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Parametric Equations, Polar Coordinates, Conic Sections Parametric Curves

Subsection 1

Parametric Curves
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Parametric Equations and Parametric Curves

@ A system of parametric equations has the form

{ AE0E ey
y =g(t)
@ The variable t is called the parameter.

@ The set of points (x,y) = (f(t),g(t)), for a <t < b, is called the
parametric curve.

@ (f(a),g(a)) is the initial point and (f(b), g(b)) the terminal point.

@ We imagine “traveling” along the parametric curve as the parameter
t increases from a to b.
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Example |

@ Consider the parametric curve

42
{x—t 2t’ o<t<a

y=t+1
t X y
-2 8| —1
-1 3 0 7
o o] 1 b
1] —1 2 ‘.
2 0 3
3 3 4 .
4 8 5

George Voutsadakis (LSSU) Calculus 111 January 2016 5/ 76



Parametric Equations, Polar Coordinates, Conic Sections Parametric Curves

Example | (Eliminating the Parameter)

@ Consider again the curve

— 2
{x—t 2t o<t<a
y=t+1

Since t =y — 1, we get

x = (y-12-2(y-1) |
y2 -2y +1—-2y+2 I
= y2 -4y +3. 1T

The Cartesian representation

X = y2 —4y +3 ha .

reminds us of a parabola opening
“right”.
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Example Il

@ Consider the parametric curve

X = cost
{ 0<t<27.

y =sint
t X y T
0 1 0 i
4 2 2
i o] 1 | %
3| _ V2| V2 J
1 2 2 /
T -1 0
3
7“ 0| —1
27 1 0 .

Note x2 + y? =sin’t + cos? t = 1.
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Example IlI

@ Consider the parametric curve

x:a-l—RCf)st L 0<t<om ;
y =b+ Rsint by

Note

(x —a)?+(y — b)? = R?cos® t + R?sin® t = R?(cos® t +sin® t) = R2.
This is the equation of a circle with center (a, b) and radius R.
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Example IV

@ Consider the parametric curve

{Xzsf”f . o<t<om

y =sin“t

t x|y

0 0|0 N Ve
x| V2|1 \\ ” /
4 2 | 2 \

% 11 o
3m | V2|1 .

4 20 (2) N\ ‘ /

3ZrT 111 \\ //

7 - 10 o5 o5 0
2w 0|0
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Graphing through Parametrization

@ Consider the equation x = y
@ It cannot be graphed directly using a calculator. (Why?)

@ Introduce a parameter t and write:

{ x = th -3¢’ , say —2<t<2.
y=t

t X y [
-2 4| -2
—1] —2| -1

0 0 0

1| -2 1 -

20 4| 2

George Voutsadakis (LSSU) Calculus 111 January 2016 10 / 76



Parametric Equations, Polar Coordinates, Conic Sections Parametric Curves

The Cycloid

@ Cycloid is the curve traced by a point P on the circumference of a
circle as the circle rolls along a straight line.

In parametric form it is given by

{ x = R(0 —sin6)

i <6< .
y = R(1 — cos 6) with 0 < 6 <27

0
Rcos(8)
' / Rsin(B)

RO 2 : 0 . w =
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Subsection 2

Calculus With Parametric Curves
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Slopes of Tangent Lines

@ Consider the parametric curve { =) ,alt<hb.
y = g(t)
dy _ dy dx

Applying the chai le, btain — = .
pplying the chain rule, we obtain = e dt

Therefore, we get

Derivative of Parametric System

dy
dy g &t : dx
ax = dx ~ F(D)’ subject to ™ = 0.

dt
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Example

@ Consider the parametric curve

x = t?
—2<t<2.
{y:ﬁ3t’ 2sts2 5
|
Find the equations of the tangent lines at
(x,y) = (3,0).
dy , \ B
dy g¢ 3t°—-3 P~
We have a = g = ot o
dt

Note that (3,0) corresponds to t = = /3. Hence, the slope is

d—y e izL\/? = ++/3. Therefore, the tangent lines at (3,0)
 It=

have equations
y=vV3(x—-3) and y=—V3(x-23).
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Cycloid Revisited

@ Recall the parametrization of the cycloid

x = R(0 —sin®)
<0<
{yzR(lcosG) U022

Find its tangent line at 6 = 2.

