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Calculus of Vector-Valued Functions Vector-Valued Functions

Subsection 1

Vector-Valued Functions
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Vector Functions

A vector-valued function or vector function

r(t) = 〈x(t), y(t), z(t)〉 = x(t)i + y(t)j + z(t)k

has domain a set of real numbers D and range a set of vectors.

t is called the parameter.

The functions x(t), y(t) and z(t) giving the components of r(t) are
called the component or coordinate functions of r(t).
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Example of a Vector Function

For the vector function r(t) = 〈t3, ln (3− t),
√
t〉, the component

functions are

x(t) = t3, y(t) = ln (3− t), z(t) =
√
t.

r(t) = 〈t3, ln (3− t),
√
t〉 has domain [0, 3).
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Domains of Vector Functions

Find the domains of the following vector functions:

(a) r(t) = 〈t2, et , 4− 7t〉; (b) r(s) = 〈
√
s, es ,

1

s
〉.

(a) All three component functions have domain R.
Therefore r(t) has domain D = R.

(b) x(s) has domain [0,∞).
y(s) has domain R.
z(s) has domain R− {0}.
Therefore r(s) has domain D = (0,∞).
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Vector Functions and Space Curves

A vector function r(t) = 〈x(t), y(t), z(t)〉 may also be viewed as
providing parametric equations

x = x(t), y = y(t), z = z(t)

with parameter t, defining a parametric curve in space.

If this point of view is taken, then the vector r(t) is the position
vector of a particle moving on the space curve defined by the system
of the corresponding parametric equations.

Example: What is the curve defined by the
vector function r(t) = 〈1+t, 2+5t,−1+6t〉?
This is the equation of the straight line pass-
ing through the point (1, 2,−1) and having
direction vector v = 〈1, 5, 6〉.
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The Helix r(t) = 〈cos t, sin t, t〉

The curve r(t) = 〈cos t, sin t, t〉 represents the orbit of a particle
moving counterclockwise on the surface of a cylinder with base the
unit circle.

This is shown in the following figure,
drawn from t = 0 to t = 4π. This curve
is called a helix.
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Vector Equations of Line Segments

Find a vector equation and parametric equations for the line segment
joining the point P = (1, 3,−2) to the point Q = (2,−1, 3).

The two points have position vectors r0 = 〈1, 3,−2〉 and
r1 = 〈2,−1, 3〉, respectively. Thus, the vector equation of the line
segment joining them is r = (1− t)r0 + tr1, 0 ≤ t ≤ 1.

i.e., r = (1 − t)〈1, 3,−2〉 + t〈2,−1, 3〉
= 〈1 + t, 3− 4t,−2 + 5t〉.
The corresponding parametric equations
are

x = 1 + t, y = 3− 4t, z = −2 + 5t,

for 0 ≤ t ≤ 1.
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Parametrizing a Curve (Using a Variable for t)

Parametrize the curve C obtained as the intersection of the surfaces
x2 − y2 = z − 1 and x2 + y2 = 4.

Method 1: Solve the given equations for y and z in terms of x .
First, solve for y : x2 + y2 = 4 ⇒ y2 = 4− x2 ⇒ y = ±

√
4− x2.

The equation x2 − y2 = z − 1 can be written z = x2 − y2 + 1. Thus,
we can substitute y2 = 4− x2 to solve for z :
z = x2 − y2 + 1 = x2 − (4− x2) + 1 = 2x2 − 3.
Now use t = x as the parameter. Then y = ±

√
4− t2, z = 2t2 − 3.

The two signs of the square root correspond to
the two halves of the curve where y > 0 and
y < 0. Therefore, we need two vector-valued
functions:

r1(t) = 〈t,
√
4− t2, 2t2 − 3〉,

r2(t) = 〈t,−
√
4− t2, 2t2 − 3〉,

−2 ≤ t ≤ 2.
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Parametrizing a Curve (Using Trigonometry)

Parametrize the curve C obtained as the intersection of the surfaces
x2 − y2 = z − 1 and x2 + y2 = 4.

Method 2: Note that x2 + y2 = 4 has a
trigonometric parametrization:

x = 2cos t, y = 2 sin t, 0 ≤ t < 2π.

The equation x2 − y2 = z − 1 gives us z =
x2−y2+1 = 4 cos2 t−4 sin2 t+1 = 4 cos 2t+
1. Thus, we may parametrize the entire curve
by a single vector-valued function:

r(t) = 〈2 cos t, 2 sin t, 4 cos 2t + 1〉,
0 ≤ t < 2π.
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Parametrizing a Curve

Find a vector function that represents the curve of intersection of the
cylinder x2 + y2 = 1 and the plane y + z = 2.

If we set x = cos t, y = sin t, then, automatically, x2 + y2 = 1. Also,
since y + z = 2, we get that z = 2− y = 2− sin t. Therefore the
required vector function is

r(t) = cos t i + sin tj + (2− sin t)k , 0 ≤ t ≤ 2π.

