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Parametric Curves
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Parametric Equations and Parametric Curves

A system of parametric equations has the form

{

x = f (t)
y = g(t)

, a ≤ t ≤ b.

The variable t is called the parameter.

The set of points (x , y) = (f (t), g(t)), for a ≤ t ≤ b, is called the
parametric curve.

(f (a), g(a)) is the initial point and (f (b), g(b)) the terminal point.

We imagine “traveling” along the parametric curve as the parameter
t increases from a to b.
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Example I

Consider the parametric curve

{

x = t2 − 2t
y = t + 1

, −2 ≤ t ≤ 4.

t x y

−2 8 − 1
−1 3 0
0 0 1
1 − 1 2
2 0 3
3 3 4
4 8 5

George Voutsadakis (LSSU) Calculus III January 2016 5 / 76



Parametric Equations, Polar Coordinates, Conic Sections Parametric Curves

Example I (Eliminating the Parameter)

Consider again the curve

{

x = t2 − 2t
y = t + 1

, −2 ≤ t ≤ 4.

Since t = y − 1, we get

x = (y − 1)2 − 2(y − 1)
= y2 − 2y + 1− 2y + 2
= y2 − 4y + 3.

The Cartesian representation

x = y2 − 4y + 3

reminds us of a parabola opening
“right”.
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Example II

Consider the parametric curve

{

x = cos t
y = sin t

, 0 ≤ t ≤ 2π.

t x y

0 1 0
π
4

√
2
2

√
2
2

π
2 0 1

3π
4 −

√
2
2

√
2
2

π − 1 0
3π
2 0 − 1
2π 1 0

Note x2 + y2 = sin2 t + cos2 t = 1.
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Example III

Consider the parametric curve

{

x = a+ R cos t
y = b + R sin t

, 0 ≤ t ≤ 2π.

Note
(x − a)2+(y − b)2 = R2 cos2 t +R2 sin2 t = R2(cos2 t +sin2 t) = R2.

This is the equation of a circle with center (a, b) and radius R .
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Example IV

Consider the parametric curve

{

x = sin t
y = sin2 t

, 0 ≤ t ≤ 2π.

t x y

0 0 0
π
4

√
2
2

1
2

π
2 1 1

3π
4

√
2
2

1
2

π 0 0
3π
2 − 1 1
2π 0 0
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Graphing through Parametrization

Consider the equation x = y4 − 3y2.

It cannot be graphed directly using a calculator. (Why?)

Introduce a parameter t and write:

{

x = t4 − 3t2

y = t
, say − 2 ≤ t ≤ 2.

t x y

−2 4 − 2
−1 − 2 − 1
0 0 0
1 − 2 1
2 4 2
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The Cycloid

Cycloid is the curve traced by a point P on the circumference of a
circle as the circle rolls along a straight line.

In parametric form it is given by
{

x = R(θ − sin θ)
y = R(1− cos θ)

with 0 ≤ θ ≤ 2π.
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Subsection 2

Calculus With Parametric Curves
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Slopes of Tangent Lines

Consider the parametric curve

{

x = f (t)
y = g(t)

, a ≤ t ≤ b.

Applying the chain rule, we obtain
dy

dt
=

dy

dx

dx

dt
.

Therefore, we get

Derivative of Parametric System

dy

dx
=

dy

dt
dx

dt

=
g ′(t)

f ′(t)
, subject to

dx

dt
6= 0.
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Example

Consider the parametric curve

{

x = t2

y = t3 − 3t
, −2 ≤ t ≤ 2.

Find the equations of the tangent lines at
(x , y) = (3, 0).

We have
dy

dx
=

dy

dt
dx

dt

=
3t2 − 3

2t
.

Note that (3, 0) corresponds to t = ±
√
3. Hence, the slope is

dy

dx
|t=±

√
3=

6
±2

√
3
= ±

√
3. Therefore, the tangent lines at (3, 0)

have equations

y =
√
3(x − 3) and y = −

√
3(x − 3).
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Cycloid Revisited

Recall the parametrization of the cycloid

{

x = R(θ − sin θ)
y = R(1− cos θ)

, 0 ≤ θ ≤ 2π.

Find its tangent line at θ = π
3 .

We have

dy

dx
=

dy

dθ
dx

dθ

=
R sin θ

R − R cos θ
=

sin θ

1− cos θ
.