We have
dy
dy 49  Rsin@  sinf
dx« dx  R—Rcosf 1—cosf’
do

sin 3 _ § V3 _ A
1—cos% 1—% 2-1

The tangent line has equation y — & = v/3(x — R(% — @))

dy
Thus —|g_z =
us dX|6_3
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Cycloid (Cont'd)

. x = R(6 —sinf)
@ For the cycloid { y = R(1 - cos)
0 = 2kr (k any integer), the cycloid has a vertical tangent line.

, 0 <6 < 2m, show that at

d
This requires showing that lim Y _ 4.
0—2km dx
We have
dy
. dy . do . sin 0 0
im — = lim &2 = |lm — = (=
6—2kmdx  9—2kr dX  6-2kn1 — cos O (O)
do
L'Hgital c C(.)S(Q -+ oo
6—2km sin 6
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Areas under Parametric Curves

@ Consider x = f(t),y = g(t),a <t <b.
The area under this parametric curve from f(a) to f(b), assuming
that it is “traveled” once, is given by

f(b) b b
A:/f(a) ydx:/a g(t) df(t):/a g(t)f'(t) dt.

Example (The Area under the Cycloid):
x=R(0 —sinf),y = R(1 —cosf), 0<6<2r.

2m 27
A = / y(0)x'(0) do :/ R(1 — cos8)(R — Rcos6) dé
0 2m 0 2w
= R2/ (1 — cosf)? d9:R2/ (1 —2cosf + cos®6) db
0 0

2T
= R2/ (1 —2cos + 1+<gs20) ¢
0
= R2[§—2sinf+L(6+ Lsin26)]>" = 37R>.
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Arc Lengths of Parametric Curves

o Consider x = f(t),y = g(t),a<t < b.
The length of this parametric curve from f(a) to f(b), assuming that
it is “traveled” once, is given by

f(b)

b
— %)2+(ﬂ)2 dt.

Example (The Length of a Circle of Radius R):
x=Rcost,y = Rsint, 0 <t <2r.

27 27
_ / V/(=Rsint)? + (Rcos t)2 dt = / R dt = Rt|" = 27R.
0 0
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Arc Length of the Cycloid

@ x=R(0 —sinf),y = R(1 —cosf), 0 <6< 2.

We have
2 2
IXEREE

\/(R RcosH) + (Rsin6)2 do

0
27

= / V/R2 — 2R2 cos ) + R2 cos2 6 + R2sin%6 df
0

27 27
i V/2R2(1 — cos f) d9:/0 \/2R22sin? 4 df

= 2R/ sm2d9—2R( 2cos%)|(2)7r:8R.
0
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Surface Area

o Let { ;i ;((?) , where g(t) > 0, f(t) is increasing, and f’(t) and

g'(t) are continuous.

Then the surface obtained by rotating the
curve c(t) = (f(t), g(t)) about the x-axis
for a < t < b has surface area

b )52
S = 27r/ YA/ (£)2 + (%)2dt "
b
= 27r/ g(t)\/f'(t)? + g'(t)%dt.
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Computing a Surface Area

@ Calculate the surface area of the surface obtained by rotating
x = cos> 0
y =sin36

s = 27rf”/2 V()2 + (%5)2d6
= 2 fo sin 0\/(—3cos26?sm 6)2 + (3sin2 @ cos H)2d6
— 27Tf07r/2 sin30+/9 cos* Osin2 6 + 9sin* 0 cos2 Hdh
= 27 foﬂp sin39\/9cos295in2 6(cos? 6 + sin? §)d6
= 2 foﬂp sin® 63 cos 6 sin d6
6 J;/?sin* 0 cos 06
6m fsol u*du

F|O: 5

, 0 <6 < 7, about the x-axis.

