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Calculus of Vector-Valued Functions  Vector-Valued Functions

Subsection 1

Vector-Valued Functions
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Vector Functions

@ A vector-valued function or vector function

r(t) = (x(2), y(2), 2(8)) = x(2)i + y(t)j + 2(t)k

has domain a set of real numbers D and range a set of vectors.
z
r(ty) Path of

particle
r(13)

\/

(D) = (x(1), (1), 2(D)

X

@ t is called the parameter.
@ The functions x(t), y(t) and z(t) giving the components of r(t) are
called the component or coordinate functions of r(t).
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Example of a Vector Function

@ For the vector function r(t) = (t3,In(3 — t),/t), the component
functions are

x(t) =13, y(t)=In(3—1t), z(t)=+t.

r(t) = (t3,In (3 — t),/t) has domain [0, 3).
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Domains of Vector Functions

@ Find the domains of the following vector functions:

() r(e) = (2, ' 4= T8); (B) r(s) = (V5. %, 3).

(a) All three component functions have domain R.
Therefore r(t) has domain D = R.
(b) x(s) has domain [0, c0).
y(s) has domain R.
z(s) has domain R — {0}.
Therefore r(s) has domain D = (0, 00).

George Voutsadakis (LSSU) Calculus Il January 2016 6/ 64



Calculus of Vector-Valued Functions  Vector-Valued Functions

Vector Functions and Space Curves

@ A vector function r(t) = (x(t), y(t),z(t)) may also be viewed as
providing parametric equations

x=x(t), y=y(t), z=z(t)

with parameter t, defining a parametric curve in space.

@ If this point of view is taken, then the vector r(t) is the position
vector of a particle moving on the space curve defined by the system
of the corresponding parametric equations.

Example: What is the curve defined by the
vector function r(t) = (1+t,2+5t, —1+6t)7

This is the equation of the straight line pass- > v
ing through the point (1,2, —1) and having /
direction vector v = (1,5, 6). /,,
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The Helix r(t) = (cost,sint,t)

@ The curve r(t) = (cos t,sin t, t) represents the orbit of a particle
moving counterclockwise on the surface of a cylinder with base the
unit circle.

This is shown in the following figure,
drawn from t = 0 to t = 4m. This curve
is called a helix.
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Vector Equations of Line Segments

@ Find a vector equation and parametric equations for the line segment
joining the point P = (1,3, —2) to the point Q = (2, -1, 3).

@ The two points have position vectors ro = (1,3, —2) and
ri = (2,—1,3), respectively. Thus, the vector equation of the line
segment joining them is r = (1 — t)ro+tr;, 0 <t < 1.

5

e, r = (1—1t)(1,3,-2) + t(2,-1,3)
= (1+t,3—4t,—2+ 5t). .
The corresponding parametric equations \

are ) ;
x=1+t,y=3—4t,z= -2+ bt,
for0<t<1.
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Parametrizing a Curve (Using a Variable for t)

@ Parametrize the curve C obtained as the intersection of the surfaces
x> —y?=z—1and x> + y?> =4.
Method 1: Solve the given equations for y and z in terms of x.
First, solve for y: x> + y2 =4 = y2 =4 — x> = y = +/4 — x2.
The equation x?> — y?2 = z — 1 can be written z = x> — y?> + 1. Thus,
we can substitute y? = 4 — x? to solve for z:
z=x>—y?+1=x>—-(4—x*)+1=2x*-3.
Now use t = x as the parameter. Then y = ++/4 — t2, z = 2> — 3.
The two signs of the square root correspond to :
the two halves of the curve where y > 0 and ¢
y < 0. Therefore, we need two vector-valued
functions:
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Parametrizing a Curve (Using Trigonometry)

@ Parametrize the curve C obtained as the intersection of the surfaces
x> —y?’=z—1and x> +y?> =4
Method 2: Note that x*> + y?> = 4 has a
trigonometric parametrization:

x=2cost, y=2sint, 0 <t <27. \"/a\
The equation x> — y? = z — 1 gives us z = !
x?2—y?2+41 =4cos? t—4sin® t+1 = 4 cos 2t + "
1. Thus, we may parametrize the entire curve Y

by a single vector-valued function:

r(t) = (2cost,2sin t,4 cos 2t + 1),
0<t<2m.
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Parametrizing a Curve