Thus
dy

dx
|θ=π

3
=

sin π
3

1− cos π
3

=

√
3
2

1− 1
2

=

√
3

2− 1
=

√
3.

The tangent line has equation y − R
2 =

√
3(x − R(π3 −

√
3
2 )).
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Cycloid (Cont’d)

For the cycloid

{

x = R(θ − sin θ)
y = R(1− cos θ)

, 0 ≤ θ ≤ 2π, show that at

θ = 2kπ (k any integer), the cycloid has a vertical tangent line.

This requires showing that lim
θ→2kπ

dy

dx
= ±∞.

We have

lim
θ→2kπ

dy

dx
= lim

θ→2kπ

dy

dθ
dx

dθ

= lim
θ→2kπ

sin θ

1− cos θ
= (

0

0
)

L’Hôpital
= lim

θ→2kπ

cos θ

sin θ
= ±∞.
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Areas under Parametric Curves

Consider x = f (t), y = g(t), a ≤ t ≤ b.

The area under this parametric curve from f (a) to f (b), assuming
that it is “traveled” once, is given by

A =

∫ f (b)

f (a)

y dx =

∫ b

a

g(t) df (t) =

∫ b

a

g(t)f ′(t) dt.

Example (The Area under the Cycloid):
x = R(θ − sin θ), y = R(1− cos θ), 0 ≤ θ ≤ 2π.

A =

∫ 2π

0
y(θ)x ′(θ) dθ =

∫ 2π

0
R(1− cos θ)(R − R cos θ) dθ

= R2

∫ 2π

0
(1− cos θ)2 dθ = R2

∫ 2π

0
(1− 2 cos θ + cos2 θ) dθ

= R2

∫ 2π

0
(1− 2 cos θ + 1+cos 2θ

2 ) dθ

= R2
[

θ − 2 sin θ + 1
2 (θ +

1
2 sin 2θ)

]2π

0
= 3πR2.
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Arc Lengths of Parametric Curves

Consider x = f (t), y = g(t), a ≤ t ≤ b.

The length of this parametric curve from f (a) to f (b), assuming that
it is “traveled” once, is given by

L =

∫ f (b)

f (a)

√

1 +

(

dy

dx

)2

dx =

∫ b

a

√

√

√

√1 +

(

dy
dt
dx
dt

)2
dx

dt
dt

=

∫ b

a

√

(
dx

dt
)2 + (

dy

dt
)2 dt.

Example (The Length of a Circle of Radius R):
x = R cos t, y = R sin t, 0 ≤ t ≤ 2π.

L =

∫ 2π

0

√

(−R sin t)2 + (R cos t)2 dt =

∫ 2π

0

R dt = Rt|2π0 = 2πR .
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Arc Length of the Cycloid

x = R(θ − sin θ), y = R(1− cos θ), 0 ≤ θ ≤ 2π.

We have

L =

∫ 2π

0

√

(

dx

dθ

)2

+

(

dy

dθ

)2

dθ

=

∫ 2π

0

√

(R − R cos θ)2 + (R sin θ)2 dθ

=

∫ 2π

0

√

R2 − 2R2 cos θ + R2 cos2 θ + R2 sin2 θ dθ

=

∫ 2π

0

√

2R2(1− cos θ) dθ =

∫ 2π

0

√

2R22 sin2 θ
2 dθ

= 2R

∫ 2π

0
sin θ

2 dθ = 2R
(

−2 cos θ
2

)

|2π0 = 8R .
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Surface Area

Let

{

x = f (t)
y = g(t)

, where g(t) > 0, f (t) is increasing, and f ′(t) and

g ′(t) are continuous.

Then the surface obtained by rotating the
curve c(t) = (f (t), g(t)) about the x-axis
for a ≤ t ≤ b has surface area

S = 2π

∫ b

a

y

√

(dx
dt
)2 + (dy

dt
)2dt

= 2π

∫ b

a

g(t)
√

f ′(t)2 + g ′(t)2dt.
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Computing a Surface Area

Calculate the surface area of the surface obtained by rotating
{

x = cos3 θ
y = sin3 θ

, 0 ≤ θ ≤ π
2 , about the x-axis.

