Calculus III

George Voutsadakis¹

¹Mathematics and Computer Science Lake Superior State University

LSSU Math 251

George Voutsadakis (LSSU)

- Parametric Curves
- Calculus With Parametric Curves
- Polar Coordinates
- Area and Arc Length in Polar Coordinates
- Conic Sections

Subsection 1

Parametric Curves

Parametric Equations and Parametric Curves

• A system of parametric equations has the form

$$\begin{cases} x = f(t) \\ y = g(t) \end{cases}, \quad a \le t \le b.$$

- The variable *t* is called the **parameter**.
- The set of points (x, y) = (f(t), g(t)), for a ≤ t ≤ b, is called the parametric curve.
- (f(a), g(a)) is the initial point and (f(b), g(b)) the terminal point.
- We imagine "traveling" along the parametric curve as the parameter *t* increases from *a* to *b*.

Example I

• Consider the parametric curve

$$\begin{cases} x = t^2 - 2t \\ y = t + 1 \end{cases}, \quad -2 \le t \le 4.$$

Example I (Eliminating the Parameter)

• Consider again the curve

$$\begin{cases} x = t^2 - 2t \\ y = t + 1 \end{cases}, \quad -2 \le t \le 4.$$

Since t = y - 1, we get

$$x = (y-1)^2 - 2(y-1)$$

= y² - 2y + 1 - 2y + 2
= y² - 4y + 3.

The Cartesian representation

$$x = y^2 - 4y + 3$$

Example II

Consider the parametric curve

Example III

This is the equation of a circle with center (a, b) and radius R.

Example IV

• Consider the parametric curve

$$\begin{cases} x = \sin t \\ y = \sin^2 t \end{cases}, \quad 0 \le t \le 2\pi.$$

Graphing through Parametrization

- Consider the equation $x = y^4 3y^2$.
- It cannot be graphed directly using a calculator. (Why?)
- Introduce a parameter t and write:

The Cycloid

Cycloid is the curve traced by a point P on the circumference of a circle as the circle rolls along a straight line.
 In parametric form it is given by

$$\left\{ egin{array}{ll} x=R(heta-\sin heta)\ y=R(1-\cos heta) \end{array}
ight. ext{with } 0\leq heta\leq2\pi. \end{array}$$

Subsection 2

Calculus With Parametric Curves

Slopes of Tangent Lines

• Consider the parametric curve
$$\begin{cases} x = f(t) \\ y = g(t) \end{cases}, a \le t \le b.$$

Applying the chain rule, we obtain $\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt}.$
Therefore, we get

Derivative of Parametric System

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{g'(t)}{f'(t)}, \quad \text{subject to } \frac{dx}{dt} \neq 0.$$

Example

• Consider the parametric curve

$$\left\{ \begin{array}{ll} x=t^2\\ y=t^3-3t \end{array}, \quad -2\leq t\leq 2. \end{array} \right.$$

Find the equations of the tangent lines at (x, y) = (3, 0). We have $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3t^2 - 3}{2t}$. Note that (3, 0) corresponds to $t = \pm \sqrt{3}$. Hence, the slope is

 $\frac{dy}{dx}|_{t=\pm\sqrt{3}} = \frac{6}{\pm 2\sqrt{3}} = \pm\sqrt{3}$. Therefore, the tangent lines at (3,0) have equations

$$y = \sqrt{3}(x-3)$$
 and $y = -\sqrt{3}(x-3)$.

Cycloid Revisited

• Recall the parametrization of the cycloid

-I. .

$$\begin{cases} x = R(\theta - \sin \theta) \\ y = R(1 - \cos \theta) \end{cases}, \ 0 \le \theta \le 2\pi.$$

Find its tangent line at $\theta = \frac{\pi}{3}$.

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{R\sin\theta}{R - R\cos\theta} = \frac{\sin\theta}{1 - \cos\theta}.$$

Thus $\frac{dy}{dx}\Big|_{\theta=\frac{\pi}{3}} = \frac{\sin\frac{\pi}{3}}{1-\cos\frac{\pi}{3}} = \frac{\frac{\sqrt{3}}{2}}{1-\frac{1}{2}} = \frac{\sqrt{3}}{2-1} = \sqrt{3}.$ The tangent line has equation $y - \frac{R}{2} = \sqrt{3}(x - R(\frac{\pi}{3} - \frac{\sqrt{3}}{2})).$

Cycloid (Cont'd)

• For the cycloid $\begin{cases} x = R(\theta - \sin \theta) \\ y = R(1 - \cos \theta) \end{cases}, \ 0 \le \theta \le 2\pi, \text{ show that at} \\ \theta = 2k\pi \text{ (k any integer$), the cycloid has a vertical tangent line.} \\ \text{This requires showing that } \lim_{\theta \to 2k\pi} \frac{dy}{dx} = \pm \infty. \\ \text{We have} \end{cases}$

$$\lim_{\theta \to 2k\pi} \frac{dy}{dx} = \lim_{\theta \to 2k\pi} \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \lim_{\theta \to 2k\pi} \frac{\sin\theta}{1 - \cos\theta} = (\frac{0}{0})$$

$$\stackrel{\text{L'Hôpital}}{=} \lim_{\theta \to 2k\pi} \frac{\cos \theta}{\sin \theta} = \pm \infty.$$