@ Find a vector function that represents the curve of intersection of the
cylinder x2 + y? =1 and the plane y + z = 2.
If we set x = cost, y =sint, then, automatically, x2 4+ y2 = 1. Also,
since y + z = 2, we get that z =2 — y = 2 —sin t. Therefore the
required vector function is

r(t) =costi+sintj+ (2 —sint)k, 0 <t < 2r.
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Additional Example

@ Parametrize the circle of radius 3 with center P = (2,6, 8) located in
a plane parallel to the xy-plane.

z

A circle of radius R in the xy-plane cen- ) @.6,8)
tered at the origin has parametrization
(Rcost,Rsint). We place it in 3 di- ‘

mensions (Rcost, Rsint,0). The cir- X ::
cle of radius 3 centered at (0,0,0) has ) <
parametrization (3cost,3sint,0). Ny

We move the center to P = (2,6, 8) by translating by the vector
(2,6,8):

r(t) = (2,6,8) + (3cos t,3sint,0) = (2+ 3cost,6 + 3sint,8).
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Subsection 2

Calculus of Vector-Valued Functions
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Limits of Vector Functions

@ A vector valued function r(t) approaches the limit u as t approaches
to if
lim||r(t) — u|| = 0.
t—1tp

In this case, we write lim r(t) = u.
t—tp

@ The limit of a vector function r(t) = (x(t), y(t),z(t)) as t — ty is
iven b
¢ ’ lim r(t) = (Ilm x(t), limy(t), lim z(t)).

t—to t—ty t—to t—tp
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Example
. . . 3+ .. sint
@ What is the limit I|mor(t), if r(t)=(1+t>)i+te j+ Tk?
t—
Since -
im(1+ ) =1, limte =0, lim>1 =1,
t—0 t—0 t—0 t
we have that limr(t) =i + k.
t—0
—) P4
/ ///
S 7
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Continuity of Vector Functions

@ A vector function r(t) = (x(t),y(t),z(t)) is continuous at t = ty if

tlgrg()r(t) = r(to).
@ Since tILr?Or(t) = (tIergox(t), tl;rrgoy(t), tILr?Oz(t)) and

r(to) = (x(to), y(t0), z(to)), we have that r(t) = (x(t), y(t),z(t)) is
continuous at t = ty if and only if

lim x(t) = x(to),  lim y(t) = y(to), Jim z(t) = z(to).

This shows that r(t) = (x(t), y(t), z(t)) is continuous at t = ty if
and only if all three component functions x(t), y(t) and z(t) are
continuous at t = tg.
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Derivatives of Vector Functions

@ The derivative r'(t) of a vector function r(t) is defined similarly to
the derivative of ordinary functions:

9 _ ) = fjm TEER = r(8)
dt h—0 h

@ The geometric interpretation of r'(tp) is also similar: It is a vector
tangent to the curve at the point determined by r(tp).

@ For this reason, r'(ty) is called the tangent vector to the curve at
the point with position vector r(ty), provided, of course, that r'(tp)
exists and r'(ty) # 0.

@ The tangent line to the curve at t = ty goes through r(ty) and has
direction r'(tp). Thus, it has equation £(t) = r(to) + tr'(to).

o Finally, the unit tangent vector T(t) is defined by

)
T =1r@r
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Calculating the Derivative of a Vector Function

Coordinate-Wise Calculation of r(t)
If r(t) = (x(t),y(t),z(t)), and x,y and z are differentiable, then

r'(t) = (X (1),y'(1), 2 (1))

Example: Find the derivative of r(t) = (1 + t3)i + te~%j + sin 2tk
and the unit tangent vector at the point where t = 0.
We have

rit) = (L+t3i+(te )+ (sin2t)k
= 3t%i+ (et —te t)j + 2cos2tk.

Therefore, at t = 0, r/(0) =j + 2k and ||/(0)|| = /5.

