Calculus III

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 251

(1) Parametric Equations, Polar Coordinates, Conic Sections

- Parametric Curves
- Calculus With Parametric Curves
- Polar Coordinates
- Area and Arc Length in Polar Coordinates
- Conic Sections

Subsection 1

Parametric Curves

Parametric Equations and Parametric Curves

- A system of parametric equations has the form

$$
\left\{\begin{array}{l}
x=f(t) \\
y=g(t)
\end{array} \quad, \quad a \leq t \leq b\right.
$$

- The variable t is called the parameter.
- The set of points $(x, y)=(f(t), g(t))$, for $a \leq t \leq b$, is called the parametric curve.
- $(f(a), g(a))$ is the initial point and $(f(b), g(b))$ the terminal point.
- We imagine "traveling" along the parametric curve as the parameter t increases from a to b.

Example I

- Consider the parametric curve

$$
\left\{\begin{array}{l}
x=t^{2}-2 t \\
y=t+1
\end{array}, \quad-2 \leq t \leq 4\right.
$$

t	x	y
-2	8	-1
-1	3	0
0	0	1
1	-1	2
2	0	3
3	3	4
4	8	5

Example I (Eliminating the Parameter)

- Consider again the curve

$$
\left\{\begin{array}{l}
x=t^{2}-2 t \\
y=t+1
\end{array}, \quad-2 \leq t \leq 4\right.
$$

Since $t=y-1$, we get

$$
\begin{aligned}
x & =(y-1)^{2}-2(y-1) \\
& =y^{2}-2 y+1-2 y+2 \\
& =y^{2}-4 y+3 .
\end{aligned}
$$

The Cartesian representation

$$
x=y^{2}-4 y+3
$$

reminds us of a parabola opening
 "right".

Example II

- Consider the parametric curve

$$
\left\{\begin{array}{l}
x=\cos t \\
y=\sin t
\end{array}, \quad 0 \leq t \leq 2 \pi\right.
$$

t	x	y
0	1	0
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{2}$	0	1
$\frac{3 \pi}{4}$	$-\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
π	-1	0
$\frac{3 \pi}{2}$	0	-1
2π	1	0

Note $x^{2}+y^{2}=\sin ^{2} t+\cos ^{2} t=1$.

Example III

- Consider the parametric curve

$$
\left\{\begin{array}{l}
x=a+R \cos t \\
y=b+R \sin t
\end{array}, \quad 0 \leq t \leq 2 \pi\right.
$$

Note
$(x-a)^{2}+(y-b)^{2}=R^{2} \cos ^{2} t+R^{2} \sin ^{2} t=R^{2}\left(\cos ^{2} t+\sin ^{2} t\right)=R^{2}$.
This is the equation of a circle with center (a, b) and radius R.

Example IV

- Consider the parametric curve

$$
\left\{\begin{array}{l}
x=\sin t \\
y=\sin ^{2} t
\end{array} \quad, \quad 0 \leq t \leq 2 \pi\right.
$$

t	x	y
0	0	0
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	1
$\frac{3 \pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
π	0	0
$\frac{3 \pi}{2}$	-1	1
2π	0	0

Graphing through Parametrization

- Consider the equation $x=y^{4}-3 y^{2}$.
- It cannot be graphed directly using a calculator. (Why?)
- Introduce a parameter t and write:

$$
\left\{\begin{array}{l}
x=t^{4}-3 t^{2} \\
y=t
\end{array}, \quad \text { say }-2 \leq t \leq 2\right.
$$

t	x	y
-2	4	-2
-1	-2	-1
0	0	0
1	-2	1
2	4	2

The Cycloid

- Cycloid is the curve traced by a point P on the circumference of a circle as the circle rolls along a straight line.

In parametric form it is given by

$$
\left\{\begin{array}{l}
x=R(\theta-\sin \theta) \\
y=R(1-\cos \theta)
\end{array} \text { with } 0 \leq \theta \leq 2 \pi .\right.
$$

Subsection 2

Calculus With Parametric Curves

Slopes of Tangent Lines

- Consider the parametric curve $\left\{\begin{array}{l}x=f(t) \\ y=g(t)\end{array}, a \leq t \leq b\right.$.

Applying the chain rule, we obtain $\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}$.
Therefore, we get

Derivative of Parametric System

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{g^{\prime}(t)}{f^{\prime}(t)}, \quad \text { subject to } \frac{d x}{d t} \neq 0
$$

Example

- Consider the parametric curve

$$
\left\{\begin{array}{l}
x=t^{2} \\
y=t^{3}-3 t
\end{array}, \quad-2 \leq t \leq 2\right.
$$

Find the equations of the tangent lines at $(x, y)=(3,0)$.
We have $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{3 t^{2}-3}{2 t}$.
Note that $(3,0)$ corresponds to $t= \pm \sqrt{3}$. Hence, the slope is $\left.\frac{d y}{d x}\right|_{t= \pm \sqrt{3}}=\frac{6}{ \pm 2 \sqrt{3}}= \pm \sqrt{3}$. Therefore, the tangent lines at $(3,0)$ have equations

$$
y=\sqrt{3}(x-3) \quad \text { and } \quad y=-\sqrt{3}(x-3)
$$

Cycloid Revisited

- Recall the parametrization of the cycloid

$$
\left\{\begin{array}{l}
x=R(\theta-\sin \theta) \\
y=R(1-\cos \theta)
\end{array} \quad, 0 \leq \theta \leq 2 \pi .\right.
$$

Find its tangent line at $\theta=\frac{\pi}{3}$.
We have

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{R \sin \theta}{R-R \cos \theta}=\frac{\sin \theta}{1-\cos \theta}
$$

Thus $\left.\frac{d y}{d x}\right|_{\theta=\frac{\pi}{3}}=\frac{\sin \frac{\pi}{3}}{1-\cos \frac{\pi}{3}}=\frac{\frac{\sqrt{3}}{2}}{1-\frac{1}{2}}=\frac{\sqrt{3}}{2-1}=\sqrt{3}$.
The tangent line has equation $y-\frac{R}{2}=\sqrt{3}\left(x-R\left(\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right)\right)$.

