Calculus II

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 152

(1) Introduction to Differential Equations

- Solving Differential Equations
- Models Involving $y^{\prime}=k(y-b)$
- The Logistic Equation
- First-Order Linear Equations

Subsection 1

Solving Differential Equations

Differential Equations and Solutions

- A differential equation is one that involves a function $y=f(x)$ and its first or higher derivatives; An example is $y^{\prime}=-2 y$;
- A solution is a function that satisfies the given equation; For example, $y=C e^{-2 x}$ is a solution of the differential equation given above;
- Because it contains one or more unspecified constants, it is called a general solution;
- For each specific value of C we obtain a particular solution;
- The order of a differential equation is the order of the highest derivative appearing;
- A differential equation is linear if it is of form

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=b(x)
$$

- Another example is $\frac{d y}{d t}=t$ with general solution $y=\frac{1}{2} t^{2}+C$; Yet another example is $y^{\prime \prime}+y=0$ with general solution $y=A \sin x+B \cos x$

Examples Regarding Order and Linearity

Diff. Equation	Order	Linear/Non-Linear
$x^{2} y^{\prime}+e^{x} y=4$	First-Order	Linear
$x\left(y^{\prime}\right)^{2}=y+x$	First-Order	Non-Linear
$y^{\prime \prime}=(\sin x) y^{\prime}$	Second-Order	Linear
$y^{\prime \prime \prime}=x(\sin y)$	Third-Order	Non-Linear

Separation of Variables

- A simple differential equation of the form $y^{\prime}=f(x)$ has as its general solution $y=\int f(x) d x$;
- A differential equation is called separable if it has the form

$$
\frac{d y}{d x}=f(x) g(y)
$$

For instance $\frac{d y}{d x}=(\sin x) y$ is separable, but $\frac{d y}{d x}=x+y$ is not;

- Separable equations can be solved using the method of separation of variables:

$$
\frac{d y}{d x}=f(x) g(y) \Rightarrow \frac{1}{g(y)} d y=f(x) d x \Rightarrow \int \frac{1}{g(y)} d y=\int f(x) d x
$$

Then, try to solve for y;

Applying Separation of Variables

- Find the general solution of the differential equation $y \frac{d y}{d x}-x=0$;

$$
\begin{aligned}
& y \frac{d y}{d x}-x=0 \\
& \quad \Rightarrow \quad y \frac{d y}{d x}=x \\
& \quad \Rightarrow \quad y d y=x d x \\
& \quad \Rightarrow \quad \int y d y=\int x d x \\
& \Rightarrow \quad \frac{1}{2} y^{2}=\frac{1}{2} x^{2}+c \\
& \Rightarrow \quad y^{2}=x^{2}+C \quad(C=2 c) \\
& \Rightarrow \quad y= \pm \sqrt{x^{2}+C}
\end{aligned}
$$

An Initial Value Problem

- Solve the initial value problem

$$
\begin{aligned}
& y^{\prime}=-t y, \quad y(0)=3 \\
& \frac{d y}{d t}=-t y \Rightarrow \frac{1}{y} d y=-t d t \\
& \Rightarrow \int \frac{1}{y} d y=\int-t d t \Rightarrow \ln |y|=-\frac{1}{2} t^{2}+c \\
& \Rightarrow|y|=e^{-\frac{1}{2} t^{2}+c}=e^{c} e^{-\frac{1}{2} t^{2}} \\
& \Rightarrow y= \pm e^{c} e^{-\frac{1}{2} t^{2}} \\
& \Rightarrow y=C e^{-\frac{1}{2} t^{2}}
\end{aligned}
$$

Since $y(0)=3$, we get $3=C e^{0}=C$; Therefore, the particular solution of the initial value problem is

$$
y(t)=3 e^{-\frac{1}{2} t^{2}}
$$

Emptying Tank and Torricelli's Law

Consider a tank full of water that is slowly emptying through a hole of area B at its bottom; Suppose that at time t, the water level is y and $A(y)$ is the area of the horizontal cross section of the tank at height y; Let $v(y)$ be the velocity of the water flowing through the hole when the tank is filled to height y;

