
& = —k(y — To);

Example: A hot metal bar with cooling constant k = 2.1 min~! is
submerged in a tank of water held at temperature Ty = 10°C. Let y(t) be
the bar's temperature at time t minutes;

@ Write a differential equation for y and find its general solution;

ﬂ - 1( ~ 10

= —2.1dt

10 /—2.1dt = In(y —10)= 2.1t + ¢
= y— 10 —e —2.1t+c _ ece—2.1t = y= 10 + Ce_2'1t;
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Newton's Law of Cooling (Cont'd)

We found that
y(t) = 10+ Ce1t;

@ What is y(t) given that the initial temperature was 180°C?
y(0) =180 = 10+ C -1 = 180 = C = 170;
Therefore, y(t) = 10 + 170e~21¢;
@ What is y(t) if the bar cooled to 80°C in 30 seconds? What was its
initial temperature?
y(05) =80= 10+ Ce 2105 =80 = Ce 10 =70= C =
70e1%5 ~ 200;
Therefore, y(t) = 10 + 200e~21¢;
Thus, we get y(0) = 10 + 200 - e=210 = 210°C.
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Object in Free Fall

@ The force F on an object of mass m in free fall with velocity v(t) is

~——

gravity friction

F= - — kv;
mg v

@ By Newton's Law of Motion: F = ma = mdv

dt
@ So, we get
dv dv k mg
= —mg — k —_ = e .
g = mE k= = vE )
o If we set Kzﬁand b= —T&, we get
dv

= K(v—b) = v=b+ Ce K,

o Thus, v(t) = —% + Cemmt,
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Skydiver in Free Fall

Models Involving y’ = k(y — b)

A 60 Kg skydiver steps out of an airplane;
Her k = 6 Kg/sec;

@ Find an equation for her velocity v(t);

v(t) = — T 4 Cemt =

= v(t) = —98 + Ce 01t;
But v(0) =0, whence 0 = —98 + C = C = 98; Therefore
v(t) = 98e %1t — 0g;
@ What is her terminal velocity?

vi = lim v(t) = lim (98e7%1f —98) = — 98 m/sec;
t—o0 t—o0
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Annuities with Continuous Interest and Withdrawal

@ Suppose P(t) is the balance of an annuity which earns interest rate r
compounded continuously and from which money is withdrawn

continuously at rate N; Then
dP
— =P - N
dt —— ~—
~ growth rate withdrawal rate
rate of change

@ Thus,
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Example: Annuities

@ An annuity earns interest rate 0.07 and withdrawals are made
continuously at a rate of $500/year; If the initial deposit is $5,000,
when will the annuity run out of money?

prey= M 4 cort — 5000

o7 G 1143 + CeT,
r

Since P(0) = 5000, we get 5000 = 7143 + Ce® = C = —2143; Thus,

P(t) = 7143 — 2143207,

We set
P(t) = 0 = 2143097t = 7143

7143 100 In 7143 17:

0.07t __
=€ =13 7 t= 2143
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The Logistic Equation

@ Population growth is sometimes modeled by the logistic equation

d
A ky(1 — Z), A a constant capacity;

dt A
dy = kdt = /( )dy /kdt
y(1—%) y y-A
= Inly| ~In|ly —Al=kt+ ¢ = In|-> ‘:kt-l—c
y—A
‘y_LA‘_ecekt = y_LA:iecekt
= y{ =Celt = y=(y— A)Cel
ACekt A
kt\ _ kt . . ;
= y(1—- Ce") = —-ACe"t = y—Cekt—l_]__%e—kt'
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An Example of a Logistic Equation

o Solve d—); = 0.3y(4 — y) with initial condition y(0) = 1;

= 12y(1- %); Thus, k = 1.2
and A = 4; So the general solution is

d d
Note that d_}; =03y(4—y) = 4

y(t) A .