Cycloid (Cont'd)

- For the cycloid $\left\{\begin{array}{l}x=R(\theta-\sin \theta) \\ y=R(1-\cos \theta)\end{array}, \quad 0 \leq \theta \leq 2 \pi\right.$, show that at $\theta=2 k \pi$ (k any integer), the cycloid has a vertical tangent line.
This requires showing that $\lim _{\theta \rightarrow 2 k \pi} \frac{d y}{d x}= \pm \infty$.
We have

$$
\begin{aligned}
& \lim _{\theta \rightarrow 2 k \pi} \frac{d y}{d x}= \\
& \lim _{\theta \rightarrow 2 k \pi} \frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\lim _{\theta \rightarrow 2 k \pi} \frac{\sin \theta}{1-\cos \theta}=\left(\frac{0}{0}\right) \\
& \stackrel{\text { L'Hôpital }}{=} \lim _{\theta \rightarrow 2 k \pi} \frac{\cos \theta}{\sin \theta}= \pm \infty .
\end{aligned}
$$

Areas under Parametric Curves

- Consider $x=f(t), y=g(t), a \leq t \leq b$.

The area under this parametric curve from $f(a)$ to $f(b)$, assuming that it is "traveled" once, is given by

$$
A=\int_{f(a)}^{f(b)} y d x=\int_{a}^{b} g(t) d f(t)=\int_{a}^{b} g(t) f^{\prime}(t) d t
$$

Example (The Area under the Cycloid):

$$
x=R(\theta-\sin \theta), y=R(1-\cos \theta), \quad 0 \leq \theta \leq 2 \pi
$$

$$
\begin{aligned}
A & =\int_{0}^{2 \pi} y(\theta) x^{\prime}(\theta) d \theta=\int_{0}^{2 \pi} R(1-\cos \theta)(R-R \cos \theta) d \theta \\
& =R^{2} \int_{0}^{2 \pi}(1-\cos \theta)^{2} d \theta=R^{2} \int_{0}^{2 \pi}\left(1-2 \cos \theta+\cos ^{2} \theta\right) d \theta \\
& =R^{2} \int_{0}^{2 \pi}\left(1-2 \cos \theta+\frac{1+\cos 2 \theta}{2}\right) d \theta \\
& =R^{2}\left[\theta-2 \sin \theta+\frac{1}{2}\left(\theta+\frac{1}{2} \sin 2 \theta\right)\right]_{0}^{2 \pi}=3 \pi R^{2}
\end{aligned}
$$

Arc Lengths of Parametric Curves

- Consider $x=f(t), y=g(t), a \leq t \leq b$.

The length of this parametric curve from $f(a)$ to $f(b)$, assuming that it is "traveled" once, is given by

$$
\begin{aligned}
L & =\int_{f(a)}^{f(b)} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\int_{a}^{b} \sqrt{1+\left(\frac{\frac{d y}{d t}}{\frac{d x}{d t}}\right)^{2}} \frac{d x}{d t} d t \\
& =\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
\end{aligned}
$$

Example (The Length of a Circle of Radius R): $x=R \cos t, y=R \sin t, 0 \leq t \leq 2 \pi$.

$$
L=\int_{0}^{2 \pi} \sqrt{(-R \sin t)^{2}+(R \cos t)^{2}} d t=\int_{0}^{2 \pi} R d t=\left.R t\right|_{0} ^{2 \pi}=2 \pi R
$$

Arc Length of the Cycloid

- $x=R(\theta-\sin \theta), y=R(1-\cos \theta), 0 \leq \theta \leq 2 \pi$.

We have

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{(R-R \cos \theta)^{2}+(R \sin \theta)^{2}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{R^{2}-2 R^{2} \cos \theta+R^{2} \cos ^{2} \theta+R^{2} \sin ^{2} \theta} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{2 R^{2}(1-\cos \theta)} d \theta=\int_{0}^{2 \pi} \sqrt{2 R^{2} 2 \sin ^{2} \frac{\theta}{2}} d \theta \\
& =2 R \int_{0}^{2 \pi} \sin \frac{\theta}{2} d \theta=\left.2 R\left(-2 \cos \frac{\theta}{2}\right)\right|_{0} ^{2 \pi}=8 R
\end{aligned}
$$

Surface Area

- Let $\left\{\begin{array}{l}x=f(t) \\ y=g(t)\end{array}\right.$, where $g(t)>0, f(t)$ is increasing, and $f^{\prime}(t)$ and $g^{\prime}(t)$ are continuous.
Then the surface obtained by rotating the curve $c(t)=(f(t), g(t))$ about the x-axis for $a \leq t \leq b$ has surface area

$$
\begin{aligned}
S & =2 \pi \int_{a}^{b} y \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =2 \pi \int_{a}^{b} g(t) \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t
\end{aligned}
$$