&
Il
e |l
=1
B
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Summary
@ Parametric curve { x = f(t) ,a<t<b.
y = g(t)
Slope of Tangent:
dy _ g'(t)
dx f(t)

Area Under the Parametric Curve:
b
A :/ g(t)F(£)dt.
Arc Length of the Parametric Curve:

L= /ab \/ (t)? + g'(t)?dt.

Surface of the Solid of Revolution:
b
S= 27r/ g(t)y/f'(t)? + g'(t)%dt.
a
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Subsection 3

Polar Coordinates
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Polar Coordinates

@ In polar coordinates, we label a point P by coordinates (r, ), where:

@ r is the distance to the origin O;

@ @ is the angle between OP and the
positive x-axis.

VA

y

0

_ J (x, y) (rectangular)

~ ., 0) (polar)

y=rsinf

o

x=rcosf

@ An angle is positive if the corresponding rotation is counterclockwise.

@ We call r the radial coordinate and 6 the angular coordinate.
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Polar Coordinates and Rectangular Coordinates

@ The figure shows that polar and rectangular coordinates are related by
the equations:

From Polar to Rectangular: y
_ J (&, ) (rectangular)

a ;1 - , 0 lar)
x=rcosf, y=rsinf. y 1 Lol

From Rectangular to Polar:

x=rcos0
rP=x>+y? tanf= Z,x# 0.
X
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From Polar To Rectangular

@ Find the rectangular coordinates of Q = (r,0) = (3, %r)
y
x = rcosf =3cos(3F) -G, Z R
V3y_ _3V/3 ‘ 3
(=) = -
y = rsinf=3sin(3F)
= 3.1-3
= 2= 2
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From Rectangular to Polar

@ Find the polar coordinates of the point P = (x,y) = (3,2).

Po= X242 y
= 32422—13 P=(3,2)
24
So r = /13. r :
1__ |2
|
tanf = X:g. ,9 , ! X
x 3 1 2 3

2
Since P is in Quadrant I, § = tan~! (§)
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Choosing 6 Correctly

@ Find two polar representations of P = (—1,1), one with r > 0 and

one with r < 0.
)7

We have Pl )

2= (=12 +12=2

o).

So r = /2. Moreover,

tanf =% = — = —1. (1,-1)

However, 6 # tan~1 (— 1) =-T,
correct angle is 0 = tan™ (i—’) + T
So, with r > 0, we have P = (V/2,
With r < 0, we have P = (— V2, —

because P is in Quadrant Il. The
- Z + 7T = %Tﬂ
)-

)= (V2. %)
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|s’ i

4>|=: &



Parametric Equations, Polar Coordinates, Conic Sections Polar Coordinates

Line Through the Origin

@ Find the polar equation of the line through the origin of slope /3.

We find the angle 6, such that Y
(r, 0p)
tan90=§=slope=\/§. r>0 !
T %
We get 0y = tan~! (v/3) = 3 0 *
Thus the equation of the line is r<0
0
0=—.
3
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Line Not Through the Origin

@ Find the polar equation of the line £ whose point closest to the origin
(in polar coordinates) is (d, «).

Py = (d, ) is the point of intersection
of £ with a perpendicular from O to L.
Let P = (r,0) be any point on L
other than Py. From the right triangle
AOPPy, we get

d

cos (0 —a) =

r
= r=dsec(f— ).
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Example

@ Find the polar equation of the line £ tangent to the circle r = 4 at
the point with polar coordinates Py = (4, 5).

The point of tangency has polar coor- r
dinates (d,a) = (4, 3).

From the preceding slide, the polar
equation of the tangent line is:

r=dsec(f — )

= r=4sec(f— %)
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Converting to Rectangular Coordinates

@ ldentify the curve with polar equation r = 2asinf.

We have:
r =2asinf '/47""*~\r‘\=\Zasin9
r? = 2arsinf \
x? +y? = 2ay A
x?+ (y? —2ay) =0 a
x2 + (y2 — 23y + 32) =32 \\\ ] /,,‘
X2+ (y —a)? =%

We get a circle with center (0, a) and radius a.
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Graphing a Polar Curve Using Symmetry

@ Sketch the limagon curve r = 2cosf — 1.

