Calculus III

George Voutsadakis ${ }^{1}$

${ }^{1}$ Mathematics and Computer Science Lake Superior State University

LSSU Math 251

(1) Calculus of Vector-Valued Functions

- Vector-Valued Functions
- Calculus of Vector-Valued Functions
- Arc Length and Speed
- Curvature
- Motion in Three-Space

Subsection 1

Vector-Valued Functions

Vector Functions

- A vector-valued function or vector function

$$
\boldsymbol{r}(t)=\langle x(t), y(t), z(t)\rangle=x(t) \boldsymbol{i}+y(t) \boldsymbol{j}+z(t) \boldsymbol{k}
$$

has domain a set of real numbers \mathcal{D} and range a set of vectors.

- t is called the parameter.
- The functions $x(t), y(t)$ and $z(t)$ giving the components of $\boldsymbol{r}(t)$ are called the component or coordinate functions of $\boldsymbol{r}(t)$.

Example of a Vector Function

- For the vector function $\boldsymbol{r}(t)=\left\langle t^{3}, \ln (3-t), \sqrt{t}\right\rangle$, the component functions are

$$
x(t)=t^{3}, \quad y(t)=\ln (3-t), \quad z(t)=\sqrt{t}
$$

$$
\boldsymbol{r}(t)=\left\langle t^{3}, \ln (3-t), \sqrt{t}\right\rangle \text { has domain }[0,3)
$$

Domains of Vector Functions

- Find the domains of the following vector functions:

$$
\text { (a) } \boldsymbol{r}(t)=\left\langle t^{2}, e^{t}, 4-7 t\right\rangle ; \quad \text { (b) } \boldsymbol{r}(s)=\left\langle\sqrt{s}, e^{s}, \frac{1}{s}\right\rangle
$$

(a) All three component functions have domain \mathbb{R}.

Therefore $\boldsymbol{r}(t)$ has domain $\mathcal{D}=\mathbb{R}$.
(b) $x(s)$ has domain $[0, \infty)$.
$y(s)$ has domain \mathbb{R}.
$z(s)$ has domain $\mathbb{R}-\{0\}$.
Therefore $\boldsymbol{r}(s)$ has domain $\mathcal{D}=(0, \infty)$.

Vector Functions and Space Curves

- A vector function $\boldsymbol{r}(t)=\langle x(t), y(t), z(t)\rangle$ may also be viewed as providing parametric equations

$$
x=x(t), \quad y=y(t), \quad z=z(t)
$$

with parameter t, defining a parametric curve in space.

- If this point of view is taken, then the vector $\boldsymbol{r}(t)$ is the position vector of a particle moving on the space curve defined by the system of the corresponding parametric equations.
Example: What is the curve defined by the vector function $\boldsymbol{r}(t)=\langle 1+t, 2+5 t,-1+6 t\rangle$? This is the equation of the straight line passing through the point $(1,2,-1)$ and having direction vector $\mathbf{v}=\langle 1,5,6\rangle$.

The Helix $r(t)=\langle\cos t, \sin t, t\rangle$

- The curve $\boldsymbol{r}(t)=\langle\cos t, \sin t, t\rangle$ represents the orbit of a particle moving counterclockwise on the surface of a cylinder with base the unit circle.

This is shown in the following figure, drawn from $t=0$ to $t=4 \pi$. This curve is called a helix.

Vector Equations of Line Segments

- Find a vector equation and parametric equations for the line segment joining the point $P=(1,3,-2)$ to the point $Q=(2,-1,3)$.
- The two points have position vectors $\boldsymbol{r}_{0}=\langle 1,3,-2\rangle$ and $\boldsymbol{r}_{1}=\langle 2,-1,3\rangle$, respectively. Thus, the vector equation of the line segment joining them is $\boldsymbol{r}=(1-t) \boldsymbol{r}_{0}+t \boldsymbol{r}_{1}, 0 \leq t \leq 1$.

$$
\begin{aligned}
& \text { i.e., } \boldsymbol{r}=(1-t)\langle 1,3,-2\rangle+t\langle 2,-1,3\rangle \\
& =\langle 1+t, 3-4 t,-2+5 t\rangle \text {. }
\end{aligned}
$$

The corresponding parametric equations are

$$
x=1+t, y=3-4 t, z=-2+5 t
$$

for $0 \leq t \leq 1$.

Parametrizing a Curve (Using a Variable for t)

- Parametrize the curve \mathcal{C} obtained as the intersection of the surfaces $x^{2}-y^{2}=z-1$ and $x^{2}+y^{2}=4$.
Method 1: Solve the given equations for y and z in terms of x. First, solve for $y: x^{2}+y^{2}=4 \Rightarrow y^{2}=4-x^{2} \Rightarrow y= \pm \sqrt{4-x^{2}}$. The equation $x^{2}-y^{2}=z-1$ can be written $z=x^{2}-y^{2}+1$. Thus, we can substitute $y^{2}=4-x^{2}$ to solve for z :
$z=x^{2}-y^{2}+1=x^{2}-\left(4-x^{2}\right)+1=2 x^{2}-3$.
Now use $t=x$ as the parameter. Then $y= \pm \sqrt{4-t^{2}}, z=2 t^{2}-3$.
The two signs of the square root correspond to the two halves of the curve where $y>0$ and $y<0$. Therefore, we need two vector-valued functions:

$$
\begin{aligned}
& \boldsymbol{r}_{1}(t)=\left\langle t, \sqrt{4-t^{2}}, 2 t^{2}-3\right\rangle \\
& \boldsymbol{r}_{2}(t)=\left\langle t,-\sqrt{4-t^{2}}, 2 t^{2}-3\right\rangle \\
& -2 \leq t \leq 2
\end{aligned}
$$

Parametrizing a Curve (Using Trigonometry)

- Parametrize the curve \mathcal{C} obtained as the intersection of the surfaces $x^{2}-y^{2}=z-1$ and $x^{2}+y^{2}=4$.
Method 2: Note that $x^{2}+y^{2}=4$ has a trigonometric parametrization:

$$
x=2 \cos t, y=2 \sin t, 0 \leq t<2 \pi
$$

The equation $x^{2}-y^{2}=z-1$ gives us $z=$ $x^{2}-y^{2}+1=4 \cos ^{2} t-4 \sin ^{2} t+1=4 \cos 2 t+$ 1. Thus, we may parametrize the entire curve by a single vector-valued function:

$$
\begin{aligned}
\boldsymbol{r}(t)= & \langle 2 \cos t, 2 \sin t, 4 \cos 2 t+1\rangle \\
& 0 \leq t<2 \pi
\end{aligned}
$$

Parametrizing a Curve

- Find a vector function that represents the curve of intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $y+z=2$.
If we set $x=\cos t, y=\sin t$, then, automatically, $x^{2}+y^{2}=1$. Also, since $y+z=2$, we get that $z=2-y=2-\sin t$. Therefore the required vector function is

$$
\boldsymbol{r}(t)=\cos t \boldsymbol{i}+\sin t \boldsymbol{j}+(2-\sin t) \boldsymbol{k}, 0 \leq t \leq 2 \pi
$$

Additional Example

- Parametrize the circle of radius 3 with center $P=(2,6,8)$ located in a plane parallel to the $x y$-plane.
A circle of radius R in the $x y$-plane centered at the origin has parametrization $\langle R \cos t, R \sin t\rangle$. We place it in $3 \mathrm{di}-$ mensions $\langle R \cos t, R \sin t, 0\rangle$. The circle of radius 3 centered at $(0,0,0)$ has parametrization $\langle 3 \cos t, 3 \sin t, 0\rangle$.

We move the center to $P=(2,6,8)$ by translating by the vector $\langle 2,6,8\rangle$:

$$
\boldsymbol{r}(t)=\langle 2,6,8\rangle+\langle 3 \cos t, 3 \sin t, 0\rangle=\langle 2+3 \cos t, 6+3 \sin t, 8\rangle
$$

Subsection 2

Calculus of Vector-Valued Functions

Limits of Vector Functions

- A vector valued function $\boldsymbol{r}(t)$ approaches the limit \boldsymbol{u} as t approaches t_{0} if

$$
\lim _{t \rightarrow t_{0}}\|\boldsymbol{r}(t)-\boldsymbol{u}\|=0
$$

In this case, we write $\lim _{t \rightarrow t_{0}} \boldsymbol{r}(t)=\boldsymbol{u}$.