Computing a Surface Area

- Calculate the surface area of the surface obtained by rotating

$$
\left\{\begin{array}{l}
x=\cos ^{3} \theta \\
y=\sin ^{3} \theta
\end{array} \quad, 0 \leq \theta \leq \frac{\pi}{2}, \text { about the } x\right. \text {-axis. }
$$

$$
\begin{aligned}
S & =\quad 2 \pi \int_{0}^{\pi / 2} y \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta \\
& =2 \pi \int_{0}^{\pi / 2} \sin ^{3} \theta \sqrt{\left(-3 \cos ^{2} \theta \sin \theta\right)^{2}+\left(3 \sin ^{2} \theta \cos \theta\right)^{2}} d \theta \\
& =2 \pi \int_{0}^{\pi / 2} \sin ^{3} \theta \sqrt{9 \cos ^{4} \theta \sin ^{2} \theta+9 \sin ^{4} \theta \cos ^{2} \theta} d \theta \\
& =2 \pi \int_{0}^{\pi / 2} \sin ^{3} \theta \sqrt{9 \cos ^{2} \theta \sin ^{2} \theta\left(\cos ^{2} \theta+\sin ^{2} \theta\right)} d \theta \\
& =2 \pi \int_{0}^{\pi / 2} \sin ^{3} \theta 3 \cos \theta \sin \theta d \theta \\
& =6 \pi \int_{0}^{\pi / 2} \sin ^{4} \theta \cos \theta d \theta \\
& =6=\sin \theta \\
& =6 \pi \int_{0}^{1} u^{4} d u \\
& \left.6 \pi \frac{u^{5}}{5}\right|_{0} ^{1}=\frac{6 \pi}{5} .
\end{aligned}
$$

Summary

- Parametric curve $\left\{\begin{array}{l}x=f(t) \\ y=g(t)\end{array}, a \leq t \leq b\right.$. Slope of Tangent:

$$
\frac{d y}{d x}=\frac{g^{\prime}(t)}{f^{\prime}(t)}
$$

Area Under the Parametric Curve:

$$
A=\int_{a}^{b} g(t) f^{\prime}(t) d t
$$

Arc Length of the Parametric Curve:

$$
L=\int_{a}^{b} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t
$$

Surface of the Solid of Revolution:

$$
S=2 \pi \int_{a}^{b} g(t) \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}} d t
$$

Subsection 3

Polar Coordinates

Polar Coordinates

- In polar coordinates, we label a point P by coordinates (r, θ), where:
- r is the distance to the origin O;
- θ is the angle between $\overline{O P}$ and the positive x-axis.

- An angle is positive if the corresponding rotation is counterclockwise.
- We call r the radial coordinate and θ the angular coordinate.

Polar Coordinates and Rectangular Coordinates

- The figure shows that polar and rectangular coordinates are related by the equations:

From Polar to Rectangular:

$$
x=r \cos \theta, \quad y=r \sin \theta
$$

From Rectangular to Polar:

$$
r^{2}=x^{2}+y^{2}, \quad \tan \theta=\frac{y}{x}, x \neq 0
$$

From Polar To Rectangular

- Find the rectangular coordinates of $Q=(r, \theta)=\left(3, \frac{5 \pi}{6}\right)$.

$$
\begin{aligned}
x & =r \cos \theta=3 \cos \left(\frac{5 \pi}{6}\right) \\
& =3\left(-\frac{\sqrt{3}}{2}\right)=-\frac{3 \sqrt{3}}{2} . \\
y & =r \sin \theta=3 \sin \left(\frac{5 \pi}{6}\right) \\
& =3 \cdot \frac{1}{2}=\frac{3}{2} .
\end{aligned}
$$

From Rectangular to Polar

- Find the polar coordinates of the point $P=(x, y)=(3,2)$.

$$
\begin{aligned}
r^{2} & =x^{2}+y^{2} \\
& =3^{2}+2^{2}=13
\end{aligned}
$$

So $r=\sqrt{13}$.

$$
\tan \theta=\frac{y}{x}=\frac{2}{3}
$$

Since P is in Quadrant I, $\theta=\tan ^{-1}\left(\frac{2}{3}\right)$.

Choosing θ Correctly

- Find two polar representations of $P=(-1,1)$, one with $r>0$ and one with $r<0$.

We have

$$
r^{2}=(-1)^{2}+1^{2}=2
$$

So $r=\sqrt{2}$. Moreover,

$$
\tan \theta=\frac{y}{x}=\frac{1}{-1}=-1
$$

However, $\theta \neq \tan ^{-1}(-1)=-\frac{\pi}{4}$, because P is in Quadrant II. The correct angle is $\theta=\tan ^{-1}\left(\frac{y}{x}\right)+\pi=-\frac{\pi}{4}+\pi=\frac{3 \pi}{4}$.
So, with $r>0$, we have $P=\left(\sqrt{2}, \frac{3 \pi}{4}\right)$.
With $r<0$, we have $P=\left(-\sqrt{2},-\frac{\pi}{4}\right)=\left(-\sqrt{2}, \frac{7 \pi}{4}\right)$.

Line Through the Origin

- Find the polar equation of the line through the origin of slope $\sqrt{3}$.

We find the angle θ_{0}, such that

$$
\tan \theta_{0}=\frac{y}{x}=\text { slope }=\sqrt{3} .
$$

We get $\theta_{0}=\tan ^{-1}(\sqrt{3})=\frac{\pi}{3}$.
Thus the equation of the line is

$$
\theta=\frac{\pi}{3}
$$

Line Not Through the Origin

- Find the polar equation of the line \mathcal{L} whose point closest to the origin (in polar coordinates) is (d, α).
$P_{0}=(d, \alpha)$ is the point of intersection of \mathcal{L} with a perpendicular from O to \mathcal{L}. Let $P=(r, \theta)$ be any point on \mathcal{L} other than P_{0}. From the right triangle $\triangle O P P_{0}$, we get

$$
\begin{aligned}
& \cos (\theta-\alpha)=\frac{d}{r} \\
& \Rightarrow \quad r=d \sec (\theta-\alpha)
\end{aligned}
$$

Example

- Find the polar equation of the line \mathcal{L} tangent to the circle $r=4$ at the point with polar coordinates $P_{0}=\left(4, \frac{\pi}{3}\right)$.

The point of tangency has polar coordinates $(d, \alpha)=\left(4, \frac{\pi}{3}\right)$.
From the preceding slide, the polar equation of the tangent line is:

$$
\begin{aligned}
& r=d \sec (\theta-\alpha) \\
& \Rightarrow \quad r=4 \sec \left(\theta-\frac{\pi}{3}\right)
\end{aligned}
$$

Converting to Rectangular Coordinates

- Identify the curve with polar equation $r=2 a \sin \theta$.