S = 2π
∫ π/2
0 y

√

(dx
dθ )

2 + (dy
dθ )

2dθ

= 2π
∫ π/2
0 sin3 θ

√

(−3 cos2 θ sin θ)2 + (3 sin2 θ cos θ)2dθ

= 2π
∫ π/2
0 sin3 θ

√

9 cos4 θ sin2 θ + 9 sin4 θ cos2 θdθ

= 2π
∫ π/2
0 sin3 θ

√

9 cos2 θ sin2 θ(cos2 θ + sin2 θ)dθ

= 2π
∫ π/2
0 sin3 θ3 cos θ sin θdθ

= 6π
∫ π/2
0 sin4 θ cos θdθ

u = sin θ

= 6π
∫ 1
0 u4du

= 6π u5

5 |10= 6π
5 .
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Summary

Parametric curve

{

x = f (t)
y = g(t)

, a ≤ t ≤ b.

Slope of Tangent:
dy

dx
=

g ′(t)

f ′(t)
.

Area Under the Parametric Curve:

A =

∫ b

a

g(t)f ′(t)dt.

Arc Length of the Parametric Curve:

L =

∫ b

a

√

f ′(t)2 + g ′(t)2dt.

Surface of the Solid of Revolution:

S = 2π

∫ b

a

g(t)
√

f ′(t)2 + g ′(t)2dt.
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Subsection 3

Polar Coordinates
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Polar Coordinates

In polar coordinates, we label a point P by coordinates (r , θ), where:

r is the distance to the origin O;

θ is the angle between OP and the
positive x-axis.

An angle is positive if the corresponding rotation is counterclockwise.

We call r the radial coordinate and θ the angular coordinate.
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Polar Coordinates and Rectangular Coordinates

The figure shows that polar and rectangular coordinates are related by
the equations:

From Polar to Rectangular:

x = r cos θ, y = r sin θ.

From Rectangular to Polar:

r2 = x2 + y2, tan θ =
y

x
, x 6= 0.
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From Polar To Rectangular

Find the rectangular coordinates of Q = (r , θ) = (3, 5π6 ).

x = r cos θ = 3cos (5π6 )

= 3(−
√
3
2 ) = −3

√
3

2 .

y = r sin θ = 3 sin (5π6 )

= 3 · 1
2 = 3

2 .
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From Rectangular to Polar

Find the polar coordinates of the point P = (x , y) = (3, 2).

r2 = x2 + y2

= 32 + 22 = 13.

So r =
√
13.

tan θ =
y

x
=

2

3
.

Since P is in Quadrant I, θ = tan−1 (
2

3
).
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Choosing θ Correctly

Find two polar representations of P = (−1, 1), one with r > 0 and
one with r < 0.

We have

r2 = (−1)2 + 12 = 2.

So r =
√
2. Moreover,

tan θ =
y

x
=

1

−1
= −1.

However, θ 6= tan−1 (−1) = −π
4 , because P is in Quadrant II. The

correct angle is θ = tan−1 (y
x
) + π = − π

4 + π = 3π
4 .

So, with r > 0, we have P = (
√
2, 3π4 ).

With r < 0, we have P = (−
√
2,−π

4 ) = (−
√
2, 7π4 ).
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Line Through the Origin

Find the polar equation of the line through the origin of slope
√
3.

We find the angle θ0, such that

tan θ0 =
y

x
= slope =

√
3.

We get θ0 = tan−1 (
√
3) =

π

3
.

Thus the equation of the line is

θ =
π

3
.
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Line Not Through the Origin

Find the polar equation of the line L whose point closest to the origin
(in polar coordinates) is (d , α).

P0 = (d , α) is the point of intersection
of L with a perpendicular from O to L.
Let P = (r , θ) be any point on L
other than P0. From the right triangle
△OPP0, we get

cos (θ − α) =
d

r

⇒ r = d sec (θ − α).
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Example

Find the polar equation of the line L tangent to the circle r = 4 at
the point with polar coordinates P0 = (4, π3 ).

The point of tangency has polar coor-
dinates (d , α) = (4, π3 ).
From the preceding slide, the polar
equation of the tangent line is:

r = d sec (θ − α)

⇒ r = 4 sec (θ − π
3 ).
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Converting to Rectangular Coordinates

Identify the curve with polar equation r = 2a sin θ.

We have:

r = 2a sin θ
r2 = 2ar sin θ
x2 + y2 = 2ay
x2 + (y2 − 2ay) = 0
x2 + (y2 − 2ay + a2) = a2

x2 + (y − a)2 = a2.