- The limit of a vector function $\boldsymbol{r}(t)=\langle x(t), y(t), z(t)\rangle$ as $t \rightarrow t_{0}$ is given by

$$
\lim _{t \rightarrow t_{0}} \boldsymbol{r}(t)=\left\langle\lim _{t \rightarrow t_{0}} x(t), \lim _{t \rightarrow t_{0}} y(t), \lim _{t \rightarrow t_{0}} z(t)\right\rangle .
$$

Example

- What is the limit $\lim _{t \rightarrow 0} \boldsymbol{r}(t)$, if $\boldsymbol{r}(t)=\left(1+t^{3}\right) \boldsymbol{i}+t e^{-t} \boldsymbol{j}+\frac{\sin t}{t} \boldsymbol{k}$?

Since

$$
\lim _{t \rightarrow 0}\left(1+t^{3}\right)=1, \quad \lim _{t \rightarrow 0} t e^{-t}=0, \quad \lim _{t \rightarrow 0} \frac{\sin t}{t}=1
$$

we have that $\lim _{t \rightarrow 0} \boldsymbol{r}(t)=\boldsymbol{i}+\boldsymbol{k}$.

Continuity of Vector Functions

- A vector function $\boldsymbol{r}(t)=\langle x(t), y(t), z(t)\rangle$ is continuous at $t=t_{0}$ if

$$
\lim _{t \rightarrow t_{0}} \boldsymbol{r}(t)=\boldsymbol{r}\left(t_{0}\right)
$$

- Since $\lim _{t \rightarrow t_{0}} \boldsymbol{r}(t)=\left\langle\lim _{t \rightarrow t_{0}} x(t), \lim _{t \rightarrow t_{0}} y(t), \lim _{t \rightarrow t_{0}} z(t)\right\rangle$ and $\boldsymbol{r}\left(t_{0}\right)=\left\langle x\left(t_{0}\right), y\left(t_{0}\right), z\left(t_{0}\right)\right\rangle$, we have that $\boldsymbol{r}(t)=\langle x(t), y(t), z(t)\rangle$ is continuous at $t=t_{0}$ if and only if

$$
\lim _{t \rightarrow t_{0}} x(t)=x\left(t_{0}\right), \quad \lim _{t \rightarrow t_{0}} y(t)=y\left(t_{0}\right), \quad \lim _{t \rightarrow t_{0}} z(t)=z\left(t_{0}\right) .
$$

This shows that $\boldsymbol{r}(t)=\langle x(t), y(t), z(t)\rangle$ is continuous at $t=t_{0}$ if and only if all three component functions $x(t), y(t)$ and $z(t)$ are continuous at $t=t_{0}$.

Derivatives of Vector Functions

- The derivative $\boldsymbol{r}^{\prime}(t)$ of a vector function $\boldsymbol{r}(t)$ is defined similarly to the derivative of ordinary functions:

$$
\frac{d \boldsymbol{r}}{d t}=\boldsymbol{r}^{\prime}(t)=\lim _{h \rightarrow 0} \frac{\boldsymbol{r}(t+h)-\boldsymbol{r}(t)}{h}
$$

- The geometric interpretation of $\boldsymbol{r}^{\prime}\left(t_{0}\right)$ is also similar: It is a vector tangent to the curve at the point determined by $\boldsymbol{r}\left(t_{0}\right)$.
- For this reason, $\boldsymbol{r}^{\prime}\left(t_{0}\right)$ is called the tangent vector to the curve at the point with position vector $\boldsymbol{r}\left(t_{0}\right)$, provided, of course, that $\boldsymbol{r}^{\prime}\left(t_{0}\right)$ exists and $\boldsymbol{r}^{\prime}\left(t_{0}\right) \neq \mathbf{0}$.
- The tangent line to the curve at $t=t_{0}$ goes through $\boldsymbol{r}\left(t_{0}\right)$ and has direction $\boldsymbol{r}^{\prime}\left(t_{0}\right)$. Thus, it has equation $\ell(t)=\boldsymbol{r}\left(t_{0}\right)+\boldsymbol{t r}^{\prime}\left(t_{0}\right)$.
- Finally, the unit tangent vector $\mathbf{T}(t)$ is defined by

$$
\mathbf{T}(t)=\frac{\boldsymbol{r}^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|}
$$

Calculating the Derivative of a Vector Function

Coordinate-Wise Calculation of $r(t)$

If $\boldsymbol{r}(t)=\langle x(t), y(t), z(t)\rangle$, and x, y and z are differentiable, then $\boldsymbol{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle$.

Example: Find the derivative of $\boldsymbol{r}(t)=\left(1+t^{3}\right) \boldsymbol{i}+t e^{-t} \boldsymbol{j}+\sin 2 t \boldsymbol{k}$ and the unit tangent vector at the point where $t=0$.
We have

$$
\begin{aligned}
\boldsymbol{r}^{\prime}(t) & =\left(1+t^{3}\right)^{\prime} \boldsymbol{i}+\left(t e^{-t}\right)^{\prime} \boldsymbol{j}+(\sin 2 t)^{\prime} \boldsymbol{k} \\
& =3 t^{2} \boldsymbol{i}+\left(e^{-t}-t e^{-t}\right) \boldsymbol{j}+2 \cos 2 t \boldsymbol{k}
\end{aligned}
$$

Therefore, at $t=0, \boldsymbol{r}^{\prime}(0)=\boldsymbol{j}+2 \boldsymbol{k}$ and $\left\|\boldsymbol{r}^{\prime}(0)\right\|=\sqrt{5}$.
This shows that $\mathbf{T}(0)=\frac{\boldsymbol{r}^{\prime}(0)}{\left\|\boldsymbol{r}^{\prime}(0)\right\|}=\frac{\boldsymbol{j}+2 \boldsymbol{k}}{\sqrt{5}}=\frac{1}{\sqrt{5}} \boldsymbol{j}+\frac{2}{\sqrt{5}} \boldsymbol{k}$.

More Derivatives of Vector Functions

- Calculate:
(a) $\boldsymbol{v}^{\prime}(t)$ if $\boldsymbol{v}(t)=\left\langle t^{2}, t^{3}, \sin t\right\rangle$;
(b) $\boldsymbol{u}^{\prime}\left(\frac{\pi}{2}\right)$ if $\boldsymbol{u}(t)=\left\langle\cos t,-1, e^{2 t}\right\rangle$;
(c) $\boldsymbol{w}^{\prime}(3)$ if $\boldsymbol{w}(t)=\left\langle\ln t, t, t^{2}\right\rangle$.
(a) We have $\boldsymbol{v}^{\prime}(t)=\left\langle\left(t^{2}\right)^{\prime},\left(t^{3}\right)^{\prime},(\sin t)^{\prime}\right\rangle=\left\langle 2 t, 3 t^{2}, \cos t\right\rangle$.
(b) We have $\boldsymbol{u}^{\prime}(t)=\left\langle(\cos t)^{\prime},(-1)^{\prime},\left(e^{2 t}\right)^{\prime}\right\rangle=\left\langle-\sin t, 0,2 e^{2 t}\right\rangle$.

Therefore, $\boldsymbol{u}^{\prime}\left(\frac{\pi}{2}\right)=\left\langle-\sin \frac{\pi}{2}, 0,2 e^{2(\pi / 2)}\right\rangle=\left\langle-1,0,2 e^{\pi}\right\rangle$.
(c) We have $\boldsymbol{w}^{\prime}(t)=\left\langle(\ln t)^{\prime},(t)^{\prime},\left(t^{2}\right)^{\prime}\right\rangle=\left\langle\frac{1}{t}, 1,2 t\right\rangle$.

Therefore, $\boldsymbol{w}^{\prime}(3)=\left\langle\frac{1}{3}, 1,6\right\rangle$.