Then, the water lost between time t and time $t+d t$ is

$$
A(y) d y=B v(y) d t \Rightarrow \frac{d y}{d t}=\frac{B v(y)}{A(y)}
$$

Torricelli's Law for Velocity $v(y)$

The velocity of the water leaving the tank when it is filled to height y is $v(y)=-\sqrt{2 g y}$, where $g=9.8$ $\mathrm{m} / \mathrm{sec}^{2}$;

Application: Torricelli's Law

A cylindrical tank of height 4 m and radius 1 m is filled with water; Water drains through a square hole of side 2 cm in the bottom; Determine the water level $y(t)$ at
 time t seconds;

$$
\begin{aligned}
& \frac{d y}{d t}= \frac{B v(y)}{A(y)}=-\frac{B \sqrt{2 g y}}{A(y)} \\
& \Rightarrow \frac{d y}{d t}=-\frac{(0.02)^{2} \sqrt{2 \cdot 9.8 \cdot y}}{\pi \cdot 1^{2}}=-\frac{4 \sqrt{19.6} \cdot 10^{-4}}{\pi} \sqrt{y} \\
& \Rightarrow \frac{d y}{d t}=K \sqrt{y}, \text { where } K=-\frac{4 \sqrt{19.6} \cdot 10^{-4}}{\pi} ; \\
& \quad \frac{1}{\sqrt{y}} d y=\int K d t \Rightarrow 2 \sqrt{y}=K t+c \Rightarrow \sqrt{y}=\frac{1}{2} K t+C \\
& \quad \Rightarrow y(t)=\left(\frac{1}{2} K t+C\right)^{2}
\end{aligned}
$$

Since $y(0)=4$, we get $C=2$; Therefore, $y(t)=\left(2-\frac{2 \sqrt{19.6} \cdot 10^{-4}}{\pi} t\right)^{2}$;

Subsection 2

Models Involving $y^{\prime}=k(y-b)$

Rate of Change of y Proportional to Amount $y-b$

- Assume $\frac{d y}{d t}=k(y-b)$;

$$
\begin{aligned}
& \frac{d y}{d t}=k(y-b) \\
& \Rightarrow \frac{1}{y-b} d y=k d t \\
& \Rightarrow \int \frac{1}{y-b} d y=\int k d t \\
& \Rightarrow \ln (y-b)=k t+c \quad(\text { assuming } y \geq b) \\
& \Rightarrow y-b=e^{k t+c}=e^{c} e^{k t} \\
& \Rightarrow y=b+C e^{k t}
\end{aligned}
$$

Newton's Law of Cooling

Newton's Law of Cooling

The rate of cooling (change of temperature) $\frac{d y}{d t}$ is proportional to the temperature difference $y-T_{0}$ of y from the ambient temperature T_{0} : $\frac{d y}{d t}=-k\left(y-T_{0}\right)$;

Example: A hot metal bar with cooling constant $k=2.1 \mathrm{~min}^{-1}$ is submerged in a tank of water held at temperature $T_{0}=10^{\circ} \mathrm{C}$. Let $y(t)$ be the bar's temperature at time t minutes;

- Write a differential equation for y and find its general solution;

$$
\begin{aligned}
& \frac{d y}{d t}=-2.1(y-10) \Rightarrow \frac{1}{y-10} d y=-2.1 d t \\
& \quad \Rightarrow \int \frac{1}{y-10} d y=\int-2.1 d t \Rightarrow \ln (y-10)=-2.1 t+c \\
& \Rightarrow y-10=e^{-2.1 t+c}=e^{c} e^{-2.1 t} \Rightarrow y=10+C e^{-2.1 t}
\end{aligned}
$$

Newton's Law of Cooling (Cont'd)

We found that

$$
y(t)=10+C e^{-2.1 t}
$$

- What is $y(t)$ given that the initial temperature was $180^{\circ} \mathrm{C}$?
$y(0)=180 \Rightarrow 10+C \cdot 1=180 \Rightarrow C=170$;
Therefore, $y(t)=10+170 e^{-2.1 t}$;
- What is $y(t)$ if the bar cooled to $80^{\circ} \mathrm{C}$ in 30 seconds? What was its initial temperature?
$y(0.5)=80 \Rightarrow 10+C e^{-2 \cdot 1 \cdot 0.5}=80 \Rightarrow C e^{-1.05}=70 \Rightarrow C=$ $70 e^{1.05} \approx 200$;
Therefore, $y(t)=10+200 e^{-2.1 t}$;
Thus, we get $y(0)=10+200 \cdot e^{-2.1 \cdot 0}=210^{\circ} \mathrm{C}$.