Areas under Parametric Curves

Consider x = f(t), y = g(t), a ≤ t ≤ b.
 The area under this parametric curve from f(a) to f(b), assuming that it is "traveled" once, is given by

$$A = \int_{f(a)}^{f(b)} y \, dx = \int_{a}^{b} g(t) \, df(t) = \int_{a}^{b} g(t) f'(t) \, dt.$$

Example (The Area under the Cycloid): $x = R(\theta - \sin \theta), y = R(1 - \cos \theta), \quad 0 \le \theta \le 2\pi.$

$$A = \int_{0}^{2\pi} y(\theta) x'(\theta) \ d\theta = \int_{0}^{2\pi} R(1 - \cos \theta) (R - R \cos \theta) \ d\theta$$

= $R^{2} \int_{0}^{2\pi} (1 - \cos \theta)^{2} \ d\theta = R^{2} \int_{0}^{2\pi} (1 - 2 \cos \theta + \cos^{2} \theta) \ d\theta$
= $R^{2} \int_{0}^{2\pi} (1 - 2 \cos \theta + \frac{1 + \cos 2\theta}{2}) \ d\theta$
= $R^{2} \left[\theta - 2 \sin \theta + \frac{1}{2} (\theta + \frac{1}{2} \sin 2\theta) \right]_{0}^{2\pi} = 3\pi R^{2}.$

Arc Lengths of Parametric Curves

• Consider $x = f(t), y = g(t), a \le t \le b$.

The length of this parametric curve from f(a) to f(b), assuming that it is "traveled" once, is given by

$$L = \int_{f(a)}^{f(b)} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx = \int_a^b \sqrt{1 + \left(\frac{dy}{dt}\right)^2} \frac{dx}{dt} \, dt$$
$$= \int_a^b \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt.$$

Example (The Length of a Circle of Radius *R*): $x = R \cos t, y = R \sin t, \ 0 \le t \le 2\pi.$

$$L = \int_0^{2\pi} \sqrt{(-R\sin t)^2 + (R\cos t)^2} \, dt = \int_0^{2\pi} R \, dt = Rt|_0^{2\pi} = 2\pi R.$$

Arc Length of the Cycloid

•
$$x = R(\theta - \sin \theta), y = R(1 - \cos \theta), \ 0 \le \theta \le 2\pi$$
.
We have

$$L = \int_{0}^{2\pi} \sqrt{\left(\frac{dx}{d\theta}\right)^{2} + \left(\frac{dy}{d\theta}\right)^{2}} d\theta$$

= $\int_{0}^{2\pi} \sqrt{(R - R\cos\theta)^{2} + (R\sin\theta)^{2}} d\theta$
= $\int_{0}^{2\pi} \sqrt{R^{2} - 2R^{2}\cos\theta + R^{2}\cos^{2}\theta + R^{2}\sin^{2}\theta} d\theta$
= $\int_{0}^{2\pi} \sqrt{2R^{2}(1 - \cos\theta)} d\theta = \int_{0}^{2\pi} \sqrt{2R^{2}2\sin^{2}\frac{\theta}{2}} d\theta$
= $2R \int_{0}^{2\pi} \sin\frac{\theta}{2} d\theta = 2R \left(-2\cos\frac{\theta}{2}\right)|_{0}^{2\pi} = 8R.$

Surface Area

• Let $\begin{cases} x = f(t) \\ y = g(t) \end{cases}$, where g(t) > 0, f(t) is increasing, and f'(t) and g'(t) are continuous.

Then the surface obtained by rotating the curve c(t) = (f(t), g(t)) about the x-axis for $a \le t \le b$ has surface area

$$S = 2\pi \int_{a}^{b} y \sqrt{(\frac{dx}{dt})^{2} + (\frac{dy}{dt})^{2}} dt$$

= $2\pi \int_{a}^{b} g(t) \sqrt{f'(t)^{2} + g'(t)^{2}} dt$

Computing a Surface Area

• Calculate the surface area of the surface obtained by rotating $\begin{cases} x = \cos^3 \theta \\ y = \sin^3 \theta \end{cases}, \ 0 \le \theta \le \frac{\pi}{2}, \text{ about the } x\text{-axis.} \end{cases}$

$$S = 2\pi \int_0^{\pi/2} y \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2 d\theta}$$

$$= 2\pi \int_0^{\pi/2} \sin^3 \theta \sqrt{(-3\cos^2 \theta \sin \theta)^2 + (3\sin^2 \theta \cos \theta)^2} d\theta$$

$$= 2\pi \int_0^{\pi/2} \sin^3 \theta \sqrt{9\cos^4 \theta \sin^2 \theta + 9\sin^4 \theta \cos^2 \theta} d\theta$$