=1 _ 1.k {_1.-12t
1-¢ze 1-ze

Sincey(0)=1,weget1=1_l:>1_%=

4= C= —%; Hence,
C
the particular solution sought is

() = e
= T 3e 12t
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An Application: Deer Population

@ A deer population grows logistically with growth constant k = 0.4
=il
year

in a forest with carrying capacity A = 1000 deer;
o Find the population P(t) if P(0) = 100;

A 1000

P(t) = = ;

(t) 1_.ée—H 1—-%6*0“
1000

Since P(0) =100, we get 100 = —F = 1—- 2 =10= C=—g;
e
1
Therefore, P(t) = 000

1+ e 04t
o How long does it take for the population to reach 5007

1000
P(t)=500 = — - —500 = 1+9e 04 =2
14 9e—04t
= e 04t — % = —0.4t=In % = = g In9 ~ 5.5 years;
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First-Order Linear Differential Equations

o A first-order linear equation has the form

a(x)y’ + b(x)y = c(x), a(x) #0;
@ By dividing by a(x) we write it in standard form:
y'+ Ax)y = B(x)
@ To solve, multiply both sides by an integrating factor a Al
efA(x)dx(y/ +A(x)y) _ efA(x)de(X);
Note that, by the product rule,
(efA(x)dxy)/ _ (efA(X)dX)/y + efA(x)dxy/ _ efA(x)dx(f A(X)dX)/y +
efA(x)dxyI — efA(x)dxA(X)y + e,fA(x)dxy/ _ efA(x)dx(y/ + A(X)y),
Thus, we get
(efA(x)dxy)/ _ efA(x)de(X) — efA(x)dxy _ /efA(x)de(X)dX +C

1
- y=—"_ J AKX B (x)dx + (_‘] ;
Y eJ Alx)dx |:/e (X) X
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Applying the Integrating Factor Method |

@ Solve the linear differential equation
xy' =3y =x*, y(1)=2;

2

3
xy! =3y = x* = y’—;yzx;

Alx) = — é, B(x) = x;
X
Oé(X) _ efA(X)dX _ ef—édx — e 3Inx _ eln(x*3) _ %;

VZﬁ[/a(x dx-l—C] [ —xdx+2‘]:

3| [xraerc| = (14 €)= s 00

Since y(1)=2,2=-12+C-13=C=3;
Therefore, y = —x2 4+ 3x3:
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Applying the Integrating Factor Method I

@ Solve the linear differential equation

Y+ —-xNy=x% y1)=2
A =1-x71, Bl)=x%
a(x) = ef (1=xMdx — gx—lnx _ e?nx = Lex;
= ﬁ [/a(x)B(x)dX + c} — s [/%exx2dx-|— c} _

xe ™% [/xexdx + C] P xe X (xeX — & + C) =
x2 — x + Cxe™™;

Since y(1) =2,2=12-1+C-1-e7 1 = C = 2¢

Therefore, y = x2 — x + 2exe™:
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Application: Mixing

A tank contains 600 liters of water with a sucrose —
concentration of 0.2 kg/L. We begin adding water Jﬁ “
with concentration 0.1 kg/L at a rate of Ry, = 40 [
L/min. The water mixes and exits the bottom of [ \ —
the tank at a rate of Ryyy = 20 L/min. If y(t) is N

the quantity of sucrose in the tank at time t, set up

a differential equation for y(t) and solve it for y(t); B e

ar _ (0.1 kg/L)(40 L/min) — (—2—— kg/L)(20 L/min)

dt - > 600 + 20t 5
Rate In Rat:Out
d d
Therefore, we get d_); =4 — t-lf/30 = d_}; + o 3Oy = 4, showing that
we have a linear equation, with A(t) = 7130 and B(t) = 4;
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Mixing (Cont'd)

dy+ 1 »
dt " t+307

Alt) = ——
(&) t+30°
So a(t) = el w9t = eIn(t+30) — ¢ | 30 Hence

) = i[/a(t)B(t)dHc]

o(t)
_ t+130 [/4(t—|—30)dt+ C]
= t+130(2(t+3o) +C) =2t 60+ ——
Since y(0) = 120, we get 120 = 60 + & = C = 1800;
Therefore y(t) = 2t + 60 + liO??O
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