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Introduction to Differential Equations Solving Differential Equations

Differential Equations and Solutions

A differential equation is one that involves a function y = f (x) and
its first or higher derivatives; An example is y ′ = −2y ;

A solution is a function that satisfies the given equation; For example,
y = Ce−2x is a solution of the differential equation given above;

Because it contains one or more unspecified constants, it is called a
general solution;

For each specific value of C we obtain a particular solution;

The order of a differential equation is the order of the highest
derivative appearing;

A differential equation is linear if it is of form

an(x)y
(n) + an−1(x)y

(n−1) + · · · + a1(x)y
′ + a0(x)y = b(x);

Another example is dy
dt

= t with general solution y = 1
2t

2 + C ; Yet
another example is y ′′ + y = 0 with general solution
y = A sin x + B cos x ;
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Examples Regarding Order and Linearity

Diff. Equation Order Linear/Non-Linear

x2y ′ + exy = 4 First-Order Linear

x(y ′)2 = y + x First-Order Non-Linear

y ′′ = (sin x)y ′ Second-Order Linear

y ′′′ = x(sin y) Third-Order Non-Linear

George Voutsadakis (LSSU) Calculus II February 2015 5 / 28



Introduction to Differential Equations Solving Differential Equations

Separation of Variables

A simple differential equation of the form y ′ = f (x) has as its general

solution y =

∫

f (x)dx ;

A differential equation is called separable if it has the form

dy

dx
= f (x)g(y);

For instance dy
dx

= (sin x)y is separable, but dy
dx

= x + y is not;

Separable equations can be solved using the method of separation

of variables:

dy

dx
= f (x)g(y) ⇒ 1

g(y)
dy = f (x)dx ⇒

∫
1

g(y)
dy =

∫

f (x)dx ;

Then, try to solve for y ;
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Applying Separation of Variables

Find the general solution of the differential equation y
dy

dx
− x = 0;

y
dy

dx
− x = 0

⇒ y
dy

dx
= x

⇒ ydy = xdx

⇒
∫
ydy =

∫
xdx

⇒ 1
2y

2 = 1
2x

2 + c

⇒ y2 = x2 + C (C = 2c)

⇒ y = ±
√
x2 + C ;
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An Initial Value Problem

Solve the initial value problem

y ′ = −ty , y(0) = 3;

dy

dt
= −ty ⇒ 1

y
dy = −tdt

⇒
∫

1

y
dy =

∫

−tdt ⇒ ln |y | = −1
2t

2 + c

⇒ |y | = e−
1
2
t2+c = ece−

1
2
t2

⇒ y = ±ece−
1
2
t2

⇒ y = Ce−
1
2
t2 ;

Since y(0) = 3, we get 3 = Ce0 = C ; Therefore, the particular
solution of the initial value problem is

y(t) = 3e−
1
2
t2 ;
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Emptying Tank and Torricelli’s Law

Consider a tank full of water that is slowly
emptying through a hole of area B at its
bottom; Suppose that at time t, the water
level is y and A(y) is the area of the hori-
zontal cross section of the tank at height y ;
Let v(y) be the velocity of the water flowing
through the hole when the tank is filled to
height y ;
Then, the water lost between time t and time t + dt is

A(y)dy = Bv(y)dt ⇒ dy

dt
=

Bv(y)

A(y)
;

Torricelli’s Law for Velocity v(y)

The velocity of the water leaving the tank when it is
filled to height y is v(y) = −√

2gy , where g = 9.8
m/sec2;
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Application: Torricelli’s Law

A cylindrical tank of height 4 m and radius 1 m is filled
with water; Water drains through a square hole of side
2 cm in the bottom; Determine the water level y(t) at
time t seconds;
dy

dt
=

Bv(y)

A(y)
= − B

√
2gy

A(y)

⇒ dy

dt
= −(0.02)2

√
2 · 9.8 · y

π · 12 = − 4
√
19.6·10−4

π

√
y

⇒ dy

dt
= K

√
y , where K = −4

√
19.6·10−4

π
;

∫
1√
y
dy =

∫

Kdt ⇒ 2
√
y = Kt + c ⇒ √

y = 1
2Kt + C

⇒ y(t) = (12Kt + C )2;

Since y(0) = 4, we get C = 2; Therefore, y(t) = (2− 2
√
19.6·10−4

π
t)2;
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Rate of Change of y Proportional to Amount y − b

Assume
dy

dt
= k(y − b);

dy

dt
= k(y − b)

⇒ 1

y − b
dy = kdt

⇒
∫

1

y − b
dy =

∫

kdt

⇒ ln (y − b) = kt + c (assuming y ≥ b)

⇒ y − b = ekt+c = ecekt

⇒ y = b + Cekt ;
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Newton’s Law of Cooling

Newton’s Law of Cooling

The rate of cooling (change of temperature) dy
dt

is proportional to the
temperature difference y − T0 of y from the ambient temperature T0:
dy
dt

= −k(y − T0);

Example: A hot metal bar with cooling constant k = 2.1 min−1 is
submerged in a tank of water held at temperature T0 = 10◦C. Let y(t) be
the bar’s temperature at time t minutes;