$$= 2\pi \int_0^{\pi/2} \sin^3 \theta \sqrt{9\cos^2 \theta \sin^2 \theta (\cos^2 \theta + \sin^2 \theta)} d\theta$$

$$= 2\pi \int_0^{\pi/2} \sin^3 \theta 3 \cos \theta \sin \theta d\theta$$

$$= 6\pi \int_0^{\pi/2} \sin^4 \theta \cos \theta d\theta$$

$$= 6\pi \int_0^1 u^4 du$$

$$= 6\pi \frac{u^5}{5} |_0^1 = \frac{6\pi}{5}.$$

Summary

• Parametric curve $\begin{cases} x = f(t) \\ y = g(t) \end{cases}, a \le t \le b.$ Slope of Tangent:

$$\frac{dy}{dx} = \frac{g'(t)}{f'(t)}.$$

Area Under the Parametric Curve:

$$A=\int_a^b g(t)f'(t)dt.$$

Arc Length of the Parametric Curve:

$$L = \int_a^b \sqrt{f'(t)^2 + g'(t)^2} dt.$$

Surface of the Solid of Revolution:

$$S=2\pi\int_a^b g(t)\sqrt{f'(t)^2+g'(t)^2}dt.$$

Subsection 3

Polar Coordinates

Polar Coordinates

- In **polar coordinates**, we label a point P by coordinates (r, θ) , where:
 - r is the distance to the origin O;
 - *θ* is the angle between *OP* and the positive *x*-axis.

An angle is positive if the corresponding rotation is counterclockwise.
We call *r* the radial coordinate and θ the angular coordinate.

Polar Coordinates and Rectangular Coordinates

• The figure shows that polar and rectangular coordinates are related by the equations:

From Polar to Rectangular:

$$x = r \cos \theta$$
, $y = r \sin \theta$.

From Rectangular to Polar:

$$r^2=x^2+y^2,$$
 tan $heta=rac{y}{x},x
eq 0.$

From Polar To Rectangular

• Find the rectangular coordinates of $Q = (r, \theta) = (3, \frac{5\pi}{6})$.

$$x = r \cos \theta = 3 \cos \left(\frac{5\pi}{6}\right)$$
$$= 3\left(-\frac{\sqrt{3}}{2}\right) = -\frac{3\sqrt{3}}{2}.$$
$$y = r \sin \theta = 3 \sin \left(\frac{5\pi}{6}\right)$$
$$= 3 \cdot \frac{1}{2} = \frac{3}{2}.$$

From Rectangular to Polar

• Find the polar coordinates of the point P = (x, y) = (3, 2).

Choosing θ Correctly

 Find two polar representations of P = (-1,1), one with r > 0 and one with r < 0.

We have $r^{2} = (-1)^{2} + 1^{2} = 2.$ So $r = \sqrt{2}$. Moreover, $\tan \theta = \frac{y}{x} = \frac{1}{-1} = -1.$

However, $\theta \neq \tan^{-1}(-1) = -\frac{\pi}{4}$, because *P* is in Quadrant II. The correct angle is $\theta = \tan^{-1}\left(\frac{y}{x}\right) + \pi = -\frac{\pi}{4} + \pi = \frac{3\pi}{4}$. So, with r > 0, we have $P = (\sqrt{2}, \frac{3\pi}{4})$. With r < 0, we have $P = (-\sqrt{2}, -\frac{\pi}{4}) = (-\sqrt{2}, \frac{7\pi}{4})$.

Line Through the Origin

• Find the polar equation of the line through the origin of slope $\sqrt{3}$.

We find the angle θ_0 , such that

$$\tan \theta_0 = \frac{y}{x} = \text{slope} = \sqrt{3}.$$

We get $\theta_0 = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$. Thus the equation of the line is

$$\theta = \frac{\pi}{3}.$$

Line Not Through the Origin

 Find the polar equation of the line *L* whose point closest to the origin (in polar coordinates) is (*d*, *α*).

 $P_0 = (d, \alpha)$ is the point of intersection of \mathcal{L} with a perpendicular from O to \mathcal{L} . Let $P = (r, \theta)$ be any point on \mathcal{L} other than P_0 . From the right triangle $\triangle OPP_0$, we get

$$\cos(\theta - \alpha) = \frac{d}{r}$$
$$\Rightarrow r = d \sec(\theta - \alpha)$$

Example

 Find the polar equation of the line *L* tangent to the circle r = 4 at the point with polar coordinates P₀ = (4, π/3).

The point of tangency has polar coordinates $(d, \alpha) = (4, \frac{\pi}{3})$. From the preceding slide, the polar equation of the tangent line is:

$$r = d \sec(\theta - \alpha)$$

$$\Rightarrow$$
 $r = 4 \sec \left(\theta - \frac{\pi}{3}\right).$

Converting to Rectangular Coordinates

• Identify the curve with polar equation $r = 2a \sin \theta$. We have:

$$r = 2a \sin \theta$$

$$r^{2} = 2ar \sin \theta$$

$$x^{2} + y^{2} = 2ay$$

$$x^{2} + (y^{2} - 2ay) = 0$$

$$x^{2} + (y^{2} - 2ay + a^{2}) = a^{2}$$

$$x^{2} + (y - a)^{2} = a^{2}.$$

We get a circle with center (0, a) and radius a.