We get a circle with center (0, a) and radius a.
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Graphing a Polar Curve Using Symmetry

Sketch the limaçon curve r = 2cos θ − 1.
1. cos θ has period 2π. We study the graph for −π ≤ θ < π.
2. Create a small table of values:

θ 0 π

6
π

3
π

2
2π
3

5π
6 π

r = 2 cos θ − 1 1
√
3− 1 0 − 1 − 2 −

√
3− 1 − 3

Plot the various points.
3. Since cos (−θ) = cos θ we have symmetry with respect to the x-axis.
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Tangent Lines to Polar Curves

Suppose that r = f (θ).

Then x = r cos θ = f (θ) cos θ and y = r sin θ = f (θ) sin θ.

These give, using the product rule,

dx

dθ
=

dr

dθ
cos θ − r sin θ and

dy

dθ
=

dr

dθ
sin θ + r cos θ

Therefore, for the slope of the tangent at (r , θ),

dy

dx
=

dy

dθ
dx

dθ

=

dr

dθ
sin θ + r cos θ

dr

dθ
cos θ − r sin θ

.
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Equation of Tangent to Cardioid r = 1 + sin θ

Find the equation of the tangent to the cardioid r = 1 + sin θ at
θ = π

3 .

dy

dx
=

dr
dθ sin θ + r cos θ
dr
dθ cos θ − r sin θ

=
cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=
cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ
=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)
.

So
dy

dx

∣

∣

∣

∣

θ=π

3

=
1
2(1 +

√
3)

(1 +
√
3
2 )(1−

√
3)

=
1
2(1 +

√
3)2

(1 +
√
3
2 )(1− 3)

= − 1.

For θ = π
3 , r(

π
3 ) = 1 +

√
3
2 . So x = r cos θ = (1 +

√
3
2 )12 = 2+

√
3

4 and

y = r sin θ = (1 +
√
3
2 )

√
3
2 = 3+2

√
3

4 .

Thus, the equation of the tangent line when θ = π
3 is

y − 3+2
√
3

4 = −(x − 2+
√
3

4 ).
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Subsection 4

Area and Arc Length in Polar Coordinates
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Areas in Polar Coordinates

The area of a disk segment with central angle ∆θ is A = 1
2(∆θ)r2

(since total area of disk is πr2 = 1
2 (2π)r

2).

Thus, if a polar curve is given by r = f (θ), then for a small ∆θ,
taking r constant at f (θj), we get

∆Aj ≈
1

2
[f (θj )]

2∆θ.
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Areas in Polar Coordinates (Cont’d)

Summing over those j ’s partitioning α ≤ θ ≤ β, we get

A ≈
N
∑

j=1

1

2
[f (θj)]

2∆θ.

Finally, passing to the limit, we end up with the integral

A =

∫ β

α

1

2
[f (θ)]2 dθ (=

∫ β

α

1

2
r2 dθ).
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Area of Semicircle

Compute the area of the right semicircle with equation r = 4 sin θ.

The right semicircle is plotted for 0 ≤ θ ≤
π
2 . Therefore, we have

A = 1
2

∫ π/2
0 r2dθ

= 1
2

∫ π/2
0 (4 sin θ)2dθ

= 8
∫ π/2
0 sin2 θdθ

= 8
∫ π/2
0

1
2(1− cos 2θ)dθ

= 4(θ − 1
2 sin 2θ) |

π/2
0

= 4(π2 − 0)
= 2π.
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One Loop of the Four-Leaved Rose

Compute the area of one loop of the four-leaved rose r = cos 2θ.

One loop is traced for −π
4 ≤ θ ≤ π

4 .

Therefore, we get

A =
∫ π/4
−π/4

1
2 cos

2 2θ dθ

=
∫ π/4
−π/4

1
2
1+cos 4θ

2 dθ

= 1
4

∫ π/4
−π/4(1 + cos 4θ) dθ

= 1
4(θ +

1
4 sin 4θ) |

π/4
−π/4

= 1
4(

π
4 + 1

4 sinπ −
(−π

4 + 1
4 sin (−π)))

= 1
4
π
2 = π

8 .
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Area of a Petal of a Rose

Compute the area of one petal of the rose r = sin 3θ.