1. cos@ has period 2. We study the graph for —m < 6 < 7.
2. Create a small table of values:

0 |0 £
r:2c050—1|1 V3—-1

27 5 T

6
1 -2 —v3-1 -3

& @
3 2
0 —

Plot the various points.
3. Since cos(—6) = cosf we have symmetry with respect to the x-axis.

George Voutsadakis (LSSU) Calculus 111 January 2016 33 /76



Parametric Equations, Polar Coordinates, Conic Sections Polar Coordinates

Tangent Lines to Polar Curves

@ Suppose that r = 7(0).
® Then x = rcosf = f(0)cosf and y = rsinf = f(0)sin6.

@ These give, using the product rule,

%:%cosﬂ—rsin@ and % :%sin9+rcos¢9

@ Therefore, for the slope of the tangent at (r,0),

d
dy d_}é d—;sin9+rc059
dx % %cosﬂ—rsin@
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Equation of Tangent to Cardioid r =1 4 sin 6

@ Find the equation of the tangent to the cardioid r =1 + sinf at

6=73.
ﬂ B %sin9+rc059_cos@sin¢9+(1+sin9)cos¢9
dx  9cosh—rsing cosfcosh —(1+sinf)sind
~cosf(l+2sinf)  cosB(1+2sinb)
T 1-2sin20—sind (1 +sinf)(1—2sin6)’
So
dy|  __ 3(0+v8) 50+ v3p2

= —1.

lop  1+PA-VI 1+H)-3)

For 0 = 3, r(%):1+§. Sox:rcosgz(1+§)% _ 2+4\/§ and
y=rsinf = (1+ §)§ _ 3+i\/§-
Thus, the equation of the tangent line when 6 = % is

y— 3+i\/§ = (x— 2+4\/§)_
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Subsection 4

Area and Arc Length in Polar Coordinates
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Areas in Polar Coordinates

Il
N[=
>

)
N

S

N

@ The area of a disk segment with central angle Afis A
(since total area of disk is 7r? = 3(2m)r?).

@ Thus, if a polar curve is given by r = f(0), then for a small A6,
taking r constant at f(6;), we get

1
AA; ~ 5[f(ej)]2A9.
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Areas in Polar Coordinates (Cont'd)

@ Summing over those j's partitioning a <0< 3, we get

Ar Z [F(6,)]2 6.

@ Finally, passing to the limit, we end up with the integral

8 8
A:/ 1[f( 0)]> do (:/ %ﬂ db).

r=f(6)
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Area of Semicircle

@ Compute the area of the right semicircle with equation r = 4sin 6.

The right semicircle is plotted for 0 < 6 <
%. Therefore, we have

/2
A= g
= “/ (45|n9)2d9
= an/z sin2 0d0
— 8["/2 1(1 — cos 26)df

= 4(0—1sin20) |3 m/2
= 4(3-0)
= 27.
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One Loop of the Four-Leaved Rose

@ Compute the area of one loop of the four-leaved rose r = cos 26.

One loop is traced for —7 <60 < 7.

Therefore, we get

/4 o) T\
L -
/4 /

%f_fr/df(l +cos4f?4) de -

2(0 + 3 sin40) | :

l(% + %Sinﬂ =

) (=% + Lsin(—n)))

A = [T Lcos?20 df

IR
I

|
ENT
@[
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@ Compute the area of one petal of the rose r = sin 36.

One petal is traced when 0 < 0 < % So

we have

A

Area of a Petal of a Rose

; 0”/ 3 (sin 30)2d0

71‘3]_(1

cos 66)d6

(6 — 1sin60) g /3

tz So)-

George Voutsadakis (LSSU)
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2 :
3. .3
r=1 "I r=1
0= Sz :', e
6 C A 6
b/ X
B
r=-1
n
9=3
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Area Between Two Curves

@ Consider the area A between two polar curves r = f1(6) and
r = £(0), with () < £(0), for a« <6 < 3.
y

>

r=fA6)

o  r=f0)

X

It is given by

B B
A:%/a fz(e)%m%/a f(0)°do = / [£2(6)* — £(6)?]d6.