Graphing a Polar Curve Using Symmetry

- Sketch the limaçon curve $r = 2\cos\theta 1$.
 - 1. $\cos \theta$ has period 2π . We study the graph for $-\pi \le \theta < \pi$.
 - 2. Create a small table of values:

Plot the various points.

3. Since $\cos(-\theta) = \cos\theta$ we have symmetry with respect to the x-axis.

Tangent Lines to Polar Curves

• Suppose that $r = f(\theta)$.

• Then
$$x = r \cos \theta = f(\theta) \cos \theta$$
 and $y = r \sin \theta = f(\theta) \sin \theta$.

• These give, using the product rule,

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \quad \text{and} \quad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta$$

• Therefore, for the slope of the tangent at (r, θ) ,

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}.$$

Equation of Tangent to Cardioid $r = 1 + \sin \theta$

• Find the equation of the tangent to the cardioid $r = 1 + \sin \theta$ at $\theta = \frac{\pi}{3}$.

$$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta} = \frac{\cos\theta\sin\theta + (1+\sin\theta)\cos\theta}{\cos\theta\cos\theta - (1+\sin\theta)\sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{1-2\sin^2\theta - \sin\theta} = \frac{\cos\theta(1+2\sin\theta)}{(1+\sin\theta)(1-2\sin\theta)}.$$

So

$$\frac{dy}{dx}\Big|_{\theta=\frac{\pi}{3}} = \frac{\frac{1}{2}(1+\sqrt{3})}{(1+\frac{\sqrt{3}}{2})(1-\sqrt{3})} = \frac{\frac{1}{2}(1+\sqrt{3})^2}{(1+\frac{\sqrt{3}}{2})(1-3)} = -1.$$

For $\theta = \frac{\pi}{3}$, $r(\frac{\pi}{3}) = 1 + \frac{\sqrt{3}}{2}$. So $x = r \cos \theta = (1 + \frac{\sqrt{3}}{2})\frac{1}{2} = \frac{2+\sqrt{3}}{4}$ and $y = r \sin \theta = (1 + \frac{\sqrt{3}}{2})\frac{\sqrt{3}}{2} = \frac{3+2\sqrt{3}}{4}$. Thus, the equation of the tangent line when $\theta = \frac{\pi}{3}$ is $y - \frac{3+2\sqrt{3}}{4} = -(x - \frac{2+\sqrt{3}}{4})$.

Subsection 4

Area and Arc Length in Polar Coordinates
Areas in Polar Coordinates

- The area of a disk segment with central angle $\Delta \theta$ is $A = \frac{1}{2}(\Delta \theta)r^2$ (since total area of disk is $\pi r^2 = \frac{1}{2}(2\pi)r^2$).
- Thus, if a polar curve is given by $r = f(\theta)$, then for a small $\Delta \theta$, taking r constant at $f(\theta_i)$, we get

$$\Delta A_j \approx \frac{1}{2} [f(\theta_j)]^2 \Delta \theta_j$$

Areas in Polar Coordinates (Cont'd)

• Summing over those j's partitioning $\alpha \leq \theta \leq \beta$, we get

$$A \approx \sum_{j=1}^{N} \frac{1}{2} [f(\theta_j)]^2 \Delta \theta.$$

• Finally, passing to the limit, we end up with the integral

$$A = \int_{\alpha}^{\beta} \frac{1}{2} [f(\theta)]^2 \ d\theta \quad (= \int_{\alpha}^{\beta} \frac{1}{2} r^2 \ d\theta).$$

Area of Semicircle

- Compute the area of the right semicircle with equation $r = 4 \sin \theta$.
 - The right semicircle is plotted for $0 \le \theta \le \frac{\pi}{2}$. Therefore, we have

$$A = \frac{1}{2} \int_0^{\pi/2} r^2 d\theta$$

= $\frac{1}{2} \int_0^{\pi/2} (4\sin\theta)^2 d\theta$
= $8 \int_0^{\pi/2} \sin^2 \theta d\theta$
= $8 \int_0^{\pi/2} \frac{1}{2} (1 - \cos 2\theta) d\theta$
= $4(\theta - \frac{1}{2}\sin 2\theta) \Big|_0^{\pi/2}$
= $4(\frac{\pi}{2} - 0)$
= 2π .

One Loop of the Four-Leaved Rose

• Compute the area of one loop of the four-leaved rose $r = \cos 2\theta$. One loop is traced for $-\frac{\pi}{4} \le \theta \le \frac{\pi}{4}$.