George Voutsadakis (LSSU) Calculus III January 2016 12 / 64



Calculus of Vector-Valued Functions Vector-Valued Functions

Additional Example

Parametrize the circle of radius 3 with center P = (2, 6, 8) located in
a plane parallel to the xy -plane.

A circle of radius R in the xy -plane cen-
tered at the origin has parametrization
〈R cos t,R sin t〉. We place it in 3 di-
mensions 〈R cos t,R sin t, 0〉. The cir-
cle of radius 3 centered at (0, 0, 0) has
parametrization 〈3 cos t, 3 sin t, 0〉.

We move the center to P = (2, 6, 8) by translating by the vector
〈2, 6, 8〉:

r(t) = 〈2, 6, 8〉 + 〈3 cos t, 3 sin t, 0〉 = 〈2 + 3 cos t, 6 + 3 sin t, 8〉.
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Subsection 2

Calculus of Vector-Valued Functions
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Limits of Vector Functions

A vector valued function r(t) approaches the limit u as t approaches
t0 if

lim
t→t0

‖r (t)− u‖ = 0.

In this case, we write lim
t→t0

r (t) = u.

The limit of a vector function r(t) = 〈x(t), y(t), z(t)〉 as t → t0 is
given by

lim
t→t0

r(t) = 〈 lim
t→t0

x(t), lim
t→t0

y(t), lim
t→t0

z(t)〉.
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Example

What is the limit lim
t→0

r(t), if r(t) = (1 + t3)i + te−t j +
sin t

t
k?

Since

lim
t→0

(1 + t3) = 1, lim
t→0

te−t = 0, lim
t→0

sin t

t
= 1,

we have that lim
t→0

r(t) = i + k .
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Continuity of Vector Functions

A vector function r(t) = 〈x(t), y(t), z(t)〉 is continuous at t = t0 if

lim
t→t0

r(t) = r(t0).

Since lim
t→t0

r(t) = 〈 lim
t→t0

x(t), lim
t→t0

y(t), lim
t→t0

z(t)〉 and
r(t0) = 〈x(t0), y(t0), z(t0)〉, we have that r(t) = 〈x(t), y(t), z(t)〉 is
continuous at t = t0 if and only if

lim
t→t0

x(t) = x(t0), lim
t→t0

y(t) = y(t0), lim
t→t0

z(t) = z(t0).

This shows that r(t) = 〈x(t), y(t), z(t)〉 is continuous at t = t0 if
and only if all three component functions x(t), y(t) and z(t) are
continuous at t = t0.
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Derivatives of Vector Functions

The derivative r ′(t) of a vector function r(t) is defined similarly to
the derivative of ordinary functions:

dr

dt
= r ′(t) = lim

h→0

r(t + h)− r(t)

h
.

The geometric interpretation of r ′(t0) is also similar: It is a vector
tangent to the curve at the point determined by r(t0).

For this reason, r ′(t0) is called the tangent vector to the curve at
the point with position vector r(t0), provided, of course, that r ′(t0)
exists and r ′(t0) 6= 0.

The tangent line to the curve at t = t0 goes through r(t0) and has
direction r ′(t0). Thus, it has equation ℓ(t) = r(t0) + tr ′(t0).
Finally, the unit tangent vector T(t) is defined by

T(t) =
r ′(t)
‖r ′(t)‖ .
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Calculating the Derivative of a Vector Function

Coordinate-Wise Calculation of r(t)

If r(t) = 〈x(t), y(t), z(t)〉, and x , y and z are differentiable, then
r ′(t) = 〈x ′(t), y ′(t), z ′(t)〉.

Example: Find the derivative of r(t) = (1 + t3)i + te−t j + sin 2tk
and the unit tangent vector at the point where t = 0.
We have

r ′(t) = (1 + t3)′i + (te−t)′j + (sin 2t)′k
= 3t2i + (e−t − te−t)j + 2cos 2tk.

Therefore, at t = 0, r ′(0) = j + 2k and ‖r ′(0)‖ =
√
5.

This shows that T(0) = r ′(0)
‖r ′(0)‖ =

j + 2k√
5

=
1√
5
j +

2√
5
k .
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More Derivatives of Vector Functions

Calculate:

(a) v ′(t) if v(t) = 〈t2, t3, sin t〉;
(b) u′(π2 ) if u(t) = 〈cos t,−1, e2t〉;
(c) w ′(3) if w(t) = 〈ln t, t, t2〉.

(a) We have v ′(t) = 〈(t2)′, (t3)′, (sin t)′〉 = 〈2t, 3t2, cos t〉.
(b) We have u ′(t) = 〈(cos t)′, (−1)′, (e2t)′〉 = 〈− sin t, 0, 2e2t〉.

Therefore, u ′(π2 ) = 〈− sin π
2 , 0, 2e

2(π/2)〉 = 〈−1, 0, 2eπ〉.
(c) We have w ′(t) = 〈(ln t)′, (t)′, (t2)′〉 = 〈1

t
, 1, 2t〉.

Therefore, w ′(3) = 〈13 , 1, 6〉.
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Calculating Tangent Vectors

Find the position vector r(1) and the tangent vector r ′(1) for the
curve r(t) =

√
ti + (2− t)j .