One petal is traced when 0 ≤ θ ≤ π
3 . So

we have

A = 1
2

∫ π/3
0 (sin 3θ)2dθ

= 1
2

∫ π/3
0

1
2(1− cos 6θ)dθ

= 1
4(θ − 1

6 sin 6θ) |
π/3
0

= 1
4 [(

π
3 − 0)− 0] = π

12 .
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Area Between Two Curves

Consider the area A between two polar curves r = f1(θ) and
r = f2(θ), with f1(θ) ≤ f2(θ), for α ≤ θ ≤ β.

It is given by

A =
1

2

∫ β

α
f2(θ)

2dθ − 1

2

∫ β

α
f1(θ)

2dθ =
1

2

∫ β

α
[f2(θ)

2 − f1(θ)
2]dθ.
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Computing the Area Between Two Curves

Find the area of the region inside the circle r = 2cos θ but outside the
circle r = 1.

Set the equations equal to find the angle θ for the points of
intersection: 2 cos θ = 1 ⇒ cos θ = 1

2 ⇒ θ = ±π
3 .

A = 1
2

∫ π/3
−π/3 (2 cos θ)

2dθ

− 1
2

∫ π/3
−π/3 (1)

2dθ

= 1
2

∫ π/3
−π/3 (4 cos

2 θ − 1)dθ

= 1
2

∫ π/3
−π/3

(41+cos 2θ
2 − 1)dθ

= 1
2

∫ π/3
−π/3 (2 cos 2θ + 1)dθ

= 1
2(sin 2θ + θ) |π/3−π/3

= 1
2 [(sin

2π
3 + π

3 )− (sin (−2π
3 )− π

3 )]

=
√
3
2 + π

3 .
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Region Between Cardioid and Circle

Find the area of the region inside the circle r = 3 sin θ and outside the
cardioid r = 1 + sin θ.

Find angles θ of intersection.
3 sin θ = 1 + sin θ ⇒ sin θ = 1

2 ⇒ θ = π
6 or θ = 5π

6 .

A

=
∫ 5π/6
π/6

1
2 [(3 sin θ)

2 − (1 + sin θ)2] dθ

= 1
2

∫ 5π/6
π/6 (8 sin2 θ − 2 sin θ − 1) dθ

= 1
2

∫ 5π/6
π/6 (4(1 − cos 2θ)− 2 sin θ − 1)dθ

= 1
2

∫ 5π/6
π/6 (3− 2 sin θ − 4 cos 2θ)dθ

= 1
2(3θ + 2cos θ − 2 sin 2θ) |5π/6π/6

= 1
2 [(

5π
2 −

√
3 +

√
3)− (π2 +

√
3−

√
3)]

= π.
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Area Between Circle and Petal of the Four-Leaved Rose

Find the area of the region inside a petal of r = cos 2θ and outside
the circle r = 1

2 .

Find angles θ of intersection.
cos 2θ = 1

2 ⇒ 2θ = −π
3 or 2θ = π

3 ⇒ θ = −π
6 or θ = π

6 .

A =
∫ π/6
−π/6

1
2 [(cos 2θ)

2 − (12 )
2]dθ

= 1
2

∫ π/6
−π/6 (cos

2 2θ − 1
4)dθ

= 1
2

∫ π/6
−π/6 (

1+cos 4θ
2 − 1

4 )dθ

= 1
8

∫ π/6
−π/6 (1 + 2 cos 4θ)dθ

= 1
8(θ +

1
2 sin 4θ) |

π/6
−π/6

= 1
8(

π
3 +

√
3
2 ).

George Voutsadakis (LSSU) Calculus III January 2016 45 / 76



Parametric Equations, Polar Coordinates, Conic Sections Area and Arc Length in Polar Coordinates

Length of Polar Curves

Recall from rectangular coordinates, using the Pythagorean Theorem,

L =

∫ b

a

√

dx2 + dy2.

Multiplying and dividing by dθ,

L =

∫ β

α

√

(

dx

dθ

)2

+

(

dy

dθ

)2

dθ.

Since x = r cos θ and y = r sin θ,

dx

dθ
=

dr

dθ
cos θ − r sin θ and

dy

dθ
=

dr

dθ
sin θ + r cos θ.

Therefore (
dx

dθ
)2 + (

dy

dθ
)2

algebra
= (

dr

dθ
)2 + r2.