Therefore, we get

$$A = \int_{-\pi/4}^{\pi/4} \frac{1}{2} \cos^2 2\theta \ d\theta \\ = \int_{-\pi/4}^{\pi/4} \frac{1}{2} \frac{1 + \cos 4\theta}{2} \ d\theta \\ = \frac{1}{4} \int_{-\pi/4}^{\pi/4} (1 + \cos 4\theta) \ d\theta \\ = \frac{1}{4} (\theta + \frac{1}{4} \sin 4\theta) |_{-\pi/4}^{\pi/4} \\ = \frac{1}{4} (\frac{\pi}{4} + \frac{1}{4} \sin \pi - (-\frac{\pi}{4} + \frac{1}{4} \sin (-\pi))) \\ = \frac{1}{4} \frac{\pi}{2} = \frac{\pi}{8}.$$

Area of a Petal of a Rose

• Compute the area of one petal of the rose $r = \sin 3\theta$.

One petal is traced when $0 \le \theta \le \frac{\pi}{3}$. So we have

$$A = \frac{1}{2} \int_0^{\pi/3} (\sin 3\theta)^2 d\theta$$

= $\frac{1}{2} \int_0^{\pi/3} \frac{1}{2} (1 - \cos 6\theta) d\theta$
= $\frac{1}{4} (\theta - \frac{1}{6} \sin 6\theta) \Big|_0^{\pi/3}$
= $\frac{1}{4} [(\frac{\pi}{3} - 0) - 0] = \frac{\pi}{12}.$

Area Between Two Curves

• Consider the area A between two polar curves $r = f_1(\theta)$ and $r = f_2(\theta)$, with $f_1(\theta) \le f_2(\theta)$, for $\alpha \le \theta \le \beta$.

It is given by

$$A=\frac{1}{2}\int_{\alpha}^{\beta}f_2(\theta)^2d\theta-\frac{1}{2}\int_{\alpha}^{\beta}f_1(\theta)^2d\theta=\frac{1}{2}\int_{\alpha}^{\beta}[f_2(\theta)^2-f_1(\theta)^2]d\theta.$$

Computing the Area Between Two Curves

Find the area of the region inside the circle r = 2 cos θ but outside the circle r = 1.

Set the equations equal to find the angle θ for the points of intersection: $2\cos\theta = 1 \Rightarrow \cos\theta = \frac{1}{2} \Rightarrow \theta = \pm \frac{\pi}{3}$.

Region Between Cardioid and Circle

• Find the area of the region inside the circle $r = 3 \sin \theta$ and outside the cardioid $r = 1 + \sin \theta$.

Find angles θ of intersection.

$$3\sin\theta = 1 + \sin\theta \Rightarrow \sin\theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{6} \text{ or } \theta = \frac{5\pi}{6}.$$

$$A = \int_{\pi/6}^{5\pi/6} \frac{1}{2} [(3\sin\theta)^2 - (1+\sin\theta)^2] d\theta = \frac{1}{2} \int_{\pi/6}^{5\pi/6} (8\sin^2\theta - 2\sin\theta - 1) d\theta = \frac{1}{2} \int_{\pi/6}^{5\pi/6} (4(1-\cos 2\theta) - 2\sin\theta - 1) d\theta = \frac{1}{2} \int_{\pi/6}^{5\pi/6} (3-2\sin\theta - 4\cos 2\theta) d\theta = \frac{1}{2} (3\theta + 2\cos\theta - 2\sin 2\theta) \Big|_{\pi/6}^{5\pi/6} = \frac{1}{2} [(\frac{5\pi}{2} - \sqrt{3} + \sqrt{3}) - (\frac{\pi}{2} + \sqrt{3} - \sqrt{3})] = \pi.$$

Area Between Circle and Petal of the Four-Leaved Rose

• Find the area of the region inside a petal of $r = \cos 2\theta$ and outside the circle $r = \frac{1}{2}$. Find angles θ of intersection. $\cos 2\theta = \frac{1}{2} \Rightarrow 2\theta = -\frac{\pi}{3} \text{ or } 2\theta = \frac{\pi}{3} \Rightarrow \theta = -\frac{\pi}{6} \text{ or } \theta = \frac{\pi}{6}.$ $A = \int_{-\pi/6}^{\pi/6} \frac{1}{2} [(\cos 2\theta)^2 - (\frac{1}{2})^2] d\theta$ $= \frac{1}{2} \int_{-\pi/6}^{\pi/6} (\cos^2 2\theta - \frac{1}{4}) d\theta$ $= \frac{\frac{1}{2} \int_{-\pi/6}^{\pi/6} \left(\frac{1+\cos 4\theta}{2} - \frac{1}{4}\right) d\theta}{2}$ $= \frac{1}{8} \int_{-\pi/6}^{\pi/6} (1 + 2\cos 4\theta) d\theta$ $= \frac{1}{8}(\theta + \frac{1}{2}\sin 4\theta) \Big|_{-\pi/6}^{\pi/6}$ $= \frac{1}{9}(\frac{\pi}{2} + \frac{\sqrt{3}}{2}).$

Length of Polar Curves

• Recall from rectangular coordinates, using the Pythagorean Theorem, $L = \int_{-2}^{b} \sqrt{dx^2 + dy^2}.$