Write a differential equation for y and find its general solution;

dy

dt
= −2.1(y − 10) ⇒ 1

y − 10
dy = −2.1dt

⇒
∫

1

y − 10
dy =

∫

−2.1dt ⇒ ln (y − 10) = −2.1t + c

⇒ y − 10 = e−2.1t+c = ece−2.1t ⇒ y = 10 + Ce−2.1t ;
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Newton’s Law of Cooling (Cont’d)

We found that
y(t) = 10 + Ce−2.1t ;

What is y(t) given that the initial temperature was 180◦C?
y(0) = 180 ⇒ 10 + C · 1 = 180 ⇒ C = 170;
Therefore, y(t) = 10 + 170e−2.1t ;

What is y(t) if the bar cooled to 80◦C in 30 seconds? What was its
initial temperature?
y(0.5) = 80 ⇒ 10 + Ce−2.1·0.5 = 80 ⇒ Ce−1.05 = 70 ⇒ C =
70e1.05 ≈ 200;
Therefore, y(t) = 10 + 200e−2.1t ;
Thus, we get y(0) = 10 + 200 · e−2.1·0 = 210◦C.
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Object in Free Fall

The force F on an object of mass m in free fall with velocity v(t) is

F = −mg
︸ ︷︷ ︸
gravity

− kv ;
︸ ︷︷ ︸
friction

By Newton’s Law of Motion: F = ma = m
dv

dt
;

So, we get

m
dv

dt
= −mg − kv ⇒ dv

dt
= − k

m
(v +

mg

k
);

If we set K = k
m

and b = −mg
k
, we get

dv

dt
= −K (v − b) ⇒ v = b + Ce−Kt ;

Thus, v(t) = −mg

k
+ Ce−

k
m
t
.
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Skydiver in Free Fall

A 60 Kg skydiver steps out of an airplane;
Her k = 6 Kg/sec;

Find an equation for her velocity v(t);

v(t) = −mg
k

+ Ce−
k
m
t =

− 60·9.8
6 + Ce−

6
60
t

⇒ v(t) = −98 + Ce−0.1t ;

But v(0) = 0, whence 0 = −98 + C ⇒ C = 98; Therefore

v(t) = 98e−0.1t − 98;

What is her terminal velocity?

vt = lim
t→∞

v(t) = lim
t→∞

(98e−0.1t − 98) = − 98 m/sec;
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Annuities with Continuous Interest and Withdrawal

Suppose P(t) is the balance of an annuity which earns interest rate r

compounded continuously and from which money is withdrawn
continuously at rate N; Then

dP

dt
︸︷︷︸

rate of change

= rP(t)
︸ ︷︷ ︸

growth rate

− N;
︸︷︷︸

withdrawal rate

Thus,
dP

dt
= r(P − N

r
)

⇒ P(t) =
N

r
+ Cert ;
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Example: Annuities

An annuity earns interest rate 0.07 and withdrawals are made
continuously at a rate of $500/year; If the initial deposit is $5,000,
when will the annuity run out of money?

P(t) =
N

r
+ Cert =

5000

0.07
+ Ce0.07t ≈ 7143 + Ce0.07t ;

Since P(0) = 5000, we get 5000 = 7143 + Ce0 ⇒ C = −2143; Thus,

P(t) = 7143 − 2143e0.07t .

We set
P(t) = 0 ⇒ 2143e0.07t = 7143

⇒ e0.07t = 7143
2143 ⇒ t = 100

7 ln 7143
2143 ≈ 17;
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The Logistic Equation

George Voutsadakis (LSSU) Calculus II February 2015 19 / 28



Introduction to Differential Equations The Logistic Equation

The Logistic Equation

Population growth is sometimes modeled by the logistic equation

dy

dt
= ky(1− y

A
), A a constant capacity;

dy

y(1− y
A
)
= kdt ⇒

∫ (
1

y
− 1

y − A

)

dy =

∫

kdt

⇒ ln |y | − ln |y − A| = kt + c ⇒ ln

∣
∣
∣
∣

y

y − A

∣
∣
∣
∣
= kt + c

⇒
∣
∣
∣
∣

y

y − A

∣
∣
∣
∣
= ecekt ⇒ y

y − A
= ±ecekt

⇒ y

y − A
= Cekt ⇒ y = (y − A)Cekt

⇒ y(1− Cekt) = −ACekt ⇒ y =
ACekt

Cekt − 1
=

A

1− 1
C
e−kt

;
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Introduction to Differential Equations The Logistic Equation

An Example of a Logistic Equation

Solve
dy

dt
= 0.3y(4 − y) with initial condition y(0) = 1;

Note that
dy

dt
= 0.3y(4 − y) ⇒ dy

dt
= 1.2y(1 − y

4
); Thus, k = 1.2

and A = 4; So the general solution is

y(t) =
A

1− 1
C
e−kt

=
4

1− 1
C
e−1.2t

;

Since y(0) = 1, we get 1 =
4

1− 1
C

⇒ 1− 1
C
= 4 ⇒ C = −1

3 ; Hence,

the particular solution sought is

y(t) =
4

1 + 3e−1.2t
;
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Introduction to Differential Equations The Logistic Equation

An Application: Deer Population

A deer population grows logistically with growth constant k = 0.4
year−1 in a forest with carrying capacity A = 1000 deer;

Find the population P(t) if P(0) = 100;

P(t) =
A

1− 1
C
e−kt

=
1000

1− 1
C
e−0.4t

;

Since P(0) = 100, we get 100 =
1000

1− 1
C

⇒ 1− 1
C
= 10 ⇒ C = − 1

9 ;

Therefore, P(t) =
1000

1 + 9e−0.4t
;

How long does it take for the population to reach 500?