This gives

L =

∫ β

α

√

r2 +

(

dr

dθ

)2

dθ.
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Arc Length of a Circle

Find the total length of the circle r = 2a cos θ, for a > 0.

We have r = f (θ) = 2a cos θ. So we get

r2 + (
dr

dθ
)2 = (2a cos θ)2 + (−2a sin θ)2 = 4a2.

L =
∫ π
0

√

r2 + ( dr
dθ )

2dθ

=
∫ π
0

√
4a2dθ

=
∫ π
0 (2a)dθ

= 2a θ |π0
= 2πa.
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Length of the Cardioid r = 1 + sin θ

Finf the length of the cardiod r = 1 + sin θ.

We have
dr

dθ
= cos θ.

L =
∫ 2π
0

√

r2 +
(

dr
dθ

)2
dθ

=
∫ 2π
0

√

(1 + sin θ)2 + cos2 θdθ

=
∫ 2π
0

√
2 + 2 sin θdθ

=
∫ 2π
0

√
(2+2 sin θ)(2−2 sin θ)√

2−2 sin θ
dθ

= 2 · 2√
2

∫ π/2
−π/2

cos θ√
1−sin θ

dθ

(set u = 1− sin θ)

= 2
√
2
∫ 0
2 − 1√

u
du

= 2
√
2(2

√
u) |20

= 2
√
2 · 2

√
2 = 8.
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Subsection 5

Conic Sections
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Conic Sections

Conic sections are obtained as the intersection of a cone with a
plane.
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Ellipses

An ellipse is the locus of all points P such that the sum of the
distances to two fixed points F1 and F2 is a constant K .

The midpoint of F1F2 is the center of the ellipse;
The line through the foci is the focal axis;
The line through the center and perpendicular to the focal axis is the
conjugate axis.
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Ellipse in Standard Position

An ellipse is in standard position if the focal and conjugate axes are
the x- and y -axes.

The foci have coordinates F1 = (c , 0), F2 = (−c , 0), for some c > 0.

The equation of this ellipse has the simple form

x2

a2
+

y2

b2
= 1,

where a = K
2 and b =

√
a2 − c2.
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Additional Terminology

The points A,A′,B ,B ′ of intersection with the axes are called
vertices;

The vertices A,A′ on the focal axis are called focal vertices;

The number a is the semimajor axis;

The number b is the semininor axis.
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Equation of Ellipse in Standard Position

Let a > b > 0 and set c =
√
a2 − b2.

The ellipse PF1 + PF2 = 2a, with foci F1 = (c , 0) and F2 = (−c , 0)
has equation

x2

a2
+

y2

b2
= 1.

Furthermore, the ellipse has:

Semimajor axis a and semiminor axis b;
Focal vertices (±a, 0) and minor vertices (0,±b).

If b > a > 0, the same equation defines an ellipse with foci (0,±c),
where c =

√
b2 − a2.

George Voutsadakis (LSSU) Calculus III January 2016 54 / 76



Parametric Equations, Polar Coordinates, Conic Sections Conic Sections

Finding an Equation and Sketching the Graph

Find an equation of the ellipse with foci (±
√
11, 0) and semimajor

axis a = 6. Then sketch its graph.

Since the foci are at (±c , 0), we get that c =
√
11.

Since b =
√
a2 − c2, we get b =

√
36− 11 = 5.

Thus, the equation is

x2

36
+

y2

25
= 1.

Finally, we sketch the graph:
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Transforming an Ellipse

Find an equation of the ellipse with center C = (6, 7), vertical focal
axis, semimajor axis 5 and semiminor axis 3. Then find the location
of the foci and sketch its graph.

We have a = 3 and b = 5. At standard
position the equation would have been x2

9 +
y2

25 = 1. Translating to center C , we get

(x − 6)2

9
+

(x − 7)2

25
= 1.

Now we compute c =
√
b2 − a2 =√

25 − 9 = 4. Thus, the foci are at (6, 7±4)
or (6, 11) and (6, 3).
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Hyperbolas

A hyperbola is the locus of all points P such that the difference of
the distances from P to two foci F1 and F2 is ±K .

The midpoint of F1F2 is the center of the hyperbola;
The line through the foci is the focal axis;
The line through the center and perpendicular to the focal axis is the
conjugate axis.
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Hyperbola in Standard Position

A hyperbola is in standard position if the focal and conjugate axes
are the x- and y -axes.