Calculating Tangent Vectors

- Find the position vector $\boldsymbol{r}(1)$ and the tangent vector $\boldsymbol{r}^{\prime}(1)$ for the curve $\boldsymbol{r}(t)=\sqrt{\boldsymbol{t}} \boldsymbol{i}+(2-t) \boldsymbol{j}$.
We have

$$
\boldsymbol{r}(1)=\sqrt{1} \boldsymbol{i}+(2-1) \boldsymbol{j}=\boldsymbol{i}+\boldsymbol{j} .
$$

Moreover,

$$
\boldsymbol{r}^{\prime}(t)=(\sqrt{t})^{\prime} \boldsymbol{i}+(2-t)^{\prime} \boldsymbol{j}=\frac{1}{2 \sqrt{t}} \boldsymbol{i}-\boldsymbol{j}
$$

Therefore, $\boldsymbol{r}^{\prime}(1)=\frac{1}{2} \boldsymbol{i}-\boldsymbol{j}$.

Calculating Tangent Lines

- Find parametric equations for the tangent line to the helix with parametric equations

$$
x=2 \cos t, y=\sin t, z=t
$$

at the point $\left(0,1, \frac{\pi}{2}\right)$.
The given point is the point corresponding to the position vector $\boldsymbol{r}\left(\frac{\pi}{2}\right)=\left\langle 0,1, \frac{\pi}{2}\right\rangle$. The tangent vector is $\boldsymbol{r}^{\prime}(t)=\langle-2 \sin t, \cos t, 1\rangle$, whence at the same point the tangent vector is $\boldsymbol{r}^{\prime}\left(\frac{\pi}{2}\right)=\langle-2,0,1\rangle$. The line passing through $\boldsymbol{r}\left(\frac{\pi}{2}\right)$ with direction $\boldsymbol{r}^{\prime}\left(\frac{\pi}{2}\right)$ is given by the vector equation

$$
\ell(t)=\boldsymbol{r}\left(\frac{\pi}{2}\right)+\boldsymbol{t r}^{\prime}\left(\frac{\pi}{2}\right)=\left\langle 0,1, \frac{\pi}{2}\right\rangle+t\langle-2,0,1\rangle=\left\langle-2 t, 1, \frac{\pi}{2}+t\right\rangle
$$

Its parametric equations are

$$
x=-2 t, y=1, z=\frac{\pi}{2}+t
$$

Second Derivatives and Smooth Curves

- The second derivative of the vector function $\boldsymbol{r}(t)$ is the first derivative of its first derivative $\boldsymbol{r}^{\prime \prime}(t)=\left(\boldsymbol{r}^{\prime}(t)\right)^{\prime}$.
- The curve $\boldsymbol{r}(t)$ is called smooth on an interval I if
- $\boldsymbol{r}^{\prime}(t)$ is continuous;
- $\boldsymbol{r}^{\prime}(t) \neq \mathbf{0}$ except possibly at the endpoints of \boldsymbol{I}.
- $\boldsymbol{r}(t)$ is piece-wise smooth if it is made up of a finite number of smooth pieces.

Example: The semicubical parabola $\boldsymbol{r}(t)=\left\langle 1+t^{3}, t^{2}\right\rangle$ is not smooth. Why?
Is it piece-wise smooth?

Some Rules for Computing Derivatives

Theorem

Assume that $\boldsymbol{u}, \boldsymbol{v}$ are differentiable vector functions, c is a scalar and f is a real-valued function. Then
(1) $(\boldsymbol{u}(t)+\boldsymbol{v}(t))^{\prime}=\boldsymbol{u}^{\prime}(t)+\boldsymbol{v}^{\prime}(t) \quad$ (Sum Rule);
(2) $(c u(t))^{\prime}=c u^{\prime}(t) \quad$ (Constant Factor Rule);
(3) $(f(t) \boldsymbol{u}(t))^{\prime}=f^{\prime}(t) \boldsymbol{u}(t)+f(t) \boldsymbol{u}^{\prime}(t) \quad$ (Scalar Product Rule);
(9) $(\boldsymbol{u}(t) \cdot \boldsymbol{v}(t))^{\prime}=\boldsymbol{u}^{\prime}(t) \cdot \boldsymbol{v}(t)+\boldsymbol{u}(t) \cdot \boldsymbol{v}^{\prime}(t) \quad$ (Dot Product Rule);
(5) $(\boldsymbol{u}(t) \times \boldsymbol{v}(t))^{\prime}=\boldsymbol{u}^{\prime}(t) \times \boldsymbol{v}(t)+\boldsymbol{u}(t) \times \boldsymbol{v}^{\prime}(t) \quad$ (Cross Product Rule);
(6) $(\boldsymbol{u}(f(t)))^{\prime}=f^{\prime}(t) \boldsymbol{u}^{\prime}(f(t)) \quad$ (Chain Rule).

Example: Let $\boldsymbol{r}(t)=\left\langle t^{2}, 5 t, 1\right\rangle$ and $f(t)=e^{3 t}$. Compute:
(a) $(f(t) \boldsymbol{r}(t))^{\prime}=f^{\prime}(t) \boldsymbol{r}(t)+f(t) \boldsymbol{r}^{\prime}(t)=3 e^{3 t}\left\langle t^{2}, 5 t, 1\right\rangle+e^{3 t}\langle 2 t, 5,0\rangle=$ $\left\langle\left(3 t^{2}+2 t\right) e^{3 t},(15 t+5) e^{3 t}, 3 e^{3 t}\right\rangle$.
(b) $[\boldsymbol{r}(f(t))]^{\prime}=f^{\prime}(t) \boldsymbol{r}^{\prime}(f(t))=3 e^{3 t}\left\langle 2\left(e^{3 t}\right), 5,0\right\rangle=\left\langle 6 e^{6 t}, 15 e^{3 t}, 0\right\rangle$.

Proving a Formula

- Prove the formula

$$
\begin{aligned}
\frac{d}{d t}(\boldsymbol{r}(t) & \left.\times \boldsymbol{r}^{\prime}(t)\right)=\boldsymbol{r}(t) \times \boldsymbol{r}^{\prime \prime}(t) . \\
\frac{d}{d t}\left(\boldsymbol{r}(t) \times \boldsymbol{r}^{\prime}(t)\right) & =\frac{d}{d t} \boldsymbol{r}(t) \times \boldsymbol{r}^{\prime}(t)+\boldsymbol{r}(t) \times \frac{d}{d t} \boldsymbol{r}^{\prime}(t) \\
& =\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime}(t)+\boldsymbol{r}(t) \times \boldsymbol{r}^{\prime \prime}(t) \\
& =\mathbf{0}+\boldsymbol{r}(t) \times \boldsymbol{r}^{\prime \prime}(t) \\
& =\boldsymbol{r}(t) \times \boldsymbol{r}^{\prime \prime}(t) .
\end{aligned}
$$

Proving a General Property

- Example: Suppose that $\|\boldsymbol{r}(t)\|=c$, a constant, for all t. Show that $\boldsymbol{r}^{\prime}(t)$ is orthogonal to $\boldsymbol{r}(t)$, for all t.
We have

$$
(\boldsymbol{r}(t) \cdot \boldsymbol{r}(t))^{\prime}=\boldsymbol{r}^{\prime}(t) \cdot \boldsymbol{r}(t)+\boldsymbol{r}(t) \cdot \boldsymbol{r}^{\prime}(t)=2 \boldsymbol{r}(t) \cdot \boldsymbol{r}^{\prime}(t) .
$$

Therefore, we get

$$
\begin{aligned}
\boldsymbol{r}(t) \cdot \boldsymbol{r}^{\prime}(t) & =\frac{1}{2}(\boldsymbol{r}(t) \cdot \boldsymbol{r}(t))^{\prime} \\
& =\frac{1}{2}\left(\|\boldsymbol{r}(t)\|^{2}\right)^{\prime} \\
& =\frac{1}{2}\left(c^{2}\right)^{\prime} \\
& =0 .
\end{aligned}
$$

Therefore, $\boldsymbol{r}^{\prime}(t) \cdot \boldsymbol{r}(t)=0$, showing that $\boldsymbol{r}^{\prime}(t) \perp \boldsymbol{r}(t)$.