We have:

$$
\begin{aligned}
& r=2 a \sin \theta \\
& r^{2}=2 a r \sin \theta \\
& x^{2}+y^{2}=2 a y \\
& x^{2}+\left(y^{2}-2 a y\right)=0 \\
& x^{2}+\left(y^{2}-2 a y+a^{2}\right)=a^{2} \\
& x^{2}+(y-a)^{2}=a^{2} .
\end{aligned}
$$

We get a circle with center $(0, a)$ and radius a.

Graphing a Polar Curve Using Symmetry

- Sketch the limaçon curve $r=2 \cos \theta-1$.

1. $\cos \theta$ has period 2π. We study the graph for $-\pi \leq \theta<\pi$.
2. Create a small table of values:

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π
$r=2 \cos \theta-1$	1	$\sqrt{3}-1$	0	-1	-2	$-\sqrt{3}-1$	-3

Plot the various points.
3. Since $\cos (-\theta)=\cos \theta$ we have symmetry with respect to the x-axis.

Tangent Lines to Polar Curves

- Suppose that $r=f(\theta)$.
- Then $x=r \cos \theta=f(\theta) \cos \theta$ and $y=r \sin \theta=f(\theta) \sin \theta$.
- These give, using the product rule,

$$
\frac{d x}{d \theta}=\frac{d r}{d \theta} \cos \theta-r \sin \theta \quad \text { and } \quad \frac{d y}{d \theta}=\frac{d r}{d \theta} \sin \theta+r \cos \theta
$$

- Therefore, for the slope of the tangent at (r, θ),

$$
\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}
$$

Equation of Tangent to Cardioid $r=1+\sin \theta$

- Find the equation of the tangent to the cardioid $r=1+\sin \theta$ at $\theta=\frac{\pi}{3}$.

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{\frac{d r}{d \theta} \sin \theta+r \cos \theta}{\frac{d r}{d \theta} \cos \theta-r \sin \theta}=\frac{\cos \theta \sin \theta+(1+\sin \theta) \cos \theta}{\cos \theta \cos \theta-(1+\sin \theta) \sin \theta} \\
& =\frac{\cos \theta(1+2 \sin \theta)}{1-2 \sin ^{2} \theta-\sin \theta}=\frac{\cos \theta(1+2 \sin \theta)}{(1+\sin \theta)(1-2 \sin \theta)}
\end{aligned}
$$

So

$$
\left.\frac{d y}{d x}\right|_{\theta=\frac{\pi}{3}}=\frac{\frac{1}{2}(1+\sqrt{3})}{\left(1+\frac{\sqrt{3}}{2}\right)(1-\sqrt{3})}=\frac{\frac{1}{2}(1+\sqrt{3})^{2}}{\left(1+\frac{\sqrt{3}}{2}\right)(1-3)}=-1 .
$$

For $\theta=\frac{\pi}{3}, r\left(\frac{\pi}{3}\right)=1+\frac{\sqrt{3}}{2}$. So $x=r \cos \theta=\left(1+\frac{\sqrt{3}}{2}\right) \frac{1}{2}=\frac{2+\sqrt{3}}{4}$ and $y=r \sin \theta=\left(1+\frac{\sqrt{3}}{2}\right) \frac{\sqrt{3}}{2}=\frac{3+2 \sqrt{3}}{4}$.
Thus, the equation of the tangent line when $\theta=\frac{\pi}{3}$ is

$$
y-\frac{3+2 \sqrt{3}}{4}=-\left(x-\frac{2+\sqrt{3}}{4}\right) .
$$

Subsection 4

Area and Arc Length in Polar Coordinates

Areas in Polar Coordinates

- The area of a disk segment with central angle $\Delta \theta$ is $A=\frac{1}{2}(\Delta \theta) r^{2}$ (since total area of disk is $\pi r^{2}=\frac{1}{2}(2 \pi) r^{2}$).
- Thus, if a polar curve is given by $r=f(\theta)$, then for a small $\Delta \theta$, taking r constant at $f\left(\theta_{j}\right)$, we get

$$
\Delta A_{j} \approx \frac{1}{2}\left[f\left(\theta_{j}\right)\right]^{2} \Delta \theta
$$

Areas in Polar Coordinates (Cont'd)

- Summing over those j 's partitioning $\alpha \leq \theta \leq \beta$, we get

$$
A \approx \sum_{j=1}^{N} \frac{1}{2}\left[f\left(\theta_{j}\right)\right]^{2} \Delta \theta
$$

- Finally, passing to the limit, we end up with the integral

$$
A=\int_{\alpha}^{\beta} \frac{1}{2}[f(\theta)]^{2} d \theta \quad\left(=\int_{\alpha}^{\beta} \frac{1}{2} r^{2} d \theta\right)
$$

Area of Semicircle

- Compute the area of the right semicircle with equation $r=4 \sin \theta$.

The right semicircle is plotted for $0 \leq \theta \leq$ $\frac{\pi}{2}$. Therefore, we have

$$
\begin{aligned}
A & =\frac{1}{2} \int_{0}^{\pi / 2} r^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{\pi / 2}(4 \sin \theta)^{2} d \theta \\
& =8 \int_{0}^{\pi / 2} \sin ^{2} \theta d \theta \\
& =8 \int_{0}^{\pi / 2} \frac{1}{2}(1-\cos 2 \theta) d \theta \\
& =\left.4\left(\theta-\frac{1}{2} \sin 2 \theta\right)\right|_{0} ^{\pi / 2} \\
& =4\left(\frac{\pi}{2}-0\right) \\
& =2 \pi .
\end{aligned}
$$

One Loop of the Four-Leaved Rose

- Compute the area of one loop of the four-leaved rose $r=\cos 2 \theta$.