We have
r(1) =

√
1i + (2− 1)j = i + j .

Moreover,

r ′(t) = (
√
t)′i + (2− t)′j =

1

2
√
t
i − j .

Therefore, r ′(1) = 1
2 i − j .
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Calculating Tangent Lines

Find parametric equations for the tangent line to the helix with
parametric equations

x = 2cos t, y = sin t, z = t

at the point (0, 1, π2 ).
The given point is the point corresponding to the position vector
r(π2 ) = 〈0, 1, π2 〉. The tangent vector is r ′(t) = 〈−2 sin t, cos t, 1〉,
whence at the same point the tangent vector is r ′(π2 ) = 〈−2, 0, 1〉.
The line passing through r(π2 ) with direction r ′(π2 ) is given by the
vector equation

ℓ(t) = r(
π

2
) + tr ′(

π

2
) = 〈0, 1, π

2
〉+ t〈−2, 0, 1〉 = 〈−2t, 1,

π

2
+ t〉.

Its parametric equations are

x = − 2t, y = 1, z =
π

2
+ t.
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Second Derivatives and Smooth Curves

The second derivative of the vector function r(t) is the first
derivative of its first derivative r ′′(t) = (r ′(t))′.

The curve r(t) is called smooth on an interval I if

r ′(t) is continuous;
r ′(t) 6= 0 except possibly at the endpoints of I .

r(t) is piece-wise smooth if it is made up of a finite number of
smooth pieces.

Example: The semicubical parabola
r(t) = 〈1 + t3, t2〉 is not smooth.
Why?
Is it piece-wise smooth?
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Some Rules for Computing Derivatives

Theorem

Assume that u, v are differentiable vector functions, c is a scalar and f is
a real-valued function. Then

1 (u(t) + v(t))′ = u ′(t) + v ′(t) (Sum Rule);

2 (cu(t))′ = cu ′(t) (Constant Factor Rule);

3 (f (t)u(t))′ = f ′(t)u(t) + f (t)u ′(t) (Scalar Product Rule);

4 (u(t) · v(t))′ = u ′(t) · v(t) + u(t) · v ′(t) (Dot Product Rule);

5 (u(t)× v(t))′ = u ′(t)× v(t)+ u(t)× v ′(t) (Cross Product Rule);

6 (u(f (t)))′ = f ′(t)u ′(f (t)) (Chain Rule).

Example: Let r(t) = 〈t2, 5t, 1〉 and f (t) = e3t . Compute:

(a) (f (t)r (t))′ = f ′(t)r(t) + f (t)r ′(t) = 3e3t〈t2, 5t, 1〉+ e3t〈2t, 5, 0〉 =
〈(3t2 + 2t)e3t , (15t + 5)e3t, 3e3t〉.

(b) [r(f (t))]′ = f ′(t)r ′(f (t)) = 3e3t〈2(e3t), 5, 0〉 = 〈6e6t , 15e3t, 0〉.
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Proving a Formula

Prove the formula

d

dt
(r(t)× r ′(t)) = r(t)× r ′′(t).

d

dt
(r(t)× r ′(t)) = d

dt
r(t)× r ′(t) + r(t)× d

dt
r ′(t)

= r ′(t)× r ′(t) + r(t)× r ′′(t)
= 0+ r(t)× r ′′(t)
= r (t)× r ′′(t).
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Proving a General Property

Example: Suppose that ‖r (t)‖ = c , a constant, for all t. Show that
r ′(t) is orthogonal to r(t), for all t.

We have

(r(t) · r(t))′ = r ′(t) · r(t) + r(t) · r ′(t) = 2r(t) · r ′(t).

Therefore, we get

r(t) · r ′(t) = 1
2 (r(t) · r(t))′

= 1
2 (‖r(t)‖2)′

= 1
2 (c

2)′

= 0.

Therefore, r ′(t) · r(t) = 0, showing that r ′(t) ⊥ r(t).
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Definite Integrals of Vector Functions

We define the definite integral of a continuous vector function
r(t) = x(t)i + y(t)j + z(t)k by

∫

b

a

r(t)dt =

(

∫

b

a

x(t)dt

)

i +

(

∫

b

a

y(t)dt

)

j +

(

∫

b

a

z(t)dt

)

k .

If R(t) is an antiderivative of r(t), i.e., if R ′(t) = r(t), then

∫

b

a

r(t)dt = R(t)|b
a
= R(b)− R(a).

We write
∫

r(t)dt = R(t) + c, where c is a constant vector, in this
case.
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Example I

Compute the following:

(a)
∫

〈1, t, sin t〉dt;
(b)

∫ π

0
〈1, t, sin t〉dt.

(a)
∫

〈1, t, sin t〉dt = 〈
∫

dt,
∫

tdt,
∫

sin tdt〉
= 〈t + c1,

1
2t

2 + c2,− cos t + c3〉
= 〈t, 12 t2,− cos t〉+ c .