Definite Integrals of Vector Functions

- We define the definite integral of a continuous vector function $\boldsymbol{r}(t)=x(t) \boldsymbol{i}+y(t) \boldsymbol{j}+z(t) \boldsymbol{k}$ by

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left(\int_{a}^{b} x(t) d t\right) \boldsymbol{i}+\left(\int_{a}^{b} y(t) d t\right) \boldsymbol{j}+\left(\int_{a}^{b} z(t) d t\right) \boldsymbol{k}
$$

- If $\boldsymbol{R}(t)$ is an antiderivative of $\boldsymbol{r}(t)$, i.e., if $\boldsymbol{R}^{\prime}(t)=\boldsymbol{r}(t)$, then

$$
\int_{a}^{b} \boldsymbol{r}(t) d t=\left.\boldsymbol{R}(t)\right|_{a} ^{b}=\boldsymbol{R}(b)-\boldsymbol{R}(a) .
$$

We write $\int \boldsymbol{r}(t) d t=\boldsymbol{R}(t)+\boldsymbol{c}$, where \boldsymbol{c} is a constant vector, in this case.

Example I

- Compute the following:
(a) $\int\langle 1, t, \sin t\rangle d t$;
(b) $\int_{0}^{\pi}\langle 1, t, \sin t\rangle d t$.
(a)

$$
\begin{aligned}
\int\langle 1, t, \sin t\rangle d t & =\left\langle\int d t, \int t d t, \int \sin t d t\right\rangle \\
& =\left\langle t+c_{1}, \frac{1}{2} t^{2}+c_{2},-\cos t+c_{3}\right\rangle \\
& =\left\langle t, \frac{1}{2} t^{2},-\cos t\right\rangle+\boldsymbol{c} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{0}^{\pi}\langle 1, t, \sin t\rangle d t & =\left.\left\langle t, \frac{1}{2} t^{2},-\cos t\right\rangle\right|_{0} ^{\pi} \\
& =\left\langle\pi, \frac{1}{2} \pi^{2},-\cos \pi\right\rangle-\langle 0,0,-\cos 0\rangle \\
& =\left\langle\pi, \frac{1}{2} \pi^{2}, 2\right\rangle .
\end{aligned}
$$

Example II

- Suppose $\boldsymbol{r}(t)=2 \cos t \boldsymbol{i}+\sin t \boldsymbol{j}+2 t \boldsymbol{k}$. Calculate
(a) $\int \boldsymbol{r}(t) d t$;
(b) $\int_{0}^{\pi / 2} \boldsymbol{r}(t) d t$.
(a)

$$
\int \boldsymbol{r}(t) d t=2 \sin t \mathbf{i}-\cos t \mathbf{j}+t^{2} \mathbf{k}+\mathbf{c}
$$

(b)

$$
\begin{aligned}
\int_{0}^{\pi / 2} \boldsymbol{r}(t) d t & =\left.\left(2 \sin t \boldsymbol{i}-\cos t \boldsymbol{j}+t^{2} \boldsymbol{k}\right)\right|_{0} ^{\pi / 2} \\
& =\left(2 \sin \frac{\pi}{2}-2 \sin 0\right) \boldsymbol{i}-\left(\cos \frac{\pi}{2}-\cos 0\right) \boldsymbol{j} \\
& =2 \boldsymbol{i}+\left(\left(\frac{\pi}{2}\right)^{2}-0^{2}\right) \boldsymbol{j}+\frac{\pi^{2}}{4} \boldsymbol{k}
\end{aligned}
$$

Finding a Position Vector

- The path of a particle satisfies $\frac{d \boldsymbol{r}}{d t}=\left\langle 1-6 \sin 3 t, \frac{1}{5} t\right\rangle$. Find the particle's location at $t=4$ if $\boldsymbol{r}(0)=\langle 4,1\rangle$.
The general solution is obtained by integration:

$$
\boldsymbol{r}(t)=\int\left\langle 1-6 \sin 3 t, \frac{1}{5} t\right\rangle d t=\left\langle t+2 \cos 3 t, \frac{1}{10} t^{2}\right\rangle+\boldsymbol{c}
$$

The initial condition $r(0)=\langle 4,1\rangle$ gives us

$$
\boldsymbol{r}(0)=\langle 2,0\rangle+\boldsymbol{c}=\langle 4,1\rangle \quad \Rightarrow \quad \boldsymbol{c}=\langle 2,1\rangle .
$$

This now yields

$$
\boldsymbol{r}(t)=\left\langle t+2 \cos 3 t, \frac{1}{10} t^{2}\right\rangle+\langle 2,1\rangle=\left\langle t+2 \cos 3 t+2, \frac{1}{10} t^{2}+1\right\rangle
$$

The particle's position at $t=4$ is

$$
\boldsymbol{r}(4)=\left\langle 4+2 \cos 12+2, \frac{16}{10}+1\right\rangle=\left\langle 6+2 \cos 12, \frac{13}{5}\right\rangle
$$

Subsection 3

Arc Length and Speed

Arc Length

- Suppose that $\boldsymbol{r}(t)=\langle x(t), y(t), z(t)\rangle$. Then, the length of the arc traversed as t increases from a to b is given by

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t \\
& =\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t
\end{aligned}
$$

- Recall that $\boldsymbol{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle$. Therefore, $\left\|\boldsymbol{r}^{\prime}(t)\right\|=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}}$. This shows that

$$
L=\int_{a}^{b}\left\|\boldsymbol{r}^{\prime}(t)\right\| d t
$$

Computing Arc Length

- Compute the length of the arc of the circular helix with vector equation $\boldsymbol{r}(t)=\cos t \boldsymbol{i}+\sin t \boldsymbol{j}+t \boldsymbol{k}$ from $(1,0,0)$ to $(1,0,2 \pi)$. Note that:
- $(1,0,0)$ corresponds to $t=0$;
- $(1,0,2 \pi)$ corresponds to $t=2 \pi$.

Moreover, $x^{\prime}(t)=-\sin t, y^{\prime}(t)=\cos t$ and $z^{\prime}(t)=1$. Therefore,

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{(-\sin t)^{2}+\cos ^{2} t+1} d t \\
& =\int_{0}^{2 \pi} \sqrt{2} d t \\
& =\left.\sqrt{2} t\right|_{0} ^{2 \pi} \\
& =2 \sqrt{2} \pi .
\end{aligned}
$$

Arc Length Function and Speed

- We define the arc length function as the distance traveled during the interval $[a, t]$:

$$
s(t)=\int_{a}^{t}\left\|\boldsymbol{r}^{\prime}(u)\right\| d u
$$

- By definition, speed is the rate of change of distance traveled with respect to time t :

$$
\text { Speed at time } t=\frac{d s}{d t}=\frac{d}{d t} \int_{a}^{t}\left\|\boldsymbol{r}^{\prime}(u)\right\| d u \stackrel{\mathrm{FTC}}{=}\left\|\boldsymbol{r}^{\prime}(t)\right\| \text {. }
$$

Calculating Speed

- Find the speed at time $t=2 \mathrm{~s}$ of a particle whose position vector is

$$
\boldsymbol{r}(t)=t^{3} \boldsymbol{i}-e^{t} \boldsymbol{j}+4 t \boldsymbol{k}
$$

The velocity vector is

$$
\boldsymbol{v}(t)=\boldsymbol{r}^{\prime}(t)=3 t^{2} \boldsymbol{i}-e^{t} \boldsymbol{j}+4 \boldsymbol{k}
$$

$$
\text { At } t=2, \boldsymbol{v}(2)=12 \boldsymbol{i}-e^{2} \boldsymbol{j}+4 \boldsymbol{k}
$$

Therefore, the particle's speed is

$$
v(2)=\|\boldsymbol{v}(2)\|=\sqrt{12^{2}+\left(-e^{2}\right)^{2}+4^{2}}=\sqrt{160+e^{4}}
$$

Switching Between Parametrizations

- Parametrizations are not unique.

Example: By elimination of parameters, it is easy to see that both $\boldsymbol{r}_{1}(t)=\left\langle t, t^{2}\right\rangle$ and $\boldsymbol{r}_{2}(s)=\left\langle s^{3}, s^{6}\right\rangle$ parametrize the parabola $y=x^{2}$. In this case $\boldsymbol{r}_{2}(s)$ is obtained by substituting $t=s^{3}$ in $\boldsymbol{r}_{1}(t)$.