I\.)In—l
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Computing the Area Between Two Curves

@ Find the area of the region inside the circle r = 2 cos 8 but outside the

circle r = 1.
Set the equations equal to find the angle 6 for the points of

intersection: 2cosf =1 = cosé?:% = Hzig.

A = 2f7r/3 2cos€)2d6 Yoo,
/3 /

T2 7r/3(1) d6 r=1
= 2fﬂ/3 4cos 6—1)do
= 1 f’:/r% (41tess20 — 1)dp -y 2
L 75 (2c0s20 + 1)d6

— %(sm 29+¢9) |7r/3/3 r=2cosd
= 3lsinF +3)—(sin(—F) - 3)I

— ﬁ + us

- 2 3
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Region Between Cardioid and Circle

@ Find the area of the region inside the circle r = 3sin # and outside the
cardioid r =1 4 sin#.
Find angles 6 of intersection.

3sinf=1+sinf = sin9:% = ¢9:%or¢9—%r
- y RN
57/6 .

= /° /6/ 1[(3sin6)% — (1 +sin0)?] db AN
§ 77576/ 6 (8 sin (9 2sinf — 1) do ( / | \ )
:76/6 (4(1 — cos260) —2sinf — 1)do |/ . /

{

:76/ ®(3—2sin6 — 4cos20)df oy, 1

(39 + 2cosf — 2sin 20) |57;/6 W sl

—2[(2 V3+v3) = (5 +V3-V3)]

= T.
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Area Between Circle and Petal of the Four-Leaved Rose

@ Find the area of the region inside a petal of r = cos 26 and outside

the circle r = %
Find angles 6 of intersection.
cosZGz% = 292—% or29:% = 9:—% or9:%.
6 ',“
A = [T% H(cos20)2 — (3)?]d0

%fﬂ/(i cos? 20 — 1)df L
/6 cos “

b f 7('/6 1+ D) S %)de ’,ﬁ’/f”"' .

1 fﬂ-;(/i6 + 2 cos 46)d6 : “

§(0 + 3sin49) e o

B o —
= G+ T
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Length of Polar Curves

@ Recall from rectangular coordinates, using the Pythagorean Theorem,
b

L :/ Vdx? + dy?.

o Multiplying and dividing by d9,

[

@ Since x = rcos# and y = rsiné,

dx dr dy_dr
= @cosﬁ—rsme and = @sme—i—rcosﬁ

dx dy .y agebra  d
@ Therefore (%)24_ d)(;)z lgeb ( r

B 2
dr
L = 2 — do.
/a o (d@)
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Arc Length of a Circle

@ Find the total length of the circle r = 2acos 8, for a > 0.
We have r = f(0) = 2acosf. So we get

r? + (%)2 = (2acos0)? + (—2asin6)? = 42>

L = [7\/r2+(%)2do o
— f(;r,/4a2d9 2\ /Gzo;)rﬂ
= fgr (2a)do a 2a
= 2a0f k
= 2ma.
\9_3_71
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Length of the Cardioid r =1 +sinf

@ Finf the length of the cardiod r =1+ siné.

We have % = cos 6.

= [ /(LFsin0)2 + cos? 6d

= [7"V2+2sin0df

. 27 1/(2+25sin0)(2—2sin 0)

- fO /§/2—2 sin@ do

_ 2 ™ cos 6

= 25 f*ﬂ/2 \/l—sinede
(set u=1—sinb)

= 22 f20 —%du

— 2v2(2/3) 3

2v/2-2/2 =38.
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Subsection 5

Conic Sections
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Conic Sections

@ Conic sections are obtained as the intersection of a cone with a
plane.
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Ellipses

@ An ellipse is the locus of all points P such that the sum of the
distances to two fixed points F; and F> is a constant K.
o The midpoint of FiF; is the center of the ellipse;
@ The line through the foci is the focal axis;
o The line through the center and perpendicular to the focal axis is the
conjugate axis.