(b)
∫ π
0 〈1, t, sin t〉dt = 〈t, 12 t2,− cos t〉

∣

∣

π

0
= 〈π, 12π2,− cos π〉 − 〈0, 0,− cos 0〉
= 〈π, 12π2, 2〉.
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Example II

Suppose r(t) = 2 cos t i + sin tj + 2tk . Calculate

(a)
∫

r(t)dt;

(b)
∫ π/2

0
r(t)dt.

(a)
∫

r(t)dt = 2 sin t i− cos tj+ t2k+ c.

(b)

∫ π/2

0
r(t)dt = (2 sin t i − cos tj + t2k) |π/20

= (2 sin π
2 − 2 sin 0)i − (cos π

2 − cos 0)j
+ ((π2 )

2 − 02)k

= 2i + j + π2

4 k .
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Finding a Position Vector

The path of a particle satisfies dr
dt

= 〈1− 6 sin 3t, 15t〉. Find the
particle’s location at t = 4 if r (0) = 〈4, 1〉.
The general solution is obtained by integration:

r(t) =

∫

〈1− 6 sin 3t,
1

5
t〉dt = 〈t + 2cos 3t,

1

10
t2〉+ c.

The initial condition r(0) = 〈4, 1〉 gives us
r(0) = 〈2, 0〉 + c = 〈4, 1〉 ⇒ c = 〈2, 1〉.

This now yields

r(t) = 〈t + 2cos 3t,
1

10
t2〉+ 〈2, 1〉 = 〈t + 2cos 3t + 2,

1

10
t2 + 1〉.

The particle’s position at t = 4 is

r(4) = 〈4 + 2 cos 12 + 2,
16

10
+ 1〉 = 〈6 + 2 cos 12,

13

5
〉.

George Voutsadakis (LSSU) Calculus III January 2016 30 / 64



Calculus of Vector-Valued Functions Arc Length and Speed

Subsection 3

Arc Length and Speed
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Arc Length

Suppose that r(t) = 〈x(t), y(t), z(t)〉. Then, the length of the arc
traversed as t increases from a to b is given by

L =

∫

b

a

√

x ′(t)2 + y ′(t)2 + z ′(t)2dt

=

∫

b

a

√

(

dx

dt

)2

+

(

dy

dt

)2

+

(

dz

dt

)2

dt.

Recall that r ′(t) = 〈x ′(t), y ′(t), z ′(t)〉. Therefore,
‖r ′(t)‖ =

√

x ′(t)2 + y ′(t)2 + z ′(t)2. This shows that

L =

∫

b

a

‖r ′(t)‖dt.
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Computing Arc Length

Compute the length of the arc of the circular helix with vector
equation r(t) = cos t i + sin tj + tk from (1, 0, 0) to (1, 0, 2π).

Note that:

(1, 0, 0) corresponds to t = 0;
(1, 0, 2π) corresponds to t = 2π.

Moreover, x ′(t) = − sin t, y ′(t) = cos t and z ′(t) = 1. Therefore,

L =

∫ 2π

0

√

(− sin t)2 + cos2 t + 1dt

=

∫ 2π

0

√
2dt

=
√
2t |2π0

= 2
√
2π.
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Arc Length Function and Speed

We define the arc length function as the distance traveled during
the interval [a, t]:

s(t) =

∫

t

a

‖r ′(u)‖du.

By definition, speed is the rate of change of distance traveled with
respect to time t:

Speed at time t =
ds

dt
=

d

dt

∫

t

a

‖r ′(u)‖du FTC
= ‖r ′(t)‖.
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Calculating Speed

Find the speed at time t = 2 s of a particle whose position vector is

r(t) = t3i − et j + 4tk .

The velocity vector is

v(t) = r ′(t) = 3t2i − et j + 4k .

At t = 2, v(2) = 12i − e2j + 4k .

Therefore, the particle’s speed is

v(2) = ‖v(2)‖ =
√

122 + (−e2)2 + 42 =
√

160 + e4.
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Switching Between Parametrizations

Parametrizations are not unique.

Example: By elimination of parameters, it is easy to see that both
r1(t) = 〈t, t2〉 and r2(s) = 〈s3, s6〉 parametrize the parabola y = x2.

In this case r2(s) is obtained by substituting t = s3 in r1(t).

In general, we obtain a new parametrization by making a substitution
t = g(s),

i.e., by replacing r(t) with r1(s) = r(g(s)). If t = g(s) increases
from a to b as s varies from c to d , then the path r(t) for a ≤ t ≤ b

is also parametrized by r1(s) for c ≤ s ≤ d .
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Example

Parametrize the path r(t) = 〈t2, sin t, t〉, for 3 ≤ t ≤ 9, using the
parameter s, where t = g(s) = es .

Substituting t = es in r(t), we obtain the parametrization

r1(s) = r(g(s)) = 〈e2s , sin es , es〉.

Because s = ln t, the parameter t varies from 3 to 9 as s varies from
ln 3 to ln 9. Therefore, the path is parametrized by

r1(s), for ln 3 ≤ s ≤ ln 9.
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Calculus of Vector-Valued Functions Arc Length and Speed

Arc Length Parametrization

One way of parametrizing a path is to choose a starting point and
“walk along the path” at unit speed.