One loop is traced for $-\frac{\pi}{4} \leq \theta \leq \frac{\pi}{4}$.
Therefore, we get

$$
\begin{aligned}
A & =\int_{-\pi / 4}^{\pi / 4} \frac{1}{2} \cos ^{2} 2 \theta d \theta \\
& =\int_{-\pi / 4}^{\pi / 4} \frac{1}{2} \frac{1+\cos 4 \theta}{2} d \theta \\
& =\frac{1}{4} \int_{-\pi / 4}^{\pi / 4}(1+\cos 4 \theta) d \theta \\
& =\left.\frac{1}{4}\left(\theta+\frac{1}{4} \sin 4 \theta\right)\right|_{-\pi / 4} ^{\pi / 4} \\
& =\frac{1}{4}\left(\frac{\pi}{4}+\frac{1}{4} \sin \pi-\right. \\
& =\frac{1}{4} \frac{\pi}{2}=\frac{\pi}{8} .
\end{aligned}
$$

Area of a Petal of a Rose

- Compute the area of one petal of the rose $r=\sin 3 \theta$.

One petal is traced when $0 \leq \theta \leq \frac{\pi}{3}$. So we have

$$
\begin{aligned}
A & =\frac{1}{2} \int_{0}^{\pi / 3}(\sin 3 \theta)^{2} d \theta \\
& =\frac{1}{2} \int_{0}^{\pi / 3} \frac{1}{2}(1-\cos 6 \theta) d \theta \\
& =\left.\frac{1}{4}\left(\theta-\frac{1}{6} \sin 6 \theta\right)\right|_{0} ^{\pi / 3} \\
& =\frac{1}{4}\left[\left(\frac{\pi}{3}-0\right)-0\right]=\frac{\pi}{12} .
\end{aligned}
$$

Area Between Two Curves

- Consider the area A between two polar curves $r=f_{1}(\theta)$ and $r=f_{2}(\theta)$, with $f_{1}(\theta) \leq f_{2}(\theta)$, for $\alpha \leq \theta \leq \beta$.

It is given by

$$
A=\frac{1}{2} \int_{\alpha}^{\beta} f_{2}(\theta)^{2} d \theta-\frac{1}{2} \int_{\alpha}^{\beta} f_{1}(\theta)^{2} d \theta=\frac{1}{2} \int_{\alpha}^{\beta}\left[f_{2}(\theta)^{2}-f_{1}(\theta)^{2}\right] d \theta
$$

Computing the Area Between Two Curves

- Find the area of the region inside the circle $r=2 \cos \theta$ but outside the circle $r=1$.
Set the equations equal to find the angle θ for the points of intersection: $2 \cos \theta=1 \Rightarrow \cos \theta=\frac{1}{2} \Rightarrow \theta= \pm \frac{\pi}{3}$.

$$
\begin{aligned}
A & =\frac{1}{2} \int_{-\pi / 3}^{\pi / 3}(2 \cos \theta)^{2} d \theta \\
& \quad-\frac{1}{2} \int_{-\pi / 3}^{\pi / 3}(1)^{2} d \theta \\
& =\frac{1}{2} \int_{-\pi / 3}^{\pi / 3}\left(4 \cos ^{2} \theta-1\right) d \theta \\
& =\frac{1}{2} \int_{-\pi / 3}^{\pi / 3}\left(4 \frac{1+\cos 2 \theta}{2}-1\right) d \theta \\
& =\frac{1}{2} \int_{-\pi / 3}^{\pi / 3}(2 \cos 2 \theta+1) d \theta \\
& =\left.\frac{1}{2}(\sin 2 \theta+\theta)\right|_{-\pi / 3} ^{\pi / 3} \\
& =\frac{1}{2}\left[\left(\sin \frac{2 \pi}{3}+\frac{\pi}{3}\right)-\left(\sin \left(-\frac{2 \pi}{3}\right)-\frac{\pi}{3}\right)\right] \\
& =\frac{\sqrt{3}}{2}+\frac{\pi}{3} .
\end{aligned}
$$

Region Between Cardioid and Circle

- Find the area of the region inside the circle $r=3 \sin \theta$ and outside the cardioid $r=1+\sin \theta$.
Find angles θ of intersection.
$3 \sin \theta=1+\sin \theta \Rightarrow \sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6}$ or $\theta=\frac{5 \pi}{6}$.

A
$=\int_{\pi / 6}^{5 \pi / 6} \frac{1}{2}\left[(3 \sin \theta)^{2}-(1+\sin \theta)^{2}\right] d \theta$
$=\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}\left(8 \sin ^{2} \theta-2 \sin \theta-1\right) d \theta$
$=\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}(4(1-\cos 2 \theta)-2 \sin \theta-1) d \theta$
$=\frac{1}{2} \int_{\pi / 6}^{5 \pi / 6}(3-2 \sin \theta-4 \cos 2 \theta) d \theta$
$=\left.\frac{1}{2}(3 \theta+2 \cos \theta-2 \sin 2 \theta)\right|_{\pi / 6} ^{5 \pi / 6}$

$=\frac{1}{2}\left[\left(\frac{5 \pi}{2}-\sqrt{3}+\sqrt{3}\right)-\left(\frac{\pi}{2}+\sqrt{3}-\sqrt{3}\right)\right]$
$=\pi$.