The foci have coordinates F1 = (c , 0), F2 = (−c , 0), for some c > 0.

The equation of this hyperbola has the simple form

x2

a2
− y2

b2
= 1,

where a = K
2 and b =

√
c2 − a2.
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Additional Terminology

The points A,A′ of intersection with the focal axis are called vertices;

A hyperbola with equation x2

a2
− y2

b2
= 1 has two asymptotes

y = ±b
a
x , which are diagonals of the rectangle whose sides pass

through (±a, 0) and (0,±b).

George Voutsadakis (LSSU) Calculus III January 2016 59 / 76



Parametric Equations, Polar Coordinates, Conic Sections Conic Sections

Equation of Hyperbola in Standard Position

Let a > 0 and b > 0 and set c =
√
a2 + b2.

The hyperbola PF1 − PF2 = ±2a, with foci F1 = (c , 0) and
F2 = (−c , 0) has equation

x2

a2
− y2

b2
= 1.

Furthermore, the hyperbola has vertices (±a, 0).
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Finding an Equation and Sketching the Graph

Find an equation of the hyperbola with foci (±
√
5, 0) and vertices

(±1, 0). Then sketch its asymptotes and its graph.

Since the foci are at (±c , 0), we get that c =
√
5.

Since b =
√
c2 − a2, we get b =

√
5− 1 = 2.

Thus, the equation is

x2

1
− y2

4
= 1.

Moreover the asymptotes are
y = ±b

a
x , i.e., y = ± 2x .
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Finding the Foci and Sketching the Graph

Find the foci of the hyperbola 9x2 − 4y2 = 36. Then find the
equations of the asymptotes and sketch the graph of the hyperbola
using the asymptotes.

Put the equation in the standard form:

x2

4
− y2

9
= 1.

Thus, we get a = 2 and b = 3.
This gives c =

√
a2 + b2 =

√
4 + 9 =√

13. We conclude that the foci are at
(±

√
13, 0). Moreover, the asymptotes

have equations y = ±3
2x .
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Parabolas

A parabola is the locus of all points P that are equidistant from a
focus F and a line D called the directrix: PF = PD.

The line through F and perpendicular to D is called the axis of the
parabola;
The vertex is the point of intersection of the parabola with its axis.
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Parabola in Standard Position

A parabola is in standard position if for some c , the focus is
F = (0, c) and the directrix is y = −c .

The equation of this parabola has the simple form

y =
1

4c
x2.

The vertex is then located at the origin.
The parabola opens upward if c > 0 and downward if c < 0.
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Finding an Equation and Sketching the Graph

A parabola is in the standard position and has directrix y = −1
2 . Find

the focus, the equation and sketch the parabola.

Since the directrix is at y = −c ,
we get c = 1

2 . Therefore the fo-
cus is at (0, c) = (0, 12).
The equation of the parabola is

y =
1

4 · 1
2

x2 or y =
1

2
x2.
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Transforming a Parabola

The standard parabola with directrix y = −3 is translated so that its
vertex is located at (−2, 5). Find its equation, directrix and focus.

Consider, first, the standard parabola:
It has c = 3. Thus, its focus is (0, 3).
It has equation y = 1

12x
2.

So the transformed parabola has equa-
tion

y − 5 =
1

12
(x + 2)2.

Its directrix is y = 2 and its focus
(−2, 8).
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Eccentricity

The shape of a conic section is measured by a number e called the
eccentricity:

e =
distance between foci

distance between vertices on the focal axis
.

A parabola is defined to have eccentricity 1.

Theorem

For ellipses and hyperbolas in the standard position

e =
c

a
.

1. An ellipse has eccentricity 0 ≤ e < 1;

2. A hyperbola has eccentricity e > 1.
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Eccentricity and Shapes
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Eccentricity as a Unification Tool

Given a point F (the focus), a line D (the directrix) and a number
e > 0, consider the locus of all points P , such that

PF = e · PD.

For all e > 0, this locus is a conic of eccentricity e.