Such a parametrization is called an arc length parametrization and
is defined by the property that the speed has constant value 1:

‖r ′(t)‖ = 1, for all t.
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Calculus of Vector-Valued Functions Arc Length and Speed

Process for Arc Length Parametrization

To find an arc length parametrization:
Start with any parametrization r(t) such that r ′(t) 6= 0, for all t;

Form the arc length integral s(t) =
∫ t

0 ‖r ′(u)‖du;
Notice that r ′(t) 6= 0 implies that s(t) is an increasing function and
therefore has an inverse t = g(s).
The parametrization

r1(s) = r(g(s))

is an arc length parametrization.
We show why:

By the formula for the derivative of an inverse, we get

g ′(s) =
1

s ′(g(s))
=

1

‖r ′(g(s))‖ .

Now we get, using the Chain Rule,

‖r ′1(s)‖
Chain
= ‖g ′(s)r ′(g(s))‖ =

1

‖r ′(g(s))‖‖r
′(g(s))‖ = 1.
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Calculus of Vector-Valued Functions Arc Length and Speed

Finding an Arc Parametrization

Find the arc length parametrization of the helix

r(t) = 〈cos 4t, sin 4t, 3t〉.

First, we evaluate the arc length function

‖r ′(t)‖ = ‖〈−4 sin 4t, 4 cos 4t, 3〉‖
=

√

16 sin2 4t + 16 cos2 4t + 32 = 5;

s(t) =
∫

t

0 ‖r ′(t)‖dt =
∫

t

0 5dt = 5t.

Then we observe that the inverse of s(t) = 5t is t = s

5 , i.e., g(s) =
s

5 .

Thus, an arc length parametrization is

r1(s) = r(g(s)) = r
( s

5

)

=

〈

cos
4s

5
, sin

4s

5
,
3s

5

〉

.

George Voutsadakis (LSSU) Calculus III January 2016 40 / 64



Calculus of Vector-Valued Functions Curvature

Subsection 4

Curvature
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Calculus of Vector-Valued Functions Curvature

Unit Tangent Vector

Consider a path with parametrization r(t) = 〈x(t), y(t), z(t)〉, such
that r ′(t) 6= 0, for all t in the domain of r(t).

A parametrization with this property is called regular.

At every point P along the path there is a unit tangent vector

T = TP that points in the direction of motion of the parametrization

Unit Tangent Vector = T(t) =
r ′(t)
‖r ′(t)‖ .
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Calculus of Vector-Valued Functions Curvature

Computing a Unit Tangent Vector

If r(t) = 〈t, t2, t3〉, compute the unit tangent vector at P = (1, 1, 1).

We have r ′(t) = 〈1, 2t, 3t2〉.
Note that P is the terminal point of r(1).

Thus, the unit tangent vector at P = (1, 1, 1) is

TP = r ′(1)
‖r ′(1)‖ = 〈1,2,3〉

‖〈1,2,3〉‖

= 〈1,2,3〉√
12+22+32

=
〈

1√
14
, 2√

14
, 3√

14

〉

.
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Calculus of Vector-Valued Functions Curvature

Definition of Curvature

Imagine walking along a path and observing how the unit tangent
vector T changes direction.

A change in T indicates that the path
is bending, and the more rapidly T

changes, the more the path bends.
Thus,

∥

∥

dT
dt

∥

∥ would seem to be a good
measure of curvature. However, this
depends on how fast you walk.
To counter this, we assume an arc length parametrization.

Let r(s) be an arc length parametrization and T the unit tangent
vector. The curvature at r(s) is the quantity

κ(s) =

∥

∥

∥

∥

dT

ds

∥

∥

∥

∥

.

George Voutsadakis (LSSU) Calculus III January 2016 44 / 64



Calculus of Vector-Valued Functions Curvature

A Line Has Zero Curvature

Compute the curvature at each point on the line
r(t) = 〈x0, y0, z0〉+ tu, where ‖u‖ = 1.

Since u is a unit vector, r(t) is an arc length parametrization:
r ′(t) = u and, thus, ‖r ′(t)‖ = ‖u‖ = 1.

Thus, we have T(t) = r ′(t)
‖r ′(t)‖ = r ′(t). Hence, T′(t) = r ′′(t) = 0

(because r ′(t) = u is constant). As expected, the curvature is zero at
all points on a line:

κ(t) =

∥

∥

∥

∥

dT

dt

∥

∥

∥

∥

= ‖r ′′(t)‖ = 0.
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Calculus of Vector-Valued Functions Curvature

The Curvature of a Circle of Radius R is 1/R

Compute the curvature of a circle of radius R .

Assume the circle is centered at the origin r(θ) = 〈R cos θ,R sin θ〉.
We find an arc length parametrization:

s(θ) =

∫ θ

0
‖r ′(u)‖du =

∫ θ

0
Rdu = Rθ.

Thus, s = Rθ, and the inverse function is θ = g(s) = s

R
. Thus, an arc

length parametrization is

r1(s) = r(g(s)) = r
( s

R

)

=
〈

R cos
s

R
,R sin

s

R

〉

.