- In general, we obtain a new parametrization by making a substitution $t=g(s)$,

i.e., by replacing $\boldsymbol{r}(t)$ with $\boldsymbol{r}_{1}(s)=\boldsymbol{r}(g(s))$. If $t=g(s)$ increases
from a to b as s varies from c to d, then the path $\boldsymbol{r}(t)$ for $a \leq t \leq b$ is also parametrized by $\boldsymbol{r}_{1}(s)$ for $c \leq s \leq d$.

Example

- Parametrize the path $\boldsymbol{r}(t)=\left\langle t^{2}, \sin t, t\right\rangle$, for $3 \leq t \leq 9$, using the parameter s, where $t=g(s)=e^{s}$.
Substituting $t=e^{s}$ in $\boldsymbol{r}(t)$, we obtain the parametrization

$$
\boldsymbol{r}_{1}(s)=\boldsymbol{r}(g(s))=\left\langle e^{2 s}, \sin e^{s}, e^{s}\right\rangle
$$

Because $s=\ln t$, the parameter t varies from 3 to 9 as s varies from $\ln 3$ to $\ln 9$. Therefore, the path is parametrized by

$$
\boldsymbol{r}_{1}(s), \text { for } \ln 3 \leq s \leq \ln 9
$$

Arc Length Parametrization

- One way of parametrizing a path is to choose a starting point and "walk along the path" at unit speed.

Such a parametrization is called an arc length parametrization and is defined by the property that the speed has constant value 1 :

$$
\left\|\boldsymbol{r}^{\prime}(t)\right\|=1, \text { for all } t
$$

Process for Arc Length Parametrization

- To find an arc length parametrization:
- Start with any parametrization $\boldsymbol{r}(t)$ such that $\boldsymbol{r}^{\prime}(t) \neq \mathbf{0}$, for all t;
- Form the arc length integral $s(t)=\int_{0}^{t}\left\|\boldsymbol{r}^{\prime}(u)\right\| d u$;
- Notice that $\boldsymbol{r}^{\prime}(t) \neq \mathbf{0}$ implies that $s(t)$ is an increasing function and therefore has an inverse $t=g(s)$.
- The parametrization

$$
\boldsymbol{r}_{1}(s)=\boldsymbol{r}(g(s))
$$

is an arc length parametrization.

- We show why:
- By the formula for the derivative of an inverse, we get

$$
g^{\prime}(s)=\frac{1}{s^{\prime}(g(s))}=\frac{1}{\left\|\boldsymbol{r}^{\prime}(g(s))\right\|}
$$

- Now we get, using the Chain Rule,

$$
\left\|\boldsymbol{r}_{1}^{\prime}(s)\right\| \stackrel{\text { Chain }}{=}\left\|g^{\prime}(s) \boldsymbol{r}^{\prime}(g(s))\right\|=\frac{1}{\left\|\boldsymbol{r}^{\prime}(g(s))\right\|}\left\|\boldsymbol{r}^{\prime}(g(s))\right\|=1
$$

Finding an Arc Parametrization

- Find the arc length parametrization of the helix

$$
\boldsymbol{r}(t)=\langle\cos 4 t, \sin 4 t, 3 t\rangle
$$

First, we evaluate the arc length function

$$
\begin{aligned}
\left\|\boldsymbol{r}^{\prime}(t)\right\| & =\|\langle-4 \sin 4 t, 4 \cos 4 t, 3\rangle\| \\
& =\sqrt{16 \sin ^{2} 4 t+16 \cos ^{2} 4 t+3^{2}}=5 \\
s(t) & =\int_{0}^{t}\left\|\boldsymbol{r}^{\prime}(t)\right\| d t=\int_{0}^{t} 5 d t=5 t
\end{aligned}
$$

Then we observe that the inverse of $s(t)=5 t$ is $t=\frac{s}{5}$, i.e., $g(s)=\frac{s}{5}$. Thus, an arc length parametrization is

$$
\boldsymbol{r}_{1}(s)=\boldsymbol{r}(g(s))=\boldsymbol{r}\left(\frac{s}{5}\right)=\left\langle\cos \frac{4 s}{5}, \sin \frac{4 s}{5}, \frac{3 s}{5}\right\rangle
$$

Subsection 4

Curvature

Unit Tangent Vector

- Consider a path with parametrization $\boldsymbol{r}(t)=\langle x(t), y(t), z(t)\rangle$, such that $\boldsymbol{r}^{\prime}(t) \neq \mathbf{0}$, for all t in the domain of $\boldsymbol{r}(t)$.
A parametrization with this property is called regular.
- At every point P along the path there is a unit tangent vector $\mathbf{T}=\mathbf{T}_{P}$ that points in the direction of motion of the parametrization

$$
\text { Unit Tangent Vector }=\mathbf{T}(t)=\frac{\boldsymbol{r}^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|}
$$

Computing a Unit Tangent Vector

- If $\boldsymbol{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$, compute the unit tangent vector at $P=(1,1,1)$. We have $\boldsymbol{r}^{\prime}(t)=\left\langle 1,2 t, 3 t^{2}\right\rangle$.
Note that P is the terminal point of $\boldsymbol{r}(1)$.
Thus, the unit tangent vector at $P=(1,1,1)$ is

$$
\begin{aligned}
\mathbf{T}_{P} & =\frac{\boldsymbol{r}^{\prime}(1)}{\left\|\boldsymbol{r}^{\prime}(1)\right\|}=\frac{\langle 1,2,3\rangle}{\|\langle 1,2,3\rangle\|} \\
& =\frac{\langle 1,2,3\rangle}{\sqrt{1^{2}+2^{2}+3^{2}}}=\left\langle\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right\rangle .
\end{aligned}
$$

Definition of Curvature

- Imagine walking along a path and observing how the unit tangent vector \mathbf{T} changes direction.

A change in \mathbf{T} indicates that the path is bending, and the more rapidly \mathbf{T} changes, the more the path bends. Thus, $\left\|\frac{d \mathbf{T}}{d t}\right\|$ would seem to be a good measure of curvature. However, this depends on how fast you walk.

To counter this, we assume an arc length parametrization.

- Let $\boldsymbol{r}(s)$ be an arc length parametrization and \mathbf{T} the unit tangent vector. The curvature at $\boldsymbol{r}(s)$ is the quantity

$$
\kappa(s)=\left\|\frac{d \mathbf{T}}{d s}\right\|
$$

A Line Has Zero Curvature

- Compute the curvature at each point on the line $\boldsymbol{r}(t)=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t \boldsymbol{u}$, where $\|\boldsymbol{u}\|=1$.
Since \boldsymbol{u} is a unit vector, $\boldsymbol{r}(t)$ is an arc length parametrization:
$\boldsymbol{r}^{\prime}(t)=\boldsymbol{u}$ and, thus, $\left\|\boldsymbol{r}^{\prime}(t)\right\|=\|\boldsymbol{u}\|=1$.
Thus, we have $\mathbf{T}(t)=\frac{\boldsymbol{r}^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|}=\boldsymbol{r}^{\prime}(t)$. Hence, $\mathbf{T}^{\prime}(t)=\boldsymbol{r}^{\prime \prime}(t)=\mathbf{0}$
(because $\boldsymbol{r}^{\prime}(t)=\boldsymbol{u}$ is constant). As expected, the curvature is zero at all points on a line:

$$
\kappa(t)=\left\|\frac{d \mathbf{T}}{d t}\right\|=\left\|\boldsymbol{r}^{\prime \prime}(t)\right\|=0
$$

The Curvature of a Circle of Radius R is $1 / R$

- Compute the curvature of a circle of radius R.