P(t) = 500 ⇒ 1000

1 + 9e−0.4t
= 500 ⇒ 1 + 9e−0.4t = 2

⇒ e−0.4t = 1
9 ⇒ −0.4t = ln 1

9 ⇒ t = 5
2 ln 9 ≈ 5.5 years;
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First-Order Linear Differential Equations

A first-order linear equation has the form

a(x)y ′ + b(x)y = c(x), a(x) 6= 0;

By dividing by a(x) we write it in standard form:

y ′ + A(x)y = B(x);

To solve, multiply both sides by an integrating factor e
∫
A(x)dx :

e
∫
A(x)dx (y ′ + A(x)y) = e

∫
A(x)dxB(x);

Note that, by the product rule,
(e

∫
A(x)dxy)′ = (e

∫
A(x)dx)′y + e

∫
A(x)dxy ′ = e

∫
A(x)dx(

∫
A(x)dx)′y +

e
∫
A(x)dxy ′ = e

∫
A(x)dxA(x)y + e

∫
A(x)dxy ′ = e

∫
A(x)dx (y ′ + A(x)y);

Thus, we get

(e
∫
A(x)dxy)′ = e

∫
A(x)dxB(x) ⇒ e

∫
A(x)dxy =

∫

e
∫
A(x)dxB(x)dx + C

⇒ y =
1

e
∫
A(x)dx

[∫

e
∫
A(x)dxB(x)dx + C

]

;
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Applying the Integrating Factor Method I

Solve the linear differential equation

xy ′ − 3y = x2, y(1) = 2;

xy ′ − 3y = x2 ⇒ y ′ − 3

x
y = x ;

A(x) = − 3

x
, B(x) = x ;

α(x) = e
∫
A(x)dx = e

∫
− 3

x
dx = e−3 ln x = e ln (x

−3) = 1
x3
;

y =
1

α(x)

[∫

α(x)B(x)dx + C

]

= x3
[∫

1

x3
xdx + C

]

=

x3
[∫

x−2dx + C

]

= x3
(

−1

x
+ C

)

= − x2 + Cx3;

Since y(1) = 2, 2 = −12 + C · 13 ⇒ C = 3;
Therefore, y = −x2 + 3x3;
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Applying the Integrating Factor Method II

Solve the linear differential equation

y ′ + (1− x−1)y = x2, y(1) = 2;

A(x) = 1− x−1
, B(x) = x2;

α(x) = e
∫
(1−x−1)dx = ex−ln x =

ex

e ln x
= 1

x
ex ;

y =
1

α(x)

[∫

α(x)B(x)dx + C

]

= xe−x

[∫
1

x
exx2dx + C

]

=

xe−x

[∫

xexdx + C

]
By-Parts
= xe−x (xex − ex + C ) =

x2 − x + Cxe−x ;

Since y(1) = 2, 2 = 12 − 1 + C · 1 · e−1 ⇒ C = 2e;
Therefore, y = x2 − x + 2exe−x ;
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Application: Mixing

A tank contains 600 liters of water with a sucrose
concentration of 0.2 kg/L. We begin adding water
with concentration 0.1 kg/L at a rate of Rin = 40
L/min. The water mixes and exits the bottom of
the tank at a rate of Rout = 20 L/min. If y(t) is
the quantity of sucrose in the tank at time t, set up
a differential equation for y(t) and solve it for y(t);

dy

dt
= (0.1 kg/L)(40 L/min)

︸ ︷︷ ︸
Rate In

− (
y

600 + 20t
kg/L)(20 L/min)

︸ ︷︷ ︸
Rate Out

Therefore, we get
dy

dt
= 4− y

t + 30
⇒ dy

dt
+

1

t + 30
y = 4, showing that

we have a linear equation, with A(t) =
1

t + 30
and B(t) = 4;
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Mixing (Cont’d)

dy

dt
+

1

t + 30
y = 4;

A(t) =
1

t + 30
, B(t) = 4;

So α(t) = e
∫

1
t+30

dt = e ln (t+30) = t + 30; Hence

y(t) =
1

α(t)

[∫

α(t)B(t)dt + C

]

=
1

t + 30

[∫

4(t + 30)dt + C

]

=
1

t + 30
(2(t + 30)2 + C ) = 2t + 60 +

C

t + 30
;

Since y(0) = 120, we get 120 = 60 + C
30 ⇒ C = 1800;

Therefore y(t) = 2t + 60 +
1800

t + 30
;
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