The unit tangent vector and its derivative are
T(s) = dr 1

ds
= d

ds
〈R cos s

R
,R sin s

R
〉 = 〈− sin s

R
, cos s

R
〉. Therefore,

dT
ds

= − 1
R
〈cos s

R
, sin s

R
〉. By definition of curvature,

κ(s) =

∥

∥

∥

∥

dT

ds

∥

∥

∥

∥

=
1

R

∥

∥

∥

〈

cos
s

R
, sin

s

R

〉
∥

∥

∥
=

1

R
.
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Calculus of Vector-Valued Functions Curvature

Derivative of the Unit Tangent Vector and Curvature

Suppose that T(s) = T(s(t)).

So the derivatives of T with respect to t and s are related by the
Chain Rule:

T′(t) =
dT

dt
=

ds

dt

dT

ds
.

Now note that
ds

dt
= ‖r ′(t)‖ = v(t);

‖ dT
ds
‖ = κ(t).

So we get:
‖T′(t)‖ = v(t)κ(t).
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Calculus of Vector-Valued Functions Curvature

Formula for Curvature

If r(t) is a regular parametrization, then the curvature at r(t) is

κ(t) =
‖r ′(t)× r ′′(t)‖

‖r ′(t)‖3 .

Since v(t) = ‖r ′(t)‖, we have r ′(t) = v(t)T(t). By the Product Rule,

r ′′(t) = v ′(t)T(t) + v(t)T′(t).

Now using the fact that T(t)× T(t) = 0, we get:

r ′(t)× r ′′(t) = v(t)T(t)× (v ′(t)T(t) + v(t)T′(t))
= v(t)2T(t)×T′(t).

Now we get

‖r′(t)× r ′′(t)‖ = v(t)2‖T(t)‖‖T′(t)‖ sin π

2
= v(t)2‖T′(t)‖.

Finally, we obtain

‖r ′(t)× r ′′(t)‖ = v(t)2‖T′(t)‖ = v(t)3κ(t) = ‖r ′(t)‖3κ(t).

George Voutsadakis (LSSU) Calculus III January 2016 48 / 64



Calculus of Vector-Valued Functions Curvature

Twisted Cubic Curve

Calculate the curvature κ(t) of the twisted cubic r(t) = 〈t, t2, t3〉.

r ′(t) = 〈1, 2t, 3t2〉
r ′′(t) = 〈0, 2, 6t〉

r ′(t)× r ′′(t) =

∣

∣

∣

∣

∣

∣

i j k

1 2t 3t2

0 2 6t

∣

∣

∣

∣

∣

∣

= 〈6t2,−6t, 2〉.

Therefore, we get

κ(t) = ‖r ′(t)×r ′′(t)‖
‖r ′(t)‖3

=

√
(6t2)2+(−6t)2+22√
(12+(2t)2+(3t2)2)3

=
√
36t4+36t2+4√
(1+4t29t4)3

.
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Calculus of Vector-Valued Functions Curvature

Curvature of a Graph in the Plane

The curvature at the point (x , f (x)) on the graph of y = f (x) is
equal to

κ(x) =
|f ′′(x)|

(1 + f ′(x)2)3/2
.

The curve y = f (x) has parametrization r (x) = 〈x , f (x)〉. Therefore,
r ′(x) = 〈1, f ′(x)〉 and r ′′(x) = 〈0, f ′′(x)〉. To apply the formulas for
κ(x), we treat r ′(x) and r ′′(x) as vectors in R3 with z-component
equal to zero. Then

r ′(x)× r ′′(x) =

∣

∣

∣

∣

∣

∣

i j k

1 f ′(x) 0
0 f ′′(x) 0

∣

∣

∣

∣

∣

∣

= f ′′(x)k .

Now we get

κ(x) =
‖r ′(x) × r ′′(x)‖

‖r ′(x)‖3 =

√

f ′′(x)2
√

(1 + f ′(x)2)3
=

|f ′′(x)|
(1 + f ′(x)2)3/2

.
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Calculus of Vector-Valued Functions Curvature

Computing the Curvature of a Graph in the Plane

Compute the curvature of f (x) = x3 − 3x2 + 4 at x = 0, 1, 2.

We have
f ′(x) = 3x2 − 6x = 3x(x − 2);
f ′′(x) = 6x − 6.

So we get

κ(x) =
|f ′′(x)|

(1 + f ′(x)2)3/2
=

|6x − 6|
(1 + (3x(x − 2))2)3/2

.

We obtain the following values:

κ(0) =
6

1
= 6, κ(1) =

0

103/2
= 0, κ(2) =

6

1
= 6.
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Calculus of Vector-Valued Functions Curvature

Unit Normal and Binormal Vectors

Given a curve r(t), the unit normal N(t) is defined by

N(t) =
T′(t)

‖T′(t)‖ ;

Note that T′(t) = ‖T′(t)‖N(t) = v(t)κ(t)N(t).

The binormal is defined by B(t) = T(t)×N(t);
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Calculus of Vector-Valued Functions Curvature

Finding the Unit Normal and Binormal Vectors

Curve: r(t); Unit Normal N(t) =
T′(t)
‖T′(t)‖ ;

Binormal: B(t) = T(t)×N(t).