Conjugate axis

Focal axis
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Ellipse in Standard Position

@ An ellipse is in standard position if the focal and conjugate axes are
the x- and y-axes.

Semiminor
axis

i
(¢,0) JA=(a,0)

A'=(=a,0)\ (~¢,0)  Center

Semimajor axis

The foci have coordinates F; = (c,0), F» = (—c,0), for some ¢ > 0.
The equation of this ellipse has the simple form

2 2

<y

b2 ’

wherea——andb 2_ 2
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Additional Terminology

B=(0,b)

P=(y) Sc.mmunor
axis

-

ya
A'=(=a,0\ (~¢,0) Center  (c,0)/A=(a,0)

B'=(0, -b)

—
Semimajor axis

@ The points A, A', B, B’ of intersection with the axes are called
vertices;

@ The vertices A, A’ on the focal axis are called focal vertices;
@ The number a is the semimajor axis;
@ The number b is the semininor axis.
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Equation of Ellipse in Standard Position

@ Let a> b >0 and set c = Va2 — b2
The ellipse PF; + PF, = 2a, with foci F; = (¢,0) and F, = (—c,0)
has equation

Furthermore, the ellipse has:

o Semimajor axis a and semiminor axis b;
o Focal vertices (+a,0) and minor vertices (0, £b).

@ If b> a > 0, the same equation defines an ellipse with foci (0, £c¢),

where ¢ = Vb2 — 32,
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Finding an Equation and Sketching the Graph

@ Find an equation of the ellipse with foci (£+/11,0) and semimajor
axis a = 6. Then sketch its graph.

Since the foci are at (+c,0), we get that ¢ = v/11.

Since b= va? — c2, we get b= /36— 11 =5.

)7

(—/11,0) ©.5 i, 0

Thus, the equation is

2 2
X_ + y_ =1
36
Finally, we sketch the graph: (-6, 0) (6, ())C)

0, -5
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Transforming an Ellipse

@ Find an equation of the ellipse with center C = (6,7), vertical focal
axis, semimajor axis 5 and semiminor axis 3. Then find the location

of the foci and sketch its graph.

We have a = 3 and b = 5. At standglrd
position the equation would have been %+

2 .
Y- = 1. Translating to center C, we get

25
(x=6  (x-77
=1.
9 * 25

Now we compute ¢ = +vb%2—a? =
V25 — 9 = 4. Thus, the foci are at (6, 7+4)
or (6,11) and (6, 3).
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Hyperbolas

@ A hyperbola is the locus of all points P such that the difference of
the distances from P to two foci f1 and F5 is =K.
@ The midpoint of F;F, is the center of the hyperbola;
@ The line through the foci is the focal axis;
@ The line through the center and perpendicular to the focal axis is the
conjugate axis.

Conjugate axis

- p
-~
-
|~

A
YA A
-~
-~

|
|
.
(" F, Focal axis

-~
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Hyperbola in Standard Position

@ A hyperbola is in standard position if the focal and conjugate axes
are the x- and y-axes.

Conjugate axis

b s
y=gx/
’

Focal axis

The foci have coordinates F; = (c,0), F» = (—c,0), for some ¢ > 0.
The equation of this hyperbola has the simple form

X2 y2 "
a2 b2 ’
wherea——andb 232
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Additional Terminology

Conjugate axis

@ The points A, A’ of intersection with the focal axis are called vertices;

@ A hyperbola with equation );—2 — }l;—i =1 has two asymptotes
y = :I:gx, which are diagonals of the rectangle whose sides pass
through (£a,0) and (0, £b).
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Equation of Hyperbola in Standard Position

@ Let a>0and b > 0 and set c = Va2 + b2.

The hyperbola PF; — PF, = +2a, with foci F; = (c,0) and
F> = (—c,0) has equation

Furthermore, the hyperbola has vertices (+a, 0).
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Finding an Equation and Sketching the Graph

e Find an equation of the hyperbola with foci (1/5,0) and vertices
(£1,0). Then sketch its asymptotes and its graph.