Area Between Circle and Petal of the Four-Leaved Rose

- Find the area of the region inside a petal of $r=\cos 2 \theta$ and outside the circle $r=\frac{1}{2}$.
Find angles θ of intersection.

$$
\cos 2 \theta=\frac{1}{2} \Rightarrow 2 \theta=-\frac{\pi}{3} \text { or } 2 \theta=\frac{\pi}{3} \Rightarrow \theta=-\frac{\pi}{6} \text { or } \theta=\frac{\pi}{6}
$$

$$
\begin{aligned}
A & =\int_{-\pi / 6}^{\pi / 6} \frac{1}{2}\left[(\cos 2 \theta)^{2}-\left(\frac{1}{2}\right)^{2}\right] d \theta \\
& =\frac{1}{2} \int_{-\pi / 6}^{\pi / 6}\left(\cos ^{2} 2 \theta-\frac{1}{4}\right) d \theta \\
& =\frac{1}{2} \int_{-\pi / 6}^{\pi / 6}\left(\frac{1+\cos 4 \theta}{2}-\frac{1}{4}\right) d \theta \\
& =\frac{1}{8} \int_{-\pi / 6}^{\pi / 6}(1+2 \cos 4 \theta) d \theta \\
& =\left.\frac{1}{8}\left(\theta+\frac{1}{2} \sin 4 \theta\right)\right|_{-\pi / 6} ^{\pi / 6} \\
& =\frac{1}{8}\left(\frac{\pi}{3}+\frac{\sqrt{3}}{2}\right) .
\end{aligned}
$$

Length of Polar Curves

- Recall from rectangular coordinates, using the Pythagorean Theorem,

$$
L=\int_{a}^{b} \sqrt{d x^{2}+d y^{2}}
$$

- Multiplying and dividing by $d \theta$,

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta
$$

- Since $x=r \cos \theta$ and $y=r \sin \theta$,

$$
\frac{d x}{d \theta}=\frac{d r}{d \theta} \cos \theta-r \sin \theta \quad \text { and } \quad \frac{d y}{d \theta}=\frac{d r}{d \theta} \sin \theta+r \cos \theta
$$

- Therefore $\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2} \stackrel{\text { algebra }}{=}\left(\frac{d r}{d \theta}\right)^{2}+r^{2}$.
- This gives

$$
L=\int_{\alpha}^{\beta} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta
$$

Arc Length of a Circle

- Find the total length of the circle $r=2 a \cos \theta$, for $a>0$.

We have $r=f(\theta)=2 a \cos \theta$. So we get

$$
\begin{aligned}
& r^{2}+\left(\frac{d r}{d \theta}\right)^{2}=(2 a \cos \theta)^{2}+(-2 a \sin \theta)^{2}=4 a^{2} . \\
L= & \int_{0}^{\pi} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \\
= & \int_{0}^{\pi} \sqrt{4 a^{2}} d \theta \\
= & \int_{0}^{\pi}(2 a) d \theta \\
= & \left.2 a \theta\right|_{0} ^{\pi} \\
= & 2 \pi a .
\end{aligned}
$$

Length of the Cardioid $r=1+\sin \theta$

- Finf the length of the cardiod $r=1+\sin \theta$.

We have $\frac{d r}{d \theta}=\cos \theta$.

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{(1+\sin \theta)^{2}+\cos ^{2} \theta} d \theta \\
& =\int_{0}^{2 \pi} \sqrt{2+2 \sin \theta} d \theta \\
= & \int_{0}^{2 \pi} \frac{\sqrt{(2+2 \sin \theta)(2-2 \sin \theta)}}{\sqrt{2-2 \sin \theta}} d \theta \\
= & 2 \cdot \frac{2}{\sqrt{2}} \int_{-\pi / 2}^{\pi / 2} \frac{\cos \theta}{\sqrt{1-\sin \theta}} d \theta \\
& (\operatorname{set} u=1-\sin \theta) \\
= & 2 \sqrt{2} \int_{2}^{0}-\frac{1}{\sqrt{u}} d u \\
= & \left.2 \sqrt{2}(2 \sqrt{u})\right|_{0} ^{2} \\
= & 2 \sqrt{2} \cdot 2 \sqrt{2}=8 .
\end{aligned}
$$

Subsection 5

Conic Sections

Conic Sections

- Conic sections are obtained as the intersection of a cone with a plane.

Ellipses

- An ellipse is the locus of all points P such that the sum of the distances to two fixed points F_{1} and F_{2} is a constant K.
- The midpoint of $\overline{F_{1} F_{2}}$ is the center of the ellipse;
- The line through the foci is the focal axis;
- The line through the center and perpendicular to the focal axis is the conjugate axis.

Ellipse in Standard Position

- An ellipse is in standard position if the focal and conjugate axes are the x - and y-axes.

The foci have coordinates $F_{1}=(c, 0), F_{2}=(-c, 0)$, for some $c>0$. The equation of this ellipse has the simple form

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

where $a=\frac{K}{2}$ and $b=\sqrt{a^{2}-c^{2}}$.

Additional Terminology

- The points $A, A^{\prime}, B, B^{\prime}$ of intersection with the axes are called vertices;
- The vertices A, A^{\prime} on the focal axis are called focal vertices;
- The number a is the semimajor axis;
- The number b is the semininor axis.

Equation of Ellipse in Standard Position

- Let $a>b>0$ and set $c=\sqrt{a^{2}-b^{2}}$.

The ellipse $P F_{1}+P F_{2}=2 a$, with foci $F_{1}=(c, 0)$ and $F_{2}=(-c, 0)$ has equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Furthermore, the ellipse has:

- Semimajor axis a and semiminor axis b;
- Focal vertices $(\pm a, 0)$ and minor vertices $(0, \pm b)$.
- If $b>a>0$, the same equation defines an ellipse with foci $(0, \pm c)$, where $c=\sqrt{b^{2}-a^{2}}$.