Object in Free Fall

- The force F on an object of mass m in free fall with velocity $v(t)$ is

$$
F=\underbrace{-m g}_{\text {gravity }} \underbrace{-k v ;}_{\text {friction }}
$$

- By Newton's Law of Motion: $F=m a=m \frac{d v}{d t}$;
- So, we get

$$
m \frac{d v}{d t}=-m g-k v \Rightarrow \frac{d v}{d t}=-\frac{k}{m}\left(v+\frac{m g}{k}\right) ;
$$

- If we set $K=\frac{k}{m}$ and $b=-\frac{m g}{k}$, we get

$$
\frac{d v}{d t}=-K(v-b) \Rightarrow v=b+C e^{-K t}
$$

- Thus,

$$
v(t)=-\frac{m g}{k}+C e^{-\frac{k}{m} t}
$$

Skydiver in Free Fall

A 60 Kg skydiver steps out of an airplane; Her $k=6 \mathrm{Kg} / \mathrm{sec}$;

- Find an equation for her velocity $v(t)$;

$$
\begin{aligned}
& v(t)=-\frac{m g}{k}+C e^{-\frac{k}{m} t}= \\
& -\frac{60 \cdot 9.8}{6}+C e^{-\frac{6}{60} t} \\
& \Rightarrow v(t)=-98+C e^{-0.1 t}
\end{aligned}
$$

But $v(0)=0$, whence $0=-98+C \Rightarrow C=98$; Therefore

$$
v(t)=98 e^{-0.1 t}-98
$$

- What is her terminal velocity?

$$
v_{\mathrm{t}}=\lim _{t \rightarrow \infty} v(t)=\lim _{t \rightarrow \infty}\left(98 e^{-0.1 t}-98\right)=-98 \mathrm{~m} / \mathrm{sec} ;
$$

Annuities with Continuous Interest and Withdrawal

- Suppose $P(t)$ is the balance of an annuity which earns interest rate r compounded continuously and from which money is withdrawn continuously at rate N; Then

- Thus,

$$
\begin{aligned}
& \frac{d P}{d t}=r\left(P-\frac{N}{r}\right) \\
& \Rightarrow P(t)=\frac{N}{r}+C e^{r t}
\end{aligned}
$$

Example: Annuities

- An annuity earns interest rate 0.07 and withdrawals are made continuously at a rate of $\$ 500 /$ year; If the initial deposit is $\$ 5,000$, when will the annuity run out of money?

$$
P(t)=\frac{N}{r}+C e^{r t}=\frac{5000}{0.07}+C e^{0.07 t} \approx 7143+C e^{0.07 t}
$$

Since $P(0)=5000$, we get $5000=7143+C e^{0} \Rightarrow C=-2143 ;$ Thus,

$$
P(t)=7143-2143 e^{0.07 t}
$$

We set

$$
\begin{aligned}
& P(t)=0 \Rightarrow 2143 e^{0.07 t}=7143 \\
& \Rightarrow e^{0.07 t}=\frac{7143}{2143} \Rightarrow t=\frac{100}{7} \ln \frac{7143}{2143} \approx 17
\end{aligned}
$$

Subsection 3

The Logistic Equation

The Logistic Equation

- Population growth is sometimes modeled by the logistic equation

$$
\begin{gathered}
\frac{d y}{d t}=k y\left(1-\frac{y}{A}\right), \quad A \text { a constant capacity; } \\
\frac{d y}{y\left(1-\frac{y}{A}\right)}=k d t \Rightarrow \int\left(\frac{1}{y}-\frac{1}{y-A}\right) d y=\int k d t \\
\Rightarrow \ln |y|-\ln |y-A|=k t+c \Rightarrow \ln \left|\frac{y}{y-A}\right|=k t+c \\
\Rightarrow\left|\frac{y}{y-A}\right|=e^{c} e^{k t} \Rightarrow \frac{y}{y-A}= \pm e^{c} e^{k t} \\
\Rightarrow \frac{y}{y-A}=C e^{k t} \Rightarrow y=(y-A) C e^{k t} \\
\Rightarrow y\left(1-C e^{k t}\right)=-A C e^{k t} \Rightarrow y=\frac{A C e^{k t}}{C e^{k t}-1}=\frac{A}{1-\frac{1}{C} e^{-k t}}
\end{gathered}
$$