Assume the circle is centered at the origin $\boldsymbol{r}(\theta)=\langle R \cos \theta, R \sin \theta\rangle$.
We find an arc length parametrization:

$$
s(\theta)=\int_{0}^{\theta}\left\|\boldsymbol{r}^{\prime}(u)\right\| d u=\int_{0}^{\theta} R d u=R \theta
$$

Thus, $s=R \theta$, and the inverse function is $\theta=g(s)=\frac{s}{R}$. Thus, an arc length parametrization is

$$
\boldsymbol{r}_{1}(s)=\boldsymbol{r}(g(s))=r\left(\frac{s}{R}\right)=\left\langle R \cos \frac{s}{R}, R \sin \frac{s}{R}\right\rangle .
$$

The unit tangent vector and its derivative are
$\mathbf{T}(s)=\frac{d \boldsymbol{r}_{1}}{d s}=\frac{d}{d s}\left\langle R \cos \frac{s}{R}, R \sin \frac{s}{R}\right\rangle=\left\langle-\sin \frac{s}{R}, \cos \frac{s}{R}\right\rangle$. Therefore, $\frac{d T}{d s}=-\frac{1}{R}\left\langle\cos \frac{s}{R}, \sin \frac{s}{R}\right\rangle$. By definition of curvature,

$$
\kappa(s)=\left\|\frac{d \mathbf{T}}{d s}\right\|=\frac{1}{R}\left\|\left\langle\cos \frac{s}{R}, \sin \frac{s}{R}\right\rangle\right\|=\frac{1}{R} .
$$

Derivative of the Unit Tangent Vector and Curvature

- Suppose that $\mathbf{T}(s)=\mathbf{T}(s(t))$.

So the derivatives of \mathbf{T} with respect to t and s are related by the Chain Rule:

$$
\mathbf{T}^{\prime}(t)=\frac{d \mathbf{T}}{d t}=\frac{d s}{d t} \frac{d \mathbf{T}}{d s} .
$$

- Now note that
- $\frac{d s}{d t}=\left\|\boldsymbol{r}^{\prime}(t)\right\|=v(t)$;
- $\left\|\frac{d \mathbf{T}}{d s}\right\|=\kappa(t)$.
- So we get:

$$
\left\|\mathbf{T}^{\prime}(t)\right\|=v(t) \kappa(t)
$$

Formula for Curvature

- If $\boldsymbol{r}(t)$ is a regular parametrization, then the curvature at $\boldsymbol{r}(t)$ is

$$
\kappa(t)=\frac{\left\|\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)\right\|}{\left\|\boldsymbol{r}^{\prime}(t)\right\|^{3}}
$$

Since $v(t)=\left\|\boldsymbol{r}^{\prime}(t)\right\|$, we have $\boldsymbol{r}^{\prime}(t)=v(t) \mathbf{T}(t)$. By the Product Rule,

$$
\boldsymbol{r}^{\prime \prime}(t)=v^{\prime}(t) \mathbf{T}(t)+v(t) \mathbf{T}^{\prime}(t)
$$

Now using the fact that $\mathbf{T}(t) \times \mathbf{T}(t)=\mathbf{0}$, we get:

$$
\begin{aligned}
\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t) & =v(t) \mathbf{T}(t) \times\left(v^{\prime}(t) \mathbf{T}(t)+v(t) \mathbf{T}^{\prime}(t)\right) \\
& =v(t)^{2} \mathbf{T}(t) \times \mathbf{T}^{\prime}(t)
\end{aligned}
$$

Now we get

$$
\left\|\mathbf{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)\right\|=v(t)^{2}\|\mathbf{T}(t)\|\left\|\mathbf{T}^{\prime}(t)\right\| \sin \frac{\pi}{2}=v(t)^{2}\left\|\mathbf{T}^{\prime}(t)\right\|
$$

Finally, we obtain

$$
\left\|\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)\right\|=v(t)^{2}\left\|\mathbf{T}^{\prime}(t)\right\|=v(t)^{3} \kappa(t)=\left\|\boldsymbol{r}^{\prime}(t)\right\|^{3} \kappa(t)
$$

Twisted Cubic Curve

- Calculate the curvature $\kappa(t)$ of the twisted cubic $\boldsymbol{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$.

$$
\begin{aligned}
\boldsymbol{r}^{\prime}(t) & =\left\langle 1,2 t, 3 t^{2}\right\rangle \\
\boldsymbol{r}^{\prime \prime}(t) & =\langle 0,2,6 t\rangle \\
\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t) & =\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
1 & 2 t & 3 t^{2} \\
0 & 2 & 6 t
\end{array}\right|=\left\langle 6 t^{2},-6 t, 2\right\rangle .
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
\kappa(t) & =\frac{\left\|\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)\right\|}{\left\|\boldsymbol{r}^{\prime}(t)\right\|^{3}} \\
& =\frac{\sqrt{\left(6 t^{2}\right)^{2}+(-6 t)^{2}+2^{2}}}{\sqrt{\left(1^{2}+(2 t)^{2}+\left(3 t^{2}\right)^{3}\right)^{3}}} \\
& =\frac{\sqrt{36 t^{4}+36 t^{2}+4}}{\sqrt{\left(1+4 t^{2} 9 t^{4}\right)^{3}}} .
\end{aligned}
$$

Curvature of a Graph in the Plane

- The curvature at the point $(x, f(x))$ on the graph of $y=f(x)$ is equal to

$$
\kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+f^{\prime}(x)^{2}\right)^{3 / 2}}
$$

The curve $y=f(x)$ has parametrization $\boldsymbol{r}(x)=\langle x, f(x)\rangle$. Therefore, $\boldsymbol{r}^{\prime}(x)=\left\langle 1, f^{\prime}(x)\right\rangle$ and $\boldsymbol{r}^{\prime \prime}(x)=\left\langle 0, f^{\prime \prime}(x)\right\rangle$. To apply the formulas for $\kappa(x)$, we treat $\boldsymbol{r}^{\prime}(x)$ and $\boldsymbol{r}^{\prime \prime}(x)$ as vectors in \mathbb{R}^{3} with z-component equal to zero. Then

$$
\boldsymbol{r}^{\prime}(x) \times \boldsymbol{r}^{\prime \prime}(x)=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
1 & f^{\prime}(x) & 0 \\
0 & f^{\prime \prime}(x) & 0
\end{array}\right|=f^{\prime \prime}(x) \boldsymbol{k}
$$

Now we get

$$
\kappa(x)=\frac{\left\|\boldsymbol{r}^{\prime}(x) \times \boldsymbol{r}^{\prime \prime}(x)\right\|}{\left\|\boldsymbol{r}^{\prime}(x)\right\|^{3}}=\frac{\sqrt{f^{\prime \prime}(x)^{2}}}{\sqrt{\left(1+f^{\prime}(x)^{2}\right)^{3}}}=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+f^{\prime}(x)^{2}\right)^{3 / 2}} .
$$

Computing the Curvature of a Graph in the Plane

- Compute the curvature of $f(x)=x^{3}-3 x^{2}+4$ at $x=0,1,2$.

We have

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-6 x=3 x(x-2) \\
f^{\prime \prime}(x) & =6 x-6
\end{aligned}
$$

So we get

$$
\kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+f^{\prime}(x)^{2}\right)^{3 / 2}}=\frac{|6 x-6|}{\left(1+(3 x(x-2))^{2}\right)^{3 / 2}}
$$

We obtain the following values:

$$
\kappa(0)=\frac{6}{1}=6, \quad \kappa(1)=\frac{0}{10^{3 / 2}}=0, \quad \kappa(2)=\frac{6}{1}=6 .
$$

Unit Normal and Binormal Vectors

- Given a curve $\boldsymbol{r}(t)$, the unit normal $\mathbf{N}(t)$ is defined by

$$
\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}
$$

Note that $\mathbf{T}^{\prime}(t)=\left\|\mathbf{T}^{\prime}(t)\right\| \mathbf{N}(t)=v(t) \kappa(t) \mathbf{N}(t)$.

- The binormal is defined by $\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$;

Finding the Unit Normal and Binormal Vectors

- Curve: $\boldsymbol{r}(t)$; Unit Normal $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}$;

Binormal: $\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$.
Example: Find the unit normal and the binormal to the curve $\boldsymbol{r}(t)=\cos t \boldsymbol{i}+\sin t \boldsymbol{j}+t \boldsymbol{k}$.