• Multiplying and dividing by $d\theta$,

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dx}{d\theta}\right)^2 + \left(\frac{dy}{d\theta}\right)^2} \ d\theta.$$

• Since $x = r \cos \theta$ and $y = r \sin \theta$,

$$\frac{dx}{d\theta} = \frac{dr}{d\theta}\cos\theta - r\sin\theta \quad \text{and} \quad \frac{dy}{d\theta} = \frac{dr}{d\theta}\sin\theta + r\cos\theta.$$

• Therefore $(\frac{dx}{d\theta})^2 + (\frac{dy}{d\theta})^2 \stackrel{\text{algebra}}{=} (\frac{dr}{d\theta})^2 + r^2.$
• This gives

$$L = \int_{\alpha}^{\beta} \sqrt{r^2 + (\frac{dr}{d\theta})^2} \ d\theta.$$

Arc Length of a Circle

Find the total length of the circle r = 2a cos θ, for a > 0.
 We have r = f(θ) = 2a cos θ. So we get

$$r^{2} + (\frac{dr}{d\theta})^{2} = (2a\cos\theta)^{2} + (-2a\sin\theta)^{2} = 4a^{2}.$$

Length of the Cardioid $r = 1 + \sin \theta$

• Finf the length of the cardiod
$$r = 1 + \sin \theta$$
.
We have $\frac{dr}{d\theta} = \cos \theta$.

$$L = \int_{0}^{2\pi} \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta$$

$$= \int_{0}^{2\pi} \sqrt{(1 + \sin \theta)^2 + \cos^2 \theta} d\theta$$

$$= \int_{0}^{2\pi} \sqrt{2 + 2\sin \theta} d\theta$$

$$= \int_{0}^{2\pi} \frac{\sqrt{(2 + 2\sin \theta)(2 - 2\sin \theta)}}{\sqrt{2 - 2\sin \theta}} d\theta$$

$$= 2 \cdot \frac{2}{\sqrt{2}} \int_{-\pi/2}^{\pi/2} \frac{\cos \theta}{\sqrt{1 - \sin \theta}} d\theta$$
(set $u = 1 - \sin \theta$)

$$= 2\sqrt{2} \int_{2}^{0} -\frac{1}{\sqrt{u}} du$$

$$= 2\sqrt{2} (2\sqrt{u}) |_{0}^{2}$$

$$= 2\sqrt{2} \cdot 2\sqrt{2} = 8.$$

Subsection 5

Conic Sections

Conic Sections

• **Conic sections** are obtained as the intersection of a cone with a plane.

Ellipses

- An **ellipse** is the locus of all points *P* such that the sum of the distances to two fixed points *F*₁ and *F*₂ is a constant *K*.
 - The midpoint of $\overline{F_1F_2}$ is the **center** of the ellipse;
 - The line through the foci is the focal axis;
 - The line through the center and perpendicular to the focal axis is the **conjugate axis**.

Ellipse in Standard Position

• An ellipse is in **standard position** if the focal and conjugate axes are the *x*- and *y*-axes.

The foci have coordinates $F_1 = (c, 0)$, $F_2 = (-c, 0)$, for some c > 0. The equation of this ellipse has the simple form

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$

where $a = \frac{K}{2}$ and $b = \sqrt{a^2 - c^2}$.

Additional Terminology

- The points *A*, *A'*, *B*, *B'* of intersection with the axes are called **vertices**;
- The vertices A, A' on the focal axis are called **focal vertices**;
- The number *a* is the **semimajor axis**;
- The number *b* is the **semininor** axis.

Equation of Ellipse in Standard Position

• Let a > b > 0 and set $c = \sqrt{a^2 - b^2}$. The ellipse $PF_1 + PF_2 = 2a$, with foci $F_1 = (c, 0)$ and $F_2 = (-c, 0)$ has equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Furthermore, the ellipse has:

- Semimajor axis *a* and semiminor axis *b*;
- Focal vertices $(\pm a, 0)$ and minor vertices $(0, \pm b)$.

• If b > a > 0, the same equation defines an ellipse with foci $(0, \pm c)$, where $c = \sqrt{b^2 - a^2}$.

Finding an Equation and Sketching the Graph

• Find an equation of the ellipse with foci $(\pm\sqrt{11},0)$ and semimajor axis a = 6. Then sketch its graph.

Since the foci are at $(\pm c, 0)$, we get that $c = \sqrt{11}$. Since $b = \sqrt{a^2 - c^2}$, we get $b = \sqrt{36 - 11} = 5$.

Thus, the equation is

$$\frac{x^2}{36} + \frac{y^2}{25} = 1$$

Finally, we sketch the graph:

Transforming an Ellipse

• Find an equation of the ellipse with center C = (6,7), vertical focal axis, semimajor axis 5 and semiminor axis 3. Then find the location of the foci and sketch its graph.