Since the foci are at (£c,0), we get that ¢ = /5.

Since b=+v/c?2—a% weget b=+v5—-1=2.

Thus, the equation is

2 2
L g

1 4
Moreover the asymptotes are
y = :I:gx, i.e, y = £ 2x.
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Finding the Foci and Sketching the Graph

@ Find the foci of the hyperbola 9x> — 4y? = 36. Then find the

equations of the asymptotes and sketch the graph of the hyperbola
using the asymptotes.

Put the equation in the standard form:

2 N\ /4

x y_2 = . AN 1 /

1 9 N\ E 7

Thus, we get a = 2 and b = 3. e \\(/

This gives ¢ = Va2 + b2 = \/4+9 =
v/13. We conclude that the foci are at /,;*'"/ \
(£v/13,0). Moreover, the asymptotes ya AN
have equations y = :l:%x. /// N
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Parabolas

@ A parabola is the locus of all points P that are equidistant from a
focus F and a line D called the directrix: PF = PD.

@ The line through F and perpendicular to D is called the axis of the
parabola;

o The vertex is the point of intersection of the parabola with its axis.

(]
I
I
I
I
I
Vertex ~~ 2 !
—c )

Directrix D y = —¢
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Parabola in Standard Position

@ A parabola is in standard position if for some c, the focus is
F = (0, ¢) and the directrix is y = —c.

Vertex

Directrix D y = —¢

The equation of this parabola has the simple form
1

= —x2
4c

@ The vertex is then located at the origin.
@ The parabola opens upward if ¢ > 0 and downward if ¢ < 0.

y
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Finding an Equation and Sketching the Graph

@ A parabola is in the standard position and has directrix y = —%. Find
the focus, the equation and sketch the parabola.

Since the directrix is at y = —c,

we get ¢ = % Therefore the fo-

cus is at (0,¢) = (0, 3).

The equation of the parabola is
I 5 1,

y = 1
4.3
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Transforming a Parabola

@ The standard parabola with directrix y = —3 is translated so that its
vertex is located at (—2,5). Find its equation, directrix and focus.

Consider, first, the standard parabola:
It has ¢ = 3. Thus, its focus is (0, 3).
It has equation y = 1—12x2.

So the transformed parabola has equa-

tion )
—5=(x+2)%. ,
y 12(x—i- ) N /
Its directrix is y = 2 and its focus N .
(_278)-
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Eccentricity

@ The shape of a conic section is measured by a number e called the
eccentricity:

distance between foci

distance between vertices on the focal axis’

A parabola is defined to have eccentricity 1.

Theorem

For ellipses and hyperbolas in the standard position
c
e=—.
a

1. An ellipse has eccentricity 0 < e < 1;

2. A hyperbola has eccentricity e > 1.
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Eccentricity and Shapes

Circle Parabola

0 1

Ellipses ' Hyperbolas

e=2
e=1.2
e=0.9
X X
e=0.3
e=0.7

(0
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Eccentricity as a Unification Tool

@ Given a point F (the focus), a line D (the directrix) and a number
e > 0, consider the locus of all points P, such that

PF =e- PD.
@ For all e > 0, this locus is a conic of eccentricity e.
Directrix D

o Ellipse: Let a> b > 0 and x=3

c = Va2 — b2. The ellipse

y
PD
2 2 T
X y \
N + =1 —
b2 /_rjh(a’ 0
K X

satisfies PF = ePD, with
F =(c,0), e = < and vertical
directrix x = g ¢

George Voutsadakis (LSSU) Calculus 111 January 2016 69 / 76



Parametric Equations, Polar Coordinates, Conic Sections

Conic Sections

Eccentricity as a Unification Tool (Cont'd)

@ The Second Case:

o Hyperbola: Let a,b > 0 and
¢ = Va% + b2. The hyperbola

2 2

a b2

satisfies PF = ePD, with

F =(c,0), e = < and vertical
directrix x = 2.
George Voutsadakis (LSSU) Calculus Il
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Example