/ 2k 1 2
This shows that T(0) = ”:,8;” _J T/E_) = E_, + Ek_
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More Derivatives of Vector Functions

@ Calculate:
(a) v/(t) if v(t) = (t?, 3 sint);
(b) u'(5) if u(t) = (cost,—1,e*);
(c) w (3)f w(t) = (Int, t, t3).
() We have v/(t) = (£2)', (83 (sint)) =
(b) We have u'(t) = ((cos t)’,(—1)', ( e?t)) =
Therefore, u'(5) = (—sin 5,0, 2e? 7‘/2)>
(c) We have w'(t) = ((Int), (t),(¢?)) = (},1,
Therefore, w/(3) = <% 6).

George Voutsadakis (LSSU)

Calculus of Vector-Valued Functions

(2t,3t2, cos t).

(—sint,0,2e%).
(~1,0,2¢7).

2t).

January 2016
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Calculating Tangent Vectors

@ Find the position vector r(1) and the tangent vector r’(1) for the
curve r(t) = \ti + (2 — t)j.
We have
r(1) =V1i+(2—-1)j=i+j.

Moreover,

P(t) = (VEYi+ (2 t)j = 7: J
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Calculating Tangent Lines

@ Find parametric equations for the tangent line to the helix with
parametric equations
x=2cost, y=sint, z=1t
at the point (0,1, 7).
The given point is the point corresponding to the position vector
r(3) =(0,1,%). The tangent vector is r'(t) = (=2sint,cost, 1),
whence at the same point the tangent vector is r'(3) = (=2,0,1).
The line passing through r(%) with direction r'(%) is given by the
vector equation
£t) = r(E)+tr(2) = (0,1,2) + £(—2,0,1) = (=2t,1, = + t).
2 2 2 2
Its parametric equations are

x= —2t, y =1, z:g—i—t.
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Second Derivatives and Smooth Curves

@ The second derivative of the vector function r(t) is the first
derivative of its first derivative r”(t) = (r'(t))’.
@ The curve r(t) is called smooth on an interval / if
o r/(t) is continuous;
o r'(t) # 0 except possibly at the endpoints of /.

@ r(t) is piece-wise smooth if it is made up of a finite number of
smooth pieces.

Example: The semicubical parabola Lot
r(t) = (1 + t3,t) is not smooth. !
Why?
Is it piece-wise smooth? 04}
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Some Rules for Computing Derivatives

Assume that w, v are differentiable vector functions, c is a scalar and £ is
a real-valued function. Then

Q (u(t)+v(t)) =d'(t)+ v/ (t) (Sum Rule);

Q (cu(t)) = cd'(t) (Constant Factor Rule);

f(t)u(t)) = f'(t)u(t) + f(t)u’(t) (Scalar Product Rule);
(t)-v(t)) =d'(t) v(t)+ u(t) v/(t) (Dot Product Rule);

u(t) x v(t)) = u'(t) x v(t)+u(t) x v/(t) (Cross Product Rule);
u(f(t)) = f’(t)u (f(t)) (Chain Rule).

Example: Let r(t) = (t2,5t,1) and f(t) = e3t. Compute:

(@) (F(t)r(t)) = f(t)r(t) + F(t)r'(t) = 338 (¢, 5¢,1) + e3%(2¢,5,0) =

((3t% + 2t)e3t, (15t + 5)e3t, 3e3%).
(b) [r(f(2))]) = f/(t)r'(f(t)) = 3e3(2(e%),5,0) = (6e°, 153, 0).
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Proving a Formula

@ Prove the formula

d / - 1"
E(r(t) x r'(t)) = r(t) x r'(t).

L(r(t) x r(t)) = Lr(t)x r(t)+r(t) x Zr'(t)
= r(t) x r(t)+r(t) x r'(t)
= 0+ r(t) xr'(t)
= r(t) x r'(t).
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Proving a General Property

@ Example: Suppose that ||r(t)|| = ¢, a constant, for all t. Show that
r'(t) is orthogonal to r(t), for all t.

We have
(r(t) - r(t)) = rF(t) - r(t) +r(t) - r(t) = 2r(t) - F(t).
Therefore, we get

(r(t) - (1))

r(t)-r'(t) = %
g(llf(t)||2)'
2
0

(c?Y

Therefore, r'(t) - r(t) = 0, showing that r'(t) L r(t).
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Definite Integrals of Vector Functions

@ We define the definite integral of a continuous vector function
r(t) = x(t)i +y(t)j + z(t)k by

b b b b
/ r(t)dt = (/ x(t)dt) i+ (/ y(t)dt>j+ (/ z(t)dt) k.
o If R(t) is an antiderivative of r(t), i.e., if R'(t) = r(t), then

/br(t)dt = R(t)|° = R(b) — R(a).