- $\boldsymbol{r}^{\prime}(t)=\langle-\sin t, \cos t, 1\rangle$ and $\left\|\boldsymbol{r}^{\prime}(t)\right\|=\sqrt{2}$;
- $\mathbf{T}(t)=\frac{\boldsymbol{r}^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|}=\left\langle-\frac{1}{\sqrt{2}} \sin t, \frac{1}{\sqrt{2}} \cos t, \frac{1}{\sqrt{2}}\right\rangle$;
- $\mathbf{T}^{\prime}(t)=\left\langle-\frac{1}{\sqrt{2}} \cos t,-\frac{1}{\sqrt{2}} \sin t, 0\right\rangle$ and $\left\|\mathbf{T}^{\prime}(t)\right\|=\frac{1}{\sqrt{2}}$;
- $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}=\langle-\cos t,-\sin t, 0\rangle$;
- $\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)=\left|\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ -\frac{1}{\sqrt{2}} \sin t & \frac{1}{\sqrt{2}} \cos t & \frac{1}{\sqrt{2}} \\ -\cos t & -\sin t & 0\end{array}\right|=$

$$
\left\langle\frac{1}{\sqrt{2}} \sin t,-\frac{1}{\sqrt{2}} \cos t, \frac{1}{\sqrt{2}}\right\rangle
$$

Normal Plane and Osculating Plane

- Let $\boldsymbol{r}(t)$ be a vector function determining a space curve \mathcal{C}.
- The normal plane of \mathcal{C} at a point P is the plane determined by the normal \mathbf{N} and the binormal \mathbf{B} vectors of \mathcal{C} at P.
- The osculating (kissing) plane of C at P is the plane determined by the tangent \mathbf{T} and normal \mathbf{N} vectors of \mathcal{C} at P.

Remarks on Normal Plane and Osculating Plane

- Curve \mathcal{C} with vector $\boldsymbol{r}(t)$;
- Normal plane at a point P determined by the normal \mathbf{N} and the binormal B;
- Osculating plane at P determined by the tangent \mathbf{T} and normal \mathbf{N}.
- Since the normal plane at t is determined by the normal $\mathbf{N}(t)$ and the binormal $\mathbf{B}(t)$, the tangent vector $\boldsymbol{r}^{\prime}(t)$ is a normal vector to the normal plane;
- Similarly, since the osculating plane at t is determined by the tangent $\mathbf{T}(t)$ and normal $\mathbf{N}(t)$, the binormal vector $\mathbf{B}(t)$ is a normal vector to the osculating plane.

Example

- Determine the normal and the osculating plane of $x=2 \sin 3 t, y=t, z=2 \cos 3 t$ at the point $(0, \pi,-2)$.
We are focusing at the point with $t=\pi$;
- We have $\boldsymbol{r}(t)=\langle 2 \sin 3 t, t, 2 \cos 3 t\rangle$;
- $\boldsymbol{r}^{\prime}(t)=\langle 6 \cos 3 t, 1,-6 \sin 3 t\rangle$; So $\boldsymbol{r}^{\prime}(\pi)=\langle-6,1,0\rangle$;
- $\mathbf{T}(t)=\frac{\boldsymbol{r}^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|}=\left\langle\frac{6}{\sqrt{37}} \cos 3 t, \frac{1}{\sqrt{37}},-\frac{6}{\sqrt{37}} \sin 3 t\right\rangle$;

So $\mathbf{T}(\pi)=\left\langle-\frac{6}{\sqrt{37}}, \frac{1}{\sqrt{37}}, 0\right\rangle$;

- Now we get $\mathbf{T}^{\prime}(t)=\left\langle-\frac{18}{\sqrt{37}} \sin 3 t, 0,-\frac{18}{\sqrt{37}} \cos 3 t\right\rangle$;

So $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\pi \mathbf{T}^{\prime}(t) \pi}=\langle-\sin 3 t, 0,-\cos 3 t\rangle$;
Hence $\mathbf{N}(\pi)=\langle 0,0,1\rangle$;

- Finally, $\mathbf{B}(\pi)=\mathbf{T}(\pi) \times \mathbf{N}(\pi)=\left|\begin{array}{ccc}\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ -\frac{6}{\sqrt{37}} & \frac{1}{\sqrt{37}} & 0 \\ 0 & 0 & 1\end{array}\right|=\left\langle\frac{1}{\sqrt{37}}, \frac{6}{\sqrt{37}}, 0\right\rangle$;

The normal plane is $-6 x+(y-\pi)=0$;
The osculating plane is $\frac{1}{\sqrt{37}} x+\frac{6}{\sqrt{37}}(y-\pi)=0$, or $x+6(y-\pi)=0$.

Subsection 5

Motion in Three-Space

Velocity, Speed and Acceleration

- Assume that $\boldsymbol{r}(t)$ is the position vector at time t of a particle moving through space.
- Then, the velocity vector $\boldsymbol{v}(t)$ at time t is

$$
\boldsymbol{v}(t)=\boldsymbol{r}^{\prime}(t)
$$

- The speed of the particle is the magnitude or length of the velocity vector, i.e., $v(t)=\|\boldsymbol{v}(t)\|=\left\|\boldsymbol{r}^{\prime}(t)\right\|$.
- Finally, its acceleration is the derivative of the velocity

$$
\boldsymbol{a}(t)=\boldsymbol{v}^{\prime}(t)=\boldsymbol{r}^{\prime \prime}(t)
$$

Example: If the position vector of a particle is $\boldsymbol{r}(t)=t^{3} \boldsymbol{i}+t^{2} \boldsymbol{j}$, what are its velocity, speed and acceleration at time $t=1$?
We compute the following:

$$
\begin{array}{lll}
\boldsymbol{v}(t)=3 t^{2} \boldsymbol{i}+2 t \boldsymbol{j}, & \|\boldsymbol{v}(t)\|=\sqrt{9 t^{4}+4 t^{2}}, & \boldsymbol{a}(t)=\boldsymbol{v}^{\prime}(t)=6 t \boldsymbol{i}+2 \boldsymbol{j} \\
\boldsymbol{v}(1)=3 \mathbf{i}+2 \boldsymbol{j}, & \|\boldsymbol{v}(1)\|=\sqrt{13}, & \boldsymbol{a}(1)=6 \boldsymbol{i}+2 \boldsymbol{j}
\end{array}
$$

Examples on Velocity, Speed and Acceleration

- Example: Find the velocity, acceleration and speed of a particle whose position vector is $\boldsymbol{r}(t)=\left\langle t^{2}, e^{t}, t e^{t}\right\rangle$.

$$
\begin{aligned}
& \boldsymbol{v}(t)=\boldsymbol{r}^{\prime}(t)=\left\langle 2 t, e^{t}, e^{t}+t e^{t}\right\rangle ; \\
& \|\boldsymbol{v}(t)\|=\sqrt{4 t^{2}+e^{2 t}+\left(e^{t}+t e^{t}\right)^{2}}=\sqrt{4 t^{2}+\left(t^{2}+2 t+2\right) e^{2 t}} \\
& \boldsymbol{a}(t)=\boldsymbol{v}^{\prime}(t)=\left\langle 2, e^{t}, 2 e^{t}+t e^{t}\right\rangle
\end{aligned}
$$

- Example: Find the velocity and the position vector at time t of a particle, whose position vector at time 0 is $r(0)=\langle 1,0,0\rangle$, whose velocity at time 0 is $\boldsymbol{v}(0)=\boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k}$ and whose acceleration is $\boldsymbol{a}(t)=4 t \boldsymbol{i}+6 t \boldsymbol{j}+\boldsymbol{k}$.
$\boldsymbol{v}(t)=\int \boldsymbol{a}(t) d t=2 t^{2} \boldsymbol{i}+3 t^{2} \boldsymbol{j}+t \boldsymbol{k}+\boldsymbol{c}$. But $\boldsymbol{v}(0)=\boldsymbol{c}=\boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k}$, whence $\boldsymbol{v}(t)=\left(2 t^{2}+1\right) \boldsymbol{i}+\left(3 t^{2}-1\right) \boldsymbol{j}+(t+1) \boldsymbol{k}$.
$\boldsymbol{r}(t)=\int \boldsymbol{v}(t) d t=\left(\frac{2}{3} t^{3}+t\right) \boldsymbol{i}+\left(t^{3}-t\right) \boldsymbol{j}+\left(\frac{1}{2} t^{2}+t\right) \boldsymbol{k}+\boldsymbol{c}$; As before, $\boldsymbol{r}(0)=\boldsymbol{c}=\boldsymbol{i}$, whence $\boldsymbol{r}(t)=\left(\frac{2}{3} t^{3}+t+1\right) \boldsymbol{i}+\left(t^{3}-t\right) \boldsymbol{j}+\left(\frac{1}{2} t^{2}+t\right) \boldsymbol{k}$.