@ Find the equation, foci and directrix of the standard ellipse with
eccentricity e = 0.8 and focal vertices (£10, 0).
We have g — e = 0.8. Moreover a = 10. Therefore,
¢ = ea=0.8-10 = 8. This shows that the foci are at (+8,0).
Moreover, we get b?> = a®> — c®> = 100 — 64 = 36.
Therefore, the equation Y Directrix x = 12.5
of the ellipse is

X2 g2
A — =1. . X
100 36 —10\ (=8, 0)

Finally, the ellipse has di-

rectrix x = ¢ = % = 6

12.5.
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Polar Equation of a Conic Section

@ We assume focus F = (0,0) and directrix D : x = d.

We have y  Directrix D

PF = r N *
PD = d— rcosf. /;h

X
] d
Focus F -~ /

So, if the conic section has
equation PF = ePD, we get
r=e(d — rcos#).

We solve for r:
r =ed — ercosf

= r+ ercosf = ed
= r(l+ecosf) = ed
ed

>r=—.
r 1+ ecosf
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Example

@ Find the eccentricity, directrix and focus of the conic section

24
f=——.
4+ 3cosb
We need to convert into standard form r = H:igose.
24 6

r=—— = r= ————.
4 4+ 3 cos 6 1+%cos€

Now we get:
ed = 6, e:%, d:i:&

We conclude that the eccentricity is e = %, the directrix is D : x = 8
and the focus is F = (0,0).
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The General Quadratic Equation

@ The equations of the standard conic sections are special cases of the
general equation of degree 2 in x and y:

ax’ + bxy + cy’ + dx+ ey +f =0,

with a, b, e, d, e, f constants with a, b, ¢ not all zero.
@ Apart from “degenerate cases”, this equation defines a conic section
that is not necessarily in standard position:
@ It need not be centered at the origin;
o Its focal and conjugate axes may be rotated relative to coordinate axes.
@ We say that the equation is degenerate if the set of solutions is a
pair of intersecting lines, a pair of parallel lines, a single line, a point,
or the empty set. Some examples include:

o x2 — y? = 0 defines a pair of intersecting lines y = x and y = —x.

x2 — x = 0 defines a pair of parallel lines x =0 and x = 1.
x2 = 0 defines a single line (the y-axis).

x? 4+ y2 = 0 has just one solution (0, 0).

x2 + y? = —1 has no solutions.

¢ ¢ ¢ ¢
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General Quadratic Equation: Zero Cross Term

@ Suppose that ax? + bxy + cy? + dx + ey + f = 0 is nondegenerate.
The term bxy is called the cross term.
When the cross term is zero (that is, when b = 0), we can complete
the square to show that the equation defines a translate of the conic
in standard position.
Example: Show that 4x? 4 9y? + 24x — 72y + 144 = 0 defines a
translate of a conic section in standard position. Identify the conic
section and find its focus, directrix and eccentricity.

4x% 4 9y? 4 24x — T2y + 144 =0
= 4(x?+6x)+9(y?> —8y) = —144
= 4(x2+6x+9)+9(y2—8y+16) =36+ 144 — 144
= 4(x+3)? +9(y 4)2 =36
- (><+3)2 4+ =4 4) -1
Ellipse with center ( 3 4), focus (—3 4 /5,4), eccentricity e = \/_
directrix x = =3 + \/5
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The Discriminant Test for Classification

@ Suppose that the equation
ax®+bxy+cy’+dx+ey+f=0

is nondegenerate and thus defines a conic section.

According to the Discriminant Test, the type of conic is determined
by the discriminant D:

D = b® — 4ac.

We have the following cases:
o D < 0: Ellipse or circle;
o D > 0: Hyperbola;
o D = 0: Parabola.

Example: Determine the conic section with equation 2xy = 1.
The discriminant of 2xy = 1is D = b*> —4ac =2 —-0=4 > 0.
According to the Discriminant Test, 2xy = 1 defines a hyperbola.
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