We write [ r(t)dt = R(t) + ¢, where c is a constant vector, in this
case.
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Example |

@ Compute the following:
(a) [(1,t,sint)dt;
(b) [y (1, t,sint)dt.
(a)
[ (1, t;sint)ydt = ([ dt, [ tdt, [ sintdt)
= (t+c1,%t2+c2,—cost+C3>
= (t,3t%,—cost) +c.
(b) )
Jo (Ltsintydt = (t,3t% —cost)|]
= (m, %7@, —cos ) — (0,0, — cos 0)
<7T, §7T2,2>-
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Example Il

@ Suppose r(t) = 2cos ti + sintj + 2tk. Calculate
(a) Jr()dt;
(b) [7/% r(t)dt.

(@)
/r(t)dt = 2sin ti — cos tj + t°k + c.

(b)

w/2
/ P(f)dt = (2sinti— costi + t2k) [1/
0

= (2sin % —2sin0)i — (cos 5 — cos0)j
+((5)? - 0%k
. . 2
= 2i+j+ Tk
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Finding a Position Vector

o The path of a particle satisfies 2F = (1 — 6sin 3t, Tt). Find the
particle’s location at t = 4 if r(O) (4,1).
The general solution is obtained by integration:

1 1
r(t) = /(16sin3t,gt)dt (t+2cos3t, 7ot 2 +e.

The initial condition r(0) = (4,1) gives us
r(0)=(2,0)+c={4,1) = ¢c=(2,1).
This now yields

1 1
r(t):(t+2cos3t,1—0t2>+(2,1> (t +2cos 3t + 2, 1—Ot +1).

The particle's position at t =4 is
16
10
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Subsection 3

Arc Length and Speed
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Arc Length

@ Suppose that r(t) = (x(t),y(t), z(t)). Then, the length of the arc
traversed as t increases from a to b is given by

L = /\/x’ )2 + Z/(t)3dt

2 dx\? dy 2 dz
- [VE (a) ()
@ Recall that r/(t) —( '(t) y'(t),Z'(t)). Therefore,
IF(2)]| = /x'(t) '(t)2 + Z/(t)2. This shows that

b
L= [ I olar
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Computing Arc Length

@ Compute the length of the arc of the circular helix with vector
equation r(t) = cos ti + sin tj + tk from (1,0,0) to (1,0, 27).
Note that:

@ (1,0,0) corresponds to t = 0;
o (1,0,27) corresponds to t = 2.

Moreover, x'(t) = —sint, y'(t) = cost and z'(t) = 1. Therefore,
2w
L= V(= sint)? + cos? t + 1dt
0
2T
= / V2dt
0

- Vvl
= 2V2nr.
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Arc Length Function and Speed

@ We define the arc length function as the distance traveled during
the interval [a, t]:

s(t) = / () d.

@ By definition, speed is the rate of change of distance traveled with
respect to time t:

. ds d t / FTC /
Speed at time £ = % — E/a 1P ()1 du "= [|F ()]
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Calculating Speed

@ Find the speed at time t = 2 s of a particle whose position vector is
r(t) = t3i — e'j + 4tk.
The velocity vector is

v(t) = r'(t) = 3t% — e'j + 4k.

At t =2, v(2) = 12i — €% + 4k.

Therefore, the particle's speed is

v(2) = V()] = /122 + (~e2)? + 42 = V160 + &*.
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Switching Between Parametrizations

@ Parametrizations are not unique.

Example: By elimination of parameters, it is easy to see that both

ri(t) = (t, t?) and ro(s) = (s3, s®) parametrize the parabola y = x2.

In this case ra(s) is obtained by substituting t = s> in ry(t).
@ In general, we obtain a new parametrization by making a substitution
t = g(s).

i.e., by replacing r(t) with ri(s) = r(g(s)). If t = g(s) increases
from a to b as s varies from ¢ to d, then the path r(t) fora<t <b
is also parametrized by ri(s) for c <s < d.
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Example

@ Parametrize the path r(t) = (t?,sint,t), for 3 < t <9, using the
parameter s, where t = g(s) = e°.
Substituting t = €® in r(t), we obtain the parametrization

ri(s) = r(g(s)) = (e*,sine*, e°).