We have a = 3 and b = 5. At standard position the equation would have been $\frac{x^2}{9} + \frac{y^2}{25} = 1$. Translating to center *C*, we get

$$\frac{(x-6)^2}{9} + \frac{(x-7)^2}{25} = 1.$$

Now we compute $c = \sqrt{b^2 - a^2} = \sqrt{25 - 9} = 4$. Thus, the foci are at (6, 7±4) or (6, 11) and (6, 3).

Hyperbolas

- A **hyperbola** is the locus of all points *P* such that the difference of the distances from *P* to two foci *F*₁ and *F*₂ is ±*K*.
 - The midpoint of $\overline{F_1F_2}$ is the **center** of the hyperbola;
 - The line through the foci is the focal axis;
 - The line through the center and perpendicular to the focal axis is the **conjugate axis**.

Hyperbola in Standard Position

• A hyperbola is in **standard position** if the focal and conjugate axes are the *x*- and *y*-axes.

The foci have coordinates $F_1 = (c, 0)$, $F_2 = (-c, 0)$, for some c > 0. The equation of this hyperbola has the simple form

$$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,$$

where $a = \frac{K}{2}$ and $b = \sqrt{c^2 - a^2}$.

Additional Terminology

• The points A, A' of intersection with the focal axis are called **vertices**;

A hyperbola with equation \$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\$ has two asymptotes \$y = \pm \frac{b}{a} x\$, which are diagonals of the rectangle whose sides pass through \$(\pm a, 0)\$ and \$(0, \pm b)\$.

Equation of Hyperbola in Standard Position

• Let a > 0 and b > 0 and set $c = \sqrt{a^2 + b^2}$. The hyperbola $PF_1 - PF_2 = \pm 2a$, with foci $F_1 = (c, 0)$ and $F_2 = (-c, 0)$ has equation

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

Furthermore, the hyperbola has vertices $(\pm a, 0)$.

Finding an Equation and Sketching the Graph

• Find an equation of the hyperbola with foci $(\pm\sqrt{5},0)$ and vertices $(\pm 1,0)$. Then sketch its asymptotes and its graph. Since the foci are at $(\pm c,0)$, we get that $c = \sqrt{5}$. Since $b = \sqrt{c^2 - a^2}$, we get $b = \sqrt{5 - 1} = 2$.

Thus, the equation is

$$\frac{x^2}{1} - \frac{y^2}{4} = 1$$

Moreover the asymptotes are $y = \pm \frac{b}{a}x$, i.e., $y = \pm 2x$.

Finding the Foci and Sketching the Graph

• Find the foci of the hyperbola $9x^2 - 4y^2 = 36$. Then find the equations of the asymptotes and sketch the graph of the hyperbola using the asymptotes.

Put the equation in the standard form:

$$\frac{x^2}{4} - \frac{y^2}{9} = 1.$$

Thus, we get a = 2 and b = 3. This gives $c = \sqrt{a^2 + b^2} = \sqrt{4 + 9} = \sqrt{13}$. We conclude that the foci are at $(\pm\sqrt{13}, 0)$. Moreover, the asymptotes have equations $y = \pm \frac{3}{2}x$.

Parabolas

- A parabola is the locus of all points P that are equidistant from a focus F and a line D called the directrix: PF = PD.
 - The line through *F* and perpendicular to *D* is called the **axis** of the parabola;
 - The vertex is the point of intersection of the parabola with its axis.

Parabola in Standard Position

• A parabola is in **standard position** if for some c, the focus is F = (0, c) and the directrix is y = -c.

The equation of this parabola has the simple form

$$y=\frac{1}{4c}x^2.$$

- The vertex is then located at the origin.
- The parabola opens upward if c > 0 and downward if c < 0.

Finding an Equation and Sketching the Graph

 A parabola is in the standard position and has directrix y = -¹/₂. Find the focus, the equation and sketch the parabola.

Since the directrix is at y = -c, we get $c = \frac{1}{2}$. Therefore the focus is at $(0, c) = (0, \frac{1}{2})$. The equation of the parabola is

$$y = \frac{1}{4 \cdot \frac{1}{2}} x^2$$
 or $y = \frac{1}{2} x^2$.

Transforming a Parabola

• The standard parabola with directrix y = -3 is translated so that its vertex is located at (-2, 5). Find its equation, directrix and focus.

Consider, first, the standard parabola: It has c = 3. Thus, its focus is (0,3). It has equation $y = \frac{1}{12}x^2$. So the transformed parabola has equation

$$y-5=\frac{1}{12}(x+2)^2.$$

Its directrix is y = 2 and its focus (-2, 8).

Eccentricity

• The shape of a conic section is measured by a number *e* called the **eccentricity**:

distance between foci

distance between vertices on the focal axis

A parabola is defined to have eccentricity 1.

Theorem

For ellipses and hyperbolas in the standard position

$$e = \frac{c}{a}$$
.

- 1. An ellipse has eccentricity $0 \le e < 1$;
- 2. A hyperbola has eccentricity e > 1.