Newton's Second Law of Motion

- If at time t a force $\boldsymbol{F}(t)$ acts on an object of mass m producing an acceleration $\boldsymbol{a}(t)$, then

$$
\boldsymbol{F}(t)=m \mathbf{a}(t)
$$

Example: The position vector of an object with mass m moving in a circular path with constant angular speed ω is

$$
\boldsymbol{r}(t)=a \cos \omega t \mathbf{i}+a \sin \omega t \boldsymbol{j}
$$

What is the force acting on the object and what is its direction?
We have

$$
\begin{aligned}
& \boldsymbol{v}(t)=\boldsymbol{r}^{\prime}(t)=-a \omega \sin \omega t \boldsymbol{i}+a \omega \cos \omega t \boldsymbol{j} \\
& \boldsymbol{a}(t)=\boldsymbol{v}^{\prime}(t)=-a \omega^{2} \cos \omega t \boldsymbol{i}-a \omega^{2} \sin \omega t \boldsymbol{j} \\
& \boldsymbol{F}(t)=m \boldsymbol{a}(t)=-m a \omega^{2} \cos \omega t \boldsymbol{i}-m a \omega^{2} \sin \omega t \boldsymbol{j}
\end{aligned}
$$

Therefore $\|\boldsymbol{F}(t)\|=m a \omega^{2}$ and $\boldsymbol{F}(t)=-m \omega^{2} \boldsymbol{r}(t)$, i.e., $\boldsymbol{F}(t)$ is opposite to the position (radius) vector.

Position Vector of a Projectile

- A projectile is fired from initial position $\boldsymbol{r}_{0}=\mathbf{0}$, with angle of elevation α and initial velocity \boldsymbol{v}_{0}. If the only external force is due to gravity g, what is the position function $\boldsymbol{r}(t)$ of the projectile?
We have

$$
\begin{aligned}
\boldsymbol{a}(t) & =-g \boldsymbol{j} ; \\
\boldsymbol{v}(t) & =\int \boldsymbol{a}(t) d t
\end{aligned}=-g t \boldsymbol{j}+\boldsymbol{v}_{0}, ~ \begin{aligned}
\mathbf{r}(t) & =\int \boldsymbol{v}(t) d t
\end{aligned}=-\frac{1}{2} g t^{2} \boldsymbol{j}+t \boldsymbol{v}_{0}+\boldsymbol{r}_{0} .
$$

Since $\boldsymbol{v}_{0}=v_{0} \cos \alpha \boldsymbol{i}+v_{0} \sin \alpha \boldsymbol{j}$, the above vector equation can be rewritten as

$$
\boldsymbol{r}(t)=v_{0} t \cos \alpha \boldsymbol{i}+\left(v_{0} t \sin \alpha-\frac{1}{2} g t^{2}\right) \boldsymbol{j}
$$

Tangential and Normal Components of Acceleration

- Suppose a traveling particle has position vector $\boldsymbol{r}(t)$, velocity vector $\boldsymbol{v}(t)=\boldsymbol{r}^{\prime}(t)$ and speed $v=\|\boldsymbol{v}(t)\|$.
- Then the unit tangent to its position is $\mathbf{T}(t)=\frac{\boldsymbol{r}^{\prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|}=\frac{\boldsymbol{v}(t)}{v(t)}$, showing that $\mathbf{v}(t)=v(t) \mathbf{T}(t)$.
- Recall the formula for the curvature $\kappa(t)=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\boldsymbol{r}^{\prime}(t)\right\|}=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{v(t)}$, which gives $\left\|\mathbf{T}^{\prime}(t)\right\|=\kappa(t) v(t)$.
- Recall, also, the formula for the unit normal $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}$, which gives $\mathbf{T}^{\prime}(t)=\left\|\mathbf{T}^{\prime}(t)\right\| \mathbf{N}(t)=\kappa(t) v(t) \mathbf{N}(t)$.
- Differentiating the velocity vector and putting these formulas together gives the resolution of the acceleration into a tangential and a normal component to the motion

$$
\boldsymbol{a}(t)=v^{\prime}(t) \mathbf{T}(t)+v(t) \mathbf{T}^{\prime}(t)=v^{\prime}(t) \mathbf{T}(t)+\kappa(t) v^{2}(t) \mathbf{N}(t)
$$

Obtain Expressions for the Components in Terms of $r(t)$

- From the previous slide $\boldsymbol{a}(t)=a_{T}(t) \mathbf{T}(t)+a_{N}(t) \mathbf{N}(t)$, where

$$
\begin{aligned}
& -a_{T}(t)=v^{\prime}(t) \\
& -a_{N}(t)=\kappa(t) v^{2}(t) .
\end{aligned}
$$

- Now note that

$$
\begin{aligned}
a_{T}(t) & =v^{\prime}(t)=\frac{v(t) v^{\prime}(t)}{v(t)} \\
& =\frac{v(t) v^{\prime}(t) \mathbf{T}(t) \cdot \mathbf{T}(t)+\kappa(t) v^{3}(t) \mathbf{T}(t) \cdot \mathbf{N}(t)}{v(t)} \\
& =\frac{v(t) \mathbf{T}(t) \cdot\left(v^{\prime}(t) \mathbf{T}(t)+\kappa(t) v^{2}(t) \mathbf{N}(t)\right)}{v(t)} \\
& =\frac{\boldsymbol{v}(t) \cdot \mathbf{a}(t)}{v(t)}=\frac{\boldsymbol{r}^{\prime}(t) \cdot \boldsymbol{r}^{\prime \prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|} .
\end{aligned}
$$

- Also, we get

$$
a_{N}(t)=\kappa(t) v^{2}(t)=\frac{\left\|\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)\right\|}{\left\|\boldsymbol{r}^{\prime}(t)\right\|^{3}}\left\|\boldsymbol{r}^{\prime}(t)\right\|^{2}=\frac{\left\|\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)\right\|}{\left\|\boldsymbol{r}^{\prime}(t)\right\|}
$$

Computing the Acceleration Components

- Suppose $\boldsymbol{r}(t)=\left\langle t^{2}, t^{2}, t^{3}\right\rangle$.

Then we have

$$
\begin{aligned}
& \boldsymbol{r}^{\prime}(t)=\left\langle 2 t, 2 t, 3 t^{2}\right\rangle \\
& \left\|\boldsymbol{r}^{\prime}(t)\right\|=\sqrt{8 t^{2}+9 t^{4}} ; \\
& \boldsymbol{r}^{\prime \prime}(t)=\langle 2,2,6 t\rangle ; \\
& \boldsymbol{r}^{\prime}(t) \cdot \boldsymbol{r}^{\prime \prime}(t)=\left\langle 2 t, 2 t, 3 t^{2}\right\rangle \cdot\langle 2,2,6 t\rangle=8 t+18 t^{3} ; \\
& \boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)=\left|\begin{array}{ccc}
\boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\
2 t & 2 t & 3 t^{2} \\
2 & 2 & 6 t
\end{array}\right|=\left\langle 6 t^{2},-6 t^{2}, 0\right\rangle \\
& \left\|\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)\right\|=6 \sqrt{2} t^{2} .
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
a_{T}(t)=\frac{\boldsymbol{r}^{\prime}(t) \cdot \boldsymbol{r}^{\prime \prime}(t)}{\left\|\boldsymbol{r}^{\prime}(t)\right\|}=\frac{8 t+18 t^{3}}{\sqrt{8 t^{2}+9 t^{4}}} \\
a_{N}(t)=\frac{\left\|\boldsymbol{r}^{\prime}(t) \times \boldsymbol{r}^{\prime \prime}(t)\right\|}{\left\|\boldsymbol{r}^{\prime}(t)\right\|}=\frac{6 \sqrt{2} t^{2}}{\sqrt{8 t^{2}+9 t^{4}}} .
\end{gathered}
$$