Example: Find the unit normal and the binormal to the curve
r(t) = cos t i + sin tj + tk.

r ′(t) = 〈− sin t, cos t, 1〉 and ‖r ′(t)‖ =
√
2;

T(t) =
r ′(t)

‖r ′(t)‖ = 〈− 1√
2
sin t, 1√

2
cos t, 1√

2
〉;

T′(t) = 〈− 1√
2
cos t,− 1√

2
sin t, 0〉 and ‖T′(t)‖ = 1√

2
;

N(t) =
T′(t)

‖T′(t)‖ = 〈− cos t,− sin t, 0〉;

B(t) = T(t)×N(t) =

∣

∣

∣

∣

∣

∣

i j k

− 1√
2
sin t 1√

2
cos t 1√

2

− cos t − sin t 0

∣

∣

∣

∣

∣

∣

=

〈 1√
2
sin t,− 1√

2
cos t, 1√

2
〉.
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Calculus of Vector-Valued Functions Curvature

Normal Plane and Osculating Plane

Let r(t) be a vector function determining a space curve C.
The normal plane of C at a point P is the plane determined by the
normal N and the binormal B vectors of C at P .
The osculating (kissing) plane of C at P is the plane determined by
the tangent T and normal N vectors of C at P .
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Calculus of Vector-Valued Functions Curvature

Remarks on Normal Plane and Osculating Plane

Curve C with vector r(t);

Normal plane at a point P determined by the normal N and the
binormal B;
Osculating plane at P determined by the tangent T and normal N.

Since the normal plane at t is determined by the normal N(t) and the
binormal B(t), the tangent vector r ′(t) is a normal vector to the
normal plane;

Similarly, since the osculating plane at t is determined by the tangent
T(t) and normal N(t), the binormal vector B(t) is a normal vector to
the osculating plane.
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Calculus of Vector-Valued Functions Curvature

Example

Determine the normal and the osculating plane of
x = 2 sin 3t, y = t, z = 2cos 3t at the point (0, π,−2).
We are focusing at the point with t = π;

We have r(t) = 〈2 sin 3t, t, 2 cos 3t〉;
r ′(t) = 〈6 cos 3t, 1,−6 sin3t〉; So r ′(π) = 〈−6, 1, 0〉;
T(t) = r ′(t)

‖r ′(t)‖ = 〈 6√
37

cos 3t, 1√
37
,− 6√

37
sin 3t〉;

So T(π) = 〈− 6√
37
, 1√

37
, 0〉;

Now we get T′(t) = 〈− 18√
37

sin 3t, 0,− 18√
37

cos 3t〉;
So N(t) = T′(t)

‖T′(t)‖ = 〈− sin 3t, 0,− cos 3t〉;
Hence N(π) = 〈0, 0, 1〉;

Finally, B(π) = T(π)×N(π) =

∣

∣

∣

∣

∣

∣

i j k

− 6√
37

1√
37

0

0 0 1

∣

∣

∣

∣

∣

∣

= 〈 1√
37
, 6√

37
, 0〉;

The normal plane is −6x + (y − π) = 0;

The osculating plane is 1√
37
x + 6√

37
(y − π) = 0, or x + 6(y − π) = 0.
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Calculus of Vector-Valued Functions Motion in Three-Space

Subsection 5

Motion in Three-Space
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Calculus of Vector-Valued Functions Motion in Three-Space

Velocity, Speed and Acceleration

Assume that r(t) is the position vector at time t of a particle moving
through space.
Then, the velocity vector v(t) at time t is

v(t) = r ′(t).

The speed of the particle is the magnitude or length of the velocity
vector, i.e., v(t) = ‖v(t)‖ = ‖r ′(t)‖.
Finally, its acceleration is the derivative of the velocity

a(t) = v ′(t) = r ′′(t).

Example: If the position vector of a particle is r(t) = t3i + t2j , what
are its velocity, speed and acceleration at time t = 1?
We compute the following:

v(t) = 3t2i + 2tj , ‖v(t)‖ =
√
9t4 + 4t2, a(t) = v ′(t) = 6t i + 2j ,

v(1) = 3i + 2j , ‖v(1)‖ =
√
13, a(1) = 6i + 2j .
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Calculus of Vector-Valued Functions Motion in Three-Space

Examples on Velocity, Speed and Acceleration

Example: Find the velocity, acceleration and speed of a particle whose
position vector is r(t) = 〈t2, et , tet〉.

v(t) = r ′(t) = 〈2t, et , et + tet〉;
‖v(t)‖ =

√

4t2 + e2t + (et + tet)2 =
√

4t2 + (t2 + 2t + 2)e2t ;
a(t) = v ′(t) = 〈2, et , 2et + tet〉.