Because s = In t, the parameter t varies from 3 to 9 as s varies from
In3 to In9. Therefore, the path is parametrized by

ri(s), for In3<s<1In9.
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Arc Length Parametrization

@ One way of parametrizing a path is to choose a starting point and
“walk along the path” at unit speed.

Such a parametrization is called an arc length parametrization and
is defined by the property that the speed has constant value 1:

I ()| =1, for all t.
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Process for Arc Length Parametrization

@ To find an arc length parametrization:
o Start with any parametrization r( ) such that r’'(t) # 0, for all t;
o Form the arc length integral s(t) = [ [|r'(u)] du;
o Notice that r'(t) # 0 implies that s(t) is an increasing function and
therefore has an inverse t = g(s).
@ The parametrization
r(s) = r(g(s))

is an arc length parametrization.
@ We show why:
@ By the formula for the derivative of an inverse, we get

(8) = g = o
EV = S.s) ~ PG

o Now we get, using the Chain Rule,

Ir(s)l| =" llg’(s)r' (g (s)) = mllr’(g@))ll =1
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Finding an Arc Parametrization

@ Find the arc length parametrization of the helix
r(t) = (cos4t,sin4t, 3t).

First, we evaluate the arc length function

IF(t)| = [(—4sin4t,4cos4t,3)]
= \/16sin24t + 16cos2 4t + 32 = 5;
s(t) = JolIF(0)lde = [y 5dt = 5t.

Then we observe that the inverse of s(t) =5tis t = g, i.e., g(s) = .

Thus, an arc length parametrization is

n(s) = rig(s) =r (3) = <cosf,si 4s 35>.

M=y —
5 5 5°5
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Subsection 4

Curvature
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Unit Tangent Vector

o Consider a path with parametrization r(t) = (x(t), y(t), z(t)), such
that r/(t) # 0, for all t in the domain of r(t).

A parametrization with this property is called regular.

@ At every point P along the path there is a unit tangent vector
T = Tp that points in the direction of motion of the parametrization

r'(t)
lr (&)1

Unit Tangent Vector = T(t) =
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Computing a Unit Tangent Vector

o If r(t) = (t, t?,t3), compute the unit tangent vector at P = (1,1,1).
We have r'(t) = (1,2t,3t?).
Note that P is the terminal point of r(1).
Thus, the unit tangent vector at P = (1,1,1) is

_ ra (1,23
Tr = [rOr = 1@237
_ 123 <L 2 i>
e = \vie v Vi
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Definition of Curvature

@ Imagine walking along a path and observing how the unit tangent
vector T changes direction.

A change in T indicates that the path Curvature is large

is bending, and the more rapidly T where the unit tangent
changes direction rapidly —

changes, the more the path bends.

Thus, H%H would seem to be a good

measure of curvature. However, this

depends on how fast you walk.
To counter this, we assume an arc length parametrization.

@ Let r(s) be an arc length parametrization and T the unit tangent
vector. The curvature at r(s) is the quantity

dT
ds

K(s) = ‘
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Calculus of Vector-Valued Functions Curvature

A Line Has Zero Curvature

@ Compute the curvature at each point on the line
r(t) = (x0, Yo, 20) + tu, where |ju]| = 1.
Since u is a unit vector, r(t) is an arc length parametrization:
r'(t) = u and, thus, ||F'(t)|| = ||u|| = 1.

Thus, we have T(t) = it = r/(t). Hence, T'(t) = r"(t) = 0
(because r'(t) = u is constant). As expected, the curvature is zero at

all points on a line:
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Calculus of Vector-Valued Functions Curvature

The Curvature of a Circle of Radius R is 1/R

@ Compute the curvature of a circle of radius R.
Assume the circle is centered at the origin r(0) = (Rcos6, Rsin6).
We find an arc length parametrization:

6 6
s@) = [ |Ir'(u)]du= / Rdu = R0.
0 0

Thus, s = RO, and the inverse function is § = g(s) = &. Thus, an arc
length parametrization is

ri(s)=r(g(s))=r (%) <Rcos = R sin §>

The unit tangent vector and its derivative are

T(s) ddrsl = ds(Rcos &, Rsin %) = (—sin %, cos ). Therefore,

= — L(cos &,sin £). By definition of curvature,

ds_ R
= [T Ll o)) - &

ds
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Calculus of Vector-Valued Functions Curvature

Derivative of the Unit Tangent Vector and Curvature

@ Suppose that T(s) = T(s(t)).