Ellipse: Let a > b > 0 and
c =

√
a2 − b2. The ellipse

x2

a2
+

y2

b2
= 1

satisfies PF = ePD, with
F = (c , 0), e = c

a
and vertical

directrix x = a
e
.
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Eccentricity as a Unification Tool (Cont’d)

The Second Case:

Hyperbola: Let a, b > 0 and
c =

√
a2 + b2. The hyperbola

x2

a2
− y2

b2
= 1

satisfies PF = ePD, with
F = (c , 0), e = c

a
and vertical

directrix x = a
e
.
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Example

Find the equation, foci and directrix of the standard ellipse with
eccentricity e = 0.8 and focal vertices (±10, 0).
We have c

a
= e = 0.8. Moreover a = 10. Therefore,

c = ea = 0.8 · 10 = 8. This shows that the foci are at (±8, 0).
Moreover, we get b2 = a2 − c2 = 100− 64 = 36.

Therefore, the equation
of the ellipse is

x2

100
+

y2

36
= 1.

Finally, the ellipse has di-
rectrix x = a

e
= 10

0.8 =
12.5.
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Polar Equation of a Conic Section

We assume focus F = (0, 0) and directrix D : x = d .

We have

PF = r

PD = d − r cos θ.

So, if the conic section has
equation PF = ePD, we get
r = e(d − r cos θ).

We solve for r :
r = ed − er cos θ
⇒ r + er cos θ = ed

⇒ r(1 + e cos θ) = ed

⇒ r =
ed

1 + e cos θ
.
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Example

Find the eccentricity, directrix and focus of the conic section

r =
24

4 + 3 cos θ
.

We need to convert into standard form r = ed
1+e cos θ .

r =
24

4 + 3 cos θ
⇒ r =

6

1 + 3
4 cos θ

.

Now we get:

ed = 6, e =
3

4
, d =

6

3/4
= 8.

We conclude that the eccentricity is e = 3
4 , the directrix is D : x = 8

and the focus is F = (0, 0).
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The General Quadratic Equation

The equations of the standard conic sections are special cases of the
general equation of degree 2 in x and y :

ax2 + bxy + cy2 + dx + ey + f = 0,

with a, b, e, d , e, f constants with a, b, c not all zero.
Apart from “degenerate cases”, this equation defines a conic section
that is not necessarily in standard position:

It need not be centered at the origin;
Its focal and conjugate axes may be rotated relative to coordinate axes.

We say that the equation is degenerate if the set of solutions is a
pair of intersecting lines, a pair of parallel lines, a single line, a point,
or the empty set. Some examples include:

x2 − y2 = 0 defines a pair of intersecting lines y = x and y = −x .
x2 − x = 0 defines a pair of parallel lines x = 0 and x = 1.
x2 = 0 defines a single line (the y -axis).
x2 + y2 = 0 has just one solution (0, 0).
x2 + y2 = −1 has no solutions.
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General Quadratic Equation: Zero Cross Term

Suppose that ax2 + bxy + cy2 + dx + ey + f = 0 is nondegenerate.
The term bxy is called the cross term.
When the cross term is zero (that is, when b = 0), we can complete

the square to show that the equation defines a translate of the conic
in standard position.
Example: Show that 4x2 + 9y2 + 24x − 72y + 144 = 0 defines a
translate of a conic section in standard position. Identify the conic
section and find its focus, directrix and eccentricity.

4x2 + 9y2 + 24x − 72y + 144 = 0
⇒ 4(x2 + 6x) + 9(y2 − 8y) = −144
⇒ 4(x2 + 6x + 9) + 9(y2 − 8y + 16) = 36 + 144 − 144
⇒ 4(x + 3)2 + 9(y − 4)2 = 36

⇒ (x+3)2

9 + (y−4)2

4 = 1.

Ellipse with center (−3, 4), focus (−3 +
√
5, 4), eccentricity e =

√
5
3 ,

directrix x = −3 + 9√
5
.
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The Discriminant Test for Classification

Suppose that the equation

ax2 + bxy + cy2 + dx + ey + f = 0

is nondegenerate and thus defines a conic section.

According to the Discriminant Test, the type of conic is determined
by the discriminant D:

D = b2 − 4ac .

We have the following cases:
D < 0: Ellipse or circle;
D > 0: Hyperbola;
D = 0: Parabola.

Example: Determine the conic section with equation 2xy = 1.

The discriminant of 2xy = 1 is D = b2 − 4ac = 22 − 0 = 4 > 0.
According to the Discriminant Test, 2xy = 1 defines a hyperbola.
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