Finding an Equation and Sketching the Graph

- Find an equation of the ellipse with foci $(\pm \sqrt{11}, 0)$ and semimajor axis $a=6$. Then sketch its graph.
Since the foci are at $(\pm c, 0)$, we get that $c=\sqrt{11}$.
Since $b=\sqrt{a^{2}-c^{2}}$, we get $b=\sqrt{36-11}=5$.
Thus, the equation is

$$
\frac{x^{2}}{36}+\frac{y^{2}}{25}=1
$$

Finally, we sketch the graph:

Transforming an Ellipse

- Find an equation of the ellipse with center $C=(6,7)$, vertical focal axis, semimajor axis 5 and semiminor axis 3 . Then find the location of the foci and sketch its graph.
We have $a=3$ and $b=5$. At standard position the equation would have been $\frac{x^{2}}{9}+$ $\frac{y^{2}}{25}=1$. Translating to center C, we get

$$
\frac{(x-6)^{2}}{9}+\frac{(x-7)^{2}}{25}=1
$$

Now we compute $c=\sqrt{b^{2}-a^{2}}=$ $\sqrt{25-9}=4$. Thus, the foci are at $(6,7 \pm 4)$ or $(6,11)$ and $(6,3)$.

Hyperbolas

- A hyperbola is the locus of all points P such that the difference of the distances from P to two foci F_{1} and F_{2} is $\pm K$.
- The midpoint of $\overline{F_{1} F_{2}}$ is the center of the hyperbola;
- The line through the foci is the focal axis;
- The line through the center and perpendicular to the focal axis is the conjugate axis.

Hyperbola in Standard Position

- A hyperbola is in standard position if the focal and conjugate axes are the x - and y-axes.

The foci have coordinates $F_{1}=(c, 0), F_{2}=(-c, 0)$, for some $c>0$. The equation of this hyperbola has the simple form

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

where $a=\frac{K}{2}$ and $b=\sqrt{c^{2}-a^{2}}$.

Additional Terminology

- The points A, A^{\prime} of intersection with the focal axis are called vertices;
- A hyperbola with equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ has two asymptotes $y= \pm \frac{b}{a} x$, which are diagonals of the rectangle whose sides pass through $(\pm a, 0)$ and $(0, \pm b)$.

Equation of Hyperbola in Standard Position

- Let $a>0$ and $b>0$ and set $c=\sqrt{a^{2}+b^{2}}$.

The hyperbola $P F_{1}-P F_{2}= \pm 2 a$, with foci $F_{1}=(c, 0)$ and $F_{2}=(-c, 0)$ has equation

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

Furthermore, the hyperbola has vertices $(\pm a, 0)$.

Finding an Equation and Sketching the Graph

- Find an equation of the hyperbola with foci $(\pm \sqrt{5}, 0)$ and vertices $(\pm 1,0)$. Then sketch its asymptotes and its graph. Since the foci are at $(\pm c, 0)$, we get that $c=\sqrt{5}$.
Since $b=\sqrt{c^{2}-a^{2}}$, we get $b=\sqrt{5-1}=2$.

Thus, the equation is

$$
\frac{x^{2}}{1}-\frac{y^{2}}{4}=1
$$

Moreover the asymptotes are $y= \pm \frac{b}{a} x$, i.e., $y= \pm 2 x$.

Finding the Foci and Sketching the Graph

- Find the foci of the hyperbola $9 x^{2}-4 y^{2}=36$. Then find the equations of the asymptotes and sketch the graph of the hyperbola using the asymptotes.
Put the equation in the standard form:

$$
\frac{x^{2}}{4}-\frac{y^{2}}{9}=1
$$

Thus, we get $a=2$ and $b=3$. This gives $c=\sqrt{a^{2}+b^{2}}=\sqrt{4+9}=$ $\sqrt{13}$. We conclude that the foci are at $(\pm \sqrt{13}, 0)$. Moreover, the asymptotes have equations $y= \pm \frac{3}{2} x$.

Parabolas

- A parabola is the locus of all points P that are equidistant from a focus F and a line \mathcal{D} called the directrix: $P F=P \mathcal{D}$.
- The line through F and perpendicular to \mathcal{D} is called the axis of the parabola;
- The vertex is the point of intersection of the parabola with its axis.

Directrix $\mathcal{D} \quad y=-c$

Parabola in Standard Position

- A parabola is in standard position if for some c, the focus is $F=(0, c)$ and the directrix is $y=-c$.

The equation of this parabola has the simple form

$$
y=\frac{1}{4 c} x^{2}
$$

- The vertex is then located at the origin.
- The parabola opens upward if $c>0$ and downward if $c<0$.

Finding an Equation and Sketching the Graph

- A parabola is in the standard position and has directrix $y=-\frac{1}{2}$. Find the focus, the equation and sketch the parabola.
Since the directrix is at $y=-c$, we get $c=\frac{1}{2}$. Therefore the focus is at $(0, c)=\left(0, \frac{1}{2}\right)$.
The equation of the parabola is

$$
y=\frac{1}{4 \cdot \frac{1}{2}} x^{2} \text { or } y=\frac{1}{2} x^{2}
$$

Transforming a Parabola

- The standard parabola with directrix $y=-3$ is translated so that its vertex is located at $(-2,5)$. Find its equation, directrix and focus.
Consider, first, the standard parabola: It has $c=3$. Thus, its focus is $(0,3)$. It has equation $y=\frac{1}{12} x^{2}$.
So the transformed parabola has equation

$$
y-5=\frac{1}{12}(x+2)^{2}
$$

Its directrix is $y=2$ and its focus $(-2,8)$.

Eccentricity

- The shape of a conic section is measured by a number e called the eccentricity:

$$
e=\frac{\text { distance between foci }}{\text { distance between vertices on the focal axis }} .
$$

A parabola is defined to have eccentricity 1.