So the derivatives of T with respect to t and s are related by the

Chain Rule:
dT  dsdT

T(t) = —
(t)= dt  dt ds

@ Now note that
o Z=Ir®l=v(t);
° || |l = (1)

@ So we get:

IT' ()] = v(t)s(t).
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Calculus of Vector-Valued Functions Curvature

Formula for Curvature

@ If r(t) is a regular parametrization, then the curvature at r(t) is
1 (£) x (2]
0= eer
Since v(t) = ||F'(t)||, we have r'(t) = v(t)T(t). By the Product Rule,
r(t) = V/()T(t) + v(£)T'(¢).
Now using the fact that T(t) x T(t) = 0, we get:
) xr’(t) = v(t)T(t) x (V(£)T(t) + v(t)T'(t))

Now we get = V(t)2T(t) X T,(t).

I (£) x r(8)]] = V(t)zHT(t)IH\T’(t)HSing = v(t)?[T'(t)ll.
Finally, we obtain

Ir'(2) (&) = V(I T (1)l = v(2)’ k() = [Ir' (£)]Ps(2).
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Calculus of Vector-Valued Functions Curvature

Twisted Cubic Curve

@ Calculate the curvature (t) of the twisted cubic r(t) = (t, 2, t3).

r'(t) = (1,2t,3t?)
F(t) = (0,2,6t)
i j k
r'(t) x r'(t) = 1 2t 3t2 | = (6t%,—6t,2).
0 2 6ot

Therefore, we get

r'(e)xr’(t
we) = Ed

(6t2)2+(—6t)2422
V(12+(2t)2+(3t2)2)3
V/36t44+36t%+4
V(1+4r208)
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Calculus of Vector-Valued Functions Curvature

Curvature of a Graph in the Plane

@ The curvature at the point (x, f(x)) on the graph of y = f(x) is
equal to .

- el

A+ (72
The curve y = f(x) has parametrization r(x) = (x, f(x)). Therefore,
r'(x) = (1, f'(x)) and r’(x) = (0, f"(x)). To apply the formulas for
r(x), we treat r'(x) and r”(x) as vectors in R® with z-component
equal to zero. Then

i j  k
rx)xr(x)=11 f(x) 0|=f"(x)k.
0 f(x) 0

Now we get

K(x) = I (x) x (Il _ VI (x)2 O] |
PGP C+POPP @+ PP
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Calculus of Vector-Valued Functions Curvature

Computing the Curvature of a Graph in the Plane

@ Compute the curvature of f(x) = x> —3x> + 4 at x =0,1,2.

We have
f'(x) = 3x®—6x=3x(x—2);
f"(x) = 6x—6.

So we get

() [6x — 6]

)= T PR T @ G- 2

We obtain the following values:

H(O):§:6, 0

6

George Voutsadakis (LSSU) Calculus 111 January 2016 51 / 64



Calculus of Vector-Valued Functions Curvature

Unit Normal and Binormal Vectors

@ Given a curve r(t), the unit normal N(t) is defined by
T'(t)
N(t) = ;
()l

Note that T'(t) = || T'(¢)||N(t) = v(t)x(t)N(t).
@ The binormal is defined by B(t) = T(t) x N(t);

2 Ti)

Tit)
Bit,)
ey : £ B(t;)
BIty) Nt g

N[t1_|

.ﬁ\P

Nig Ty

Bit)
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Calculus of Vector-Valued Functions Curvature

Finding the Unit Normal and Binormal Vectors

T'(t)
@l

@ Curve: r(t); Unit Normal N(t)
Binormal: B(t) = T(t) x N(t).
Example: Find the unit normal and the binormal to the curve
r(t) = cos ti + sin tj + tk.

e r'(t) = <f sint,cost, 1) and ||r'(t)]| = V2;

r(t
e T(t) = v E;” = (- \[smt,\[cost,f>
° T(t) = <(f) ,—sint,0) and [ T(t)]| = %;
o N(t) = el = (—cost,—sint,0);
i J k
o B(t)=T(t) x N(t) = | —zsint Jscost = | =
—cost —sint 0

1
(\[smt fcost,f>
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Calculus of Vector-Valued Functions Curvature

Normal Plane and Osculating Plane

@ Let r(t) be a vector function determining a space curve C.