An Example of a Logistic Equation

- Solve $\frac{d y}{d t}=0.3 y(4-y)$ with initial condition $y(0)=1$;

Note that $\frac{d y}{d t}=0.3 y(4-y) \Rightarrow \frac{d y}{d t}=1.2 y\left(1-\frac{y}{4}\right)$; Thus, $k=1.2$ and $A=4$; So the general solution is

$$
y(t)=\frac{A}{1-\frac{1}{C} e^{-k t}}=\frac{4}{1-\frac{1}{C} e^{-1.2 t}}
$$

Since $y(0)=1$, we get $1=\frac{4}{1-\frac{1}{C}} \Rightarrow 1-\frac{1}{C}=4 \Rightarrow C=-\frac{1}{3}$; Hence, the particular solution sought is

$$
y(t)=\frac{4}{1+3 e^{-1.2 t}}
$$

An Application: Deer Population

- A deer population grows logistically with growth constant $k=0.4$ year ${ }^{-1}$ in a forest with carrying capacity $A=1000$ deer;
- Find the population $P(t)$ if $P(0)=100$;

$$
P(t)=\frac{A}{1-\frac{1}{C} e^{-k t}}=\frac{1000}{1-\frac{1}{C} e^{-0.4 t}} ;
$$

Since $P(0)=100$, we get $100=\frac{1000}{1-\frac{1}{C}} \Rightarrow 1-\frac{1}{C}=10 \Rightarrow C=-\frac{1}{9}$;
Therefore, $P(t)=\frac{1000}{1+9 e^{-0.4 t}}$;

- How long does it take for the population to reach 500 ?

$$
\begin{aligned}
& P(t)=500 \Rightarrow \frac{1000}{1+9 e^{-0.4 t}}=500 \Rightarrow 1+9 e^{-0.4 t}=2 \\
& \Rightarrow e^{-0.4 t}=\frac{1}{9} \Rightarrow-0.4 t=\ln \frac{1}{9} \Rightarrow t=\frac{5}{2} \ln 9 \approx 5.5 \text { years; }
\end{aligned}
$$

Subsection 4

First-Order Linear Equations

First-Order Linear Differential Equations

- A first-order linear equation has the form

$$
a(x) y^{\prime}+b(x) y=c(x), \quad a(x) \neq 0
$$

- By dividing by $a(x)$ we write it in standard form:

$$
y^{\prime}+A(x) y=B(x)
$$

- To solve, multiply both sides by an integrating factor $e^{\int A(x) d x}$:

$$
e^{\int A(x) d x}\left(y^{\prime}+A(x) y\right)=e^{\int A(x) d x} B(x) ;
$$

Note that, by the product rule,
$\left(e^{\int A(x) d x} y\right)^{\prime}=\left(e^{\int A(x) d x}\right)^{\prime} y+e^{\int A(x) d x} y^{\prime}=e^{\int A(x) d x}\left(\int A(x) d x\right)^{\prime} y+$ $e^{\int A(x) d x} y^{\prime}=e^{\int A(x) d x} A(x) y+e^{\int A(x) d x} y^{\prime}=e^{\int A(x) d x}\left(y^{\prime}+A(x) y\right) ;$
Thus, we get

$$
\begin{aligned}
& \left(e^{\int A(x) d x} y\right)^{\prime}=e^{\int A(x) d x} B(x) \Rightarrow e^{\int A(x) d x} y=\int e^{\int A(x) d x} B(x) d x+C \\
& \Rightarrow y=\frac{1}{e^{\int A(x) d x}}\left[\int e^{\int A(x) d x} B(x) d x+C\right]
\end{aligned}
$$