Example: Find the velocity and the position vector at time t of a
particle, whose position vector at time 0 is r(0) = 〈1, 0, 0〉, whose
velocity at time 0 is v(0) = i − j + k and whose acceleration is
a(t) = 4t i + 6tj + k .

v(t) =

∫

a(t)dt = 2t2i + 3t2j + tk + c. But v(0) = c = i − j + k ,

whence v(t) = (2t2 + 1)i + (3t2 − 1)j + (t + 1)k .

r(t) =

∫

v(t)dt = (23 t
3 + t)i + (t3 − t)j + (12t

2 + t)k + c; As before,

r(0) = c = i , whence r(t) = (23 t
3 + t + 1)i + (t3 − t)j + (12 t

2 + t)k.
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Calculus of Vector-Valued Functions Motion in Three-Space

Newton’s Second Law of Motion

If at time t a force F (t) acts on an object of mass m producing an
acceleration a(t), then

F (t) = ma(t).

Example: The position vector of an object with mass m moving in a
circular path with constant angular speed ω is

r(t) = a cosωti + a sinωtj .

What is the force acting on the object and what is its direction?
We have

v(t) = r ′(t) = − aω sinωt i + aω cosωtj
a(t) = v ′(t) = − aω2 cosωti − aω2 sinωtj
F (t) = ma(t) = −maω2 cosωti −maω2 sinωtj

Therefore ‖F (t)‖ = maω2 and F (t) = −mω2r(t), i.e., F (t) is
opposite to the position (radius) vector.
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Calculus of Vector-Valued Functions Motion in Three-Space

Position Vector of a Projectile

A projectile is fired from initial position r0 = 0, with angle of
elevation α and initial velocity v0. If the only external force is due to
gravity g , what is the position function r (t) of the projectile?

We have
a(t) = − g j ;

v(t) =

∫

a(t)dt = − gtj + v0;

r(t) =

∫

v(t)dt = − 1
2gt

2j + tv0 + r0

= −1
2gt

2j + tv0.

Since v0 = v0 cosαi + v0 sinαj , the above vector equation can be
rewritten as

r (t) = v0t cosαi + (v0t sinα− 1

2
gt2)j .
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Calculus of Vector-Valued Functions Motion in Three-Space

Tangential and Normal Components of Acceleration

Suppose a traveling particle has position vector r(t), velocity vector
v(t) = r ′(t) and speed v = ‖v(t)‖.
Then the unit tangent to its position is T(t) =

r ′(t)
‖r ′(t)‖ =

v(t)

v(t)
,

showing that v(t) = v(t)T(t).

Recall the formula for the curvature κ(t) =
‖T′(t)‖
‖r ′(t)‖ =

‖T′(t)‖
v(t)

,

which gives ‖T′(t)‖ = κ(t)v(t).

Recall, also, the formula for the unit normal N(t) =
T′(t)

‖T′(t)‖ , which

gives T′(t) = ‖T′(t)‖N(t) = κ(t)v(t)N(t).

Differentiating the velocity vector and putting these formulas together
gives the resolution of the acceleration into a tangential and a normal
component to the motion

a(t) = v ′(t)T(t) + v(t)T′(t) = v ′(t)T(t) + κ(t)v2(t)N(t).
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Calculus of Vector-Valued Functions Motion in Three-Space

Obtain Expressions for the Components in Terms of r (t)

From the previous slide a(t) = aT (t)T(t) + aN(t)N(t), where
aT (t) = v ′(t);
aN(t) = κ(t)v2(t).

Now note that

aT (t) = v ′(t) =
v(t)v ′(t)

v(t)

=
v(t)v ′(t)T(t) · T(t) + κ(t)v3(t)T(t) ·N(t)

v(t)

=
v(t)T(t) · (v ′(t)T(t) + κ(t)v2(t)N(t))

v(t)

=
v(t) · a(t)

v(t)
=

r ′(t) · r ′′(t)
‖r ′(t)‖ .

Also, we get

aN(t) = κ(t)v2(t) =
‖r ′(t)× r ′′(t)‖

‖r ′(t)‖3 ‖r ′(t)‖2 = ‖r ′(t)× r ′′(t)‖
‖r ′(t)‖ .
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Calculus of Vector-Valued Functions Motion in Three-Space

Computing the Acceleration Components

Suppose r(t) = 〈t2, t2, t3〉.
Then we have

r ′(t) = 〈2t, 2t, 3t2〉;
‖r ′(t)‖ =

√
8t2 + 9t4;

r ′′(t) = 〈2, 2, 6t〉;
r ′(t) · r ′′(t) = 〈2t, 2t, 3t2〉 · 〈2, 2, 6t〉 = 8t + 18t3;

r ′(t)× r ′′(t) =

∣

∣

∣

∣

∣

∣

i j k

2t 2t 3t2

2 2 6t

∣

∣

∣

∣

∣

∣

= 〈6t2,−6t2, 0〉;

‖r ′(t)× r ′′(t)‖ = 6
√
2t2.

Therefore,
aT (t) =

r ′(t) · r ′′(t)
‖r ′(t)‖ =

8t + 18t3√
8t2 + 9t4

;

aN(t) =
‖r ′(t)× r ′′(t)‖

‖r ′(t)‖ =
6
√
2t2√

8t2 + 9t4
.
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