@ The normal plane of C at a point P is the plane determined by the
normal N and the binormal B vectors of C at P.

@ The osculating (kissing) plane of C at P is the plane determined by
the tangent T and normal N vectors of C at P.

M

B(t)

..‘:NP
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Calculus of Vector-Valued Functions Curvature

Remarks on Normal Plane and Osculating Plane

@ Curve C with vector r(t);
@ Normal plane at a point P determined by the normal N and the
binormal B;
@ Osculating plane at P determined by the tangent T and normal N.
@ Since the normal plane at t is determined by the normal N(t) and the
binormal B(t), the tangent vector r'(t) is a normal vector to the
normal plane;

@ Similarly, since the osculating plane at t is determined by the tangent
T(t) and normal N(t), the binormal vector B(t) is a normal vector to
the osculating plane.
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Calculus of Vector-Valued Functions Curvature

Example

@ Determine the normal and the osculating plane of
x =2sin3t,y = t,z = 2cos 3t at the point (0,7, —2).
We are focusing at the point with t = 7;
o We have r(t) = (2sin3t, t,2 cos 3t);
e r'(t) = (6cos3t,1, —65sin3t); So r'(w) = (—6,1,0);

o T(t) = |I£’Etgll = <\/63—7 cos 3t, —— = \/63—7sin3t>;
So T(r) = (— &, -L-,0)
o Now we get T'(t) = (— 187 sin3t,0, — ﬁcos3t)
So N(t) = ¥ f) = (—sin3t, 0, — cos 3t)
Hence N(m ):< 0,1);
i j k
o Finally, B(m) =T(m) x N(m) = | —% —= 0 =0
0 1

0
The normal plane is —6x + (y — 7)) = 0;
The osculating plane is \/%x + \/%(y —7m)=0,0r x+6(y —m)=0.
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Calculus of Vector-Valued Functions Motion in Three-Space

Subsection 5

Motion in Three-Space

George Voutsadakis (LSSU) Calculus 111 January 2016 57 / 64



Calculus of Vector-Valued Functions Motion in Three-Space

Velocity, Speed and Acceleration

@ Assume that r(t) is the position vector at time t of a particle moving
through space.
@ Then, the velocity vector v(t) at time t is

v(t) = r'(t).
@ The speed of the particle is the magnitude or length of the velocity
vector, i.e., v(t) = |lv(t)] = [|F'(t)]-
@ Finally, its acceleration is the derivative of the velocity

a(t) = v'(t) = r'(¢).
Example: If the position vector of a particle is r(t) = t3i + t2j, what
are its velocity, speed and acceleration at time t = 17
We compute the following:
v(t) = 3t%i +2tj, |lv(t)| = VOt* +4t2, a(t) = v/(t) = 6ti + 2j,
(1) =3i+2j,  [v(1)] = V3, a(1) = 6i + 2j.
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Calculus of Vector-Valued Functions Motion in Three-Space

Examples on Velocity, Speed and Acceleration

@ Example: Find the velocity, acceleration and speed of a particle whose
position vector is r(t) = (t2, ef, te?).
v(t) =r'(t) = (2t, et et + te');
t)|| = \/4t2 + €2t + (et + tet)? = /4t2 + (2 + 2t + 2)e?t;
a( ) =Vv/(t) = (2, €', 2e" + tet).

@ Example: Find the velocity and the position vector at time t of a
particle, whose position vector at time 0 is r(0) = (1,0, 0), whose
velocity at time 0 is v(0) = i — j + k and whose acceleration is
a(t) = 4ti + 6tj + k.

v(t) = /a(t)dt — 262 4312 + th+c. But v(0) = c = i —j + k,
whence v(t) = (2t? +1)i + (3t? — 1)j + (t + 1)k.

r(t) = /v(t)dt = (383 +1t)i+ (2 —t)j+ (3t2+ t)k +c; As before,
r(0) = c =i, whence r(t) = (3t3+t+1)i + (3 — t)j + (3t2 + t)k.