Theorem

For ellipses and hyperbolas in the standard position

$$
e=\frac{c}{a} .
$$

1. An ellipse has eccentricity $0 \leq e<1$;
2. A hyperbola has eccentricity $e>1$.

Eccentricity and Shapes

Eccentricity as a Unification Tool

- Given a point F (the focus), a line \mathcal{D} (the directrix) and a number $e>0$, consider the locus of all points P, such that

$$
P F=e \cdot P \mathcal{D} .
$$

- For all $e>0$, this locus is a conic of eccentricity e.
- Ellipse: Let $a>b>0$ and $c=\sqrt{a^{2}-b^{2}}$. The ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

satisfies $P F=e P \mathcal{D}$, with $F=(c, 0), e=\frac{c}{a}$ and vertical directrix $x=\frac{a}{e}$.

Directrix \mathcal{D}
$x=\frac{a}{e}$

Eccentricity as a Unification Tool (Cont'd)

- The Second Case:
- Hyperbola: Let $a, b>0$ and $c=\sqrt{a^{2}+b^{2}}$. The hyperbola

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

satisfies $P F=e P \mathcal{D}$, with $F=(c, 0), e=\frac{c}{a}$ and vertical directrix $x=\frac{a}{e}$.

Example

- Find the equation, foci and directrix of the standard ellipse with eccentricity $e=0.8$ and focal vertices ($\pm 10,0$). We have $\frac{c}{a}=e=0.8$. Moreover $a=10$. Therefore, $c=e a=0.8 \cdot 10=8$. This shows that the foci are at $(\pm 8,0)$. Moreover, we get $b^{2}=a^{2}-c^{2}=100-64=36$.

Therefore, the equation of the ellipse is

$$
\frac{x^{2}}{100}+\frac{y^{2}}{36}=1
$$

Finally, the ellipse has directrix $x=\frac{a}{e}=\frac{10}{0.8}=$
 12.5.

Polar Equation of a Conic Section

- We assume focus $F=(0,0)$ and directrix $\mathcal{D}: x=d$.

We have

$$
\begin{aligned}
P F & =r \\
P \mathcal{D} & =d-r \cos \theta .
\end{aligned}
$$

So, if the conic section has equation $P F=e P D$, we get $r=e(d-r \cos \theta)$.

We solve for r :

$$
\begin{aligned}
& r=e d-e r \cos \theta \\
& \Rightarrow r+e r \cos \theta=e d \\
& \Rightarrow r(1+e \cos \theta)=e d \\
& \Rightarrow r=\frac{e d}{1+e \cos \theta} .
\end{aligned}
$$

Example

- Find the eccentricity, directrix and focus of the conic section

$$
r=\frac{24}{4+3 \cos \theta} .
$$

We need to convert into standard form $r=\frac{e d}{1+e \cos \theta}$.

$$
r=\frac{24}{4+3 \cos \theta} \Rightarrow r=\frac{6}{1+\frac{3}{4} \cos \theta}
$$

Now we get:

$$
e d=6, \quad e=\frac{3}{4}, \quad d=\frac{6}{3 / 4}=8 .
$$

We conclude that the eccentricity is $e=\frac{3}{4}$, the directrix is $\mathcal{D}: x=8$ and the focus is $F=(0,0)$.

The General Quadratic Equation

- The equations of the standard conic sections are special cases of the general equation of degree 2 in x and y :

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0
$$

with a, b, e, d, e, f constants with a, b, c not all zero.

- Apart from "degenerate cases", this equation defines a conic section that is not necessarily in standard position:
- It need not be centered at the origin;
- Its focal and conjugate axes may be rotated relative to coordinate axes.
- We say that the equation is degenerate if the set of solutions is a pair of intersecting lines, a pair of parallel lines, a single line, a point, or the empty set. Some examples include:
- $x^{2}-y^{2}=0$ defines a pair of intersecting lines $y=x$ and $y=-x$.
- $x^{2}-x=0$ defines a pair of parallel lines $x=0$ and $x=1$.
- $x^{2}=0$ defines a single line (the y-axis).
- $x^{2}+y^{2}=0$ has just one solution $(0,0)$.
- $x^{2}+y^{2}=-1$ has no solutions.

General Quadratic Equation: Zero Cross Term

- Suppose that $a x^{2}+b x y+c y^{2}+d x+e y+f=0$ is nondegenerate. The term $b x y$ is called the cross term.
When the cross term is zero (that is, when $b=0$), we can complete the square to show that the equation defines a translate of the conic in standard position.
Example: Show that $4 x^{2}+9 y^{2}+24 x-72 y+144=0$ defines a translate of a conic section in standard position. Identify the conic section and find its focus, directrix and eccentricity.

$$
\begin{aligned}
& 4 x^{2}+9 y^{2}+24 x-72 y+144=0 \\
& \Rightarrow 4\left(x^{2}+6 x\right)+9\left(y^{2}-8 y\right)=-144 \\
& \Rightarrow 4\left(x^{2}+6 x+9\right)+9\left(y^{2}-8 y+16\right)=36+144-144 \\
& \Rightarrow 4(x+3)^{2}+9(y-4)^{2}=36 \\
& \Rightarrow \frac{(x+3)^{2}}{9}+\frac{(y-4)^{2}}{4}=1
\end{aligned}
$$

Ellipse with center $(-3,4)$, focus $(-3+\sqrt{5}, 4)$, eccentricity $e=\frac{\sqrt{5}}{3}$, directrix $x=-3+\frac{9}{\sqrt{5}}$.

The Discriminant Test for Classification

- Suppose that the equation

$$
a x^{2}+b x y+c y^{2}+d x+e y+f=0
$$

is nondegenerate and thus defines a conic section.
According to the Discriminant Test, the type of conic is determined by the discriminant D :

$$
D=b^{2}-4 a c
$$

We have the following cases:

- $D<0$: Ellipse or circle;
- $D>0$: Hyperbola;
- $D=0$: Parabola.

Example: Determine the conic section with equation $2 x y=1$. The discriminant of $2 x y=1$ is $D=b^{2}-4 a c=2^{2}-0=4>0$. According to the Discriminant Test, $2 x y=1$ defines a hyperbola.