Applying the Integrating Factor Method I

- Solve the linear differential equation

$$
\begin{aligned}
& x y^{\prime}-3 y=x^{2}, \quad y(1)=2 ; \\
& x y^{\prime}-3 y=x^{2} \Rightarrow y^{\prime}-\frac{3}{x} y=x ; \\
& A(x)=-\frac{3}{x}, \quad B(x)=x ; \\
& \alpha(x)=e^{\int A(x) d x}=e^{\int-\frac{3}{x} d x}=e^{-3 \ln x}=e^{\ln \left(x^{-3}\right)}=\frac{1}{x^{3}} ; \\
& y=\frac{1}{\alpha(x)}\left[\int \alpha(x) B(x) d x+C\right]=x^{3}\left[\int \frac{1}{x^{3}} x d x+C\right]= \\
& x^{3}\left[\int x^{-2} d x+C\right]=x^{3}\left(-\frac{1}{x}+C\right)=-x^{2}+C x^{3} ;
\end{aligned}
$$

Since $y(1)=2,2=-1^{2}+C \cdot 1^{3} \Rightarrow C=3$;
Therefore, $y=-x^{2}+3 x^{3}$;

Applying the Integrating Factor Method II

- Solve the linear differential equation

$$
\begin{aligned}
& \quad y^{\prime}+\left(1-x^{-1}\right) y=x^{2}, \quad y(1)=2 ; \\
& A(x)=1-x^{-1}, \quad B(x)=x^{2} ; \\
& \alpha(x)=e^{\int\left(1-x^{-1}\right) d x}=e^{x-\ln x}=\frac{e^{x}}{e^{\ln x}}=\frac{1}{x} e^{x} ; \\
& y=\frac{1}{\alpha(x)}\left[\int \alpha(x) B(x) d x+C\right]=x e^{-x}\left[\int \frac{1}{x} e^{x} x^{2} d x+C\right]= \\
& x e^{-x}\left[\int x e^{x} d x+C\right] \stackrel{\text { By-Parts }}{=} x e^{-x}\left(x e^{x}-e^{x}+C\right)= \\
& x^{2}-x+C x e^{-x} ;
\end{aligned}
$$

Since $y(1)=2,2=1^{2}-1+C \cdot 1 \cdot e^{-1} \Rightarrow C=2 e$;
Therefore, $y=x^{2}-x+2 e x e^{-x}$;

Application: Mixing

A tank contains 600 liters of water with a sucrose concentration of $0.2 \mathrm{~kg} / \mathrm{L}$. We begin adding water with concentration $0.1 \mathrm{~kg} / \mathrm{L}$ at a rate of $R_{\text {in }}=40$ $\mathrm{L} / \mathrm{min}$. The water mixes and exits the bottom of the tank at a rate of $R_{\text {out }}=20 \mathrm{~L} / \mathrm{min}$. If $y(t)$ is the quantity of sucrose in the tank at time t, set up a differential equation for $y(t)$ and solve it for $y(t)$;

$$
\frac{d y}{d t}=\underbrace{(0.1 \mathrm{~kg} / \mathrm{L})(40 \mathrm{~L} / \mathrm{min})}_{\text {Rate In }}-\underbrace{\left(\frac{y}{600+20 t} \mathrm{~kg} / \mathrm{L}\right)(20 \mathrm{~L} / \mathrm{min})}_{\text {Rate Out }}
$$

Therefore, we get $\frac{d y}{d t}=4-\frac{y}{t+30} \Rightarrow \frac{d y}{d t}+\frac{1}{t+30} y=4$, showing that
we have a linear equation, with $A(t)=\frac{1}{t+30}$ and $B(t)=4$;

Mixing (Cont'd)

$$
\begin{gathered}
\frac{d y}{d t}+\frac{1}{t+30} y=4 \\
A(t)=\frac{1}{t+30}, \quad B(t)=4
\end{gathered}
$$

So $\alpha(t)=e^{\int \frac{1}{t+30} d t}=e^{\ln (t+30)}=t+30$; Hence

$$
\begin{aligned}
y(t) & =\frac{1}{\alpha(t)}\left[\int \alpha(t) B(t) d t+C\right] \\
& =\frac{1}{t+30}\left[\int 4(t+30) d t+C\right] \\
& =\frac{1}{t+30}\left(2(t+30)^{2}+C\right)=2 t+60+\frac{C}{t+30}
\end{aligned}
$$

Since $y(0)=120$, we get $120=60+\frac{C}{30} \Rightarrow C=1800$;
Therefore $y(t)=2 t+60+\frac{1800}{t+30}$;