George Voutsadakis (LSSU) Calculus Il January 2016 59 / 64



Calculus of Vector-Valued Functions Motion in Three-Space

Newton's Second Law of Motion

o If at time t a force F(t) acts on an object of mass m producing an

acceleration a(t), then
F(t) = ma(t).

Example: The position vector of an object with mass m moving in a
circular path with constant angular speed w is

r(t) = acoswti + asinwtj.

What is the force acting on the object and what is its direction?

We have
v(t) = r'(t) = — awsinwti + aw cos wtj
a(t) = v/(t) = — aw? coswti — aw? sinwtj
F(t) = ma(t) = — maw? coswti — maw? sin wtj

Therefore |F(t)|| = maw? and F(t) = — mw?r(t), i.e., F(t)is
opposite to the position (radius) vector.
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Calculus of Vector-Valued Functions Motion in Three-Space

Position Vector of a Projectile

@ A projectile is fired from initial position ro = 0, with angle of
elevation « and initial velocity vg. If the only external force is due to
gravity g, what is the position function r(t) of the projectile?

We have
a(t) = —gj;

v(t):/a(t)dt: _ gtj + vo:
r(t) = /v(t)dt = — 1gt’j + tvo +ro
= —1gt?j + tvo.

Since vo = vp cos ai + vy sin af, the above vector equation can be
rewritten as

. : 1 .
r(t) = wtcosai + (vtsina — Egt2)_[.
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Calculus of Vector-Valued Functions Motion in Three-Space

Tangential and Normal Components of Acceleration

@ Suppose a traveling particle has position vector r(t), velocity vector
v(t) = r'(t) and speed v = ||v(t)].

‘(t t
@ Then the unit tangent to its position is T(t) = r,( ) = M,
_ Il v(z)
showing that v(t) = v(t)T(t).
T'(¢ T'(¢
@ Recall the formula for the curvature k(t) = H /( ) = (Lt )”,
@l v(t)

which gives | T'(t)|| = s(t)v(t). T'(t)

, which
[T ()l

@ Recall, also, the formula for the unit normal N(t) =

gives T'(t) = || T/(¢)||N(t) = x(t)v(t)N(t).

o Differentiating the velocity vector and putting these formulas together
gives the resolution of the acceleration into a tangential and a normal
component to the motion

a(t) = V/(£)T(t) + v(t)T'(t) = V(1) T(t) + s(t)v(t)N(t).
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Calculus of Vector-Valued Functions Motion in Three-Space

Obtain Expressions for the Components in Terms of r(t)

@ From the previous slide a(t) = ar(t)T(t) + an(t)N(t), where
o ar(t) = vV/(t);
o an(t) = r(t)v3(t).

@ Now note that

ar(t) =Vv(t)= V(f/)(‘:)(t)
_ v()V()T(E) - T(t) + m(8)v3(E)T(t) - N(t)

v(t)
v(T(t) - (V(E)T(t) + m(t)v2(£)N(t))
t

v(t)
v(t)-a(t) _ r'(t)- r'(t)
() [TadCal i,

<

@ Also, we get

an(t) = r(t)v*(t) =

[r'(£) x r"(2)]]

[r'(2) > r"(2)|
I ()1 '

I ="
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Calculus of Vector-Valued Functions Motion in Three-Space

Computing the Acceleration Components

@ Suppose r(t) = (2,12, t3).
Then we have
r'(t) = (2t,2t,3t?);
Ir(e)ll = VBE +9%
r’(t) = (2,2,6t);
r'(t) - r'(t) = (2t,2t,3t%) - (2,2,6t) = 8t + 18t3;

i j ok
r'(t) x r''(t) = | 2t 2t 3t? | = (6t%, —6t2,0);
2 2 6t

I (e) x P()]] = 6v/2¢2.

Therefore, () r(t) 8t + 18t3

=Tl - VeET o
PO x @l 6vER
aN(t)— =

[lr'(2)l VBt2 + 9t
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