Eccentricity and Shapes

George Voutsadakis (LSSU)

Eccentricity as a Unification Tool

Given a point F (the focus), a line D (the directrix) and a number e > 0, consider the locus of all points P, such that

$$PF = e \cdot P\mathcal{D}.$$

• For all e > 0, this locus is a conic of eccentricity e.

Eccentricity as a Unification Tool (Cont'd)

• The Second Case:

• Hyperbola: Let a, b > 0 and $c = \sqrt{a^2 + b^2}$. The hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

satisfies PF = ePD, with F = (c, 0), $e = \frac{c}{a}$ and vertical directrix $x = \frac{a}{e}$.

Example

Find the equation, foci and directrix of the standard ellipse with eccentricity e = 0.8 and focal vertices (±10,0).
 We have c/a = e = 0.8. Moreover a = 10. Therefore, c = ea = 0.8 · 10 = 8. This shows that the foci are at (±8,0).
 Moreover, we get b² = a² - c² = 100 - 64 = 36.

Polar Equation of a Conic Section

• We assume focus F = (0, 0) and directrix $\mathcal{D} : x = d$.

We have

$$PF = r$$
$$P\mathcal{D} = d - r\cos\theta.$$

So, if the conic section has equation PF = ePD, we get $r = e(d - r \cos \theta)$.

We solve for r:

$$r = ed - er \cos \theta$$

$$\Rightarrow r + er \cos \theta = ed$$

$$\Rightarrow r(1 + e \cos \theta) = ed$$

$$\Rightarrow r = \frac{ed}{1 + e \cos \theta}.$$
Example

• Find the eccentricity, directrix and focus of the conic section

$$r=\frac{24}{4+3\cos\theta}.$$

We need to convert into standard form $r = \frac{ed}{1 + e \cos \theta}$.

$$r = \frac{24}{4 + 3\cos\theta} \Rightarrow r = \frac{6}{1 + \frac{3}{4}\cos\theta}$$

Now we get:

$$ed = 6$$
, $e = \frac{3}{4}$, $d = \frac{6}{3/4} = 8$

We conclude that the eccentricity is $e = \frac{3}{4}$, the directrix is $\mathcal{D} : x = 8$ and the focus is F = (0, 0).

The General Quadratic Equation

• The equations of the standard conic sections are special cases of the general equation of degree 2 in x and y:

$$ax^{2} + bxy + cy^{2} + dx + ey + f = 0,$$

with a, b, e, d, e, f constants with a, b, c not all zero.

- Apart from "degenerate cases", this equation defines a conic section that is not necessarily in standard position:
 - It need not be centered at the origin;
- Its focal and conjugate axes may be rotated relative to coordinate axes.
 We say that the equation is **degenerate** if the set of solutions is a pair of intersecting lines, a pair of parallel lines, a single line, a point, or the empty set. Some examples include:
 - $x^2 y^2 = 0$ defines a pair of intersecting lines y = x and y = -x.
 - $x^2 x = 0$ defines a pair of parallel lines x = 0 and x = 1.
 - $x^2 = 0$ defines a single line (the y-axis).
 - $x^2 + y^2 = 0$ has just one solution (0,0).
 - $x^2 + y^2 = -1$ has no solutions.

General Quadratic Equation: Zero Cross Term

• Suppose that $ax^2 + bxy + cy^2 + dx + ey + f = 0$ is nondegenerate. The term bxy is called the **cross term**. When the cross term is zero (that is, when b = 0), we can *complete the square* to show that the equation defines a translate of the conic in standard position.

Example: Show that $4x^2 + 9y^2 + 24x - 72y + 144 = 0$ defines a translate of a conic section in standard position. Identify the conic section and find its focus, directrix and eccentricity.

$$4x^{2} + 9y^{2} + 24x - 72y + 144 = 0$$

$$\Rightarrow 4(x^{2} + 6x) + 9(y^{2} - 8y) = -144$$

$$\Rightarrow 4(x^{2} + 6x + 9) + 9(y^{2} - 8y + 16) = 36 + 144 - 144$$

$$\Rightarrow 4(x + 3)^{2} + 9(y - 4)^{2} = 36$$

$$\Rightarrow \frac{(x+3)^{2}}{9} + \frac{(y-4)^{2}}{4} = 1.$$

Ellipse with center (-3, 4), focus (-3 + $\sqrt{5}$, 4), eccentricity $e = \frac{\sqrt{5}}{3}$, directrix $x = -3 + \frac{9}{\sqrt{5}}$.

The Discriminant Test for Classification

• Suppose that the equation

$$ax^2 + bxy + cy^2 + dx + ey + f = 0$$

is nondegenerate and thus defines a conic section.

According to the Discriminant Test, the type of conic is determined by the **discriminant** D:

$$D=b^2-4ac.$$

We have the following cases:

- *D* < 0: Ellipse or circle;
- *D* > 0: Hyperbola;
- D = 0: Parabola.

Example: Determine the conic section with equation 2xy = 1. The discriminant of 2xy = 1 is $D = b^2 - 4ac = 2^2 - 0 = 4 > 0$. According to the Discriminant Test, 2xy = 1 defines a hyperbola.